repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
29rj/Fusion
FusionIIIT/applications/placement_cell/api/serializers.py
bc2941a67532e183adeb0bc4042df0b182b9e3aa
from rest_framework.authtoken.models import Token from rest_framework import serializers from applications.placement_cell.models import (Achievement, Course, Education, Experience, Has, Patent, Project, Publication, Skill, PlacementStatus, NotifyStudent) class SkillSerializer(serializers.ModelSerializer): class Meta: model = Skill fields = ('__all__') class HasSerializer(serializers.ModelSerializer): skill_id = SkillSerializer() class Meta: model = Has fields = ('skill_id','skill_rating') def create(self, validated_data): skill = validated_data.pop('skill_id') skill_id, created = Skill.objects.get_or_create(**skill) try: has_obj = Has.objects.create(skill_id=skill_id,**validated_data) except: raise serializers.ValidationError({'skill': 'This skill is already present'}) return has_obj class EducationSerializer(serializers.ModelSerializer): class Meta: model = Education fields = ('__all__') class CourseSerializer(serializers.ModelSerializer): class Meta: model = Course fields = ('__all__') class ExperienceSerializer(serializers.ModelSerializer): class Meta: model = Experience fields = ('__all__') class ProjectSerializer(serializers.ModelSerializer): class Meta: model = Project fields = ('__all__') class AchievementSerializer(serializers.ModelSerializer): class Meta: model = Achievement fields = ('__all__') class PublicationSerializer(serializers.ModelSerializer): class Meta: model = Publication fields = ('__all__') class PatentSerializer(serializers.ModelSerializer): class Meta: model = Patent fields = ('__all__') class NotifyStudentSerializer(serializers.ModelSerializer): class Meta: model = NotifyStudent fields = ('__all__') class PlacementStatusSerializer(serializers.ModelSerializer): notify_id = NotifyStudentSerializer() class Meta: model = PlacementStatus fields = ('notify_id', 'invitation', 'placed', 'timestamp', 'no_of_days')
[((24, 28, 24, 64), 'applications.placement_cell.models.Skill.objects.get_or_create', 'Skill.objects.get_or_create', ({}, {}), '(**skill)', False, 'from applications.placement_cell.models import Achievement, Course, Education, Experience, Has, Patent, Project, Publication, Skill, PlacementStatus, NotifyStudent\n'), ((26, 22, 26, 76), 'applications.placement_cell.models.Has.objects.create', 'Has.objects.create', (), '', False, 'from applications.placement_cell.models import Achievement, Course, Education, Experience, Has, Patent, Project, Publication, Skill, PlacementStatus, NotifyStudent\n'), ((28, 18, 28, 89), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', ({(28, 46, 28, 88): "{'skill': 'This skill is already present'}"}, {}), "({'skill': 'This skill is already present'})", False, 'from rest_framework import serializers\n')]
thinkAmi-sandbox/django-datatables-view-sample
concat_col_app/factories.py
ac3df721089489e61c09ac75d320be3704c72105
import factory from concat_col_app.models import Color, Apple class ColorFactory(factory.django.DjangoModelFactory): class Meta: model = Color class AppleFactory(factory.django.DjangoModelFactory): class Meta: model = Apple
[]
HansolChoe/defects4cpp
defects4cpp/errors/argparser.py
cb9e3db239c50e6ec38127cec117865f0ee7a5cf
from pathlib import Path from typing import Dict from errors.common.exception import DppError class DppArgparseError(DppError): pass class DppArgparseTaxonomyNotFoundError(DppArgparseError): def __init__(self, taxonomy_name: str): super().__init__(f"taxonomy '{taxonomy_name}' does not exist") self.taxonomy_name: str = taxonomy_name class DppArgparseNotProjectDirectory(DppArgparseError): def __init__(self, path: Path): super().__init__(f"directory '{str(path)}' is not a defect taxonomy project") self.path: Path = path class DppArgparseDefectIndexError(DppArgparseError): def __init__(self, index: int): super().__init__(f"invalid index '{index}' of defects") self.index: int = index class DppArgparseFileNotFoundError(DppArgparseError, FileNotFoundError): def __init__(self, path: str): super().__init__() self.path: str = path class DppArgparseInvalidEnvironment(DppArgparseError): def __init__(self, value: str): super().__init__( f"invalid environment variable format '{value}' (should be KEY=VALUE)" ) self.value: str = value class DppArgparseInvalidConfigError(DppArgparseError): def __init__(self): super().__init__() class DppArgparseConfigCorruptedError(DppArgparseError): def __init__(self, data: Dict): super().__init__(f"config is corrupted: {data}") self.data = data class DppArgparseInvalidCaseExpressionError(DppArgparseError): def __init__(self, index: int, name: str, cases: int, expr: str): super().__init__( f"Defect#{index} of {name} has {cases} test cases, but expression was: {expr}" ) self.index: int = index self.name: str = name self.cases: int = cases self.expr: str = expr
[]
wang97zh/EVS-Net-1
utils/__init__.py
3a8457c2d5281b8805ec523f9ced738ccf49d5f5
from .utility import * from .tricks import * from .tensorlog import * from .self_op import * from .resume import * from .optims import * from .metric import *
[]
calvinfeng/openvino
model-optimizer/extensions/front/mxnet/arange_ext.py
11f591c16852637506b1b40d083b450e56d0c8ac
""" Copyright (C) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from extensions.ops.range import Range from mo.front.extractor import FrontExtractorOp from mo.front.mxnet.extractors.utils import get_mxnet_layer_attrs from mo.graph.graph import Node class ArangeExt(FrontExtractorOp): op = '_arange' enabled = True @classmethod def extract(cls, node: Node): attrs = get_mxnet_layer_attrs(node.symbol_dict) Range.update_node_stat(node, { 'start': attrs.int('start', 0), 'stop': attrs.int('stop', 0), 'repeat': attrs.int('repeat', 1), 'step': attrs.float('step', 1), 'dtype': np.dtype(attrs.str('dtype ', 'float32')) }) return cls.enabled
[((31, 16, 31, 55), 'mo.front.mxnet.extractors.utils.get_mxnet_layer_attrs', 'get_mxnet_layer_attrs', ({(31, 38, 31, 54): 'node.symbol_dict'}, {}), '(node.symbol_dict)', False, 'from mo.front.mxnet.extractors.utils import get_mxnet_layer_attrs\n')]
lucasforever24/arcface_noonan
fold_cur_trans.py
9d805a0d4d478e347a9084ad6ce24fe4c8dc5e65
import cv2 from PIL import Image import argparse from pathlib import Path from multiprocessing import Process, Pipe,Value,Array import torch from config import get_config from mtcnn import MTCNN from Learner_trans_tf import face_learner from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score from sklearn.model_selection import KFold import os import glob import shutil import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors import datetime if __name__ == '__main__': parser = argparse.ArgumentParser(description='for face verification') parser.add_argument("-ds", "--dataset_dir", help="where to get data", default="noonan", type=str) parser.add_argument('-sd','--stored_result_dir',help='where to store data as np arrays', default="results/trans/", type=str) parser.add_argument("-k", "--kfold", help="returns the number of splitting iterations in the cross-validator.", default=10, type=int) parser.add_argument("-e", "--epochs", help="training epochs", default=20, type=int) parser.add_argument("-n", "--names_considered", help="names for different types considered, separated by commas", default="normal,noonan,others", type=str) parser.add_argument("-g", "--gpu_id", help="gpu id to use", default="", type=str) parser.add_argument("-s", "--use_shuffled_kfold", help="whether to use shuffled kfold.", action="store_true") parser.add_argument("-rs", "--random_seed", help="random seed used for k-fold split.", default=6, type=int) parser.add_argument("-tta", "--tta", help="whether test time augmentation",action="store_true") parser.add_argument("-a", "--additional_data_dir", help="where to get the additional data", default="", type=str) parser.add_argument("-ta", "--additional_test_or_train", help="use additional data in only train, or test, or both", default="", type=str) parser.add_argument("-as", "--stylegan_data_dir", help="where to get the additional data", default="", type=str) parser.add_argument("-ts", "--stylegan_test_or_train", help="use stylegan data in only train, or test, or both", default="", type=str) parser.add_argument("-tf", "--transfer", help="how many layer(s) used for transfer learning, " "but 0 means retraining the whole network.", default=0, type=int) parser.add_argument("-ac", "--arch", help="types of model used for encoder", default="mobile", type=str) args = parser.parse_args() for arg in vars(args): print(arg+':', getattr(args, arg)) emore_dir = 'faces_emore' conf = get_config(True, args) conf.emore_folder = conf.data_path/emore_dir mtcnn = MTCNN() print('mtcnn loaded') names_considered = args.names_considered.strip().split(',') exp_name = args.dataset_dir[:4] if args.additional_data_dir: if 'LAG' in args.additional_data_dir: exp_name += '_lag' elif 'literature' in args.additional_data_dir: exp_name += '_ltr' if args.kfold != 10: exp_name += ('_k' + str(args.kfold)) if args.epochs != 20: exp_name += ('_e' + str(args.epochs)) if args.transfer != 0 and args.transfer != 1: exp_name += ('_td' + str(args.transfer)) if args.use_shuffled_kfold: exp_name += ('_s' + str(args.random_seed)) print(exp_name) # prepare folders raw_dir = 'raw_112' verify_type = 'trans' if args.use_shuffled_kfold: verify_type += '_shuffled' # train_dir = conf.facebank_path/args.dataset_dir/verify_type/'train' train_dir = conf.emore_folder/'imgs' test_dir = conf.emore_folder/'test' conf.facebank_path = train_dir if os.path.exists(train_dir): shutil.rmtree(train_dir) if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(train_dir) os.mkdir(test_dir) for name in names_considered: os.makedirs(str(train_dir) + '/' + name, exist_ok=True) os.makedirs(str(test_dir) + '/' + name, exist_ok=True) if args.stylegan_data_dir: #e.g. smile_refine_mtcnn_112_divi full_stylegan_dir = str(conf.data_path/'facebank'/'stylegan'/args.stylegan_data_dir) stylegan_folders = os.listdir(full_stylegan_dir) if args.additional_data_dir: full_additional_dir = str(conf.data_path/'facebank'/args.additional_data_dir) # init kfold if args.use_shuffled_kfold: kf = KFold(n_splits=args.kfold, shuffle=True, random_state=args.random_seed) else: kf = KFold(n_splits=args.kfold, shuffle=False, random_state=None) # collect and split raw data data_dict = {} idx_gen = {} for name in names_considered: tmp_list = glob.glob(str(conf.data_path/'facebank'/args.dataset_dir/raw_dir) + '/' + name + '*') if 'innm' in args.stylegan_data_dir: tmp_list = tmp_list + glob.glob(str(full_stylegan_dir) + '/' + name + '*') stylegan_folders = [] print(str(conf.data_path/'facebank'/args.dataset_dir/raw_dir)) data_dict[name] = np.array(tmp_list) idx_gen[name] = kf.split(data_dict[name]) if 'literature' in args.additional_data_dir: data_dict['ltr'] = np.array(glob.glob(str(full_additional_dir) + '/*')) idx_gen['ltr'] = kf.split(data_dict['ltr']) score_names = [] scores = [] wrong_names = [] args.stored_result_path = args.stored_result_dir + os.sep + str(datetime.datetime.now())[:19] if not os.path.exists(args.stored_result_path): os.mkdir(args.stored_result_path) # for fold_idx, (train_index, test_index) in enumerate(kf.split(data_dict[names_considered[0]])): for fold_idx in range(args.kfold): train_set = {} test_set = {} for name in names_considered: (train_index, test_index) = next(idx_gen[name]) train_set[name], test_set[name] = data_dict[name][train_index], data_dict[name][test_index] if 'ltr' in data_dict.keys(): (train_index, test_index) = next(idx_gen['ltr']) train_set['ltr'], test_set['ltr'] = data_dict['ltr'][train_index], data_dict['ltr'][test_index] if 'train' in args.additional_test_or_train: train_set['noonan'] = np.concatenate((train_set['noonan'], train_set['ltr'])) if 'test' in args.additional_test_or_train: test_set['noonan'] = np.concatenate((test_set['noonan'], test_set['ltr'])) # remove previous data prev = glob.glob(str(train_dir) + '/*/*') for p in prev: os.remove(p) prev = glob.glob(str(test_dir) + '/*/*') for p in prev: os.remove(p) # save trains to conf.facebank_path/args.dataset_dir/'train' and # tests to conf.data_path/'facebank'/args.dataset_dir/'test' # count unbalanced data train_count = {} test_count = {} for name in names_considered: train_count[name] = 0 for i in range(len(train_set[name])): img_folder = str(train_set[name][i]) for img in os.listdir(img_folder): shutil.copy(img_folder + os.sep + str(img), os.path.join(str(train_dir), name, str(img))) train_count[name] += 1 # addition data from stylegan if 'interp' not in data_dict.keys(): folder = os.path.basename(train_set[name][i]) if args.stylegan_data_dir and ('train' in args.stylegan_test_or_train) and (folder in stylegan_folders): for img in os.listdir(full_stylegan_dir + os.sep + folder): shutil.copy(os.path.join(full_stylegan_dir, folder, str(img)), os.path.join(str(train_dir), name, str(img))) # ('/'.join(train_set[name][i].strip().split('/')[:-2]) + # '/' + verify_type + '/train/' + name + os.sep + img)) train_count[name] += 1 # test for i in range(len(test_set[name])): test_count[name] = 0 img_folder = str(test_set[name][i]) for img in os.listdir(img_folder): shutil.copy(img_folder + os.sep + str(img), os.path.join(str(test_dir), name, str(img))) test_count[name] += 1 # addition data from stylegan if 'interp' not in data_dict.keys(): folder = os.path.basename(test_set[name][i]) if args.stylegan_data_dir and ('test' in args.stylegan_test_or_train) and (folder in stylegan_folders): # and # (folder not in ['noonan7','noonan19','noonan23','normal9','normal20','normal23'])): for img in os.listdir(full_stylegan_dir + os.sep + folder): shutil.copy(os.path.join(full_stylegan_dir, folder, str(img)), os.path.join(str(test_dir), name, str(img))) test_count[name] += 1 print(train_count, test_count) # deal with unbalanced data """ if train_count['normal'] // train_count['noonan'] > 1: aug_num = train_count['normal'] // train_count['noonan'] - 1 for img in os.listdir(os.path.join(str(train_dir), 'noonan')): for aug_idx in range(aug_num): aug_img = img[:img.rfind('.')] + '_' + str(aug_idx) + img[img.rfind('.'):] shutil.copy(os.path.join(str(train_dir), 'noonan', img), os.path.join(str(train_dir), 'noonan', aug_img)) """ if 'fake' in args.additional_data_dir: fake_dict = {'noonan':'normal', 'normal':'noonan'} full_additional_dir = conf.data_path/'facebank'/'noonan+normal'/args.additional_data_dir add_data = glob.glob(str(full_additional_dir) + os.sep + '*.png') print('additional:', args.additional_data_dir, len(add_data)) for name in names_considered: for img_f in add_data: if name in img_f.strip().split(os.sep)[-1]: # print('source:', img_f) # print('copy to:', img_f.replace(str(full_additional_dir), # str(train_dir) + os.sep + fake_dict[name])) # print('copy to:', img_f.replace(args.additional_data_dir, # verify_type + '/train/' + name)) shutil.copy(img_f, os.path.join(str(train_dir), fake_dict[name], os.path.basename(img_f))) print(fold_idx) print('datasets ready') conf_train = get_config(True, args) conf_train.emore_folder = conf.data_path/emore_dir conf_train.stored_result_dir = args.stored_result_path learner = face_learner(conf=conf_train, transfer=args.transfer, ext=exp_name+'_'+str(fold_idx)) # conf, inference=False, transfer=0 if args.transfer != 0: learner.load_state(conf.save_path, False, True) print('learner loaded') learner.train(conf_train, args.epochs) print('learner retrained.') learner.save_state() print('Model is saved') # prepare_facebank targets, names, names_idx = prepare_facebank(conf, learner.model, mtcnn, tta = args.tta) print('names_classes:', names) noonan_idx = names_idx['noonan'] print('facebank updated') for path in test_dir.iterdir(): if path.is_file(): continue # print(path) for fil in path.iterdir(): # print(fil) orig_name = ''.join([i for i in fil.name.strip().split('.')[0].split('_')[0] if not i.isdigit()]) for name in names_idx.keys(): if name in orig_name: score_names.append(names_idx[name]) """ if orig_name not in names_considered: print("Un-considered name:", fil.name) continue """ frame = cv2.imread(str(fil)) image = Image.fromarray(frame) faces = [image,] distance = learner.binfer(conf, faces, targets, args.tta) label = score_names[-1] score = np.exp(distance.dot(-1)) pred = np.argmax(score, 1) if pred != label: wrong_names.append(orig_name) scores.append(score) score_names = np.array(score_names) wrong_names = np.array(wrong_names) score_np = np.squeeze(np.array(scores)) n_classes = score_np.shape[1] score_names = label_binarize(score_names, classes=range(n_classes)) score_sum = np.zeros([score_np.shape[0], 1]) for i in range(n_classes): score_sum += score_np[:, i, None] # keep the dimension relative_scores = (score_np / score_sum) total_scores = relative_scores.ravel() total_names = score_names.ravel() name_path = os.path.join(args.stored_result_path, 'wrong_names.npy') save_label_score(name_path, wrong_names) label_path = os.path.join(args.stored_result_path, 'labels_trans.npy') save_label_score(label_path, score_names) score_path = os.path.join(args.stored_result_path, 'scores_trans.npy') save_label_score(score_path, relative_scores) print('saved!') # Compute ROC curve and ROC area for noonan fpr, tpr, _ = roc_curve(total_names, total_scores) #scores_np[:, noonan_idx] roc_auc = auc(fpr, tpr) # For PR curve precision, recall, _ = precision_recall_curve(total_names, total_scores) average_precision = average_precision_score(total_names, total_scores) # plots plt.figure() colors = list(mcolors.TABLEAU_COLORS) lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.4f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC_{}'.format(exp_name)) plt.legend(loc="lower right") plt.savefig(args.stored_result_path + os.sep + '/fp_tp_{}.png'.format(exp_name)) plt.close() # plt.show() plt.figure() plt.step(recall, precision, where='post') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Average precision score ({}): AP={:0.4f}'.format(exp_name, average_precision)) plt.savefig(args.stored_result_path + os.sep + '/pr_{}.png'.format(exp_name)) plt.close()
[((23, 13, 23, 73), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((53, 11, 53, 33), 'config.get_config', 'get_config', ({(53, 22, 53, 26): 'True', (53, 28, 53, 32): 'args'}, {}), '(True, args)', False, 'from config import get_config\n'), ((56, 12, 56, 19), 'mtcnn.MTCNN', 'MTCNN', ({}, {}), '()', False, 'from mtcnn import MTCNN\n'), ((89, 7, 89, 32), 'os.path.exists', 'os.path.exists', ({(89, 22, 89, 31): 'train_dir'}, {}), '(train_dir)', False, 'import os\n'), ((91, 7, 91, 31), 'os.path.exists', 'os.path.exists', ({(91, 22, 91, 30): 'test_dir'}, {}), '(test_dir)', False, 'import os\n'), ((93, 4, 93, 23), 'os.mkdir', 'os.mkdir', ({(93, 13, 93, 22): 'train_dir'}, {}), '(train_dir)', False, 'import os\n'), ((94, 4, 94, 22), 'os.mkdir', 'os.mkdir', ({(94, 13, 94, 21): 'test_dir'}, {}), '(test_dir)', False, 'import os\n'), ((289, 18, 289, 39), 'numpy.array', 'np.array', ({(289, 27, 289, 38): 'score_names'}, {}), '(score_names)', True, 'import numpy as np\n'), ((290, 18, 290, 39), 'numpy.array', 'np.array', ({(290, 27, 290, 38): 'wrong_names'}, {}), '(wrong_names)', True, 'import numpy as np\n'), ((295, 16, 295, 48), 'numpy.zeros', 'np.zeros', ({(295, 25, 295, 47): '[score_np.shape[0], 1]'}, {}), '([score_np.shape[0], 1])', True, 'import numpy as np\n'), ((303, 16, 303, 72), 'os.path.join', 'os.path.join', ({(303, 29, 303, 52): 'args.stored_result_path', (303, 54, 303, 71): '"""wrong_names.npy"""'}, {}), "(args.stored_result_path, 'wrong_names.npy')", False, 'import os\n'), ((304, 4, 304, 44), 'utils.save_label_score', 'save_label_score', ({(304, 21, 304, 30): 'name_path', (304, 32, 304, 43): 'wrong_names'}, {}), '(name_path, wrong_names)', False, 'from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize\n'), ((305, 17, 305, 74), 'os.path.join', 'os.path.join', ({(305, 30, 305, 53): 'args.stored_result_path', (305, 55, 305, 73): '"""labels_trans.npy"""'}, {}), "(args.stored_result_path, 'labels_trans.npy')", False, 'import os\n'), ((306, 4, 306, 45), 'utils.save_label_score', 'save_label_score', ({(306, 21, 306, 31): 'label_path', (306, 33, 306, 44): 'score_names'}, {}), '(label_path, score_names)', False, 'from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize\n'), ((307, 17, 307, 74), 'os.path.join', 'os.path.join', ({(307, 30, 307, 53): 'args.stored_result_path', (307, 55, 307, 73): '"""scores_trans.npy"""'}, {}), "(args.stored_result_path, 'scores_trans.npy')", False, 'import os\n'), ((308, 4, 308, 49), 'utils.save_label_score', 'save_label_score', ({(308, 21, 308, 31): 'score_path', (308, 33, 308, 48): 'relative_scores'}, {}), '(score_path, relative_scores)', False, 'from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize\n'), ((312, 18, 312, 54), 'sklearn.metrics.roc_curve', 'roc_curve', ({(312, 28, 312, 39): 'total_names', (312, 41, 312, 53): 'total_scores'}, {}), '(total_names, total_scores)', False, 'from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n'), ((313, 14, 313, 27), 'sklearn.metrics.auc', 'auc', ({(313, 18, 313, 21): 'fpr', (313, 23, 313, 26): 'tpr'}, {}), '(fpr, tpr)', False, 'from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n'), ((316, 27, 316, 76), 'sklearn.metrics.precision_recall_curve', 'precision_recall_curve', ({(316, 50, 316, 61): 'total_names', (316, 63, 316, 75): 'total_scores'}, {}), '(total_names, total_scores)', False, 'from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n'), ((317, 24, 317, 74), 'sklearn.metrics.average_precision_score', 'average_precision_score', ({(317, 48, 317, 59): 'total_names', (317, 61, 317, 73): 'total_scores'}, {}), '(total_names, total_scores)', False, 'from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score\n'), ((320, 4, 320, 16), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((323, 4, 324, 63), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((325, 4, 325, 65), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((326, 4, 326, 24), 'matplotlib.pyplot.xlim', 'plt.xlim', ({(326, 13, 326, 23): '[0.0, 1.0]'}, {}), '([0.0, 1.0])', True, 'import matplotlib.pyplot as plt\n'), ((327, 4, 327, 25), 'matplotlib.pyplot.ylim', 'plt.ylim', ({(327, 13, 327, 24): '[0.0, 1.05]'}, {}), '([0.0, 1.05])', True, 'import matplotlib.pyplot as plt\n'), ((328, 4, 328, 37), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(328, 15, 328, 36): '"""False Positive Rate"""'}, {}), "('False Positive Rate')", True, 'import matplotlib.pyplot as plt\n'), ((329, 4, 329, 36), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(329, 15, 329, 35): '"""True Positive Rate"""'}, {}), "('True Positive Rate')", True, 'import matplotlib.pyplot as plt\n'), ((331, 4, 331, 33), 'matplotlib.pyplot.legend', 'plt.legend', (), '', True, 'import matplotlib.pyplot as plt\n'), ((333, 4, 333, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((336, 4, 336, 16), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((337, 4, 337, 45), 'matplotlib.pyplot.step', 'plt.step', (), '', True, 'import matplotlib.pyplot as plt\n'), ((338, 4, 338, 24), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(338, 15, 338, 23): '"""Recall"""'}, {}), "('Recall')", True, 'import matplotlib.pyplot as plt\n'), ((339, 4, 339, 27), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(339, 15, 339, 26): '"""Precision"""'}, {}), "('Precision')", True, 'import matplotlib.pyplot as plt\n'), ((340, 4, 340, 25), 'matplotlib.pyplot.ylim', 'plt.ylim', ({(340, 13, 340, 24): '[0.0, 1.05]'}, {}), '([0.0, 1.05])', True, 'import matplotlib.pyplot as plt\n'), ((341, 4, 341, 24), 'matplotlib.pyplot.xlim', 'plt.xlim', ({(341, 13, 341, 23): '[0.0, 1.0]'}, {}), '([0.0, 1.0])', True, 'import matplotlib.pyplot as plt\n'), ((344, 4, 344, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((90, 8, 90, 32), 'shutil.rmtree', 'shutil.rmtree', ({(90, 22, 90, 31): 'train_dir'}, {}), '(train_dir)', False, 'import shutil\n'), ((92, 8, 92, 31), 'shutil.rmtree', 'shutil.rmtree', ({(92, 22, 92, 30): 'test_dir'}, {}), '(test_dir)', False, 'import shutil\n'), ((103, 27, 103, 56), 'os.listdir', 'os.listdir', ({(103, 38, 103, 55): 'full_stylegan_dir'}, {}), '(full_stylegan_dir)', False, 'import os\n'), ((109, 13, 109, 84), 'sklearn.model_selection.KFold', 'KFold', (), '', False, 'from sklearn.model_selection import KFold\n'), ((111, 13, 111, 73), 'sklearn.model_selection.KFold', 'KFold', (), '', False, 'from sklearn.model_selection import KFold\n'), ((123, 26, 123, 44), 'numpy.array', 'np.array', ({(123, 35, 123, 43): 'tmp_list'}, {}), '(tmp_list)', True, 'import numpy as np\n'), ((136, 11, 136, 50), 'os.path.exists', 'os.path.exists', ({(136, 26, 136, 49): 'args.stored_result_path'}, {}), '(args.stored_result_path)', False, 'import os\n'), ((137, 8, 137, 41), 'os.mkdir', 'os.mkdir', ({(137, 17, 137, 40): 'args.stored_result_path'}, {}), '(args.stored_result_path)', False, 'import os\n'), ((239, 21, 239, 43), 'config.get_config', 'get_config', ({(239, 32, 239, 36): 'True', (239, 38, 239, 42): 'args'}, {}), '(True, args)', False, 'from config import get_config\n'), ((257, 36, 257, 96), 'utils.prepare_facebank', 'prepare_facebank', (), '', False, 'from utils import load_facebank, draw_box_name, prepare_facebank, save_label_score, label_binarize\n'), ((291, 26, 291, 42), 'numpy.array', 'np.array', ({(291, 35, 291, 41): 'scores'}, {}), '(scores)', True, 'import numpy as np\n'), ((158, 12, 158, 24), 'os.remove', 'os.remove', ({(158, 22, 158, 23): 'p'}, {}), '(p)', False, 'import os\n'), ((161, 12, 161, 24), 'os.remove', 'os.remove', ({(161, 22, 161, 23): 'p'}, {}), '(p)', False, 'import os\n'), ((135, 68, 135, 91), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((151, 38, 151, 93), 'numpy.concatenate', 'np.concatenate', ({(151, 53, 151, 92): "(train_set['noonan'], train_set['ltr'])"}, {}), "((train_set['noonan'], train_set['ltr']))", True, 'import numpy as np\n'), ((153, 37, 153, 90), 'numpy.concatenate', 'np.concatenate', ({(153, 52, 153, 89): "(test_set['noonan'], test_set['ltr'])"}, {}), "((test_set['noonan'], test_set['ltr']))", True, 'import numpy as np\n'), ((173, 27, 173, 49), 'os.listdir', 'os.listdir', ({(173, 38, 173, 48): 'img_folder'}, {}), '(img_folder)', False, 'import os\n'), ((192, 27, 192, 49), 'os.listdir', 'os.listdir', ({(192, 38, 192, 48): 'img_folder'}, {}), '(img_folder)', False, 'import os\n'), ((279, 24, 279, 46), 'PIL.Image.fromarray', 'Image.fromarray', ({(279, 40, 279, 45): 'frame'}, {}), '(frame)', False, 'from PIL import Image\n'), ((284, 23, 284, 42), 'numpy.argmax', 'np.argmax', ({(284, 33, 284, 38): 'score', (284, 40, 284, 41): '1'}, {}), '(score, 1)', True, 'import numpy as np\n'), ((179, 29, 179, 65), 'os.path.basename', 'os.path.basename', ({(179, 46, 179, 64): 'train_set[name][i]'}, {}), '(train_set[name][i])', False, 'import os\n'), ((198, 29, 198, 64), 'os.path.basename', 'os.path.basename', ({(198, 46, 198, 63): 'test_set[name][i]'}, {}), '(test_set[name][i])', False, 'import os\n'), ((181, 35, 181, 82), 'os.listdir', 'os.listdir', ({(181, 46, 181, 81): '(full_stylegan_dir + os.sep + folder)'}, {}), '(full_stylegan_dir + os.sep + folder)', False, 'import os\n'), ((202, 35, 202, 82), 'os.listdir', 'os.listdir', ({(202, 46, 202, 81): '(full_stylegan_dir + os.sep + folder)'}, {}), '(full_stylegan_dir + os.sep + folder)', False, 'import os\n'), ((233, 89, 233, 112), 'os.path.basename', 'os.path.basename', ({(233, 106, 233, 111): 'img_f'}, {}), '(img_f)', False, 'import os\n')]
manahter/dirio
examples/tryclass.py
c33fcd6c114ffb275d7147156c7041389fab6cfc
import time class TryClass: value = 1 valu = 2 val = 3 va = 4 v = 5 def __init__(self, value=4): print("Created TryClass :", self) self.value = value def metod1(self, value, val2=""): self.value += value print(f"\t>>> metod 1, add: {value}, now value : {self.value}, val2: {val2}") time.sleep(2) return self.value @classmethod def metod2(cls, value, val2=""): cls.value = 2 print(f"\t>>> metod 2, add: {value}, now value : {cls.value}, val2: {val2}") return cls.value @staticmethod def metod3(value, val2=""): TryClass.value += value print(f"\t>>> metod 3, add: {value}, now value : {TryClass.value}, val2: {val2}") return TryClass.value def event_call(other_arg, kwarg="-", result=None): """Call this metod, on returned result""" print(f"Bind Result, {result}\n"*10) print("other_arg", other_arg) print("kwarg", kwarg) if __name__ == "__main__": try: from dirio import Dirio except: from ..dirio import Dirio dr_cls = Dirio(target=TryClass, args=(888,), kwargs={}, worker=False) print("Starting values :", dr_cls.value, dr_cls) print("\n"*2) print("Wait 1 sec for your reply. metod 1 :", dr_cls.metod1(5, val2="1", dr_wait=1)) print("Wait until the reply comes. metod 1 :", dr_cls.metod1(5, val2="1", dr_wait=-1)) code0 = dr_cls.metod1(5, val2="1", dr_code=True) print("Metod 1, call, via bind to func", dr_cls.dr_bind(code0, event_call, args=("OtHeR aRg", ), kwargs={"kwarg": "KwArG"})) while True: # dr_cls.dr_binds_check() print("Run the method and give us the response reading code : dr_code=True") code1 = dr_cls.metod1(5, val2="1", dr_code=True) print("Is there data in the reading code? : dr_code=43534") while not dr_cls.metod1(dr_code=code1): print("We are waiting for the data with this code :", code1) time.sleep(.5) print("Returned metod 1 data :", dr_cls.metod1(dr_code=code1)) print("Methods called this way give the last return value : nothing or dr_code=False") code2 = dr_cls.metod2(10, val2="2", dr_code=True) print("Search by code only :", dr_cls.dr_code(code2, wait=1)) print("Trying metod 2, called and returned :", dr_cls.metod2(10, val2="2", dr_code=False)) print("Trying metod 3, called and returned :", dr_cls.metod3(15, val2="3")) print("\n"*2) time.sleep(3) dr_cls.dr_terminate()
[((47, 13, 47, 73), 'dirio.Dirio', 'Dirio', (), '', False, 'from dirio import Dirio\n'), ((18, 8, 18, 21), 'time.sleep', 'time.sleep', ({(18, 19, 18, 20): '(2)'}, {}), '(2)', False, 'import time\n'), ((81, 8, 81, 21), 'time.sleep', 'time.sleep', ({(81, 19, 81, 20): '(3)'}, {}), '(3)', False, 'import time\n'), ((69, 12, 69, 26), 'time.sleep', 'time.sleep', ({(69, 23, 69, 25): '(0.5)'}, {}), '(0.5)', False, 'import time\n')]
ismaila-at-za-ibm/qiskit-terra
qiskit/providers/basebackend.py
08303ec98ac7b33fde55266dc3a74466fbdcae95
# -*- coding: utf-8 -*- # Copyright 2017, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """This module implements the abstract base class for backend modules. To create add-on backend modules subclass the Backend class in this module. Doing so requires that the required backend interface is implemented. """ from abc import ABC, abstractmethod from qiskit.version import __version__ from .models import BackendStatus class BaseBackend(ABC): """Base class for backends.""" @abstractmethod def __init__(self, configuration, provider=None): """Base class for backends. This method should initialize the module and its configuration, and raise an exception if a component of the module is not available. Args: configuration (BackendConfiguration): backend configuration provider (BaseProvider): provider responsible for this backend Raises: FileNotFoundError if backend executable is not available. QiskitError: if there is no name in the configuration """ self._configuration = configuration self._provider = provider @abstractmethod def run(self, qobj): """Run a Qobj on the the backend.""" pass def configuration(self): """Return the backend configuration. Returns: BackendConfiguration: the configuration for the backend. """ return self._configuration def properties(self): """Return backend properties. Returns: BackendProperties: the configuration for the backend. If the backend does not support properties, it returns ``None``. """ return None def provider(self): """Return the backend Provider. Returns: BaseProvider: the Provider responsible for the backend. """ return self._provider def status(self): """Return backend status. Returns: BackendStatus: the status of the backend. """ return BackendStatus(backend_name=self.name(), backend_version=__version__, operational=True, pending_jobs=0, status_msg='') def name(self): """Return backend name. Returns: str: the name of the backend. """ return self._configuration.backend_name def __str__(self): return self.name() def __repr__(self): """Official string representation of a Backend. Note that, by Qiskit convention, it is consciously *not* a fully valid Python expression. Subclasses should provide 'a string of the form <...some useful description...>'. [0] [0] https://docs.python.org/3/reference/datamodel.html#object.__repr__ """ return "<{}('{}') from {}()>".format(self.__class__.__name__, self.name(), self._provider)
[]
shahbagdadi/py-algo-n-ds
arrays/jump2/Solution.py
ff689534b771ddb4869b001b20a0e21b4896bb0a
from typing import List import sys class Solution: def jump(self, nums: List[int]) -> int: if len(nums) <=1: return 0 l , r , jumps = 0, nums[0] , 1 while r < len(nums)-1 : jumps += 1 # you can land anywhere between l & r+1 in a jump and then use Num[i] to jump from there nxt = max( i + nums[i] for i in range(l, r+1)) l , r = r, nxt return jumps s = Solution() ans = s.jump([3,2,1,0,4]) print(ans)
[]
shared-tw/shared-tw
share/tests.py
90dcf92744b4e0ec9e9aa085026b5543c9c3922c
import unittest from . import states class DonationStateTestCase(unittest.TestCase): def test_approve_pending_state(self): approve_pending_statue = states.PendingApprovalState() approved_event = states.DonationApprovedEvent() self.assertIsInstance( approve_pending_statue.apply(approved_event), states.PendingDispatchState, ) cancelled_event = states.DonationCancelledEvent() self.assertIsInstance( approve_pending_statue.apply(cancelled_event), states.CancelledState ) dispatch_event = states.DonationDispatchedEvent() self.assertIsInstance( approve_pending_statue.apply(dispatch_event), states.InvalidState ) def test_dispatch_pending_state(self): dispatch_pending_state = states.PendingDispatchState() donation_dispatched_event = states.DonationDispatchedEvent() self.assertIsInstance( dispatch_pending_state.apply(donation_dispatched_event), states.DoneState, ) cancelled_event = states.DonationCancelledEvent() self.assertIsInstance( dispatch_pending_state.apply(cancelled_event), states.CancelledState ) approved_event = states.DonationApprovedEvent() self.assertIsInstance( dispatch_pending_state.apply(approved_event), states.InvalidState ) def test_collect_pending_state(self): collect_pending_state = states.PendingDeliveryState() collected_event = states.DonationDeliveredEvent() self.assertIsInstance( collect_pending_state.apply(collected_event), states.DoneState ) cancelled_event = states.DonationCancelledEvent() self.assertIsInstance( collect_pending_state.apply(cancelled_event), states.InvalidState )
[]
grow/airpress
app/extensions.py
b46e951b27b8216f51f0fade3695049455866825
from jinja2 import nodes from jinja2.ext import Extension class FragmentCacheExtension(Extension): # a set of names that trigger the extension. tags = set(['cache']) def __init__(self, environment): super(FragmentCacheExtension, self).__init__(environment) # add the defaults to the environment environment.extend( fragment_cache_prefix='fragment', fragment_cache=None ) def parse(self, parser): # the first token is the token that started the tag. In our case # we only listen to ``'cache'`` so this will be a name token with # `cache` as value. We get the line number so that we can give # that line number to the nodes we create by hand. lineno = next(parser.stream).lineno # now we parse a single expression that is used as cache key. args = [parser.parse_expression()] # if there is a comma, the user provided a timeout. If not use # None as second parameter. if parser.stream.skip_if('comma'): args.append(parser.parse_expression()) else: args.append(nodes.Const(None)) # now we parse the body of the cache block up to `endcache` and # drop the needle (which would always be `endcache` in that case) body = parser.parse_statements(['name:endcache'], drop_needle=True) # now return a `CallBlock` node that calls our _cache_support # helper method on this extension. return nodes.CallBlock(self.call_method('_cache_support', args), [], [], body).set_lineno(lineno) def _cache_support(self, name, timeout, caller): """Helper callback.""" key = self.environment.fragment_cache_prefix + name # try to load the block from the cache # if there is no fragment in the cache, render it and store # it in the cache. rv = self.environment.fragment_cache.get(key) if rv is not None: return rv rv = caller() self.environment.fragment_cache.add(key, rv, timeout) return rv
[((33, 24, 33, 41), 'jinja2.nodes.Const', 'nodes.Const', ({(33, 36, 33, 40): 'None'}, {}), '(None)', False, 'from jinja2 import nodes\n')]
danielSoler93/modtox
modtox/Helpers/helpers.py
757234140cc780f57d031b46d9293fc2bf95d18d
import os def retrieve_molecule_number(pdb, resname): """ IDENTIFICATION OF MOLECULE NUMBER BASED ON THE TER'S """ count = 0 with open(pdb, 'r') as x: lines = x.readlines() for i in lines: if i.split()[0] == 'TER': count += 1 if i.split()[3] == resname: molecule_number = count + 1 break return molecule_number class cd: """Context manager for changing the current working directory""" def __init__(self, newPath): self.newPath = os.path.expanduser(newPath) def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath)
[((24, 23, 24, 50), 'os.path.expanduser', 'os.path.expanduser', ({(24, 42, 24, 49): 'newPath'}, {}), '(newPath)', False, 'import os\n'), ((27, 25, 27, 36), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((28, 8, 28, 30), 'os.chdir', 'os.chdir', ({(28, 17, 28, 29): 'self.newPath'}, {}), '(self.newPath)', False, 'import os\n'), ((31, 8, 31, 32), 'os.chdir', 'os.chdir', ({(31, 17, 31, 31): 'self.savedPath'}, {}), '(self.savedPath)', False, 'import os\n')]
efargas/PyBBIO
bbio/platform/beaglebone/api.py
b0b15fc52befd56e817dbc5876f738e70ef05541
# api.py # Part of PyBBIO # github.com/alexanderhiam/PyBBIO # MIT License # # Beaglebone platform API file. from bbio.platform.platform import detect_platform PLATFORM = detect_platform() if "3.8" in PLATFORM: from bone_3_8.adc import analog_init, analog_cleanup from bone_3_8.pwm import pwm_init, pwm_cleanup from serial_port import serial_cleanup elif "3.2" in PLATFORM: from bone_3_2.adc import analog_init, analog_cleanup from bone_3_2.pwm import pwm_init, pwm_cleanup from serial_port import serial_cleanup def platform_init(): analog_init() pwm_init() def platform_cleanup(): analog_cleanup() pwm_cleanup() serial_cleanup()
[((10, 11, 10, 28), 'bbio.platform.platform.detect_platform', 'detect_platform', ({}, {}), '()', False, 'from bbio.platform.platform import detect_platform\n'), ((23, 2, 23, 15), 'bone_3_2.adc.analog_init', 'analog_init', ({}, {}), '()', False, 'from bone_3_2.adc import analog_init, analog_cleanup\n'), ((24, 2, 24, 12), 'bone_3_2.pwm.pwm_init', 'pwm_init', ({}, {}), '()', False, 'from bone_3_2.pwm import pwm_init, pwm_cleanup\n'), ((27, 2, 27, 18), 'bone_3_2.adc.analog_cleanup', 'analog_cleanup', ({}, {}), '()', False, 'from bone_3_2.adc import analog_init, analog_cleanup\n'), ((28, 2, 28, 15), 'bone_3_2.pwm.pwm_cleanup', 'pwm_cleanup', ({}, {}), '()', False, 'from bone_3_2.pwm import pwm_init, pwm_cleanup\n'), ((29, 2, 29, 18), 'serial_port.serial_cleanup', 'serial_cleanup', ({}, {}), '()', False, 'from serial_port import serial_cleanup\n')]
GnarLito/tryhackme.py
tryhackme/http.py
20b4dd6a15c13c57e7a7be7f59913b937a992e4b
import re import sys from urllib.parse import quote as _uriquote import requests from . import __version__, errors, utils from .converters import _county_types, _leaderboard_types, _vpn_types, _not_none from . import checks from .cog import request_cog GET='get' POST='post' class HTTPClient: __CSRF_token_regex = re.compile("const csrfToken[ ]{0,1}=[ ]{0,1}[\"|'](.{36})[\"|']") __Username_regex = re.compile("const username[ ]{0,1}=[ ]{0,1}[\"|'](.{1,16})[\"|']") def __init__(self, session=None): self._state = None self.authenticated = False self.__session = requests.Session() self.static_session = requests.Session() self.connect_sid = None self._CSRF_token = None self.username = None self.user_agent = f'Tryhackme: (https://github.com/GnarLito/thm-api-py {__version__}) Python/{sys.version_info[0]}.{sys.version_info[1]} requests/{requests.__version__}' if session is not None: self.static_login(session) def close(self): if self.__session: self.__session.close() def static_login(self, session): self.connect_sid = session cookie = requests.cookies.create_cookie('connect.sid', session, domain='tryhackme.com') self.__session.cookies.set_cookie(cookie) try: self.request(RouteList.get_unseen_notifications()) self.authenticated = True self._CSRF_token = self.retrieve_CSRF_token() self.username = self.retrieve_username() except Exception as e: print("session Issue:", e) def retrieve_CSRF_token(self): if not self.authenticated: return None try: page = self.request(RouteList.get_profile_page()) return self._HTTPClient__CSRF_token_regex.search(page).group(1) except AttributeError: self.authenticated = False return None def retrieve_username(self): if not self.authenticated: return None try: page = self.request(RouteList.get_profile_page()) return self._HTTPClient__Username_regex.search(page).group(1) except AttributeError: self.authenticated = False return None def request(self, route, **kwargs): session = self.__session endpoint = route.url method = route.method settings = kwargs.pop('settings', {}) headers = { 'User-Agent': self.user_agent } if 'json' in kwargs: headers['Content-Type'] = 'application/json' kwargs['data'] = utils.to_json(kwargs.pop('json')) if "static" in settings: session = self.static_session if "CSRF" in settings: headers['CSRF-Token'] = self._CSRF_token kwargs["data"]["_CSRF"] = self._CSRF_token # TODO: retries, Pagenator try: with session.request(method, endpoint, **kwargs) as r: data = utils.response_to_json_or_text(r) # * valid return if 300 > r.status_code >= 200: # $ if return url is login then no auth if r.url.split('/')[-1] == "login": raise errors.Unauthorized(request=r, route=route, data=data) return data # $ no auth if r.status_code in {401, 403}: raise errors.Unauthorized(request=r, route=route, data=data) # $ endpoint not found if 404 == r.status_code: raise errors.NotFound(request=r, route=route, data=data) # $ server side issue's if r.status_code in {500, 502}: raise errors.ServerError(request=r, route=route, data=data) except Exception as e: raise e class Route: # TODO: add post payload capabilities BASE = "https://www.tryhackme.com" def __init__(self, method=GET, path='', **parameters): self.method = method self._path = path self.path = path url = self.BASE + self.path options = parameters.pop("options", None) if parameters: try: self.path = self.path.format(**{k: _uriquote(v) if isinstance(v, str) else v for k, v in parameters.items()}) self.url = self.BASE + self.path except Exception as e: raise errors.NotValidUrlParameters(e) else: self.url = url if options: if "?" not in self.url: self.url + "?" + "&".join([f"{i}={options[i]}" for i in options.keys() if options[i] != None]) else: self.url + "&" + "&".join([f"{i}={options[i]}" for i in options.keys() if options[i] != None]) self.bucket = f"{method} {path}" class RouteList: def get_profile_page(**parameters): return Route(path="/profile", **parameters) # * normal site calls def get_server_time( **parameters): return Route(path="/api/server-time", **parameters) def get_site_stats( **parameters): return Route(path="/api/site-stats", **parameters) def get_practise_rooms( **parameters): return Route(path="/api/practice-rooms", **parameters) def get_series( **parameters): return Route(path="/api/series?show={show}", **parameters) def get_glossary_terms( **parameters): return Route(path="/glossary/all-terms", **parameters) # * Leaderboards def get_leaderboards( **parameters): return Route(path="/api/leaderboards", **parameters) def get_koth_leaderboards(**parameters): return Route(path="/api/leaderboards/koth", **parameters) # * networks def get_networks( **parameters): return Route(path="/api/networks", **parameters) def get_network( **parameters): return Route(path="/api/room/network?code={network_code}", **parameters) def get_network_cost( **parameters): return Route(path="/api/room/cost?code={network_code}", **parameters) # * account def get_subscription_cost(**parameters): return Route(path="/account/subscription/cost", **parameters) # * paths def get_path( **parameters): return Route(path="/paths/single/{path_code}", **parameters) def get_public_paths( **parameters): return Route(path="/paths/public", **parameters) def get_path_summary( **parameters): return Route(path="/paths/summary", **parameters) # * modules def get_modules_summary(**parameters): return Route(path="/modules/summary", **parameters) def get_module( **parameters): return Route(path="/modules/data/{module_code}",**parameters) # * games def get_machine_pool( **parameters): return Route(path="/games/koth/get/machine-pool", **parameters) def get_game_detail( **parameters): return Route(path="/games/koth/data/{game_code}", **parameters) def get_recent_games( **parameters): return Route(path="/games/koth/recent/games", **parameters) def get_user_games( **parameters): return Route(path="/games/koth/user/games", **parameters) def get_game_tickets_won(**parameters): return Route(path="/games/tickets/won?username={username}", **parameters) def post_join_koth( **parameters): return Route(method=POST, path="/games/koth/new", **parameters) def post_new_koth( **parameters): return Route(method=POST, path="/games/koth/join-public", **parameters) # ? might be different for premium users # * VPN def get_available_vpns(**parameters): return Route(path="/vpn/get-available-vpns", **parameters) def get_vpn_info( **parameters): return Route(path="/vpn/my-data", **parameters) # * VM def get_machine_running( **parameters): return Route(path="/api/vm/running", **parameters) def post_renew_machine( **parameters): return Route(method=POST, path="/api/vm/renew", **parameters) def post_terminate_machine( **parameters): return Route(method=POST, path="/api/vm/terminate", **parameters) # * user -badge def get_own_badges( **parameters): return Route(path="/api/badges/mine", **parameters) def get_user_badges(**parameters): return Route(path="/api/badges/get/{username}", **parameters) def get_all_badges( **parameters): return Route(path="/api/badges/get", **parameters) # * user -team def get_team_info(**parameters): return Route(path="/api/team/is-member", **parameters) # * user -notifications def get_unseen_notifications(**parameters): return Route(path="/notifications/has-unseen", **parameters) def get_all_notifications( **parameters): return Route(path="/notifications/get", **parameters) # * user -messages def get_unseen_messages( **parameters): return Route(path="/message/has-unseen", **parameters) def get_all_group_messages(**parameters): return Route(path="/message/group/get-all", **parameters) def get_group_messages( **parameters): return Route(path="/message/group/get/{group_id}", **parameters) # * user -room def get_user_completed_rooms_count( **parameters): return Route(path="/api/no-completed-rooms-public/{username}", **parameters) def get_user_completed_rooms( **parameters): return Route(path="/api/all-completed-rooms?username={username}", **parameters) def get_user_created_rooms( **parameters): return Route(path="/api/created-rooms/{username}", **parameters) # * user def get_user_rank( **parameters): return Route(path="/api/user/rank/{username}", **parameters) def get_user_activty(**parameters): return Route(path="/api/user/activity-events?username={username}", **parameters) def get_all_friends( **parameters): return Route(path="/api/friend/all", **parameters) def get_discord_user(**parameters): return Route(path="/api/discord/user/{username}", **parameters) # ? rename to user profile def get_user_exist( **parameters): return Route(path="/api/user/exist/{username}", **parameters) def search_user( **parameters): return Route(path="/api/similar-users/{username}", **parameters) # * room def get_new_rooms( **parameters): return Route(path="/api/new-rooms", **parameters) def get_recommended_rooms( **parameters): return Route(path="/recommend/last-room?type=json", **parameters) def get_questions_answered( **parameters): return Route(path="/api/questions-answered", **parameters) def get_joined_rooms( **parameters): return Route(path="/api/my-rooms", **parameters) def get_room_percetages( **parameters): return Route(method=POST, path="/api/room-percentages", **parameters) # ? is a post but it gets stuff def get_room_scoreboard( **parameters): return Route(path="/api/room/scoreboard?code={room_code}", **parameters) def get_room_votes( **parameters): return Route(path="/api/room/votes?code={room_code}", **parameters) def get_room_details( **parameters): return Route(path="/api/room/details?codes={room_code}", **parameters) # ? list posibility def get_room_tasks( **parameters): return Route(path="/api/tasks/{room_code}", **parameters) def post_room_answer( **parameters): return Route(method=POST, path="/api/{room_code}/answer", **parameters) def post_deploy_machine( **parameters): return Route(method=POST, path="/material/deploy", **parameters) def post_reset_room_progress(**parameters): return Route(method=POST, path="/api/reset-progress", **parameters) def post_leave_room( **parameters): return Route(method=POST, path="/api/room/leave", **parameters) class HTTP(request_cog, HTTPClient): # * normal site calls def get_server_time(self, **attrs): return self.request(RouteList.get_server_time(), **attrs) def get_site_stats(self, **attrs): return self.request(RouteList.get_site_stats(), **attrs) def get_practise_rooms(self, **attrs): return self.request(RouteList.get_practise_rooms(), **attrs) def get_serie(self, show, serie_code, **attrs): return self.request(RouteList.get_series(show=show, options={"name": serie_code}), **attrs) def get_series(self, show, **attrs): return self.request(RouteList.get_series(show=show), **attrs) def get_glossary_terms(self, **attrs): return self.request(RouteList.get_glossary_terms(), **attrs) # * Leaderboards def get_leaderboards(self, country: _county_types, type:_leaderboard_types, **attrs): return self.request(RouteList.get_leaderboards(country=country.to_lower_case(), type=type), **attrs) def get_koth_leaderboards(self, country: _county_types, type:_leaderboard_types, **attrs): return self.request(RouteList.get_koth_leaderboards(country=country.to_lower_case(), type=type), **attrs) # * networks def get_network(self, network_code, **attrs): return self.request(RouteList.get_network(network_code=network_code), **attrs) def get_networks(self, **attrs): return self.request(RouteList.get_networks(),**attrs) def get_network_cost(self, network_code, **attrs): return self.request(RouteList.get_networks(network_code=network_code), **attrs) # * account @checks.is_authenticated() def get_subscription_cost(self, **attrs): return self.request(RouteList.get_subscription_cost(), **attrs) # * paths def get_path(self, path_code, **attrs): return self.request(RouteList.get_path(path_code=path_code), **attrs) def get_public_paths(self, **attrs): return self.request(RouteList.get_public_paths(), **attrs) def get_path_summary(self, **attrs): return self.request(RouteList.get_path_summary(), **attrs) # * modules def get_modules_summary(self, **attrs): return self.request(RouteList.get_modules_summary(), **attrs) def get_module(self, module_code, **attrs): return self.request(RouteList.get_module(module_code), **attrs) # * games def get_machine_pool(self, **attrs): return self.request(RouteList.get_machine_pool(), **attrs) def get_game_detail(self, game_code, **attrs): return self.request(RouteList.get_game_detail(game_code=game_code), **attrs) def get_recent_games(self, **attrs): return self.request(RouteList.get_recent_games(), **attrs) def get_user_games(self, **attrs): return self.request(RouteList.get_user_games(), **attrs) def get_game_tickets_won(self, username, **attrs): return self.request(RouteList.get_game_tickets_won(username=username), **attrs) @checks.set_header_CSRF() def post_join_koth(self, **attrs): return self.request(RouteList.post_join_koth(), **attrs) @checks.set_header_CSRF() def post_new_koth(self, **attrs): return self.request(RouteList.post_new_koth(), **attrs) # * VPN @checks.is_authenticated() def get_available_vpns(self, type : _vpn_types, **attrs): return self.request(RouteList.get_available_vpns(options={"type": type}), **attrs) @checks.is_authenticated() def get_vpn_info(self, **attrs): return self.request(RouteList.get_vpn_info(), **attrs) # * VM def get_machine_running(self, **attrs): return self.request(RouteList.get_machine_running(), **attrs) @checks.set_header_CSRF() def post_renew_machine(self, room_code, **attrs): return self.request(RouteList.post_renew_machine(), json={"code": room_code}, **attrs) @checks.set_header_CSRF() def post_terminate_machine(self, room_code, **attrs): return self.request(RouteList.post_terminate_machine(), json={"code": room_code}, **attrs) # * user -badge @checks.is_authenticated() def get_own_badges(self, **attrs): return self.request(RouteList.get_own_badges(), **attrs) def get_user_badges(self, username, **attrs): return self.request(RouteList.get_user_badges(username=username), **attrs) def get_all_badges(self, **attrs): return self.request(RouteList.get_all_badges(), **attrs) # * user -team @checks.is_authenticated() def get_team_info(self, **attrs): return self.request(RouteList.get_team_info(), **attrs) # * user -notifications @checks.is_authenticated() def get_unseen_notifications(self, **attrs): return self.request(RouteList.get_unseen_notifications(), **attrs) @checks.is_authenticated() def get_all_notifications(self, **attrs): return self.request(RouteList.get_all_notifications(), **attrs) # * user -messages @checks.is_authenticated() def get_unseen_messages(self, **attrs): return self.request(RouteList.get_unseen_messages(), **attrs) @checks.is_authenticated() def get_all_group_messages(self, **attrs): return self.request(RouteList.get_all_group_messages(), **attrs) @checks.is_authenticated() def get_group_messages(self, group_id, **attrs): return self.request(RouteList.get_group_messages(group_id), **attrs) # * user -room def get_user_completed_rooms_count(self, username, **attrs): return self.request(RouteList.get_user_completed_rooms_count(username=username), **attrs) def get_user_completed_rooms(self, username, limit:int=10, page:int=1, **attrs): return self.request(RouteList.get_user_completed_rooms(username=username, options={"limit": limit, "page": page}), **attrs) def get_user_created_rooms(self, username, limit:int=10, page:int=1, **attrs): return self.request(RouteList.get_user_created_rooms(username=username, options={"limit": limit, "page": page}), **attrs) # * user def get_user_rank(self, username : _not_none, **attrs): return self.request(RouteList.get_user_rank(username=username), **attrs) def get_user_activty(self, username : _not_none, **attrs): return self.request(RouteList.get_user_activty(username=username), **attrs) @checks.is_authenticated() def get_all_friends(self, **attrs): return self.request(RouteList.get_all_friends(), **attrs) def get_discord_user(self, username : _not_none, **attrs): return self.request(RouteList.get_discord_user(username=username), **attrs) def get_user_exist(self, username : _not_none, **attrs): return self.request(RouteList.get_user_exist(username=username), **attrs) def search_user(self, username : _not_none, **attrs): return self.request(RouteList.search_user(username=username), **attrs) # * room def get_new_rooms(self, **attrs): return self.request(RouteList.get_new_rooms(), **attrs) @checks.is_authenticated() def get_recommended_rooms(self, **attrs): return self.request(RouteList.get_recommended_rooms(), **attrs) def get_questions_answered(self, **attrs): return self.request(RouteList.get_questions_answered(), **attrs) @checks.is_authenticated() def get_joined_rooms(self, **attrs): return self.request(RouteList.get_joined_rooms(), **attrs) @checks.is_authenticated() def get_room_percentages(self, room_codes, **attrs): return self.request(RouteList.get_room_percetages(), json={"rooms": room_codes}, **attrs) @checks.is_authenticated() def get_room_scoreboard(self, room_code, **attrs): return self.request(RouteList.get_room_scoreboard(room_code=room_code), **attrs) def get_room_votes(self, room_code, **attrs): return self.request(RouteList.get_room_votes(room_code=room_code), **attrs) def get_room_details(self, room_code, loadWriteUps: bool=True, loadCreators: bool=True, loadUser: bool=True, **attrs): return self.request(RouteList.get_room_details(room_code=room_code, options={"loadWriteUps": loadWriteUps, "loadCreators": loadCreators, "loadUser": loadUser}), **attrs).get(room_code, {}) def get_room_tasks(self, room_code, **attrs): return self.request(RouteList.get_room_tasks(room_code=room_code), **attrs) @checks.set_header_CSRF() @checks.is_authenticated() def post_room_answer(self, room_code, taskNo: int, questionNo: int, answer: str, **attrs): return self.request(RouteList.post_room_answer(room_code=room_code), json={"taskNo": taskNo, "questionNo": questionNo, "answer": answer}, **attrs) @checks.set_header_CSRF() @checks.is_authenticated() def post_deploy_machine(self, room_code, uploadId, **attrs): return self.request(RouteList.post_deploy_machine(), json={"roomCode": room_code, "id": uploadId}, **attrs) @checks.set_header_CSRF() @checks.is_authenticated() def post_reset_room_progress(self, room_code, **attrs): return self.request(RouteList.post_reset_room_progress(), json={"code": room_code}, **attrs) @checks.set_header_CSRF() @checks.is_authenticated() def post_leave_room(self, room_code, **attrs): return self.request(RouteList.post_leave_room(), json={"code": room_code}, **attrs)
[((17, 25, 17, 90), 're.compile', 're.compile', ({(17, 36, 17, 89): '"""const csrfToken[ ]{0,1}=[ ]{0,1}["|\'](.{36})["|\']"""'}, {}), '(\'const csrfToken[ ]{0,1}=[ ]{0,1}["|\\\'](.{36})["|\\\']\')', False, 'import re\n'), ((18, 25, 18, 91), 're.compile', 're.compile', ({(18, 36, 18, 90): '"""const username[ ]{0,1}=[ ]{0,1}["|\'](.{1,16})["|\']"""'}, {}), '(\'const username[ ]{0,1}=[ ]{0,1}["|\\\'](.{1,16})["|\\\']\')', False, 'import re\n'), ((23, 25, 23, 43), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((24, 30, 24, 48), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((40, 17, 40, 95), 'requests.cookies.create_cookie', 'requests.cookies.create_cookie', (), '', False, 'import requests\n'), ((133, 51, 133, 63), 'urllib.parse.quote', '_uriquote', ({(133, 61, 133, 62): 'v'}, {}), '(v)', True, 'from urllib.parse import quote as _uriquote\n')]
wullli/flatlander
flatlander/runner/experiment_runner.py
2c7fbd3d025f2a05c40895ec735a92d7a6bfb1ad
import os from argparse import ArgumentParser from pathlib import Path import gym import ray import ray.tune.result as ray_results import yaml from gym.spaces import Tuple from ray.cluster_utils import Cluster from ray.rllib.utils import try_import_tf, try_import_torch from ray.tune import run_experiments, register_env from ray.tune.logger import TBXLogger from ray.tune.resources import resources_to_json from ray.tune.tune import _make_scheduler from ray.tune.utils import merge_dicts from flatlander.envs import get_eval_config from flatlander.envs.flatland_sparse import FlatlandSparse from flatlander.envs.observations import make_obs from flatlander.envs.utils.global_gym_env import GlobalFlatlandGymEnv from flatlander.envs.utils.gym_env_fill_missing import FillingFlatlandGymEnv from flatlander.logging.custom_metrics import on_episode_end from flatlander.logging.wandb_logger import WandbLogger from flatlander.utils.loader import load_envs, load_models ray_results.DEFAULT_RESULTS_DIR = os.path.join(os.getcwd(), "..", "..", "..", "flatland-challenge-data/results") class ExperimentRunner: group_algorithms = ["QMIX", "QMIXApex"] def __init__(self): self.tf = try_import_tf() self.torch, _ = try_import_torch() load_envs(os.path.dirname(__file__)) load_models(os.path.dirname(__file__)) @staticmethod def get_experiments(run_args, arg_parser: ArgumentParser = None): if run_args.config_file: with open(run_args.config_file) as f: experiments = yaml.safe_load(f) else: experiments = { run_args.experiment_name: { # i.e. log to ~/ray_results/default "run": run_args.run, "checkpoint_freq": run_args.checkpoint_freq, "keep_checkpoints_num": run_args.keep_checkpoints_num, "checkpoint_score_attr": run_args.checkpoint_score_attr, "local_dir": run_args.local_dir, "resources_per_trial": ( run_args.resources_per_trial and resources_to_json(run_args.resources_per_trial)), "stop": run_args.stop, "config": dict(run_args.config, env=run_args.env), "restore": run_args.restore, "num_samples": run_args.num_samples, "upload_dir": run_args.upload_dir, } } if arg_parser is not None: for exp in experiments.values(): if not exp.get("run"): arg_parser.error("the following arguments are required: --run") if not exp.get("envs") and not exp.get("config", {}).get("envs"): arg_parser.error("the following arguments are required: --envs") return experiments @staticmethod def setup_grouping(config: dict): grouping = { "group_1": list(range(config["env_config"]["max_n_agents"])), } obs_space = Tuple([make_obs(config["env_config"]["observation"], config["env_config"]["observation_config"]).observation_space() for _ in range(config["env_config"]["max_n_agents"])]) act_space = Tuple([GlobalFlatlandGymEnv.action_space for _ in range(config["env_config"]["max_n_agents"])]) register_env( "flatland_sparse_grouped", lambda config: FlatlandSparse(config).with_agent_groups( grouping, obs_space=obs_space, act_space=act_space)) def setup_policy_map(self, config: dict): obs_space = make_obs(config["env_config"]["observation"], config["env_config"]["observation_config"]).observation_space() config["multiagent"] = { "policies": {"pol_" + str(i): (None, obs_space, FillingFlatlandGymEnv.action_space, {"agent_id": i}) for i in range(config["env_config"]["observation_config"]["max_n_agents"])}, "policy_mapping_fn": lambda agent_id: "pol_" + str(agent_id)} def setup_hierarchical_policies(self, config: dict): obs_space: gym.spaces.Tuple = make_obs(config["env_config"]["observation"], config["env_config"]["observation_config"]).observation_space() config["multiagent"] = { "policies": {"meta": (None, obs_space.spaces[0], gym.spaces.Box(high=1, low=0, shape=(1,)), {}), "agent": (None, obs_space.spaces[1], FillingFlatlandGymEnv.action_space, {}) }, "policy_mapping_fn": lambda agent_id: "meta" if 'meta' in str(agent_id) else "agent" } def apply_args(self, run_args, experiments: dict): verbose = 1 webui_host = '127.0.0.1' for exp in experiments.values(): if run_args.eager: exp["config"]["eager"] = True if run_args.torch: exp["config"]["use_pytorch"] = True if run_args.v: exp["config"]["log_level"] = "INFO" verbose = 2 if run_args.vv: exp["config"]["log_level"] = "DEBUG" verbose = 3 if run_args.trace: if not exp["config"].get("eager"): raise ValueError("Must enable --eager to enable tracing.") exp["config"]["eager_tracing"] = True if run_args.bind_all: webui_host = "0.0.0.0" if run_args.log_flatland_stats: exp['config']['callbacks'] = { 'on_episode_end': on_episode_end, } return experiments, verbose @staticmethod def evaluate(exp): eval_configs = get_eval_config(exp['config'].get('env_config', {}).get('eval_generator', "default")) eval_seed = eval_configs.get('evaluation_config', {}).get('env_config', {}).get('seed') # add evaluation config to the current config exp['config'] = merge_dicts(exp['config'], eval_configs) if exp['config'].get('evaluation_config'): exp['config']['evaluation_config']['env_config'] = exp['config'].get('env_config') eval_env_config = exp['config']['evaluation_config'].get('env_config') if eval_seed and eval_env_config: # We override the envs seed from the evaluation config eval_env_config['seed'] = eval_seed # Remove any wandb related configs if eval_env_config: if eval_env_config.get('wandb'): del eval_env_config['wandb'] # Remove any wandb related configs if exp['config']['evaluation_config'].get('wandb'): del exp['config']['evaluation_config']['wandb'] def run(self, experiments: dict, args=None): verbose = 1 webui_host = "localhost" for exp in experiments.values(): if exp.get("config", {}).get("input"): if not isinstance(exp.get("config", {}).get("input"), dict): if not os.path.exists(exp["config"]["input"]): rllib_dir = Path(__file__).parent input_file = rllib_dir.absolute().joinpath(exp["config"]["input"]) exp["config"]["input"] = str(input_file) if exp["run"] in self.group_algorithms: self.setup_grouping(exp.get("config")) if exp["run"] == "contrib/MADDPG" or exp["config"].get("individual_policies", False): self.setup_policy_map(exp.get("config")) if exp["config"].get("individual_policies", False): del exp["config"]["individual_policies"] if exp["run"] == "contrib/MADDPG": exp.get("config")["env_config"]["learning_starts"] = 100 exp.get("config")["env_config"]["actions_are_logits"] = True if exp["env"] == "flatland_sparse_hierarchical": self.setup_hierarchical_policies(exp.get("config")) if args is not None: experiments, verbose = self.apply_args(run_args=args, experiments=experiments) if args.eval: self.evaluate(exp) if args.config_file: # TODO should be in exp['config'] directly exp['config']['env_config']['yaml_config'] = args.config_file exp['loggers'] = [WandbLogger, TBXLogger] if args.ray_num_nodes: cluster = Cluster() for _ in range(args.ray_num_nodes): cluster.add_node( num_cpus=args.ray_num_cpus or 1, num_gpus=args.ray_num_gpus or 1, object_store_memory=args.ray_object_store_memory, memory=args.ray_memory, redis_max_memory=args.ray_redis_max_memory) ray.init(address=cluster.address) else: import multiprocessing n_cpu = multiprocessing.cpu_count() import tensorflow as tf n_gpu = len(tf.config.experimental.list_physical_devices('GPU')) print("NUM_CPUS AVAILABLE: ", n_cpu) print("NUM_GPUS AVAILABLE: ", n_gpu) print("NUM_CPUS ARGS: ", args.ray_num_cpus) print("NUM_GPUS ARGS: ", args.ray_num_gpus) ray.init( local_mode=True if args.local else False, address=args.ray_address, object_store_memory=args.ray_object_store_memory, num_cpus=args.ray_num_cpus if args.ray_num_cpus is not None else n_cpu, num_gpus=args.ray_num_gpus if args.ray_num_gpus is not None else n_gpu) run_experiments( experiments, scheduler=_make_scheduler(args), queue_trials=args.queue_trials, resume=args.resume, verbose=verbose, concurrent=True) ray.shutdown()
[((27, 47, 27, 58), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((34, 18, 34, 33), 'ray.rllib.utils.try_import_tf', 'try_import_tf', ({}, {}), '()', False, 'from ray.rllib.utils import try_import_tf, try_import_torch\n'), ((35, 24, 35, 42), 'ray.rllib.utils.try_import_torch', 'try_import_torch', ({}, {}), '()', False, 'from ray.rllib.utils import try_import_tf, try_import_torch\n'), ((140, 24, 140, 64), 'ray.tune.utils.merge_dicts', 'merge_dicts', ({(140, 36, 140, 49): "exp['config']", (140, 51, 140, 63): 'eval_configs'}, {}), "(exp['config'], eval_configs)", False, 'from ray.tune.utils import merge_dicts\n'), ((227, 8, 227, 22), 'ray.shutdown', 'ray.shutdown', ({}, {}), '()', False, 'import ray\n'), ((36, 18, 36, 43), 'os.path.dirname', 'os.path.dirname', ({(36, 34, 36, 42): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((37, 20, 37, 45), 'os.path.dirname', 'os.path.dirname', ({(37, 36, 37, 44): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((194, 22, 194, 31), 'ray.cluster_utils.Cluster', 'Cluster', ({}, {}), '()', False, 'from ray.cluster_utils import Cluster\n'), ((202, 12, 202, 45), 'ray.init', 'ray.init', (), '', False, 'import ray\n'), ((205, 20, 205, 47), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ({}, {}), '()', False, 'import multiprocessing\n'), ((212, 12, 217, 87), 'ray.init', 'ray.init', (), '', False, 'import ray\n'), ((43, 30, 43, 47), 'yaml.safe_load', 'yaml.safe_load', ({(43, 45, 43, 46): 'f'}, {}), '(f)', False, 'import yaml\n'), ((90, 20, 91, 72), 'flatlander.envs.observations.make_obs', 'make_obs', ({(90, 29, 90, 64): "config['env_config']['observation']", (91, 29, 91, 71): "config['env_config']['observation_config']"}, {}), "(config['env_config']['observation'], config['env_config'][\n 'observation_config'])", False, 'from flatlander.envs.observations import make_obs\n'), ((98, 38, 99, 72), 'flatlander.envs.observations.make_obs', 'make_obs', ({(98, 47, 98, 82): "config['env_config']['observation']", (99, 29, 99, 71): "config['env_config']['observation_config']"}, {}), "(config['env_config']['observation'], config['env_config'][\n 'observation_config'])", False, 'from flatlander.envs.observations import make_obs\n'), ((207, 24, 207, 75), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', ({(207, 69, 207, 74): '"""GPU"""'}, {}), "('GPU')", True, 'import tensorflow as tf\n'), ((221, 22, 221, 43), 'ray.tune.tune._make_scheduler', '_make_scheduler', ({(221, 38, 221, 42): 'args'}, {}), '(args)', False, 'from ray.tune.tune import _make_scheduler\n'), ((101, 61, 101, 102), 'gym.spaces.Box', 'gym.spaces.Box', (), '', False, 'import gym\n'), ((54, 28, 54, 75), 'ray.tune.resources.resources_to_json', 'resources_to_json', ({(54, 46, 54, 74): 'run_args.resources_per_trial'}, {}), '(run_args.resources_per_trial)', False, 'from ray.tune.resources import resources_to_json\n'), ((78, 27, 79, 79), 'flatlander.envs.observations.make_obs', 'make_obs', ({(78, 36, 78, 71): "config['env_config']['observation']", (79, 36, 79, 78): "config['env_config']['observation_config']"}, {}), "(config['env_config']['observation'], config['env_config'][\n 'observation_config'])", False, 'from flatlander.envs.observations import make_obs\n'), ((86, 27, 86, 49), 'flatlander.envs.flatland_sparse.FlatlandSparse', 'FlatlandSparse', ({(86, 42, 86, 48): 'config'}, {}), '(config)', False, 'from flatlander.envs.flatland_sparse import FlatlandSparse\n'), ((163, 27, 163, 65), 'os.path.exists', 'os.path.exists', ({(163, 42, 163, 64): "exp['config']['input']"}, {}), "(exp['config']['input'])", False, 'import os\n'), ((164, 36, 164, 50), 'pathlib.Path', 'Path', ({(164, 41, 164, 49): '__file__'}, {}), '(__file__)', False, 'from pathlib import Path\n')]
rahulmah/sample-cloud-native-toolchain-tutorial-20170720084529291
syslib/utils_keywords.py
08540c0f083a25b5b4e7a4c839080fe54383038c
#!/usr/bin/env python r""" This module contains keyword functions to supplement robot's built in functions and use in test where generic robot keywords don't support. """ import time from robot.libraries.BuiltIn import BuiltIn from robot.libraries import DateTime import re ############################################################################### def run_until_keyword_fails(retry, retry_interval, name, *args): r""" Execute a robot keyword repeatedly until it either fails or the timeout value is exceeded. Note: Opposite of robot keyword "Wait Until Keyword Succeeds". Description of argument(s): retry Max timeout time in hour(s). retry_interval Time interval in minute(s) for looping. name Robot keyword to execute. args Robot keyword arguments. """ # Convert the retry time in seconds retry_seconds = DateTime.convert_time(retry) timeout = time.time() + int(retry_seconds) # Convert the interval time in seconds interval_seconds = DateTime.convert_time(retry_interval) interval = int(interval_seconds) BuiltIn().log(timeout) BuiltIn().log(interval) while True: status = BuiltIn().run_keyword_and_return_status(name, *args) # Return if keywords returns as failure. if status is False: BuiltIn().log("Failed as expected") return False # Return if retry timeout as success. elif time.time() > timeout > 0: BuiltIn().log("Max retry timeout") return True time.sleep(interval) BuiltIn().log(time.time()) return True ############################################################################### ############################################################################### def htx_error_log_to_list(htx_error_log_output): r""" Parse htx error log output string and return list of strings in the form "<field name>:<field value>". The output of this function may be passed to the build_error_dict function. Description of argument(s): htx_error_log_output Error entry string containing the stdout generated by "htxcmdline -geterrlog". Example of htx_error_log_output contents: ######################## Result Starts Here ############################### Currently running ECG/MDT : /usr/lpp/htx/mdt/mdt.whit =========================== --------------------------------------------------------------------- Device id:/dev/nvidia0 Timestamp:Mar 29 19:41:54 2017 err=00000027 sev=1 Exerciser Name:hxenvidia Serial No:Not Available Part No:Not Available Location:Not Available FRU Number:Not Available Device:Not Available Error Text:cudaEventSynchronize for stopEvent returned err = 0039 from file , line 430. --------------------------------------------------------------------- --------------------------------------------------------------------- Device id:/dev/nvidia0 Timestamp:Mar 29 19:41:54 2017 err=00000027 sev=1 Exerciser Name:hxenvidia Serial No:Not Available Part No:Not Available Location:Not Available FRU Number:Not Available Device:Not Available Error Text:Hardware Exerciser stopped on error --------------------------------------------------------------------- ######################### Result Ends Here ################################ Example output: Returns the lists of error string per entry ['Device id:/dev/nvidia0', 'Timestamp:Mar 29 19:41:54 2017', 'err=00000027', 'sev=1', 'Exerciser Name:hxenvidia', 'Serial No:Not Available', 'Part No:Not Available', 'Location:Not Available', 'FRU Number:Not Available', 'Device:Not Available', 'Error Text:cudaEventSynchronize for stopEvent returned err = 0039 from file , line 430.'] """ # List which will hold all the list of entries. error_list = [] temp_error_list = [] parse_walk = False for line in htx_error_log_output.splitlines(): # Skip lines starting with "#" if line.startswith("#"): continue # Mark line starting with "-" and set parse flag. if line.startswith("-") and parse_walk is False: parse_walk = True continue # Mark line starting with "-" and reset parse flag. # Set temp error list to EMPTY. elif line.startswith("-"): error_list.append(temp_error_list) parse_walk = False temp_error_list = [] # Add entry to list if line is not emtpy elif parse_walk: temp_error_list.append(str(line)) return error_list ############################################################################### ############################################################################### def build_error_dict(htx_error_log_output): r""" Builds error list into a list of dictionary entries. Description of argument(s): error_list Error list entries. Example output dictionary: { 0: { 'sev': '1', 'err': '00000027', 'Timestamp': 'Mar 29 19:41:54 2017', 'Part No': 'Not Available', 'Serial No': 'Not Available', 'Device': 'Not Available', 'FRU Number': 'Not Available', 'Location': 'Not Available', 'Device id': '/dev/nvidia0', 'Error Text': 'cudaEventSynchronize for stopEvent returned err = 0039 from file , line 430.', 'Exerciser Name': 'hxenvidia' }, 1: { 'sev': '1', 'err': '00000027', 'Timestamp': 'Mar 29 19:41:54 2017', 'Part No': 'Not Available', 'Serial No': 'Not Available', 'Device': 'Not Available', 'FRU Number': 'Not Available', 'Location': 'Not Available', 'Device id': '/dev/nvidia0', 'Error Text': 'Hardware Exerciser stopped on error', 'Exerciser Name': 'hxenvidia' } }, """ # List which will hold all the list of entries. error_list = [] error_list = htx_error_log_to_list(htx_error_log_output) # dictionary which holds the error dictionry entry. error_dict = {} temp_error_dict = {} error_index = 0 # Loop through the error list. for entry_list in error_list: # Loop through the first error list entry. for entry in entry_list: # Split string into list for key value update. # Example: 'Device id:/dev/nvidia0' # Example: 'err=00000027' parm_split = re.split("[:=]", entry) # Populate temp dictionary with key value pair data. temp_error_dict[str(parm_split[0])] = parm_split[1] # Update the master dictionary per entry index. error_dict[error_index] = temp_error_dict # Reset temp dict to EMPTY and increment index count. temp_error_dict = {} error_index += 1 return error_dict ###############################################################################
[((30, 20, 30, 48), 'robot.libraries.DateTime.convert_time', 'DateTime.convert_time', ({(30, 42, 30, 47): 'retry'}, {}), '(retry)', False, 'from robot.libraries import DateTime\n'), ((34, 23, 34, 60), 'robot.libraries.DateTime.convert_time', 'DateTime.convert_time', ({(34, 45, 34, 59): 'retry_interval'}, {}), '(retry_interval)', False, 'from robot.libraries import DateTime\n'), ((31, 14, 31, 25), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((51, 8, 51, 28), 'time.sleep', 'time.sleep', ({(51, 19, 51, 27): 'interval'}, {}), '(interval)', False, 'import time\n'), ((37, 4, 37, 13), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n'), ((38, 4, 38, 13), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n'), ((52, 22, 52, 33), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((210, 25, 210, 48), 're.split', 're.split', ({(210, 34, 210, 40): '"""[:=]"""', (210, 42, 210, 47): 'entry'}, {}), "('[:=]', entry)", False, 'import re\n'), ((41, 17, 41, 26), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n'), ((48, 13, 48, 24), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((52, 8, 52, 17), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n'), ((45, 12, 45, 21), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n'), ((49, 12, 49, 21), 'robot.libraries.BuiltIn.BuiltIn', 'BuiltIn', ({}, {}), '()', False, 'from robot.libraries.BuiltIn import BuiltIn\n')]
ivmtorres/mmpose
tools/webcam/webcam_apis/nodes/__init__.py
662cb50c639653ae2fc19d3421ce10bd02246b85
# Copyright (c) OpenMMLab. All rights reserved. from .builder import NODES from .faceswap_nodes import FaceSwapNode from .frame_effect_nodes import (BackgroundNode, BugEyeNode, MoustacheNode, NoticeBoardNode, PoseVisualizerNode, SaiyanNode, SunglassesNode) from .helper_nodes import ModelResultBindingNode, MonitorNode, RecorderNode from .mmdet_nodes import DetectorNode from .mmpose_nodes import TopDownPoseEstimatorNode from .xdwendwen_nodes import XDwenDwenNode __all__ = [ 'NODES', 'PoseVisualizerNode', 'DetectorNode', 'TopDownPoseEstimatorNode', 'MonitorNode', 'BugEyeNode', 'SunglassesNode', 'ModelResultBindingNode', 'NoticeBoardNode', 'RecorderNode', 'FaceSwapNode', 'MoustacheNode', 'SaiyanNode', 'BackgroundNode', 'XDwenDwenNode' ]
[]
lelle1234/Db2Utils
DBParser/DBMove.py
55570a1afbe6d4abe61c31952bc178c2443f4e5b
#!/usr/bin/python3 import ibm_db import getopt import sys import os from toposort import toposort_flatten db = None host = "localhost" port = "50000" user = None pwd = None outfile = None targetdb = None try: opts, args = getopt.getopt(sys.argv[1:], "h:d:P:u:p:o:t:") except getopt.GetoptError: sys.exit(-1) for o, a in opts: if o == "-d": db = a if o == "-h": host = a if o == "-P": port = a if o == "-u": user = a if o == "-p": pwd = a if o == "-t": targetdb = a if db is None or user is None or pwd is None or targetdb is None: print("Usage: DBMove.py [-h <host> -P <port>] -d <db> -u <user> -p <pwd> -t <target>") sys.exit(1) db = db.upper() targetdb = targetdb.upper() cfg = (db, host, port, user, pwd) conn = ibm_db.connect("DATABASE=%s; HOSTNAME=%s; PORT=%s; PROTOCOL=TCPIP; UID=%s; PWD=%s" % cfg, "", "") get_db_type = "values nya.get_db_type()" find_edges = """ SELECT rtrim(t.tabschema) || '.' || rtrim(t.tabname) , coalesce(rtrim(r.reftabschema) || '.' || rtrim(r.reftabname), 'dummy') FROM syscat.tables t LEFT JOIN syscat.references r ON (t.tabschema, t.tabname) = (r.tabschema, r.tabname) WHERE t.tabschema not like 'SYS%' AND t.type = 'T' AND rtrim(t.tabschema) not like 'NYA_%' AND t.tabschema <> 'TMP' ORDER BY 1 """ identity_skip = """ select rtrim(tabschema) || '.' || rtrim(tabname) from syscat.columns where identity = 'Y' and generated = 'D' """ stmt = ibm_db.prepare(conn, get_db_type) ibm_db.execute(stmt, ()) tpl = ibm_db.fetch_tuple(stmt) db_type = tpl[0] edges = dict() stmt = ibm_db.prepare(conn, find_edges) ibm_db.execute(stmt, ()) tpl = ibm_db.fetch_tuple(stmt) while tpl: n1, n2 = tpl try: edges[n1].add(n2) except KeyError: edges[n1] = set() edges[n1].add(n2) tpl = ibm_db.fetch_tuple(stmt) sorted_nodes = list(toposort_flatten(edges)) # print(sorted_nodes) identity_skip_arr = [] edges = dict() stmt = ibm_db.prepare(conn, identity_skip) ibm_db.execute(stmt, ()) tpl = ibm_db.fetch_tuple(stmt) while tpl: identity_skip_arr.append(tpl[0]) tpl = ibm_db.fetch_tuple(stmt) # print(identity_skip) os.makedirs(db, exist_ok=True) export_file = open("%s/export.sql" % db, "w") load_file = open("%s/load.sql" % db, "w") export_file.write("connect to %s;\n" % db) load_file.write("connect to %s;\n" % targetdb) if db_type == "N": load_file.write("""set integrity for nya.person off;\n""") load_file.write("""alter table nya.person alter column EMAIL_UC drop generated alter column NORMALIZED_FIRSTNAME drop generated alter column NORMALIZED_LASTNAME drop generated;\n""") load_file.write("""set integrity for nya.person immediate checked;\n""") for t in sorted_nodes: if t == "dummy": continue export_file.write("export to %s.ixf of ixf lobs to . modified by codepage=819 messages export_%s.msg select * from %s;\n" % (t,t,t)) identityskip = "identityoverride" if t in identity_skip_arr: identityskip = " " load_file.write("load from %s.ixf of ixf lobs from . modified by generatedoverride %s messages load_%s.msg replace into %s;\n" % (t, identityskip, t, t)) if db_type == "N": load_file.write("""set integrity for nya.person off;\n""") load_file.write("""alter table nya.person alter column EMAIL_UC set generated always as ( upper(email)) alter column NORMALIZED_FIRSTNAME set generated always as ( NYA.REMOVE_DIACRITICS( FIRSTNAME ) ) alter column NORMALIZED_LASTNAME set generated always as ( NYA.REMOVE_DIACRITICS( LASTNAME ) );\n""") load_file.write("""set integrity for nya.person immediate checked force generated;\n""") load_file.write("""echo set integrity for all tables;\n""") export_file.write("connect reset;\n") load_file.write("connect reset;\n") export_file.close() load_file.close()
[((44, 7, 44, 104), 'ibm_db.connect', 'ibm_db.connect', ({(44, 22, 44, 95): "'DATABASE=%s; HOSTNAME=%s; PORT=%s; PROTOCOL=TCPIP; UID=%s; PWD=%s' % cfg", (44, 97, 44, 99): '""""""', (44, 101, 44, 103): '""""""'}, {}), "(\n 'DATABASE=%s; HOSTNAME=%s; PORT=%s; PROTOCOL=TCPIP; UID=%s; PWD=%s' %\n cfg, '', '')", False, 'import ibm_db\n'), ((66, 7, 66, 40), 'ibm_db.prepare', 'ibm_db.prepare', ({(66, 22, 66, 26): 'conn', (66, 28, 66, 39): 'get_db_type'}, {}), '(conn, get_db_type)', False, 'import ibm_db\n'), ((67, 0, 67, 24), 'ibm_db.execute', 'ibm_db.execute', ({(67, 15, 67, 19): 'stmt', (67, 21, 67, 23): '()'}, {}), '(stmt, ())', False, 'import ibm_db\n'), ((68, 6, 68, 30), 'ibm_db.fetch_tuple', 'ibm_db.fetch_tuple', ({(68, 25, 68, 29): 'stmt'}, {}), '(stmt)', False, 'import ibm_db\n'), ((72, 7, 72, 39), 'ibm_db.prepare', 'ibm_db.prepare', ({(72, 22, 72, 26): 'conn', (72, 28, 72, 38): 'find_edges'}, {}), '(conn, find_edges)', False, 'import ibm_db\n'), ((73, 0, 73, 24), 'ibm_db.execute', 'ibm_db.execute', ({(73, 15, 73, 19): 'stmt', (73, 21, 73, 23): '()'}, {}), '(stmt, ())', False, 'import ibm_db\n'), ((74, 6, 74, 30), 'ibm_db.fetch_tuple', 'ibm_db.fetch_tuple', ({(74, 25, 74, 29): 'stmt'}, {}), '(stmt)', False, 'import ibm_db\n'), ((91, 7, 91, 42), 'ibm_db.prepare', 'ibm_db.prepare', ({(91, 22, 91, 26): 'conn', (91, 28, 91, 41): 'identity_skip'}, {}), '(conn, identity_skip)', False, 'import ibm_db\n'), ((92, 0, 92, 24), 'ibm_db.execute', 'ibm_db.execute', ({(92, 15, 92, 19): 'stmt', (92, 21, 92, 23): '()'}, {}), '(stmt, ())', False, 'import ibm_db\n'), ((93, 6, 93, 30), 'ibm_db.fetch_tuple', 'ibm_db.fetch_tuple', ({(93, 25, 93, 29): 'stmt'}, {}), '(stmt)', False, 'import ibm_db\n'), ((99, 0, 99, 30), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((18, 17, 18, 62), 'getopt.getopt', 'getopt.getopt', ({(18, 31, 18, 43): 'sys.argv[1:]', (18, 45, 18, 61): '"""h:d:P:u:p:o:t:"""'}, {}), "(sys.argv[1:], 'h:d:P:u:p:o:t:')", False, 'import getopt\n'), ((38, 4, 38, 15), 'sys.exit', 'sys.exit', ({(38, 13, 38, 14): '(1)'}, {}), '(1)', False, 'import sys\n'), ((83, 10, 83, 34), 'ibm_db.fetch_tuple', 'ibm_db.fetch_tuple', ({(83, 29, 83, 33): 'stmt'}, {}), '(stmt)', False, 'import ibm_db\n'), ((84, 20, 84, 43), 'toposort.toposort_flatten', 'toposort_flatten', ({(84, 37, 84, 42): 'edges'}, {}), '(edges)', False, 'from toposort import toposort_flatten\n'), ((96, 10, 96, 34), 'ibm_db.fetch_tuple', 'ibm_db.fetch_tuple', ({(96, 29, 96, 33): 'stmt'}, {}), '(stmt)', False, 'import ibm_db\n'), ((20, 4, 20, 16), 'sys.exit', 'sys.exit', ({(20, 13, 20, 15): '(-1)'}, {}), '(-1)', False, 'import sys\n')]
MirunaPislar/Word2vec
utils/glove.py
e9dd01488f081a7b8d7c00a0b21efe0d401d4927
import numpy as np DEFAULT_FILE_PATH = "utils/datasets/glove.6B.50d.txt" def loadWordVectors(tokens, filepath=DEFAULT_FILE_PATH, dimensions=50): """Read pretrained GloVe vectors""" wordVectors = np.zeros((len(tokens), dimensions)) with open(filepath) as ifs: for line in ifs: line = line.strip() if not line: continue row = line.split() token = row[0] if token not in tokens: continue data = [float(x) for x in row[1:]] if len(data) != dimensions: raise RuntimeError("wrong number of dimensions") wordVectors[tokens[token]] = np.asarray(data) return wordVectors
[((20, 41, 20, 57), 'numpy.asarray', 'np.asarray', ({(20, 52, 20, 56): 'data'}, {}), '(data)', True, 'import numpy as np\n')]
stanford-crfm/composer
composer/profiler/__init__.py
4996fbd818971afd6439961df58b531d9b47a37b
# Copyright 2021 MosaicML. All Rights Reserved. """Performance profiling tools. The profiler gathers performance metrics during a training run that can be used to diagnose bottlenecks and facilitate model development. The metrics gathered include: * Duration of each :class:`.Event` during training * Time taken by the data loader to return a batch * Host metrics such as CPU, system memory, disk and network utilization over time * Execution order, latency and attributes of PyTorch operators and GPU kernels (see :doc:`profiler`) The following example demonstrates how to setup and perform profiling on a simple training run. .. literalinclude:: ../../../examples/profiler_demo.py :language: python :linenos: :emphasize-lines: 6, 27-49 It is required to specify an output ``profiler_trace_file`` during :class:`.Trainer` initialization to enable profiling. The ``profiler_trace_file`` will contain the profiling trace data once the profiling run completes. By default, the :class:`.Profiler`, :class:`.DataloaderProfiler` and :class:`.SystemProfiler` will be active. The :class:`.TorchProfiler` is **disabled** by default. To activate the :class:`.TorchProfiler`, the ``torch_profiler_trace_dir`` must be specified *in addition* to the ``profiler_trace_file`` argument. The ``torch_profiler_trace_dir`` will contain the Torch Profiler traces once the profiling run completes. The :class:`.Profiler` will automatically merge the Torch traces in the ``torch_profiler_trace_dir`` into the ``profiler_trace_file``, allowing users to view a unified trace. The complete traces can be viewed by in a Google Chrome browser navigating to ``chrome://tracing`` and loading the ``profiler_trace_file``. Here is an example trace file: .. image:: https://storage.googleapis.com/docs.mosaicml.com/images/profiler/profiler_trace_example.png :alt: Example Profiler Trace File :align: center Additonal details an be found in the Profiler Guide. """ from composer.profiler._event_handler import ProfilerEventHandler from composer.profiler._profiler import Marker, Profiler from composer.profiler._profiler_action import ProfilerAction # All needs to be defined properly for sphinx autosummary __all__ = [ "Marker", "Profiler", "ProfilerAction", "ProfilerEventHandler", ] Marker.__module__ = __name__ Profiler.__module__ = __name__ ProfilerAction.__module__ = __name__ ProfilerEventHandler.__module__ = __name__
[]
EvKissle/tinkerpop
gremlin-python/src/main/jython/setup.py
84195e38fc22a1a089c345fade9c75711e6cfdfe
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import codecs import os import sys import time from setuptools import setup # Folder containing the setup.py root = os.path.dirname(os.path.abspath(__file__)) # Path to __version__ module version_file = os.path.join(root, 'gremlin_python', '__version__.py') # Check if this is a source distribution. # If not create the __version__ module containing the version if not os.path.exists(os.path.join(root, 'PKG-INFO')): timestamp = int(os.getenv('TIMESTAMP', time.time() * 1000)) / 1000 fd = codecs.open(version_file, 'w', 'utf-8') fd.write("'''") fd.write(__doc__) fd.write("'''\n") fd.write('version = %r\n' % os.getenv('VERSION', '?').replace('-SNAPSHOT', '.dev-%d' % timestamp)) fd.write('timestamp = %d\n' % timestamp) fd.close() # Load version from gremlin_python import __version__ version = __version__.version install_requires = [ 'aenum==1.4.5', 'tornado==4.4.1', 'six==1.10.0' ] if sys.version_info < (3,2): install_requires += ['futures==3.0.5'] setup( name='gremlinpython', version=version, packages=['gremlin_python', 'gremlin_python.driver', 'gremlin_python.driver.tornado', 'gremlin_python.process', 'gremlin_python.structure', 'gremlin_python.structure.io'], license='Apache 2', url='http://tinkerpop.apache.org', description='Gremlin-Python for Apache TinkerPop', long_description=codecs.open("README", "r", "UTF-8").read(), test_suite="tests", data_files=[("", ["LICENSE", "NOTICE"])], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest', 'mock' ], install_requires=install_requires, classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", ] )
[((29, 15, 29, 69), 'os.path.join', 'os.path.join', ({(29, 28, 29, 32): 'root', (29, 34, 29, 50): '"""gremlin_python"""', (29, 52, 29, 68): '"""__version__.py"""'}, {}), "(root, 'gremlin_python', '__version__.py')", False, 'import os\n'), ((26, 23, 26, 48), 'os.path.abspath', 'os.path.abspath', ({(26, 39, 26, 47): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((35, 9, 35, 48), 'codecs.open', 'codecs.open', ({(35, 21, 35, 33): 'version_file', (35, 35, 35, 38): '"""w"""', (35, 40, 35, 47): '"""utf-8"""'}, {}), "(version_file, 'w', 'utf-8')", False, 'import codecs\n'), ((33, 22, 33, 52), 'os.path.join', 'os.path.join', ({(33, 35, 33, 39): 'root', (33, 41, 33, 51): '"""PKG-INFO"""'}, {}), "(root, 'PKG-INFO')", False, 'import os\n'), ((65, 21, 65, 56), 'codecs.open', 'codecs.open', ({(65, 33, 65, 41): '"""README"""', (65, 43, 65, 46): '"""r"""', (65, 48, 65, 55): '"""UTF-8"""'}, {}), "('README', 'r', 'UTF-8')", False, 'import codecs\n'), ((34, 43, 34, 54), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((39, 34, 39, 59), 'os.getenv', 'os.getenv', ({(39, 44, 39, 53): '"""VERSION"""', (39, 55, 39, 58): '"""?"""'}, {}), "('VERSION', '?')", False, 'import os\n')]
yoshihikosuzuki/plotly_light
src/_bar.py
cef2465486e9147e27feae1193a1b4487e4fc543
from typing import Optional, Sequence import plotly.graph_objects as go def bar(x: Sequence, y: Sequence, text: Optional[Sequence] = None, width: Optional[int] = None, col: Optional[str] = None, opacity: float = 1, name: Optional[str] = None, show_legend: bool = False, show_init: bool = True) -> go.Bar: """Create a simple Trace object of a histogram. positional arguments: @ x : Coordinates of data on x-axis. @ y : Coordinates of data on y-axis. optional arguments: @ col : Color of bars. @ opacity : Opacity of bars. @ name : Display name of the trace in legend. @ show_legend : Show this trace in legend. @ show_init : Show this trace initially. """ return go.Bar(x=x, y=y, text=text, width=width, marker_color=col, opacity=opacity, name=name, showlegend=show_legend, visible=None if show_init else "legendonly")
[((26, 11, 34, 62), 'plotly.graph_objects.Bar', 'go.Bar', (), '', True, 'import plotly.graph_objects as go\n')]
doomhammerhell/pennylane
pennylane/templates/subroutines/arbitrary_unitary.py
f147f22d8d99ba5891edd45a6a1f7dd679c8a23c
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Contains the ArbitraryUnitary template. """ import pennylane as qml from pennylane.operation import Operation, AnyWires from pennylane.ops import PauliRot _PAULIS = ["I", "X", "Y", "Z"] def _tuple_to_word(index_tuple): """Convert an integer tuple to the corresponding Pauli word. The Pauli operators are converted as ``0 -> I``, ``1 -> X``, ``2 -> Y``, ``3 -> Z``. Args: index_tuple (Tuple[int]): An integer tuple describing the Pauli word Returns: str: The corresponding Pauli word """ return "".join([_PAULIS[i] for i in index_tuple]) def _n_k_gray_code(n, k, start=0): """Iterates over a full n-ary Gray code with k digits. Args: n (int): Base of the Gray code. Needs to be greater than one. k (int): Number of digits of the Gray code. Needs to be greater than zero. start (int, optional): Optional start of the Gray code. The generated code will be shorter as the code does not wrap. Defaults to 0. """ for i in range(start, n ** k): codeword = [0] * k base_repesentation = [] val = i for j in range(k): base_repesentation.append(val % n) val //= n shift = 0 for j in reversed(range(k)): codeword[j] = (base_repesentation[j] + shift) % n shift += n - codeword[j] yield codeword def _all_pauli_words_but_identity(num_wires): # Start at 1 to ignore identity yield from (_tuple_to_word(idx_tuple) for idx_tuple in _n_k_gray_code(4, num_wires, start=1)) class ArbitraryUnitary(Operation): """Implements an arbitrary unitary on the specified wires. An arbitrary unitary on :math:`n` wires is parametrized by :math:`4^n - 1` independent real parameters. This templates uses Pauli word rotations to parametrize the unitary. **Example** ArbitraryUnitary can be used as a building block, e.g. to parametrize arbitrary two-qubit operations in a circuit: .. code-block:: python @qml.template def arbitrary_nearest_neighbour_interaction(weights, wires): qml.broadcast(unitary=ArbitraryUnitary, pattern="double", wires=wires, params=weights) Args: weights (tensor_like): The angles of the Pauli word rotations, needs to have length :math:`4^n - 1` where :math:`n` is the number of wires the template acts upon. wires (Iterable): wires that the template acts on """ num_params = 1 num_wires = AnyWires par_domain = "A" def __init__(self, weights, wires, do_queue=True, id=None): shape = qml.math.shape(weights) if shape != (4 ** len(wires) - 1,): raise ValueError( f"Weights tensor must be of shape {(4 ** len(wires) - 1,)}; got {shape}." ) super().__init__(weights, wires=wires, do_queue=do_queue, id=id) def expand(self): weights = self.parameters[0] with qml.tape.QuantumTape() as tape: for i, pauli_word in enumerate(_all_pauli_words_but_identity(len(self.wires))): PauliRot(weights[i], pauli_word, wires=self.wires) return tape @staticmethod def shape(n_wires): """Compute the expected shape of the weights tensor. Args: n_wires (int): number of wires that template acts on """ return (4 ** n_wires - 1,)
[((101, 16, 101, 39), 'pennylane.math.shape', 'qml.math.shape', ({(101, 31, 101, 38): 'weights'}, {}), '(weights)', True, 'import pennylane as qml\n'), ((113, 13, 113, 35), 'pennylane.tape.QuantumTape', 'qml.tape.QuantumTape', ({}, {}), '()', True, 'import pennylane as qml\n'), ((116, 16, 116, 66), 'pennylane.ops.PauliRot', 'PauliRot', (), '', False, 'from pennylane.ops import PauliRot\n')]
aidiary/generative-models-pytorch
vae_celeba.py
c9ae23a4ecbe4bf8f82dbaf9e4e3e1e61530e6b0
import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from pytorch_lightning.loggers import TensorBoardLogger from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import CelebA class Encoder(nn.Module): def __init__(self): super().__init__() self.conv_layers = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(32), nn.LeakyReLU(), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), ) self.mu_layer = nn.Linear(4096, 200) self.logvar_layer = nn.Linear(4096, 200) def forward(self, imgs): out = self.conv_layers(imgs) out = nn.Flatten()(out) mu = self.mu_layer(out) logvar = self.logvar_layer(out) return mu, logvar class Decoder(nn.Module): def __init__(self): super().__init__() self.decoder_input = nn.Linear(200, 4096) self.deconv_layers = nn.Sequential( nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.ConvTranspose2d(64, 64, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(32), nn.LeakyReLU(), nn.ConvTranspose2d(32, 3, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(3), nn.Sigmoid(), ) def forward(self, z): out = self.decoder_input(z) out = out.view(-1, 64, 8, 8) recon_img = self.deconv_layers(out) return recon_img class VanillaVAE(pl.LightningModule): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, img): mu, logvar = self.encoder(img) return mu def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps * std + mu def configure_optimizers(self): optimizer = optim.Adam(self.parameters(), lr=0.005) return optimizer def training_step(self, train_batch, batch_idx): img, labels = train_batch mu, logvar = self.encoder(img) z = self.reparameterize(mu, logvar) recon_img = self.decoder(z) recon_loss_factor = 10000 recon_loss = F.mse_loss(recon_img, img) kld_loss = torch.mean(-0.5 * torch.sum(1 + logvar - mu**2 - logvar.exp(), dim=1)) loss = recon_loss_factor * recon_loss + kld_loss self.log('train/loss', loss) self.log('train/recon_loss', recon_loss) self.log('train/kl_loss', kld_loss) return loss def validation_step(self, val_batch, batch_idx): img, labels = val_batch mu, logvar = self.encoder(img) z = self.reparameterize(mu, logvar) recon_img = self.decoder(z) recon_loss_factor = 10000 recon_loss = F.mse_loss(recon_img, img) kld_loss = torch.mean(-0.5 * torch.sum(1 + logvar - mu**2 - logvar.exp(), dim=1)) loss = recon_loss_factor * recon_loss + kld_loss self.log('val/loss', loss) self.log('val/recon_loss', recon_loss) self.log('val/kl_loss', kld_loss) return loss def reconstruct(self, img): mu, _ = self.encoder(img) recon_img = self.decoder(mu) return recon_img def sample(self, num_samples=64): z = torch.randn(num_samples, 200) samples = self.decoder(z) return samples if __name__ == '__main__': # data transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.CenterCrop(148), transforms.Resize(128), transforms.ToTensor() ]) train_dataset = CelebA(root='data', split='train', transform=transform, download=False) val_dataset = CelebA(root='data', split='test', transform=transform, download=False) train_loader = DataLoader(train_dataset, batch_size=32, num_workers=8, shuffle=True, drop_last=True) val_loader = DataLoader(val_dataset, batch_size=32, num_workers=8, shuffle=False, drop_last=True) # model model = VanillaVAE() # training tb_logger = TensorBoardLogger('lightning_logs', name='vanilla_vae_celeba', default_hp_metric=False) trainer = pl.Trainer(gpus=[0], max_epochs=200, logger=tb_logger) trainer.fit(model, train_loader, val_loader)
[((148, 20, 148, 91), 'torchvision.datasets.CelebA', 'CelebA', (), '', False, 'from torchvision.datasets import CelebA\n'), ((149, 18, 149, 88), 'torchvision.datasets.CelebA', 'CelebA', (), '', False, 'from torchvision.datasets import CelebA\n'), ((151, 19, 155, 45), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((156, 17, 160, 43), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((166, 16, 166, 103), 'pytorch_lightning.loggers.TensorBoardLogger', 'TensorBoardLogger', (), '', False, 'from pytorch_lightning.loggers import TensorBoardLogger\n'), ((167, 14, 167, 68), 'pytorch_lightning.Trainer', 'pl.Trainer', (), '', True, 'import pytorch_lightning as pl\n'), ((31, 24, 31, 44), 'torch.nn.Linear', 'nn.Linear', ({(31, 34, 31, 38): '4096', (31, 40, 31, 43): '200'}, {}), '(4096, 200)', True, 'import torch.nn as nn\n'), ((32, 28, 32, 48), 'torch.nn.Linear', 'nn.Linear', ({(32, 38, 32, 42): '4096', (32, 44, 32, 47): '200'}, {}), '(4096, 200)', True, 'import torch.nn as nn\n'), ((49, 29, 49, 49), 'torch.nn.Linear', 'nn.Linear', ({(49, 39, 49, 42): '200', (49, 44, 49, 48): '4096'}, {}), '(200, 4096)', True, 'import torch.nn as nn\n'), ((84, 14, 84, 37), 'torch.exp', 'torch.exp', ({(84, 24, 84, 36): '0.5 * logvar'}, {}), '(0.5 * logvar)', False, 'import torch\n'), ((85, 14, 85, 35), 'torch.randn_like', 'torch.randn_like', ({(85, 31, 85, 34): 'std'}, {}), '(std)', False, 'import torch\n'), ((100, 21, 100, 47), 'torch.nn.functional.mse_loss', 'F.mse_loss', ({(100, 32, 100, 41): 'recon_img', (100, 43, 100, 46): 'img'}, {}), '(recon_img, img)', True, 'import torch.nn.functional as F\n'), ((118, 21, 118, 47), 'torch.nn.functional.mse_loss', 'F.mse_loss', ({(118, 32, 118, 41): 'recon_img', (118, 43, 118, 46): 'img'}, {}), '(recon_img, img)', True, 'import torch.nn.functional as F\n'), ((134, 12, 134, 41), 'torch.randn', 'torch.randn', ({(134, 24, 134, 35): 'num_samples', (134, 37, 134, 40): '200'}, {}), '(num_samples, 200)', False, 'import torch\n'), ((17, 12, 17, 64), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((18, 12, 18, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(18, 27, 18, 29): '32'}, {}), '(32)', True, 'import torch.nn as nn\n'), ((19, 12, 19, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((20, 12, 20, 65), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((21, 12, 21, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(21, 27, 21, 29): '64'}, {}), '(64)', True, 'import torch.nn as nn\n'), ((22, 12, 22, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((23, 12, 23, 65), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((24, 12, 24, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(24, 27, 24, 29): '64'}, {}), '(64)', True, 'import torch.nn as nn\n'), ((25, 12, 25, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((26, 12, 26, 65), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((27, 12, 27, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(27, 27, 27, 29): '64'}, {}), '(64)', True, 'import torch.nn as nn\n'), ((28, 12, 28, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((37, 14, 37, 26), 'torch.nn.Flatten', 'nn.Flatten', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((52, 12, 52, 92), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (), '', True, 'import torch.nn as nn\n'), ((53, 12, 53, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(53, 27, 53, 29): '64'}, {}), '(64)', True, 'import torch.nn as nn\n'), ((54, 12, 54, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((55, 12, 55, 92), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (), '', True, 'import torch.nn as nn\n'), ((56, 12, 56, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(56, 27, 56, 29): '64'}, {}), '(64)', True, 'import torch.nn as nn\n'), ((57, 12, 57, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((58, 12, 58, 92), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (), '', True, 'import torch.nn as nn\n'), ((59, 12, 59, 30), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(59, 27, 59, 29): '32'}, {}), '(32)', True, 'import torch.nn as nn\n'), ((60, 12, 60, 26), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((61, 12, 61, 91), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (), '', True, 'import torch.nn as nn\n'), ((62, 12, 62, 29), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', ({(62, 27, 62, 28): '3'}, {}), '(3)', True, 'import torch.nn as nn\n'), ((63, 12, 63, 24), 'torch.nn.Sigmoid', 'nn.Sigmoid', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((142, 8, 142, 41), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ({}, {}), '()', False, 'from torchvision import transforms\n'), ((143, 8, 143, 34), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', ({(143, 30, 143, 33): '148'}, {}), '(148)', False, 'from torchvision import transforms\n'), ((144, 8, 144, 30), 'torchvision.transforms.Resize', 'transforms.Resize', ({(144, 26, 144, 29): '128'}, {}), '(128)', False, 'from torchvision import transforms\n'), ((145, 8, 145, 29), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ({}, {}), '()', False, 'from torchvision import transforms\n')]
julat/DisasterResponse
data/process_data.py
140489e521a96dc2ff9c9a95f0ce4e99403f03af
# Import libraries import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ Load the data from the disaster response csvs Parameters: messages_filepath (str): Path to messages csv categories_filepath (str): Path to categories csv Returns: Dataframe: Merged data """ messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = pd.merge(messages,categories,on='id') return df def clean_data(df): """ Cleans the categories Parameters: df (DataFrame): Messy DataFrame Returns: Dataframe: Cleaned dataframe """ categories = df['categories'].str.split( pat=';', expand=True) row = categories.iloc[[1]] category_colnames = row.apply(lambda x : x.values[0].split("-")[0]) categories.columns = category_colnames for column in categories: categories[column] = categories[column].astype(str).str[-1:] categories[column] = categories[column].astype(int) categories[column] = categories[column].map(lambda x: 1 if x > 1 else x) df.drop(['categories'], axis=1, inplace=True) df = df = pd.concat([df,categories], axis=1) df.drop_duplicates(inplace=True) return df def save_data(df, database_filename): """ Saves the DataFrame Parameters: df (DataFrame): Cleaned DataFrame database_filename (DataFrame): Path to the SQLite Database """ engine = create_engine('sqlite:///' + database_filename + '.db') df.to_sql(database_filename, engine, index=False, if_exists='replace') def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}' .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) print('Cleaning data...') df = clean_data(df) print('Saving data...\n DATABASE: {}'.format(database_filepath)) save_data(df, database_filepath) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
[((19, 15, 19, 45), 'pandas.read_csv', 'pd.read_csv', ({(19, 27, 19, 44): 'messages_filepath'}, {}), '(messages_filepath)', True, 'import pandas as pd\n'), ((20, 17, 20, 49), 'pandas.read_csv', 'pd.read_csv', ({(20, 29, 20, 48): 'categories_filepath'}, {}), '(categories_filepath)', True, 'import pandas as pd\n'), ((21, 9, 21, 46), 'pandas.merge', 'pd.merge', (), '', True, 'import pandas as pd\n'), ((48, 14, 48, 48), 'pandas.concat', 'pd.concat', (), '', True, 'import pandas as pd\n'), ((63, 13, 63, 68), 'sqlalchemy.create_engine', 'create_engine', ({(63, 27, 63, 67): "'sqlite:///' + database_filename + '.db'"}, {}), "('sqlite:///' + database_filename + '.db')", False, 'from sqlalchemy import create_engine\n')]
atsgen/tf-charms
contrail-controller/files/plugins/check_contrail_status_controller.py
81110aef700b2f227654d52709614ddb3d62ba17
#!/usr/bin/env python3 import subprocess import sys import json SERVICES = { 'control': [ 'control', 'nodemgr', 'named', 'dns', ], 'config-database': [ 'nodemgr', 'zookeeper', 'rabbitmq', 'cassandra', ], 'webui': [ 'web', 'job', ], 'config': [ 'svc-monitor', 'nodemgr', 'device-manager', 'api', 'schema', ], } WARNING = 1 CRITICAL = 2 def get_contrail_status_txt(services): try: output = subprocess.check_output("export CONTRAIL_STATUS_CONTAINER_NAME=contrail-status-controller-nrpe ; sudo -E contrail-status", shell=True).decode('UTF-8') except subprocess.CalledProcessError as err: message = ('CRITICAL: Could not get contrail-status.' ' return code: {} cmd: {} output: {}'. format(err.returncode, err.cmd, err.output)) print(message) sys.exit(CRITICAL) statuses = dict() group = None for line in output.splitlines()[1:]: words = line.split() if len(words) == 4 and words[0] == '==' and words[3] == '==': group = words[2] continue if len(words) == 0: group = None continue if group and len(words) >= 2 and group in services: srv = words[0].split(':')[0] statuses.setdefault(group, list()).append( {srv: ' '.join(words[1:])}) return statuses def get_contrail_status_json(services): try: output = json.loads(subprocess.check_output("export CONTRAIL_STATUS_CONTAINER_NAME=contrail-status-controller-nrpe ; sudo -E contrail-status --format json", shell=True).decode('UTF-8')) except subprocess.CalledProcessError as err: message = ('CRITICAL: Could not get contrail-status.' ' return code: {} cmd: {} output: {}'. format(err.returncode, err.cmd, err.output)) print(message) sys.exit(CRITICAL) statuses = output["pods"] return statuses def check_contrail_status(services, version=None): if version > 1912: statuses = get_contrail_status_json(services) else: statuses = get_contrail_status_txt(services) for group in services: if group not in statuses: message = ('WARNING: POD {} is absent in the contrail-status' .format(group)) print(message) sys.exit(WARNING) for srv in services[group]: if not any(srv in key for key in statuses[group]): message = ('WARNING: {} is absent in the contrail-status' .format(srv)) print(message) sys.exit(WARNING) status = next(stat[srv] for stat in statuses[group] if srv in stat) if status not in ['active', 'backup']: message = ('CRITICAL: {} is not ready. Reason: {}' .format(srv, status)) print(message) sys.exit(CRITICAL) print('Contrail status OK') sys.exit() if __name__ == '__main__': cver = sys.argv[1] if '.' in str(cver): if cver == '5.0': version = 500 elif cver == '5.1': version = 510 else: print("CRITICAL: invalid version: {}".format(cver)) sys.exit(CRITICAL) elif not cver.isdigit(): print("CRITICAL: invalid version: {}".format(cver)) sys.exit(CRITICAL) else: version = int(cver) check_contrail_status(SERVICES, version=version)
[((104, 4, 104, 14), 'sys.exit', 'sys.exit', ({}, {}), '()', False, 'import sys\n'), ((45, 8, 45, 26), 'sys.exit', 'sys.exit', ({(45, 17, 45, 25): 'CRITICAL'}, {}), '(CRITICAL)', False, 'import sys\n'), ((73, 8, 73, 26), 'sys.exit', 'sys.exit', ({(73, 17, 73, 25): 'CRITICAL'}, {}), '(CRITICAL)', False, 'import sys\n'), ((90, 12, 90, 29), 'sys.exit', 'sys.exit', ({(90, 21, 90, 28): 'WARNING'}, {}), '(WARNING)', False, 'import sys\n'), ((119, 8, 119, 26), 'sys.exit', 'sys.exit', ({(119, 17, 119, 25): 'CRITICAL'}, {}), '(CRITICAL)', False, 'import sys\n'), ((39, 17, 39, 151), 'subprocess.check_output', 'subprocess.check_output', (), '', False, 'import subprocess\n'), ((96, 16, 96, 33), 'sys.exit', 'sys.exit', ({(96, 25, 96, 32): 'WARNING'}, {}), '(WARNING)', False, 'import sys\n'), ((102, 16, 102, 34), 'sys.exit', 'sys.exit', ({(102, 25, 102, 33): 'CRITICAL'}, {}), '(CRITICAL)', False, 'import sys\n'), ((116, 12, 116, 30), 'sys.exit', 'sys.exit', ({(116, 21, 116, 29): 'CRITICAL'}, {}), '(CRITICAL)', False, 'import sys\n'), ((67, 28, 67, 176), 'subprocess.check_output', 'subprocess.check_output', (), '', False, 'import subprocess\n')]
harnitsignalfx/skogaming
leaderboard-server/leaderboard-server.py
c860219c89149d686106dfb7a93d27df39830842
from flask import Flask, jsonify, request from flask_cors import CORS, cross_origin import simplejson as json from leaderboard.leaderboard import Leaderboard import uwsgidecorators import signalfx app = Flask(__name__) app.config['CORS_HEADERS'] = 'Content-Type' cors = CORS(app) highscore_lb_starship = Leaderboard('highscores-starship',host='redis-instance') sfx = signalfx.SignalFx(ingest_endpoint='http://otelcol:9943').ingest('token-at-collector') def parseData(row): metricDump1 = {} counterArray = [] metricDump1["dimensions"] = {} metricDump1["dimensions"]["ip"] = row["ip"] # dimension metricDump1["metric"] = "starship.shots" metricDump1["value"] = row["shots"] counterArray.append(metricDump1) print('Sending data:',counterArray) sfx.send(counters=counterArray) @app.route('/health') def health(): return '{"status":"OK"}', 200 @app.route('/leaders/<game>') @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) def returnLeaders(game): if game == "starship": return json.dumps(highscore_lb_starship.all_leaders()), 200 return '{}', 200 @app.route('/submitScores', methods=['POST']) @cross_origin(origin='localhost',headers=['Content-Type','application/json']) def submitScores(): content = request.get_json(force=True) print('Content:',content) if "game" in content: if content["game"]=="starship": highscore_lb_starship.rank_member(content["aduser"], content["score"]) return '{"status":"OK"}', 200 @app.route("/get_my_ip", methods=["GET"]) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) def get_my_ip(): if 'X-Real-Ip' in request.headers: return jsonify({'ip':request.headers['X-Real-Ip']}), 200 else: return jsonify({'ip':'-'}), 200 #return json.dumps({k:v for k, v in request.headers.items()}), 200 @app.route('/submitShots', methods=['POST']) @cross_origin(origin='localhost',headers=['Content-Type','application/json']) def submitShots(): content = request.get_json(force=True) print('Content:',content) shotSubmission = {} totalShots = 0 if "game" in content: if content["game"]=="starship": if "shots" in content: totalShots = content["shots"] shotSubmission["shots"] = totalShots if 'X-Real-Ip' in request.headers: shotSubmission["ip"] = request.headers['X-Real-Ip'] else: shotSubmission["ip"] = "-" parseData(shotSubmission) return '{"status":"OK"}', 200 if __name__ == '__main__': app.run(host='0.0.0.0', port=6001)
[((9, 6, 9, 21), 'flask.Flask', 'Flask', ({(9, 12, 9, 20): '__name__'}, {}), '(__name__)', False, 'from flask import Flask, jsonify, request\n'), ((11, 7, 11, 16), 'flask_cors.CORS', 'CORS', ({(11, 12, 11, 15): 'app'}, {}), '(app)', False, 'from flask_cors import CORS, cross_origin\n'), ((13, 24, 13, 80), 'leaderboard.leaderboard.Leaderboard', 'Leaderboard', (), '', False, 'from leaderboard.leaderboard import Leaderboard\n'), ((42, 1, 42, 74), 'flask_cors.cross_origin', 'cross_origin', (), '', False, 'from flask_cors import CORS, cross_origin\n'), ((49, 1, 49, 77), 'flask_cors.cross_origin', 'cross_origin', (), '', False, 'from flask_cors import CORS, cross_origin\n'), ((62, 1, 62, 74), 'flask_cors.cross_origin', 'cross_origin', (), '', False, 'from flask_cors import CORS, cross_origin\n'), ((71, 1, 71, 77), 'flask_cors.cross_origin', 'cross_origin', (), '', False, 'from flask_cors import CORS, cross_origin\n'), ((51, 14, 51, 42), 'flask.request.get_json', 'request.get_json', (), '', False, 'from flask import Flask, jsonify, request\n'), ((73, 14, 73, 42), 'flask.request.get_json', 'request.get_json', (), '', False, 'from flask import Flask, jsonify, request\n'), ((16, 6, 16, 62), 'signalfx.SignalFx', 'signalfx.SignalFx', (), '', False, 'import signalfx\n'), ((65, 15, 65, 59), 'flask.jsonify', 'jsonify', ({(65, 23, 65, 58): "{'ip': request.headers['X-Real-Ip']}"}, {}), "({'ip': request.headers['X-Real-Ip']})", False, 'from flask import Flask, jsonify, request\n'), ((67, 15, 67, 34), 'flask.jsonify', 'jsonify', ({(67, 23, 67, 33): "{'ip': '-'}"}, {}), "({'ip': '-'})", False, 'from flask import Flask, jsonify, request\n')]
jorgensd/meshio
meshio/_cli/_info.py
0600ac9e9e8d1e1a27d5f3f2f4235414f4482cac
import argparse import numpy as np from .._helpers import read, reader_map from ._helpers import _get_version_text def info(argv=None): # Parse command line arguments. parser = _get_info_parser() args = parser.parse_args(argv) # read mesh data mesh = read(args.infile, file_format=args.input_format) print(mesh) # check if the cell arrays are consistent with the points is_consistent = True for cells in mesh.cells: if np.any(cells.data > mesh.points.shape[0]): print("\nATTENTION: Inconsistent mesh. Cells refer to nonexistent points.") is_consistent = False break # check if there are redundant points if is_consistent: point_is_used = np.zeros(mesh.points.shape[0], dtype=bool) for cells in mesh.cells: point_is_used[cells.data] = True if np.any(~point_is_used): print("ATTENTION: Some points are not part of any cell.") def _get_info_parser(): parser = argparse.ArgumentParser( description=("Print mesh info."), formatter_class=argparse.RawTextHelpFormatter ) parser.add_argument("infile", type=str, help="mesh file to be read from") parser.add_argument( "--input-format", "-i", type=str, choices=sorted(list(reader_map.keys())), help="input file format", default=None, ) parser.add_argument( "--version", "-v", action="version", version=_get_version_text(), help="display version information", ) return parser
[((36, 13, 38, 5), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((21, 11, 21, 52), 'numpy.any', 'np.any', ({(21, 18, 21, 51): '(cells.data > mesh.points.shape[0])'}, {}), '(cells.data > mesh.points.shape[0])', True, 'import numpy as np\n'), ((28, 24, 28, 66), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((31, 11, 31, 33), 'numpy.any', 'np.any', ({(31, 18, 31, 32): '(~point_is_used)'}, {}), '(~point_is_used)', True, 'import numpy as np\n')]
Data-Linkage/ccslink
ccslink/Zip.py
ee1105888d43c6a2b307deb96ddede34d03a965f
import os, shutil from CCSLink import Spark_Session as SS def add_zipped_dependency(zip_from, zip_target): """ This method creates a zip of the code to be sent to the executors. It essentially zips the Python packages installed by PIP and submits them via addPyFile in the current PySpark context E.g. if we want to submit "metaphone" package so that we can do use `import metaphone` and use its methods inside UDF, we run this method with: - zip_from = /home/cdsw/.local/lib/python3.6/site-packages/ - zip_target = metaphone """ # change this to a path in your project zipped_fpath = f'/home/cdsw/zipped_packages/{zip_target}' if os.path.exists(zipped_fpath + '.zip'): os.remove(zipped_fpath + '.zip') shutil.make_archive( # path to the resulting zipped file (without the suffix) base_name=zipped_fpath, # resulting filename # specifies the format --> implies .zip suffix format='zip', # the root dir from where we want to zip root_dir=zip_from, # the dir (relative to root dir) which we want to zip # (all files in the final zip will have this prefix) base_dir=zip_target, ) # add the files to the executors SS.SPARK().sparkContext.addPyFile(f'{zipped_fpath}.zip')
[((20, 7, 20, 44), 'os.path.exists', 'os.path.exists', ({(20, 22, 20, 43): "(zipped_fpath + '.zip')"}, {}), "(zipped_fpath + '.zip')", False, 'import os, shutil\n'), ((22, 4, 36, 5), 'shutil.make_archive', 'shutil.make_archive', (), '', False, 'import os, shutil\n'), ((21, 8, 21, 40), 'os.remove', 'os.remove', ({(21, 18, 21, 39): "(zipped_fpath + '.zip')"}, {}), "(zipped_fpath + '.zip')", False, 'import os, shutil\n'), ((39, 4, 39, 14), 'CCSLink.Spark_Session.SPARK', 'SS.SPARK', ({}, {}), '()', True, 'from CCSLink import Spark_Session as SS\n')]
Mopolino8/moltemplate
moltemplate/nbody_Angles.py
363df364fcb012e8e4beb7bc616a77d696b8b707
try: from .nbody_graph_search import Ugraph except (SystemError, ValueError): # not installed as a package from nbody_graph_search import Ugraph # This file defines how 3-body angle interactions are generated by moltemplate # by default. It can be overridden by supplying your own custom file. # To find 3-body "angle" interactions, we would use this subgraph: # # # *---*---* => 1st bond connects atoms 0 and 1 # 0 1 2 2nd bond connects atoms 1 and 2 # bond_pattern = Ugraph([(0, 1), (1, 2)]) # (Ugraph atom indices begin at 0, not 1) # The next function eliminates the redundancy between 0-1-2 and 2-1-0: def canonical_order(match): """ Before defining a new interaction, we must check to see if an interaction between these same 3 atoms has already been created (perhaps listed in a different, but equivalent order). If we don't check for this this, we will create many unnecessary redundant interactions (which can slow down he simulation). To avoid this, I define a "canonical_order" function which sorts the atoms and bonds in a way which is consistent with the symmetry of the interaction being generated... Later the re-ordered list of atom and bond ids will be tested against the list of atom/bond ids in the matches-found-so-far, before it is added to the list of interactions found so far. Note that the energy of an angle interaction is a function of the angle between. three consecutively bonded atoms (referred to here as: 0,1,2). This angle does not change when swapping the atoms at either end (0 and 2). So it does not make sense to define a separate 3-body angle interaction between atoms 0,1,2 AS WELL AS an interaction between 2,1,0. So we sort the atoms and bonds so that the first atom has a always has a lower atomID than the third atom. (Later we will check to see if we have already defined an interaction between these 3 atoms. If not then we create a new one.) """ # match[0][0:2] contains the ID numbers for the 3 atoms in the match atom0 = match[0][0] atom1 = match[0][1] atom2 = match[0][2] # match[1][0:1] contains the ID numbers for the 2 bonds bond0 = match[1][0] bond1 = match[1][1] if atom0 < atom2: # return ((atom0, atom1, atom2), (bond0, bond1)) same thing as: return match else: return ((atom2, atom1, atom0), (bond1, bond0))
[((18, 15, 18, 39), 'nbody_graph_search.Ugraph', 'Ugraph', ({(18, 22, 18, 38): '[(0, 1), (1, 2)]'}, {}), '([(0, 1), (1, 2)])', False, 'from nbody_graph_search import Ugraph\n')]
DougRogers-DigitalFish/USD
extras/usd/examples/usdMakeFileVariantModelAsset/usdMakeFileVariantModelAsset.py
d8a405a1344480f859f025c4f97085143efacb53
#!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # ''' Creates a top-level, referenceable asset USD file from one or more 'variant' files, each of which can contain arbitrary scene description. When supplying multiple files, one must also provide the name for a variantSet that will be constructed to switch between the files. The asset file will place the variant files behind a "payload", which will enable consumers to defer loading and processing of the data when composed onto a UsdStage. The names of the created variations will be taken directly from the basename of their corresponding input file. ''' from __future__ import print_function from pxr import Tf, Kind, Sdf, Usd # ToDo: # - handle multiple variantSets # - layer multiple kinds of files (e.g. shading.usd over geom.usd) # - allow output filename to be independently specifiable? (Breaks with Pixar # convention) # - allow variant names to be specified independently of variant file names # - Compute and present (per-variant) UsdGeomModelAPI.extentsHint # - Compute and author UsdModelAPI::SetPayloadAssetDependencies() def CreateModelStage(assetName, assetIdentifier=None, kind=Kind.Tokens.component, filesToReference=None, variantSetName=None, defaultVariantSelection=None): # Preconditions.... if not Tf.IsValidIdentifier(assetName): print("assetName '%s' must be a valid identifier. Aborting." % assetName) return None if variantSetName and not Tf.IsValidIdentifier(variantSetName): print("variantSetName '%s' must be a valid identifier. Aborting." % variantSetName) return None if filesToReference and len(filesToReference) > 1 and not variantSetName: # For now, we only allow multiple files to reference if we're switching # them with a variantSet. We can relax this restriction when we can # make internal payload arcs (bug #119960) print("Cannot create multiple-file-reference without a variantSet. Aborting") return None if not Kind.Registry.IsA(kind, Kind.Tokens.model): print("kind '%s' is not a valid model kind, which must be one of:" % kind) print(Kind.Registry.GetAllKinds()) return None # Create the root file for the stage, and make it ASCII text. # We need some nicer sugar for this. fileName = assetName + ".usd" rootLayer = Sdf.Layer.CreateNew(fileName, args = {'format':'usda'}) stage = Usd.Stage.Open(rootLayer) # Name the root prim after the asset. Don't give it a type, since we # want that to come from referenced files. Make it be the "default prim" # so that we can reference the resulting file without specifiying a # prim path rootPath = Sdf.Path.absoluteRootPath modelRootPrim = stage.DefinePrim(rootPath.AppendChild(assetName)) stage.SetDefaultPrim(modelRootPrim) modelAPI = Usd.ModelAPI(modelRootPrim) modelAPI.SetKind(kind) # See http://openusd.org/docs/api/class_usd_model_a_p_i.html#details # for more on assetInfo modelAPI.SetAssetName(assetName) modelAPI.SetAssetIdentifier(assetIdentifier or fileName) # Add a class named after the asset, and make the asset inherit from it. # This is not necessary for a valid asset, and the class-naming is a Pixar # convention. But always having a class associated with each asset is # extremely useful for non-destructively editing many referenced or # instanced assets of the same type. classPrim = stage.CreateClassPrim(rootPath.AppendChild("_class_"+assetName)) modelRootPrim.GetInherits().AddInherit(classPrim.GetPath()) if not filesToReference: # weird edge case... we're done return stage elif len(filesToReference) == 1 and not variantSetName: # The other, more plausible edge case: we're just wrapping # some other file (e.g. alembic) in order to give it a payload # and other proper USD trappings - no variants modelRootPrim.GetPayloads().AddPayload(Sdf.Payload(filesToReference[0])) return stage # OK, we're making a variantSet, and we are going to vary the payload # in each variant varSet = modelRootPrim.GetVariantSet(variantSetName) for variantFile in filesToReference: import os variantName = os.path.splitext(os.path.basename(variantFile))[0] # If we didn't specify a default selection, choose the first one if not defaultVariantSelection: defaultVariantSelection = variantName varSet.AddVariant(variantName) varSet.SetVariantSelection(variantName) # The context object makes all edits "go inside" the variant we # just created. with varSet.GetVariantEditContext(): modelRootPrim.GetPayloads().AddPayload(Sdf.Payload(variantFile)) # Now put the variantSet into the state we want it to be in by default varSet.SetVariantSelection(defaultVariantSelection) return stage if __name__ == "__main__": import argparse, os, sys descr = __doc__.strip() parser = argparse.ArgumentParser(prog=os.path.basename(sys.argv[0]), description=descr) parser.add_argument('assetName') parser.add_argument('variantFiles', nargs='+') parser.add_argument( '-k', '--kind', default='component', action='store', metavar='kind', help="Model kind, one of: component, group, or assembly") parser.add_argument( '-v', '--variantSet', default='', action='store', metavar='variantSet', help="Variantset to create to modulate variantFiles. Can be elided " "if only one file is supplied") parser.add_argument( '-i', '--identifier', default='', action='store', metavar='identifier', help="The identifier you would expect your Ar asset-resolver plugin " "to resolve to the (installed) assetName.usd file this script creates. " " If unspecified, defaults to assetName.usd") parser.add_argument( '-d', '--defaultVariantSelection', default='', action='store', metavar='defaultVariantSelection', help="This variant will be selected by default when the asset is " "added to a composition. If unspecified, will be the variant for " "'variantFile1'") args = parser.parse_args() if not args.assetName or args.assetName == '': parser.error("No assetName specified") stage = CreateModelStage(args.assetName, assetIdentifier=args.identifier, kind=args.kind, filesToReference=args.variantFiles, variantSetName=args.variantSet, defaultVariantSelection=args.defaultVariantSelection) if stage: stage.GetRootLayer().Save() exit(0) else: exit(1)
[((82, 16, 82, 71), 'pxr.Sdf.Layer.CreateNew', 'Sdf.Layer.CreateNew', (), '', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((83, 12, 83, 37), 'pxr.Usd.Stage.Open', 'Usd.Stage.Open', ({(83, 27, 83, 36): 'rootLayer'}, {}), '(rootLayer)', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((92, 15, 92, 42), 'pxr.Usd.ModelAPI', 'Usd.ModelAPI', ({(92, 28, 92, 41): 'modelRootPrim'}, {}), '(modelRootPrim)', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((59, 11, 59, 42), 'pxr.Tf.IsValidIdentifier', 'Tf.IsValidIdentifier', ({(59, 32, 59, 41): 'assetName'}, {}), '(assetName)', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((73, 11, 73, 53), 'pxr.Kind.Registry.IsA', 'Kind.Registry.IsA', ({(73, 29, 73, 33): 'kind', (73, 35, 73, 52): 'Kind.Tokens.model'}, {}), '(kind, Kind.Tokens.model)', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((63, 30, 63, 66), 'pxr.Tf.IsValidIdentifier', 'Tf.IsValidIdentifier', ({(63, 51, 63, 65): 'variantSetName'}, {}), '(variantSetName)', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((76, 14, 76, 41), 'pxr.Kind.Registry.GetAllKinds', 'Kind.Registry.GetAllKinds', ({}, {}), '()', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((140, 42, 140, 71), 'os.path.basename', 'os.path.basename', ({(140, 59, 140, 70): 'sys.argv[0]'}, {}), '(sys.argv[0])', False, 'import os\n'), ((114, 47, 114, 79), 'pxr.Sdf.Payload', 'Sdf.Payload', ({(114, 59, 114, 78): 'filesToReference[0]'}, {}), '(filesToReference[0])', False, 'from pxr import Tf, Kind, Sdf, Usd\n'), ((122, 39, 122, 68), 'os.path.basename', 'os.path.basename', ({(122, 56, 122, 67): 'variantFile'}, {}), '(variantFile)', False, 'import os\n'), ((131, 51, 131, 75), 'pxr.Sdf.Payload', 'Sdf.Payload', ({(131, 63, 131, 74): 'variantFile'}, {}), '(variantFile)', False, 'from pxr import Tf, Kind, Sdf, Usd\n')]
fbdp1202/pyukf_kinect_body_tracking
src/main.py
c44477149cfc22abfe9121c2604dc284c93fbd42
import sys import os sys.path.append('./code/') from skeleton import Skeleton from read_data import * from calibration import Calibration from ukf_filter import ukf_Filter_Controler from canvas import Canvas from regression import * import time from functools import wraps import os def check_time(function): @wraps(function) def measure(*args, **kwargs): start_time = time.time() result = function(*args, **kwargs) end_time = time.time() print(f"@check_time: {function.__name__} took {end_time - start_time}") return result return measure def get_dir_name(dir): dir_list = [] for name in os.listdir(dir): path = dir + '/' + name if not os.path.isfile(path): dir_list.append(name) return dir_list def scan_dir(dir): dir_list = [] for name in os.listdir(dir): path = dir + '/' + name if os.path.isfile(path): dir_list.append(path) return dir_list @check_time def merge_skeleton_data(folder_name): save_file_name = folder_name + '.txt' dir_list = scan_dir(folder_name) wf = open(save_file_name, 'w') for filename in dir_list: f = open(filename, 'r') line = f.readline() wf.write(line) wf.close() return save_file_name @check_time def init_simul(filename, test_num, cbr_num=50, div_step=1): data = read_data_skeleton(filename) # test_num, data = interval_compasation(data, test_num, div_step) test_num = min(test_num, len(data)) skeletons = [] for i in range(test_num): skeletons.append(Skeleton(data[i])) cbr_num = min(test_num, cbr_num) cal_skeletons = [] for i in range(cbr_num): cal_skeletons.append(skeletons[i*div_step]) calibration = Calibration(cal_skeletons) lower_init_mean, upper_init_mean = calibration.get_init_mean(0, filename) return skeletons, lower_init_mean, upper_init_mean, test_num @check_time def make_filter(lower_init_mean, lower_init_cov, upper_init_mean, upper_init_cov, model): flt = None if model == 'ukf': flt = ukf_Filter_Controler(lower_init_mean, lower_init_cov, upper_init_mean, upper_init_cov) else: print(model, "is not exist model name") return flt @check_time def run_ukf(ukf, skeletons, test_num): original_data = [] estimate_data = [] estimate_state = [] test_num = min(len(skeletons), test_num) print("total test is {}".format(test_num)) print("test_num:", end=' ') for i in range(test_num): curr_input = skeletons[i].get_measurement() original_data.append(curr_input) state, data = ukf.update(curr_input) estimate_data.append(data) estimate_state.append(state) if i % 10 == 0: print(i, end=' ') print('') return original_data, estimate_data, estimate_state def make_folder(folder_name): if not os.path.isdir(folder_name): os.mkdir(folder_name) return folder_name def get_save_skeleton_data_folder_name(person_name, pos_mode, model): folder_name = make_folder('result') folder_name = make_folder(folder_name + '/' + person_name) folder_name = make_folder(folder_name + '/' + pos_mode) folder_name = make_folder(folder_name + '/' + model) return folder_name + '/' def save_sk_data_to_csv(folder_name, filename, data): filename = folder_name + filename f = open(filename, "w", encoding="UTF-8") for i in range(len(data)): for j in range(len(data[i])): for k in range(3): f.write(str(data[i][j][k])) if j == (len(data[i])-1) and k == 2: f.write('\n') else: f.write(',') def save_sk_state_to_csv(folder_name, filename, data): filename = folder_name + filename f = open(filename, 'w', encoding="UTF-8") for i in range(len(data)): for j in range(len(data[i])): f.write(str(data[i][j])) if j == (len(data[i])-1): f.write('\n') else: f.write(',') @check_time def save_skeleton_data_to_csv(person_name, pos_mode, original_data, estimate_data, estimate_state, model): csv_folder_name = get_save_skeleton_data_folder_name(person_name, pos_mode, model) save_sk_data_to_csv(csv_folder_name, 'original_data.csv', original_data) save_sk_data_to_csv(csv_folder_name, 'estimate_data.csv', estimate_data) save_sk_state_to_csv(csv_folder_name, 'estimate_state.csv', estimate_state) def read_csv(filename): data = [] with open(filename, 'r') as reader: for line in reader: fields = line.split(',') fields[len(fields)-1] = fields[len(fields)-1].replace('\n', '') for i in range(len(fields)): data.append(float(fields[i])) data = np.array(data).reshape((int)(len(data)/32/3), 32, 3) skeletons = [] for d in data: skeletons.append(Skeleton(d)) return skeletons @check_time def read_skeleton_data_from_csv(person_name, pos_mode, model): csv_folder_name = get_save_skeleton_data_folder_name(person_name, pos_mode, model) original_data = read_csv(csv_folder_name + 'original_data.csv') estimate_data = read_csv(csv_folder_name + 'estimate_data.csv') return original_data, estimate_data def get_save_image_file_name(person_name, pos_mode, model, plot_mode): folder_name = make_folder('result') folder_name = make_folder(folder_name + '/' + person_name) folder_name = make_folder(folder_name + '/' + pos_mode) folder_name = make_folder(folder_name + '/' + model) folder_name = make_folder(folder_name + '/' + plot_mode) return folder_name + '/' @check_time def skeleton_draw(person_name, pos_mode, model, original_data, estimate_data, sleep_t=100): canvas = Canvas() img_name_point = get_save_image_file_name(person_name, pos_mode, model, 'point') img_name_length = get_save_image_file_name(person_name, pos_mode, model, 'length') img_name_3D = get_save_image_file_name(person_name, pos_mode, model, 'plot_3D') # canvas.skeleton_3D_plot(original_data, estimate_data) canvas.skeleton_3D_animation_save(original_data, estimate_data, sleep_t, img_name_3D) canvas.skeleton_point_plot(original_data, estimate_data, img_name_point) canvas.skeleton_length_plot(original_data, estimate_data, img_name_length) def set_lower_init_cov(value_cov=1e-6, velo_cov_0=1e-4, velo_cov_1=1e-2, len_cov=1e-10, obs_cov_factor=1e-4, trans_factor=100): return [value_cov, velo_cov_0,value_cov, velo_cov_0,value_cov, velo_cov_1,value_cov, velo_cov_1,value_cov, velo_cov_0, len_cov,obs_cov_factor, trans_factor] def set_upper_init_cov(value_cov=1e-6, velo_cov=1e-4, len_cov=1e-10, obs_cov_factor=1e-4, trans_factor=100): return [value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,value_cov,velo_cov,len_cov,obs_cov_factor,trans_factor] @check_time def simulation_ukf(filename, test_num, cbr_num, model): skeletons, lower_init_mean, upper_init_mean, test_num = init_simul(filename, test_num, cbr_num) lower_init_cov = set_lower_init_cov() upper_init_cov = set_upper_init_cov() flt = make_filter(lower_init_mean, lower_init_cov, upper_init_mean, upper_init_cov, model) original_data, estimate_data, estimate_state = run_ukf(flt, skeletons, test_num) return original_data, estimate_data, estimate_state
[((3, 0, 3, 26), 'sys.path.append', 'sys.path.append', ({(3, 16, 3, 25): '"""./code/"""'}, {}), "('./code/')", False, 'import sys\n'), ((18, 2, 18, 17), 'functools.wraps', 'wraps', ({(18, 8, 18, 16): 'function'}, {}), '(function)', False, 'from functools import wraps\n'), ((30, 13, 30, 28), 'os.listdir', 'os.listdir', ({(30, 24, 30, 27): 'dir'}, {}), '(dir)', False, 'import os\n'), ((38, 13, 38, 28), 'os.listdir', 'os.listdir', ({(38, 24, 38, 27): 'dir'}, {}), '(dir)', False, 'import os\n'), ((72, 15, 72, 41), 'calibration.Calibration', 'Calibration', ({(72, 27, 72, 40): 'cal_skeletons'}, {}), '(cal_skeletons)', False, 'from calibration import Calibration\n'), ((181, 10, 181, 18), 'canvas.Canvas', 'Canvas', ({}, {}), '()', False, 'from canvas import Canvas\n'), ((20, 15, 20, 26), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((22, 13, 22, 24), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((40, 5, 40, 25), 'os.path.isfile', 'os.path.isfile', ({(40, 20, 40, 24): 'path'}, {}), '(path)', False, 'import os\n'), ((81, 8, 81, 94), 'ukf_filter.ukf_Filter_Controler', 'ukf_Filter_Controler', ({(81, 29, 81, 44): 'lower_init_mean', (81, 46, 81, 60): 'lower_init_cov', (81, 62, 81, 77): 'upper_init_mean', (81, 79, 81, 93): 'upper_init_cov'}, {}), '(lower_init_mean, lower_init_cov, upper_init_mean,\n upper_init_cov)', False, 'from ukf_filter import ukf_Filter_Controler\n'), ((108, 8, 108, 34), 'os.path.isdir', 'os.path.isdir', ({(108, 22, 108, 33): 'folder_name'}, {}), '(folder_name)', False, 'import os\n'), ((109, 2, 109, 23), 'os.mkdir', 'os.mkdir', ({(109, 11, 109, 22): 'folder_name'}, {}), '(folder_name)', False, 'import os\n'), ((32, 9, 32, 29), 'os.path.isfile', 'os.path.isfile', ({(32, 24, 32, 28): 'path'}, {}), '(path)', False, 'import os\n'), ((65, 19, 65, 36), 'skeleton.Skeleton', 'Skeleton', ({(65, 28, 65, 35): 'data[i]'}, {}), '(data[i])', False, 'from skeleton import Skeleton\n'), ((161, 19, 161, 30), 'skeleton.Skeleton', 'Skeleton', ({(161, 28, 161, 29): 'd'}, {}), '(d)', False, 'from skeleton import Skeleton\n')]
Mario-Kart-Felix/cfgov-refresh
cfgov/scripts/initial_data.py
7978fedeb7aaf4d96a87720e6545567085e056a9
from __future__ import print_function import json import os from django.conf import settings from django.contrib.auth.hashers import make_password from django.contrib.auth.models import User from wagtail.wagtailcore.models import Page, Site from v1.models import HomePage, BrowseFilterablePage def run(): print('Running script \'scripts.initial_data\' ...') admin_user = None site_root = None events = None admin_user = User.objects.filter(username='admin') if not admin_user: admin_user = User(username='admin', password=make_password(os.environ.get('WAGTAIL_ADMIN_PW')), is_superuser=True, is_active=True, is_staff=True) admin_user.save() else: admin_user = admin_user[0] # Creates a new site root `CFGov` site_root = HomePage.objects.filter(title='CFGOV') if not site_root: root = Page.objects.first() site_root = HomePage(title='CFGOV', slug='home-page', depth=2, owner=admin_user) site_root.live = True root.add_child(instance=site_root) latest = site_root.save_revision(user=admin_user, submitted_for_moderation=False) latest.save() else: site_root = site_root[0] # Setting new site root if not Site.objects.filter(hostname='content.localhost').exists(): site = Site.objects.first() site.port = 8000 site.root_page_id = site_root.id site.save() content_site = Site(hostname='content.localhost', port=8000, root_page_id=site_root.id) content_site.save() # Clean Up old_site_root = Page.objects.filter(id=2)[0] if old_site_root: old_site_root.delete() # Events Browse Page required for event `import-data` command if not BrowseFilterablePage.objects.filter(title='Events').exists(): events = BrowseFilterablePage(title='Events', slug='events', owner=admin_user) site_root.add_child(instance=events) revision = events.save_revision( user=admin_user, submitted_for_moderation=False, ) revision.publish() # Archived Events Browse Filterable Page if not BrowseFilterablePage.objects.filter(title='Archive').exists(): archived_events = BrowseFilterablePage(title='Archive', slug='archive', owner=admin_user) if not events: events = BrowseFilterablePage.objects.get(title='Events') events.add_child(instance=archived_events) revision = archived_events.save_revision( user=admin_user, submitted_for_moderation=False, ) revision.publish()
[((20, 17, 20, 54), 'django.contrib.auth.models.User.objects.filter', 'User.objects.filter', (), '', False, 'from django.contrib.auth.models import User\n'), ((30, 16, 30, 54), 'v1.models.HomePage.objects.filter', 'HomePage.objects.filter', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((32, 15, 32, 35), 'wagtail.wagtailcore.models.Page.objects.first', 'Page.objects.first', ({}, {}), '()', False, 'from wagtail.wagtailcore.models import Page, Site\n'), ((33, 20, 33, 88), 'v1.models.HomePage', 'HomePage', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((43, 15, 43, 35), 'wagtail.wagtailcore.models.Site.objects.first', 'Site.objects.first', ({}, {}), '()', False, 'from wagtail.wagtailcore.models import Page, Site\n'), ((47, 23, 47, 95), 'wagtail.wagtailcore.models.Site', 'Site', (), '', False, 'from wagtail.wagtailcore.models import Page, Site\n'), ((57, 17, 57, 86), 'v1.models.BrowseFilterablePage', 'BrowseFilterablePage', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((67, 26, 67, 97), 'v1.models.BrowseFilterablePage', 'BrowseFilterablePage', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((51, 24, 51, 49), 'wagtail.wagtailcore.models.Page.objects.filter', 'Page.objects.filter', (), '', False, 'from wagtail.wagtailcore.models import Page, Site\n'), ((69, 21, 69, 69), 'v1.models.BrowseFilterablePage.objects.get', 'BrowseFilterablePage.objects.get', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((42, 11, 42, 60), 'wagtail.wagtailcore.models.Site.objects.filter', 'Site.objects.filter', (), '', False, 'from wagtail.wagtailcore.models import Page, Site\n'), ((56, 11, 56, 62), 'v1.models.BrowseFilterablePage.objects.filter', 'BrowseFilterablePage.objects.filter', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((66, 11, 66, 63), 'v1.models.BrowseFilterablePage.objects.filter', 'BrowseFilterablePage.objects.filter', (), '', False, 'from v1.models import HomePage, BrowseFilterablePage\n'), ((23, 51, 23, 85), 'os.environ.get', 'os.environ.get', ({(23, 66, 23, 84): '"""WAGTAIL_ADMIN_PW"""'}, {}), "('WAGTAIL_ADMIN_PW')", False, 'import os\n')]
harmim/vut-avs-project1
Scripts/compareOutputs.py
d36e6b5cdebce748d2bdf2afc43950968ecf0a91
# Simple python3 script to compare output with a reference output. # Usage: python3 compareOutputs.py testOutput.h5 testRefOutput.h5 import sys import h5py import numpy as np if len(sys.argv) != 3: print("Expected two arguments. Output and reference output file.") sys.exit(1) filename = sys.argv[1] ref_filename = sys.argv[2] f = h5py.File(filename, 'r') ref_f = h5py.File(ref_filename, 'r') out = np.array(f['output_data']) out_ref = np.array(ref_f['output_data']) if out.shape != out_ref.shape: print("The files do not contain the same number of outputs.") print("The output size: {0}.".format(out.shape[0])) print("The reference size: {0}.".format(out_ref.shape[0])) sys.exit(1) ref_value = np.copy(out_ref) ref_value[ref_value == 0.0] = 1.0 error = (out_ref - out) / ref_value maximal_error = np.amax(error) print("Maximal error between the output and the reference is {0}.".format(maximal_error)) if maximal_error < 10**(-6): print("OK:Output seems to match the reference.") sys.exit(0) print("Failure:Output does not match the reference.") maximal_error = np.amax(error, axis=1) print(maximal_error.shape) for i in range(0, 5): print("Image", i) print("Expected:", end="") for j in range(0, 10): print(out_ref[i, j], end = " ") print("\nGot:", end="") for j in range(0, 10): print(out[i, j], end=" ") print("\nMaximal error:", maximal_error[i], "\n") sys.exit(1)
[((15, 4, 15, 28), 'h5py.File', 'h5py.File', ({(15, 14, 15, 22): 'filename', (15, 24, 15, 27): '"""r"""'}, {}), "(filename, 'r')", False, 'import h5py\n'), ((16, 8, 16, 36), 'h5py.File', 'h5py.File', ({(16, 18, 16, 30): 'ref_filename', (16, 32, 16, 35): '"""r"""'}, {}), "(ref_filename, 'r')", False, 'import h5py\n'), ((18, 6, 18, 32), 'numpy.array', 'np.array', ({(18, 15, 18, 31): "f['output_data']"}, {}), "(f['output_data'])", True, 'import numpy as np\n'), ((19, 10, 19, 40), 'numpy.array', 'np.array', ({(19, 19, 19, 39): "ref_f['output_data']"}, {}), "(ref_f['output_data'])", True, 'import numpy as np\n'), ((28, 12, 28, 28), 'numpy.copy', 'np.copy', ({(28, 20, 28, 27): 'out_ref'}, {}), '(out_ref)', True, 'import numpy as np\n'), ((33, 16, 33, 30), 'numpy.amax', 'np.amax', ({(33, 24, 33, 29): 'error'}, {}), '(error)', True, 'import numpy as np\n'), ((41, 16, 41, 38), 'numpy.amax', 'np.amax', (), '', True, 'import numpy as np\n'), ((54, 0, 54, 11), 'sys.exit', 'sys.exit', ({(54, 9, 54, 10): '(1)'}, {}), '(1)', False, 'import sys\n'), ((10, 4, 10, 15), 'sys.exit', 'sys.exit', ({(10, 13, 10, 14): '(1)'}, {}), '(1)', False, 'import sys\n'), ((26, 4, 26, 15), 'sys.exit', 'sys.exit', ({(26, 13, 26, 14): '(1)'}, {}), '(1)', False, 'import sys\n'), ((38, 4, 38, 15), 'sys.exit', 'sys.exit', ({(38, 13, 38, 14): '(0)'}, {}), '(0)', False, 'import sys\n')]
20CM/Sanctuary
sanctuary/tag/serializers.py
14694d9bd6376bdc05248741a91df778400e9f66
# -*- coding: utf-8 -*- from rest_framework import serializers from .models import Tag class TagSerializer(serializers.ModelSerializer): class Meta: model = Tag read_only_fields = ('topics_count',)
[]
cloudamqp/amqpstorm
examples/management_api/aliveness_test.py
35eb8edc5f0c2ea3839e93940bf9d0e5f8f4242e
from amqpstorm.management import ApiConnectionError from amqpstorm.management import ApiError from amqpstorm.management import ManagementApi if __name__ == '__main__': API = ManagementApi('http://127.0.0.1:15672', 'guest', 'guest') try: result = API.aliveness_test('/') if result['status'] == 'ok': print("RabbitMQ is alive!") else: print("RabbitMQ is not alive! :(") except ApiConnectionError as why: print('Connection Error: %s' % why) except ApiError as why: print('ApiError: %s' % why)
[((6, 10, 6, 67), 'amqpstorm.management.ManagementApi', 'ManagementApi', ({(6, 24, 6, 48): '"""http://127.0.0.1:15672"""', (6, 50, 6, 57): '"""guest"""', (6, 59, 6, 66): '"""guest"""'}, {}), "('http://127.0.0.1:15672', 'guest', 'guest')", False, 'from amqpstorm.management import ManagementApi\n')]
vishalbelsare/zvt
src/zvt/recorders/em/meta/em_stockhk_meta_recorder.py
d55051147274c0a4157f08ec60908c781a323c8f
# -*- coding: utf-8 -*- from zvt.contract.api import df_to_db from zvt.contract.recorder import Recorder from zvt.domain.meta.stockhk_meta import Stockhk from zvt.recorders.em import em_api class EMStockhkRecorder(Recorder): provider = "em" data_schema = Stockhk def run(self): df_south = em_api.get_tradable_list(entity_type="stockhk", hk_south=True) df_south = df_south.set_index("code", drop=False) df_south["south"] = True df = em_api.get_tradable_list(entity_type="stockhk") df = df.set_index("code", drop=False) df_other = df.loc[~df.index.isin(df_south.index)].copy() df_other["south"] = False df_to_db(df=df_south, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) df_to_db(df=df_other, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) if __name__ == "__main__": recorder = EMStockhkRecorder() recorder.run() # the __all__ is generated __all__ = ["EMStockhkRecorder"]
[((14, 19, 14, 81), 'zvt.recorders.em.em_api.get_tradable_list', 'em_api.get_tradable_list', (), '', False, 'from zvt.recorders.em import em_api\n'), ((18, 13, 18, 60), 'zvt.recorders.em.em_api.get_tradable_list', 'em_api.get_tradable_list', (), '', False, 'from zvt.recorders.em import em_api\n'), ((22, 8, 22, 115), 'zvt.contract.api.df_to_db', 'df_to_db', (), '', False, 'from zvt.contract.api import df_to_db\n'), ((23, 8, 23, 115), 'zvt.contract.api.df_to_db', 'df_to_db', (), '', False, 'from zvt.contract.api import df_to_db\n')]
yanwunhao/auto-mshts
src/main.py
7a4b690bbb6ae55e2f6fad77d176c2c0822db7a0
from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage from util.calculus import calculate_summary_of_sample, fit_sigmoid_curve import matplotlib.pyplot as plt import numpy as np import csv setting = read_setting_json() setting = setting["rule"] # load experiment parameter # experiment parameter is stored in file of ./data/setting.json initial_filename = setting["0h_datafile"] final_filename = setting["24h_datafile"] # sample width and height are the size of each sample area sample_width = setting["sample_width"] sample_height = setting["sample_height"] dilution_protocol = setting["dilution_protocol"] # width of each dilution basic_width = setting["basic_width"] # number of each control group control_number_list = setting["control_number"] # output directory output_directory = setting["output_directory"] # import initial concentration and calculate x_data initial_concentration = setting["initial_concentration"] repeat_times = int(sample_width / basic_width) x_data = [] current_concentration = initial_concentration for i in range(repeat_times): x_data.append(current_concentration) current_concentration /= dilution_protocol # load raw data initial_sd_data = read_0h_data() final_sd_data = read_24h_data() # reshape data into the size of board rebuild_0h_data = initial_sd_data.reshape((32, -1)) rebuild_24h_data = final_sd_data.reshape((32, -1)) # reshape data into a 2-dimensional array contains each group data sample_divided_list_0h = split_array_into_samples(rebuild_0h_data, sample_width, sample_height) sample_divided_list_24h = split_array_into_samples(rebuild_24h_data, sample_width, sample_height) # handle data of control groups control_0h_summary = 0 for number in control_number_list: number = number - 1 sample = sample_divided_list_0h[number] control_0h_summary = control_0h_summary + calculate_summary_of_sample(sample) control_0h_average = control_0h_summary / (sample_width * sample_height * len(control_number_list)) control_24h_summary = 0 for number in control_number_list: number = number - 1 sample = sample_divided_list_24h[number] control_24h_summary = control_24h_summary + calculate_summary_of_sample(sample) control_24h_average = control_24h_summary / (sample_width * sample_height * len(control_number_list)) # calculate standard deviation of each grid sd_matrix = [] for line in rebuild_24h_data: new_line = [] for element in line: sd_data = (float(element) - control_0h_average.item()) \ / (control_24h_average.item() - control_0h_average.item()) new_line.append(sd_data) sd_matrix.append(new_line) sd_matrix = np.array(sd_matrix) # split array into different samples sd_groups = split_array_into_samples(sd_matrix, sample_width, sample_height) sd_groups = np.array(sd_groups, dtype=float) RESULT_LIST = [] for sample in sd_groups: result = calculate_avg_of_sample(sample, sample_width, basic_width) RESULT_LIST.append(result) RESULT_LIST = np.array(RESULT_LIST) FULL_RESULT_LIST = [] for group in sd_groups: x_index = 0 y_index = 0 sample_buffer = [] data_buffer = [] while y_index < sample_height: while x_index < basic_width: x = x_index while x < sample_width: data_buffer.append(group[y_index][x]) x += basic_width sample_buffer.append(data_buffer) data_buffer = [] x_index += 1 y_index += 1 x_index = 0 FULL_RESULT_LIST.append(sample_buffer) FULL_RESULT_LIST = np.array(FULL_RESULT_LIST, dtype=float) optional_color = ['red', 'orange', 'yellow', 'green', 'cyan', 'blue', 'purple'] EC50_LIST = [] EC50_AVG_LIST = [] sample_num = 0 for SAMPLE in FULL_RESULT_LIST: sample_num += 1 fig, ax = plt.subplots() index = 0 ax.set_title('Sample '+str(sample_num)) x_buffer = [] x_sampling_buffer = [] y_sampling_buffer = [] for repeat in SAMPLE: x, y, x_sampling, y_sampling = fit_sigmoid_curve(x_data, repeat) x_buffer.append(x) x_sampling_buffer.append(x_sampling) y_sampling_buffer.append(y_sampling) draw_single_curve(ax, x, y, x_sampling, y_sampling, optional_color[index]) index += 1 EC50_LIST.append(x_buffer) # draw the average result avg = np.mean(x_buffer) EC50_AVG_LIST.append(avg) # draw the average curve x_sampling_buffer = np.array(x_sampling_buffer).T y_sampling_buffer = np.array(y_sampling_buffer).T x_sampling_avg = [] y_sampling_avg = [] for line in x_sampling_buffer: x_sampling_avg.append(np.mean(line)) for line in y_sampling_buffer: y_sampling_avg.append(np.mean(line)) ax.plot(avg, 0.5, 'o', color='black') ax.plot(x_sampling_avg, y_sampling_avg, color='black') plt.savefig("./output/" + output_directory + "/figs" + "/Sample " + str(sample_num)) plt.cla() plt.close(fig) # output grouped result output_f_grouped = open("./output/" + output_directory + "/result_grouped.csv", "w") csv_writer_grouped = csv.writer(output_f_grouped) csv_writer_grouped.writerow(["initial concentration: " + str(initial_concentration), "dilution protocol: " + str(dilution_protocol)]) csv_writer_grouped.writerow("") sample_num = 0 for SAMPLE in FULL_RESULT_LIST: SAMPLE = SAMPLE.T sample_num += 1 csv_writer_grouped.writerow(["Sample " + str(sample_num)]) for repeat in SAMPLE: csv_writer_grouped.writerow(repeat) csv_writer_grouped.writerow("") ec50_result_list = [] for ec50_index in EC50_LIST[sample_num-1]: ec50_result_list.append(10**ec50_index) csv_writer_grouped.writerow(ec50_result_list) average_ec50 = np.power(10, EC50_AVG_LIST[sample_num-1]) csv_writer_grouped.writerow([]) csv_writer_grouped.writerow(["Average EC50", "Std"]) csv_writer_grouped.writerow([average_ec50, np.std(ec50_result_list)]) csv_writer_grouped.writerow("") output_f_grouped.close() output_f_full = open("./output/" + output_directory + "/result_full.csv", "w") csv_writer_full = csv.writer(output_f_full) for line in sd_matrix: csv_writer_full.writerow(line) output_f_full.close() print("Finished")
[((9, 10, 9, 29), 'util.io.read_setting_json', 'read_setting_json', ({}, {}), '()', False, 'from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve\n'), ((45, 18, 45, 32), 'util.io.read_0h_data', 'read_0h_data', ({}, {}), '()', False, 'from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve\n'), ((46, 16, 46, 31), 'util.io.read_24h_data', 'read_24h_data', ({}, {}), '()', False, 'from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve\n'), ((53, 25, 53, 95), 'util.convert.split_array_into_samples', 'split_array_into_samples', ({(53, 50, 53, 65): 'rebuild_0h_data', (53, 67, 53, 79): 'sample_width', (53, 81, 53, 94): 'sample_height'}, {}), '(rebuild_0h_data, sample_width, sample_height)', False, 'from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage\n'), ((54, 26, 54, 97), 'util.convert.split_array_into_samples', 'split_array_into_samples', ({(54, 51, 54, 67): 'rebuild_24h_data', (54, 69, 54, 81): 'sample_width', (54, 83, 54, 96): 'sample_height'}, {}), '(rebuild_24h_data, sample_width, sample_height)', False, 'from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage\n'), ((83, 12, 83, 31), 'numpy.array', 'np.array', ({(83, 21, 83, 30): 'sd_matrix'}, {}), '(sd_matrix)', True, 'import numpy as np\n'), ((86, 12, 86, 76), 'util.convert.split_array_into_samples', 'split_array_into_samples', ({(86, 37, 86, 46): 'sd_matrix', (86, 48, 86, 60): 'sample_width', (86, 62, 86, 75): 'sample_height'}, {}), '(sd_matrix, sample_width, sample_height)', False, 'from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage\n'), ((87, 12, 87, 44), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((94, 14, 94, 35), 'numpy.array', 'np.array', ({(94, 23, 94, 34): 'RESULT_LIST'}, {}), '(RESULT_LIST)', True, 'import numpy as np\n'), ((116, 19, 116, 58), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((172, 21, 172, 49), 'csv.writer', 'csv.writer', ({(172, 32, 172, 48): 'output_f_grouped'}, {}), '(output_f_grouped)', False, 'import csv\n'), ((195, 18, 195, 43), 'csv.writer', 'csv.writer', ({(195, 29, 195, 42): 'output_f_full'}, {}), '(output_f_full)', False, 'import csv\n'), ((91, 13, 91, 71), 'util.convert.calculate_avg_of_sample', 'calculate_avg_of_sample', ({(91, 37, 91, 43): 'sample', (91, 45, 91, 57): 'sample_width', (91, 59, 91, 70): 'basic_width'}, {}), '(sample, sample_width, basic_width)', False, 'from util.convert import split_array_into_samples, calculate_avg_of_sample, convert_to_percentage\n'), ((127, 14, 127, 28), 'matplotlib.pyplot.subplots', 'plt.subplots', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((146, 10, 146, 27), 'numpy.mean', 'np.mean', ({(146, 18, 146, 26): 'x_buffer'}, {}), '(x_buffer)', True, 'import numpy as np\n'), ((166, 4, 166, 13), 'matplotlib.pyplot.cla', 'plt.cla', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((167, 4, 167, 18), 'matplotlib.pyplot.close', 'plt.close', ({(167, 14, 167, 17): 'fig'}, {}), '(fig)', True, 'import matplotlib.pyplot as plt\n'), ((187, 19, 187, 60), 'numpy.power', 'np.power', ({(187, 28, 187, 30): '10', (187, 32, 187, 59): 'EC50_AVG_LIST[sample_num - 1]'}, {}), '(10, EC50_AVG_LIST[sample_num - 1])', True, 'import numpy as np\n'), ((61, 46, 61, 81), 'util.calculus.calculate_summary_of_sample', 'calculate_summary_of_sample', ({(61, 74, 61, 80): 'sample'}, {}), '(sample)', False, 'from util.calculus import calculate_summary_of_sample, fit_sigmoid_curve\n'), ((69, 48, 69, 83), 'util.calculus.calculate_summary_of_sample', 'calculate_summary_of_sample', ({(69, 76, 69, 82): 'sample'}, {}), '(sample)', False, 'from util.calculus import calculate_summary_of_sample, fit_sigmoid_curve\n'), ((136, 39, 136, 72), 'util.calculus.fit_sigmoid_curve', 'fit_sigmoid_curve', ({(136, 57, 136, 63): 'x_data', (136, 65, 136, 71): 'repeat'}, {}), '(x_data, repeat)', False, 'from util.calculus import calculate_summary_of_sample, fit_sigmoid_curve\n'), ((140, 8, 140, 82), 'util.io.draw_single_curve', 'draw_single_curve', ({(140, 26, 140, 28): 'ax', (140, 30, 140, 31): 'x', (140, 33, 140, 34): 'y', (140, 36, 140, 46): 'x_sampling', (140, 48, 140, 58): 'y_sampling', (140, 60, 140, 81): 'optional_color[index]'}, {}), '(ax, x, y, x_sampling, y_sampling, optional_color[index])', False, 'from util.io import read_setting_json, read_0h_data, read_24h_data, draw_single_curve\n'), ((151, 24, 151, 51), 'numpy.array', 'np.array', ({(151, 33, 151, 50): 'x_sampling_buffer'}, {}), '(x_sampling_buffer)', True, 'import numpy as np\n'), ((152, 24, 152, 51), 'numpy.array', 'np.array', ({(152, 33, 152, 50): 'y_sampling_buffer'}, {}), '(y_sampling_buffer)', True, 'import numpy as np\n'), ((158, 30, 158, 43), 'numpy.mean', 'np.mean', ({(158, 38, 158, 42): 'line'}, {}), '(line)', True, 'import numpy as np\n'), ((161, 30, 161, 43), 'numpy.mean', 'np.mean', ({(161, 38, 161, 42): 'line'}, {}), '(line)', True, 'import numpy as np\n'), ((190, 47, 190, 71), 'numpy.std', 'np.std', ({(190, 54, 190, 70): 'ec50_result_list'}, {}), '(ec50_result_list)', True, 'import numpy as np\n')]
twonds/twisted
twisted/names/root.py
d6e270a465d371c3bed01bf369af497b77eb9f1e
# -*- test-case-name: twisted.names.test.test_rootresolve -*- # Copyright (c) 2001-2009 Twisted Matrix Laboratories. # See LICENSE for details. """ Resolver implementation for querying successive authoritative servers to lookup a record, starting from the root nameservers. @author: Jp Calderone todo:: robustify it break discoverAuthority into several smaller functions documentation """ from twisted.internet import defer from twisted.names import dns from twisted.names import common def retry(t, p, *args): assert t, "Timeout is required" t = list(t) def errback(failure): failure.trap(defer.TimeoutError) if not t: return failure return p.query(timeout=t.pop(0), *args ).addErrback(errback ) return p.query(timeout=t.pop(0), *args ).addErrback(errback ) class _DummyController: def messageReceived(self, *args): pass class Resolver(common.ResolverBase): def __init__(self, hints): common.ResolverBase.__init__(self) self.hints = hints def _lookup(self, name, cls, type, timeout): d = discoverAuthority(name, self.hints ).addCallback(self.discoveredAuthority, name, cls, type, timeout ) return d def discoveredAuthority(self, auth, name, cls, type, timeout): from twisted.names import client q = dns.Query(name, type, cls) r = client.Resolver(servers=[(auth, dns.PORT)]) d = r.queryUDP([q], timeout) d.addCallback(r.filterAnswers) return d def lookupNameservers(host, atServer, p=None): # print 'Nameserver lookup for', host, 'at', atServer, 'with', p if p is None: p = dns.DNSDatagramProtocol(_DummyController()) p.noisy = False return retry( (1, 3, 11, 45), # Timeouts p, # Protocol instance (atServer, dns.PORT), # Server to query [dns.Query(host, dns.NS, dns.IN)] # Question to ask ) def lookupAddress(host, atServer, p=None): # print 'Address lookup for', host, 'at', atServer, 'with', p if p is None: p = dns.DNSDatagramProtocol(_DummyController()) p.noisy = False return retry( (1, 3, 11, 45), # Timeouts p, # Protocol instance (atServer, dns.PORT), # Server to query [dns.Query(host, dns.A, dns.IN)] # Question to ask ) def extractAuthority(msg, cache): records = msg.answers + msg.authority + msg.additional nameservers = [r for r in records if r.type == dns.NS] # print 'Records for', soFar, ':', records # print 'NS for', soFar, ':', nameservers if not nameservers: return None, nameservers if not records: raise IOError("No records") for r in records: if r.type == dns.A: cache[str(r.name)] = r.payload.dottedQuad() for r in records: if r.type == dns.NS: if str(r.payload.name) in cache: return cache[str(r.payload.name)], nameservers for addr in records: if addr.type == dns.A and addr.name == r.name: return addr.payload.dottedQuad(), nameservers return None, nameservers def discoverAuthority(host, roots, cache=None, p=None): if cache is None: cache = {} rootAuths = list(roots) parts = host.rstrip('.').split('.') parts.reverse() authority = rootAuths.pop() soFar = '' for part in parts: soFar = part + '.' + soFar # print '///////', soFar, authority, p msg = defer.waitForDeferred(lookupNameservers(soFar, authority, p)) yield msg msg = msg.getResult() newAuth, nameservers = extractAuthority(msg, cache) if newAuth is not None: # print "newAuth is not None" authority = newAuth else: if nameservers: r = str(nameservers[0].payload.name) # print 'Recursively discovering authority for', r authority = defer.waitForDeferred(discoverAuthority(r, roots, cache, p)) yield authority authority = authority.getResult() # print 'Discovered to be', authority, 'for', r ## else: ## # print 'Doing address lookup for', soFar, 'at', authority ## msg = defer.waitForDeferred(lookupAddress(soFar, authority, p)) ## yield msg ## msg = msg.getResult() ## records = msg.answers + msg.authority + msg.additional ## addresses = [r for r in records if r.type == dns.A] ## if addresses: ## authority = addresses[0].payload.dottedQuad() ## else: ## raise IOError("Resolution error") # print "Yielding authority", authority yield authority discoverAuthority = defer.deferredGenerator(discoverAuthority) def makePlaceholder(deferred, name): def placeholder(*args, **kw): deferred.addCallback(lambda r: getattr(r, name)(*args, **kw)) return deferred return placeholder class DeferredResolver: def __init__(self, resolverDeferred): self.waiting = [] resolverDeferred.addCallback(self.gotRealResolver) def gotRealResolver(self, resolver): w = self.waiting self.__dict__ = resolver.__dict__ self.__class__ = resolver.__class__ for d in w: d.callback(resolver) def __getattr__(self, name): if name.startswith('lookup') or name in ('getHostByName', 'query'): self.waiting.append(defer.Deferred()) return makePlaceholder(self.waiting[-1], name) raise AttributeError(name) def bootstrap(resolver): """Lookup the root nameserver addresses using the given resolver Return a Resolver which will eventually become a C{root.Resolver} instance that has references to all the root servers that we were able to look up. """ domains = [chr(ord('a') + i) for i in range(13)] # f = lambda r: (log.msg('Root server address: ' + str(r)), r)[1] f = lambda r: r L = [resolver.getHostByName('%s.root-servers.net' % d).addCallback(f) for d in domains] d = defer.DeferredList(L) d.addCallback(lambda r: Resolver([e[1] for e in r if e[0]])) return DeferredResolver(d)
[((151, 20, 151, 62), 'twisted.internet.defer.deferredGenerator', 'defer.deferredGenerator', ({(151, 44, 151, 61): 'discoverAuthority'}, {}), '(discoverAuthority)', False, 'from twisted.internet import defer\n'), ((188, 8, 188, 29), 'twisted.internet.defer.DeferredList', 'defer.DeferredList', ({(188, 27, 188, 28): 'L'}, {}), '(L)', False, 'from twisted.internet import defer\n'), ((41, 8, 41, 42), 'twisted.names.common.ResolverBase.__init__', 'common.ResolverBase.__init__', ({(41, 37, 41, 41): 'self'}, {}), '(self)', False, 'from twisted.names import common\n'), ((52, 12, 52, 38), 'twisted.names.dns.Query', 'dns.Query', ({(52, 22, 52, 26): 'name', (52, 28, 52, 32): 'type', (52, 34, 52, 37): 'cls'}, {}), '(name, type, cls)', False, 'from twisted.names import dns\n'), ((53, 12, 53, 55), 'twisted.names.client.Resolver', 'client.Resolver', (), '', False, 'from twisted.names import client\n'), ((67, 9, 67, 40), 'twisted.names.dns.Query', 'dns.Query', ({(67, 19, 67, 23): 'host', (67, 25, 67, 31): 'dns.NS', (67, 33, 67, 39): 'dns.IN'}, {}), '(host, dns.NS, dns.IN)', False, 'from twisted.names import dns\n'), ((79, 9, 79, 39), 'twisted.names.dns.Query', 'dns.Query', ({(79, 19, 79, 23): 'host', (79, 25, 79, 30): 'dns.A', (79, 32, 79, 38): 'dns.IN'}, {}), '(host, dns.A, dns.IN)', False, 'from twisted.names import dns\n'), ((173, 32, 173, 48), 'twisted.internet.defer.Deferred', 'defer.Deferred', ({}, {}), '()', False, 'from twisted.internet import defer\n')]
edwardyehuang/iDS
tools/apply_colormap_dir.py
36bde3a9e887eb7e1a8d88956cf041909ee84da4
# ================================================================ # MIT License # Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang) # ================================================================ import os, sys rootpath = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)) sys.path.insert(1, rootpath) import tensorflow as tf import numpy as np from PIL import Image from absl import app from absl import flags from common_flags import FLAGS from ids.voc2012 import get_colormap as get_voc2012_colormap from ids.cityscapes_fine import get_colormap as get_cityscapes_colormap flags.DEFINE_string("input_dir", None, "input dir path") flags.DEFINE_string("output_dir", None, "output dir path") flags.DEFINE_string("colormap", "voc2012", "colormap name") flags.DEFINE_integer("ignore_label", 255, "ignore label") def apply_colormap_to_dir(input_dir, output_dir=None, colormap=None): colormap = colormap.astype(np.uint8) counter = 0 if not os.path.exists(output_dir): os.mkdir(output_dir) for filename in tf.io.gfile.listdir(input_dir): input_path = os.path.join(input_dir, filename) output_path = os.path.join(output_dir, filename) img = Image.open(input_path) if img.mode != "L" and img.mode != "P": continue img = img.convert("P") img.putpalette(colormap) img.save(output_path, format="PNG") counter += 1 tf.print("Processed {}".format(counter)) def main(argv): colormap_name = FLAGS.colormap colormap_name = colormap_name.lower() if colormap_name == "voc2012": colormap = get_voc2012_colormap() elif colormap_name == "cityscapes": colormap = get_cityscapes_colormap() else: raise ValueError(f"Not support colormap = {colormap_name}") if FLAGS.ignore_label == 0: colormap = colormap[1:] apply_colormap_to_dir(FLAGS.input_dir, FLAGS.output_dir, colormap=colormap) if __name__ == "__main__": app.run(main)
[((10, 0, 10, 28), 'sys.path.insert', 'sys.path.insert', ({(10, 16, 10, 17): '(1)', (10, 19, 10, 27): 'rootpath'}, {}), '(1, rootpath)', False, 'import os, sys\n'), ((25, 0, 25, 56), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', ({(25, 20, 25, 31): '"""input_dir"""', (25, 33, 25, 37): 'None', (25, 39, 25, 55): '"""input dir path"""'}, {}), "('input_dir', None, 'input dir path')", False, 'from absl import flags\n'), ((26, 0, 26, 58), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', ({(26, 20, 26, 32): '"""output_dir"""', (26, 34, 26, 38): 'None', (26, 40, 26, 57): '"""output dir path"""'}, {}), "('output_dir', None, 'output dir path')", False, 'from absl import flags\n'), ((27, 0, 27, 59), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', ({(27, 20, 27, 30): '"""colormap"""', (27, 32, 27, 41): '"""voc2012"""', (27, 43, 27, 58): '"""colormap name"""'}, {}), "('colormap', 'voc2012', 'colormap name')", False, 'from absl import flags\n'), ((28, 0, 28, 57), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', ({(28, 21, 28, 35): '"""ignore_label"""', (28, 37, 28, 40): '(255)', (28, 42, 28, 56): '"""ignore label"""'}, {}), "('ignore_label', 255, 'ignore label')", False, 'from absl import flags\n'), ((40, 20, 40, 50), 'tensorflow.io.gfile.listdir', 'tf.io.gfile.listdir', ({(40, 40, 40, 49): 'input_dir'}, {}), '(input_dir)', True, 'import tensorflow as tf\n'), ((81, 4, 81, 17), 'absl.app.run', 'app.run', ({(81, 12, 81, 16): 'main'}, {}), '(main)', False, 'from absl import app\n'), ((8, 40, 8, 65), 'os.path.dirname', 'os.path.dirname', ({(8, 56, 8, 64): '__file__'}, {}), '(__file__)', False, 'import os, sys\n'), ((37, 11, 37, 37), 'os.path.exists', 'os.path.exists', ({(37, 26, 37, 36): 'output_dir'}, {}), '(output_dir)', False, 'import os, sys\n'), ((38, 8, 38, 28), 'os.mkdir', 'os.mkdir', ({(38, 17, 38, 27): 'output_dir'}, {}), '(output_dir)', False, 'import os, sys\n'), ((42, 21, 42, 54), 'os.path.join', 'os.path.join', ({(42, 34, 42, 43): 'input_dir', (42, 45, 42, 53): 'filename'}, {}), '(input_dir, filename)', False, 'import os, sys\n'), ((43, 22, 43, 56), 'os.path.join', 'os.path.join', ({(43, 35, 43, 45): 'output_dir', (43, 47, 43, 55): 'filename'}, {}), '(output_dir, filename)', False, 'import os, sys\n'), ((45, 14, 45, 36), 'PIL.Image.open', 'Image.open', ({(45, 25, 45, 35): 'input_path'}, {}), '(input_path)', False, 'from PIL import Image\n'), ((67, 19, 67, 41), 'ids.voc2012.get_colormap', 'get_voc2012_colormap', ({}, {}), '()', True, 'from ids.voc2012 import get_colormap as get_voc2012_colormap\n'), ((69, 19, 69, 44), 'ids.cityscapes_fine.get_colormap', 'get_cityscapes_colormap', ({}, {}), '()', True, 'from ids.cityscapes_fine import get_colormap as get_cityscapes_colormap\n')]
rit1200/kairon
kairon/shared/sso/base.py
674a491f6deeae4800825ca93e0726e4fb6e0866
class BaseSSO: async def get_redirect_url(self): """Returns redirect url for facebook.""" raise NotImplementedError("Provider not implemented") async def verify(self, request): """ Fetches user details using code received in the request. :param request: starlette request object """ raise NotImplementedError("Provider not implemented")
[]
bal6765/ed-scout
EDScoutCore/JournalInterface.py
0c2ee6141a5cd86a660c2319d7c4be61614b13fb
from inspect import signature import json import time import os import glob import logging from pathlib import Path from watchdog.observers import Observer from watchdog.observers.polling import PollingObserver from watchdog.events import PatternMatchingEventHandler from EDScoutCore.FileSystemUpdatePrompter import FileSystemUpdatePrompter default_journal_path = os.path.join(str(Path.home()), "Saved Games\\Frontier Developments\\Elite Dangerous") journal_file_pattern = "journal.*.log" logger = logging.getLogger('JournalInterface') class JournalChangeIdentifier: def __init__(self, journal_path=default_journal_path): pass self.journals = {} self.journal_path = journal_path logger.debug(f"watching for journal changes in {self.journal_path}") self._init_journal_lists() self._new_journal_entry_callback = None self.latest_journal = self.identify_latest_journal() # Prompter is required to force the file system to do updates on some systems so we get regular updates from the # journal watcher. self.prompter = FileSystemUpdatePrompter(self.latest_journal) def identify_latest_journal(self): if len(self.journals.keys()) == 0: return None keys = sorted(self.journals.keys()) return keys[-1] def process_journal_change(self, changed_file): if changed_file != self.latest_journal: self.latest_journal = changed_file self.prompter.set_watch_file(self.latest_journal) new_size = os.stat(changed_file).st_size new_data = None # If the game was loaded after the scout it will start a new journal which we need to treat as unscanned. if changed_file not in self.journals: self.journals[changed_file] = 0 logger.debug(f'{changed_file} - Size change: {self.journals[changed_file]} to {new_size}') if new_size > 0: # Don't try and read it if this is the first notification (we seem to get two; one from the file being cleared). # Check how much it has grown and read the excess size_diff = new_size - self.journals[changed_file] if size_diff > 0: with open(changed_file, 'rb') as f: f.seek(-size_diff, os.SEEK_END) # Note minus sign new_data = f.read() entries = [] if new_data: new_journal_lines = JournalChangeIdentifier.binary_file_data_to_lines(new_data) try: for line in new_journal_lines: logger.debug(f'New journal entry detected: {line}') entry = json.loads(line) entry['type'] = "JournalEntry" # Add an identifier that's common to everything we shove down the outgoing pipe so the receiver can distiguish. entries.append(entry) logger.debug(f'Found {len(entries)} new entries') for entry in entries: yield entry self.journals[changed_file] = new_size except json.decoder.JSONDecodeError as e: logger.exception(e) @staticmethod def binary_file_data_to_lines(binary_data): as_ascii = binary_data.decode('UTF-8') all_lines = as_ascii.split("\r\n") all_lines.pop() # Drop the last empty line return all_lines def _init_journal_lists(self): journal_files = glob.glob(os.path.join(self.journal_path, journal_file_pattern)) for journal_file in journal_files: self.journals[journal_file] = os.stat(journal_file).st_size class JournalWatcher: def __init__(self, path=default_journal_path, force_polling=False): self.path = path self.force_polling = force_polling self._configure_watchers() def set_callback(self, on_journal_change): self.event_handler.set_callback(on_journal_change) def stop(self): self.observer.stop() self.observer.join() class _EntriesChangeHandler(PatternMatchingEventHandler): def __init__(self): super(JournalWatcher._EntriesChangeHandler, self).__init__( patterns=['*Journal*.log'], ignore_patterns=[], ignore_directories=True) self.on_journal_change = None def set_callback(self, on_new_journal_entry): self.on_journal_change = on_new_journal_entry def on_modified(self, event): changed_file = str(event.src_path) logger.debug("Journal change: " + changed_file) self.on_journal_change(changed_file) def on_created(self, event): file = str(event.src_path) logger.debug("Journal created: " + file) def on_deleted(self, event): file = str(event.src_path) logger.debug("Journal deleted: " + file) def on_moved(self, event): file = str(event.src_path) logger.debug("Journal moved: " + file) def _configure_watchers(self): self.event_handler = JournalWatcher._EntriesChangeHandler() if self.force_polling: self.observer = PollingObserver(0.25) # Poll every quarter of a second else: self.observer = Observer() self.observer.schedule(self.event_handler, self.path, recursive=False) self.observer.start() if __name__ == '__main__': def ReportJournalChange(journal_hange): print('New route detected:' + str(journal_hange)) journalWatcher = JournalWatcher() journalWatcher.set_callback(ReportJournalChange) print('running') try: while True: time.sleep(1) except KeyboardInterrupt: print('done') journalWatcher.stop()
[((17, 9, 17, 46), 'logging.getLogger', 'logging.getLogger', ({(17, 27, 17, 45): '"""JournalInterface"""'}, {}), "('JournalInterface')", False, 'import logging\n'), ((14, 40, 14, 51), 'pathlib.Path.home', 'Path.home', ({}, {}), '()', False, 'from pathlib import Path\n'), ((36, 24, 36, 69), 'EDScoutCore.FileSystemUpdatePrompter.FileSystemUpdatePrompter', 'FileSystemUpdatePrompter', ({(36, 49, 36, 68): 'self.latest_journal'}, {}), '(self.latest_journal)', False, 'from EDScoutCore.FileSystemUpdatePrompter import FileSystemUpdatePrompter\n'), ((50, 19, 50, 40), 'os.stat', 'os.stat', ({(50, 27, 50, 39): 'changed_file'}, {}), '(changed_file)', False, 'import os\n'), ((97, 34, 97, 87), 'os.path.join', 'os.path.join', ({(97, 47, 97, 64): 'self.journal_path', (97, 66, 97, 86): 'journal_file_pattern'}, {}), '(self.journal_path, journal_file_pattern)', False, 'import os\n'), ((150, 28, 150, 49), 'watchdog.observers.polling.PollingObserver', 'PollingObserver', ({(150, 44, 150, 48): '0.25'}, {}), '(0.25)', False, 'from watchdog.observers.polling import PollingObserver\n'), ((152, 28, 152, 38), 'watchdog.observers.Observer', 'Observer', ({}, {}), '()', False, 'from watchdog.observers import Observer\n'), ((169, 12, 169, 25), 'time.sleep', 'time.sleep', ({(169, 23, 169, 24): '(1)'}, {}), '(1)', False, 'import time\n'), ((99, 42, 99, 63), 'os.stat', 'os.stat', ({(99, 50, 99, 62): 'journal_file'}, {}), '(journal_file)', False, 'import os\n'), ((75, 28, 75, 44), 'json.loads', 'json.loads', ({(75, 39, 75, 43): 'line'}, {}), '(line)', False, 'import json\n')]
xR86/ml-stuff
labs-python/lab9/add_files.py
2a1b79408897171b78032ff2531ab6f8b18be6c4
import sqlite3 conn = sqlite3.connect('example.db') c = conn.cursor() import os import hashlib import time def get_file_md5(filePath): h = hashlib.md5() h.update(open(filePath,"rb").read()) return h.hexdigest() def get_file_sha256(filePath): h = hashlib.sha256() h.update(open(filePath,"rb").read()) return h.hexdigest() def get_dir_data(dir_path): dir_path = os.path.realpath(dir_path) #print next(os.walk(dir_path))[2] #print os.path.basename(dir_path) id_location = 0 id_file = 0 for dir_file in next(os.walk(dir_path))[2]: file_name = dir_file file_md5 = get_file_md5(dir_file) file_sha256 = get_file_sha256(dir_file) file_size = os.path.getsize(dir_file) file_time = time.gmtime(os.path.getctime(dir_file)) file_formatted_time = time.strftime("%Y-%m-%d %I:%M:%S %p", file_time) file_path = os.path.realpath(dir_file) location_values = (id_location, file_path) c.execute("INSERT INTO location VALUES (?, ?)", location_values) files_values = (id_location, id_file) c.execute("INSERT INTO files VALUES (?, ?)", files_values) file_info_values = (id_file, file_name, file_size, file_formatted_time, file_md5) c.execute("INSERT INTO file_info VALUES (?, ?, ?, ?, ?)", file_info_values) id_location += 1 id_file += 1 get_dir_data('./') # Save (commit) the changes conn.commit() conn.close()
[((2, 7, 2, 36), 'sqlite3.connect', 'sqlite3.connect', ({(2, 23, 2, 35): '"""example.db"""'}, {}), "('example.db')", False, 'import sqlite3\n'), ((12, 5, 12, 18), 'hashlib.md5', 'hashlib.md5', ({}, {}), '()', False, 'import hashlib\n'), ((17, 5, 17, 21), 'hashlib.sha256', 'hashlib.sha256', ({}, {}), '()', False, 'import hashlib\n'), ((23, 12, 23, 38), 'os.path.realpath', 'os.path.realpath', ({(23, 29, 23, 37): 'dir_path'}, {}), '(dir_path)', False, 'import os\n'), ((34, 14, 34, 39), 'os.path.getsize', 'os.path.getsize', ({(34, 30, 34, 38): 'dir_file'}, {}), '(dir_file)', False, 'import os\n'), ((37, 24, 37, 72), 'time.strftime', 'time.strftime', ({(37, 38, 37, 60): '"""%Y-%m-%d %I:%M:%S %p"""', (37, 62, 37, 71): 'file_time'}, {}), "('%Y-%m-%d %I:%M:%S %p', file_time)", False, 'import time\n'), ((38, 14, 38, 40), 'os.path.realpath', 'os.path.realpath', ({(38, 31, 38, 39): 'dir_file'}, {}), '(dir_file)', False, 'import os\n'), ((30, 22, 30, 39), 'os.walk', 'os.walk', ({(30, 30, 30, 38): 'dir_path'}, {}), '(dir_path)', False, 'import os\n'), ((36, 26, 36, 52), 'os.path.getctime', 'os.path.getctime', ({(36, 43, 36, 51): 'dir_file'}, {}), '(dir_file)', False, 'import os\n')]
blankenberg/galaxy-data-resource
lib/galaxy/model/migrate/versions/0073_add_ldda_to_implicit_conversion_table.py
ca32a1aafd64948f489a4e5cf88096f32391b1d9
""" Migration script to add 'ldda_parent_id' column to the implicitly_converted_dataset_association table. """ from sqlalchemy import * from sqlalchemy.orm import * from migrate import * from migrate.changeset import * import logging log = logging.getLogger( __name__ ) metadata = MetaData() def upgrade(migrate_engine): metadata.bind = migrate_engine print __doc__ metadata.reflect() try: Implicitly_converted_table = Table( "implicitly_converted_dataset_association", metadata, autoload=True ) if migrate_engine.name != 'sqlite': c = Column( "ldda_parent_id", Integer, ForeignKey( "library_dataset_dataset_association.id" ), index=True, nullable=True ) else: #Can't use the ForeignKey in sqlite. c = Column( "ldda_parent_id", Integer, index=True, nullable=True ) c.create( Implicitly_converted_table, index_name="ix_implicitly_converted_dataset_assoc_ldda_parent_id") assert c is Implicitly_converted_table.c.ldda_parent_id except Exception, e: print "Adding ldda_parent_id column to implicitly_converted_dataset_association table failed: %s" % str( e ) log.debug( "Adding ldda_parent_id column to implicitly_converted_dataset_association table failed: %s" % str( e ) ) def downgrade(migrate_engine): metadata.bind = migrate_engine metadata.reflect() try: Implicitly_converted_table = Table( "implicitly_converted_dataset_association", metadata, autoload=True ) Implicitly_converted_table.c.ldda_parent_id.drop() except Exception, e: print "Dropping ldda_parent_id column from implicitly_converted_dataset_association table failed: %s" % str( e ) log.debug( "Dropping ldda_parent_id column from implicitly_converted_dataset_association table failed: %s" % str( e ) )
[]
tzuliu/Contrastive-Multiple-Correspondence-Analysis-cMCA
Replication Python and R Codes/Figure_6/cMCA_ESS2018_LABCON_org.py
a59a5c36dd5d4ac04205627827e792322742462d
import pandas as pd import numpy as np import matplotlib.pyplot as plt import prince from sklearn import utils from sklearn.cluster import DBSCAN import itertools from cmca import CMCA from ccmca import CCMCA from matplotlib import rc plt.style.use('ggplot') df = pd.read_csv("./uk2018.csv") df["prtclcgb"].replace({5: 8, 9: 8, 10:8, 11:8, 12:8, 13:8, 15:8, 19:8}, inplace=True) df["prtclcgb"].replace({6: 5}, inplace=True) df["prtclcgb"].replace({7: 6}, inplace=True) df["prtclcgb"].replace({8: 7}, inplace=True) alpha = r'$ \alpha $' tableau10 = { 'teal': '#78B7B2', 'blue': '#507AA6', 'orange': '#F08E39', 'red': '#DF585C', 'green': '#5BA053', 'purple': '#AF7BA1', 'yellow': '#ECC854', 'brown': '#9A7460', 'pink': '#FD9EA9', 'gray': '#BAB0AC', 7: '#9A7460', 1: '#507AA6', 2: '#F08E39', 3: '#DF585C', 4: '#5BA053', 0: '#78B7B2', 6: '#ECC854', 5: '#AF7BA1', 8: '#FD9EA9', 9: '#BAB0AC', -1: '#BAB0AC', 99: '#BAB0AC', 'LDP': '#507AA6', 'DPJ': '#F08E39' } def fillna_based_on_dtype(df): for key in dict(df.dtypes).keys(): if df.dtypes[key] == np.object: df[key] = df[key].fillna('na') else: df[key] = df[key].fillna(99) def df_to_mat(df): X = df.iloc[:,np.r_[1:(df.shape[1])]] X_con = X[X["prtclcgb"] == 1] X_lab = X[X["prtclcgb"] == 2] X_ldp = X[X["prtclcgb"] == 3] X_snp = X[X["prtclcgb"] == 4] X_gre = X[X["prtclcgb"] == 5] X_uip = X[X["prtclcgb"] == 6] X_oth = X[X["prtclcgb"] == 7] print("missing value ratio (CON)", X_con.isna().sum().sum() / (X_con.shape[0] * X_con.shape[1])) print("missing value ratio (LAB)", X_lab.isna().sum().sum() / (X_lab.shape[0] * X_lab.shape[1])) print("missing value ratio (LDP)", X_ldp.isna().sum().sum() / (X_ldp.shape[0] * X_ldp.shape[1])) print("missing value ratio (SNP)", X_snp.isna().sum().sum() / (X_snp.shape[0] * X_snp.shape[1])) print("missing value ratio (GRE)", X_gre.isna().sum().sum() / (X_gre.shape[0] * X_gre.shape[1])) print("missing value ratio (UIP)", X_uip.isna().sum().sum() / (X_uip.shape[0] * X_uip.shape[1])) print("missing value ratio (OTH)", X_oth.isna().sum().sum() / (X_oth.shape[0] * X_oth.shape[1])) fillna_based_on_dtype(X_con) fillna_based_on_dtype(X_lab) fillna_based_on_dtype(X_ldp) fillna_based_on_dtype(X_snp) fillna_based_on_dtype(X_gre) fillna_based_on_dtype(X_uip) fillna_based_on_dtype(X_oth) return(X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth) X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth = df_to_mat(df) X = pd.concat([X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth]) print(X_con.shape, X_lab.shape, X_ldp.shape, X_snp.shape, X_gre.shape, X_uip.shape, X_oth.shape, X.shape) ##Disctionay for Level and Party party = {1:"Con", 2:"Lab", 3:"LD", 4:"SNP", 5:"Green", 6:"UKIP", 7:"Other"} ##Fitting cMCA and export plots cmca = CMCA(n_components=2, copy=True, check_input=True) cmca = cmca.fit(fg=X_lab.iloc[:,0:(X_lab.shape[1]-3)], bg=X_con.iloc[:,0:(X_con.shape[1]-3)], alpha=1.5) Y_fg = np.array(cmca.transform(X_lab.iloc[:,0:(X.shape[1]-3)])) Y_bg = np.array(cmca.transform(X_con.iloc[:,0:(X.shape[1]-3)])) Y_fg_col = np.array(cmca.transform(X_lab.iloc[:,0:(X.shape[1]-3)], axis='col')) prefix_to_info = cmca.gen_prefix_to_info() f_6 = plt.figure() plt.xlim([-2.5, 2.5]) plt.ylim([-2.5, 2.5]) plt.scatter(Y_fg[:, 0], Y_fg[:, 1], c=tableau10[X_lab["prtclcgb"].iloc[0]], label=party[X_lab["prtclcgb"].iloc[0]], alpha=0.3, linewidths=0) plt.scatter(Y_bg[:, 0], Y_bg[:, 1], c=tableau10[X_con["prtclcgb"].iloc[0]], label=party[X_con["prtclcgb"].iloc[0]], alpha=0.3, linewidths=0) handles, labels = plt.gca().get_legend_handles_labels() handles = [handles[1],handles[0]] labels = ["Con","Lab"] plt.legend(handles, labels, loc="lower right", shadow=False, scatterpoints=1, fontsize=8) plt.xlabel('cPC1') plt.ylabel('cPC2') plt.title("cMCA (tg: LAB, bg: CON, " + str(alpha) + ": 1.5)") plt.show() f_6.savefig("cMCA_ESS2018_labcon_org.pdf", bbox_inches='tight')
[((11, 0, 11, 23), 'matplotlib.pyplot.style.use', 'plt.style.use', ({(11, 14, 11, 22): '"""ggplot"""'}, {}), "('ggplot')", True, 'import matplotlib.pyplot as plt\n'), ((13, 5, 13, 32), 'pandas.read_csv', 'pd.read_csv', ({(13, 17, 13, 31): '"""./uk2018.csv"""'}, {}), "('./uk2018.csv')", True, 'import pandas as pd\n'), ((87, 4, 87, 64), 'pandas.concat', 'pd.concat', ({(87, 14, 87, 63): '[X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth]'}, {}), '([X_con, X_lab, X_ldp, X_snp, X_gre, X_uip, X_oth])', True, 'import pandas as pd\n'), ((94, 7, 94, 56), 'cmca.CMCA', 'CMCA', (), '', False, 'from cmca import CMCA\n'), ((102, 6, 102, 18), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((103, 0, 103, 21), 'matplotlib.pyplot.xlim', 'plt.xlim', ({(103, 9, 103, 20): '[-2.5, 2.5]'}, {}), '([-2.5, 2.5])', True, 'import matplotlib.pyplot as plt\n'), ((104, 0, 104, 21), 'matplotlib.pyplot.ylim', 'plt.ylim', ({(104, 9, 104, 20): '[-2.5, 2.5]'}, {}), '([-2.5, 2.5])', True, 'import matplotlib.pyplot as plt\n'), ((105, 0, 105, 140), 'matplotlib.pyplot.scatter', 'plt.scatter', (), '', True, 'import matplotlib.pyplot as plt\n'), ((106, 0, 106, 140), 'matplotlib.pyplot.scatter', 'plt.scatter', (), '', True, 'import matplotlib.pyplot as plt\n'), ((110, 0, 110, 89), 'matplotlib.pyplot.legend', 'plt.legend', (), '', True, 'import matplotlib.pyplot as plt\n'), ((111, 0, 111, 18), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(111, 11, 111, 17): '"""cPC1"""'}, {}), "('cPC1')", True, 'import matplotlib.pyplot as plt\n'), ((112, 0, 112, 18), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(112, 11, 112, 17): '"""cPC2"""'}, {}), "('cPC2')", True, 'import matplotlib.pyplot as plt\n'), ((114, 0, 114, 10), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((107, 18, 107, 27), 'matplotlib.pyplot.gca', 'plt.gca', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n')]
ruppysuppy/Daily-Coding-Problem-Solutions
Solutions/077.py
37d061215a9af2ce39c51f8816c83039914c0d0b
""" Problem: Given a list of possibly overlapping intervals, return a new list of intervals where all overlapping intervals have been merged. The input list is not necessarily ordered in any way. For example, given [(1, 3), (5, 8), (4, 10), (20, 25)], you should return [(1, 3), (4, 10), (20, 25)]. """ from typing import List, Tuple def merge_intervals(intervals: List[Tuple[int, int]]) -> List[Tuple[int, int]]: intervals.sort(key=lambda x: x[0]) merged_intervals = [] start = intervals[0][0] end = intervals[0][1] # generating the merged intervals for interval in intervals[1:]: curr_start, curr_end = interval if end < curr_start: merged_intervals.append((start, end)) start = curr_start end = curr_end elif end < curr_end and end > curr_start: end = curr_end # adding the last interval merged_intervals.append((start, end)) return merged_intervals if __name__ == "__main__": print(merge_intervals([(1, 3), (5, 8), (4, 10), (20, 25)])) print(merge_intervals([(1, 3), (5, 8), (4, 10), (20, 25), (6, 12)])) """ SPECS: TIME COMPLEXITY: O(n) SPACE COMPLEXITY: O(n) """
[]
wray/wems
slackbot_wems/chris/slacklib.py
69caedfb8906f04175196d610a1ca516db01f72a
import time import emoji # Put your commands here COMMAND1 = "testing testing" COMMAND2 = "roger roger" BLUEON = str("blue on") BLUEOFF = str("blue off") REDON = str("red on") REDOFF = str("red off") GREENON = str("green on") GREENOFF = str("green off") YELLOWON = str("yellow on") YELLOWOFF = str("yellow off") CLOCK = str("update clock") SCRAMBLE = str('scramble the 7') HACKER = str('hack the 7') SINGLEREADING = str('light') def setup(): import RPi.GPIO as GPIO import slackbot_wems.chris.light as lite import slackbot_wems.chris.segment7 as segment GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) # Pin Setup GPIO.setup(17, GPIO.OUT) # BLUE LED GPIO.setup(27, GPIO.OUT) # RED LED GPIO.setup(5, GPIO.OUT) # GREEN LED GPIO.setup(22, GPIO.OUT) # YELLOW LED GPIO.setup(12, GPIO.OUT) # LDR setup = False # Your handling code goes in this function def handle_command(command): """ Determine if the command is valid. If so, take action and return a response, if necessary. """ if not setup: setup_gpio() setup = True response = "" if command.find(COMMAND1) >= 0: response = str("Surprise!") elif command.find(COMMAND2) >= 0: response = (emoji.emojize('Python\n is\n :thumbs_up: :thumbs_up: :thumbs_up:')) # Blue LED Commands elif command.find(BLUEON) >= 0: GPIO.output(17, True) response = emoji.emojize("" + "Turning :radio_button: ON...") elif command.find(BLUEOFF) >= 0: GPIO.output(17, False) response = emoji.emojize("" + "Turning :radio_button: OFF...") # Red LED Commands elif command.find(REDON) >= 0: GPIO.output(27, True) response = emoji.emojize("" + "Turning :red_circle: ON...") elif command.find(REDOFF) >= 0: GPIO.output(27, False) response = emoji.emojize("" + "Turning :red_circle: OFF...") # Green LED Commands elif command.find(GREENON) >= 0: GPIO.output(5, True) response = emoji.emojize("" + "Turning :green_apple: ON...") elif command.find(GREENOFF) >= 0: GPIO.output(5, False) response = emoji.emojize("" + "Turning :green_apple: OFF...") # Yellow LED Commands elif command.find(YELLOWON) >= 0: GPIO.output(22, True) response = emoji.emojize("" + "Turning :sunny: ON...") elif command.find(YELLOWOFF) >= 0: GPIO.output(22, False) response = emoji.emojize("" + "Turning :sunny: OFF...") # 7 Segment Commands elif command.find(CLOCK) >= 0: print('Updating the clock!') response = segment.updateClock() elif command.find(SCRAMBLE) >= 0: print(emoji.emojize(":egg: There is nothing better than scrambled eggs! :egg:")) response = segment.scramble() elif command.find(HACKER) >= 0: print('Message') response = segment.hacker() elif command.find(SINGLEREADING) >= 0: a = lite.printReading() a = int(a) time.sleep(1) print(a) response = ('Here is what the LDR Sensor said to me: ' + str(a)) return response
[((32, 4, 32, 26), 'RPi.GPIO.setmode', 'GPIO.setmode', ({(32, 17, 32, 25): 'GPIO.BCM'}, {}), '(GPIO.BCM)', True, 'import RPi.GPIO as GPIO\n'), ((33, 4, 33, 27), 'RPi.GPIO.setwarnings', 'GPIO.setwarnings', ({(33, 21, 33, 26): '(False)'}, {}), '(False)', True, 'import RPi.GPIO as GPIO\n'), ((36, 4, 36, 28), 'RPi.GPIO.setup', 'GPIO.setup', ({(36, 15, 36, 17): '(17)', (36, 19, 36, 27): 'GPIO.OUT'}, {}), '(17, GPIO.OUT)', True, 'import RPi.GPIO as GPIO\n'), ((37, 4, 37, 28), 'RPi.GPIO.setup', 'GPIO.setup', ({(37, 15, 37, 17): '(27)', (37, 19, 37, 27): 'GPIO.OUT'}, {}), '(27, GPIO.OUT)', True, 'import RPi.GPIO as GPIO\n'), ((38, 4, 38, 27), 'RPi.GPIO.setup', 'GPIO.setup', ({(38, 15, 38, 16): '(5)', (38, 18, 38, 26): 'GPIO.OUT'}, {}), '(5, GPIO.OUT)', True, 'import RPi.GPIO as GPIO\n'), ((39, 4, 39, 28), 'RPi.GPIO.setup', 'GPIO.setup', ({(39, 15, 39, 17): '(22)', (39, 19, 39, 27): 'GPIO.OUT'}, {}), '(22, GPIO.OUT)', True, 'import RPi.GPIO as GPIO\n'), ((41, 4, 41, 28), 'RPi.GPIO.setup', 'GPIO.setup', ({(41, 15, 41, 17): '(12)', (41, 19, 41, 27): 'GPIO.OUT'}, {}), '(12, GPIO.OUT)', True, 'import RPi.GPIO as GPIO\n'), ((61, 20, 61, 86), 'emoji.emojize', 'emoji.emojize', ({(61, 34, 61, 85): '"""Python\n is\n :thumbs_up: :thumbs_up: :thumbs_up:"""'}, {}), '("""Python\n is\n :thumbs_up: :thumbs_up: :thumbs_up:""")', False, 'import emoji\n'), ((65, 8, 65, 29), 'RPi.GPIO.output', 'GPIO.output', ({(65, 20, 65, 22): '(17)', (65, 24, 65, 28): '(True)'}, {}), '(17, True)', True, 'import RPi.GPIO as GPIO\n'), ((66, 19, 66, 69), 'emoji.emojize', 'emoji.emojize', ({(66, 33, 66, 68): "'' + 'Turning :radio_button: ON...'"}, {}), "('' + 'Turning :radio_button: ON...')", False, 'import emoji\n'), ((69, 8, 69, 30), 'RPi.GPIO.output', 'GPIO.output', ({(69, 20, 69, 22): '(17)', (69, 24, 69, 29): '(False)'}, {}), '(17, False)', True, 'import RPi.GPIO as GPIO\n'), ((70, 19, 70, 70), 'emoji.emojize', 'emoji.emojize', ({(70, 33, 70, 69): "'' + 'Turning :radio_button: OFF...'"}, {}), "('' + 'Turning :radio_button: OFF...')", False, 'import emoji\n'), ((74, 8, 74, 29), 'RPi.GPIO.output', 'GPIO.output', ({(74, 20, 74, 22): '(27)', (74, 24, 74, 28): '(True)'}, {}), '(27, True)', True, 'import RPi.GPIO as GPIO\n'), ((75, 19, 75, 67), 'emoji.emojize', 'emoji.emojize', ({(75, 33, 75, 66): "'' + 'Turning :red_circle: ON...'"}, {}), "('' + 'Turning :red_circle: ON...')", False, 'import emoji\n'), ((78, 8, 78, 30), 'RPi.GPIO.output', 'GPIO.output', ({(78, 20, 78, 22): '(27)', (78, 24, 78, 29): '(False)'}, {}), '(27, False)', True, 'import RPi.GPIO as GPIO\n'), ((79, 19, 79, 68), 'emoji.emojize', 'emoji.emojize', ({(79, 33, 79, 67): "'' + 'Turning :red_circle: OFF...'"}, {}), "('' + 'Turning :red_circle: OFF...')", False, 'import emoji\n'), ((83, 8, 83, 28), 'RPi.GPIO.output', 'GPIO.output', ({(83, 20, 83, 21): '(5)', (83, 23, 83, 27): '(True)'}, {}), '(5, True)', True, 'import RPi.GPIO as GPIO\n'), ((84, 19, 84, 68), 'emoji.emojize', 'emoji.emojize', ({(84, 33, 84, 67): "'' + 'Turning :green_apple: ON...'"}, {}), "('' + 'Turning :green_apple: ON...')", False, 'import emoji\n'), ((87, 8, 87, 29), 'RPi.GPIO.output', 'GPIO.output', ({(87, 20, 87, 21): '(5)', (87, 23, 87, 28): '(False)'}, {}), '(5, False)', True, 'import RPi.GPIO as GPIO\n'), ((88, 19, 88, 69), 'emoji.emojize', 'emoji.emojize', ({(88, 33, 88, 68): "'' + 'Turning :green_apple: OFF...'"}, {}), "('' + 'Turning :green_apple: OFF...')", False, 'import emoji\n'), ((92, 8, 92, 29), 'RPi.GPIO.output', 'GPIO.output', ({(92, 20, 92, 22): '(22)', (92, 24, 92, 28): '(True)'}, {}), '(22, True)', True, 'import RPi.GPIO as GPIO\n'), ((93, 19, 93, 62), 'emoji.emojize', 'emoji.emojize', ({(93, 33, 93, 61): "'' + 'Turning :sunny: ON...'"}, {}), "('' + 'Turning :sunny: ON...')", False, 'import emoji\n'), ((96, 8, 96, 30), 'RPi.GPIO.output', 'GPIO.output', ({(96, 20, 96, 22): '(22)', (96, 24, 96, 29): '(False)'}, {}), '(22, False)', True, 'import RPi.GPIO as GPIO\n'), ((97, 19, 97, 63), 'emoji.emojize', 'emoji.emojize', ({(97, 33, 97, 62): "'' + 'Turning :sunny: OFF...'"}, {}), "('' + 'Turning :sunny: OFF...')", False, 'import emoji\n'), ((102, 19, 102, 40), 'slackbot_wems.chris.segment7.updateClock', 'segment.updateClock', ({}, {}), '()', True, 'import slackbot_wems.chris.segment7 as segment\n'), ((106, 19, 106, 37), 'slackbot_wems.chris.segment7.scramble', 'segment.scramble', ({}, {}), '()', True, 'import slackbot_wems.chris.segment7 as segment\n'), ((105, 14, 105, 87), 'emoji.emojize', 'emoji.emojize', ({(105, 28, 105, 86): '""":egg: There is nothing better than scrambled eggs! :egg:"""'}, {}), "(':egg: There is nothing better than scrambled eggs! :egg:')", False, 'import emoji\n'), ((110, 19, 110, 35), 'slackbot_wems.chris.segment7.hacker', 'segment.hacker', ({}, {}), '()', True, 'import slackbot_wems.chris.segment7 as segment\n'), ((113, 12, 113, 31), 'slackbot_wems.chris.light.printReading', 'lite.printReading', ({}, {}), '()', True, 'import slackbot_wems.chris.light as lite\n'), ((115, 8, 115, 21), 'time.sleep', 'time.sleep', ({(115, 19, 115, 20): '(1)'}, {}), '(1)', False, 'import time\n')]
iScrE4m/RSES
rses/__init__.py
88299f105ded8838243eab8b25ab1626c97d1179
# coding=utf-8 """RSES :)"""
[]
adewaleo/azure-sdk-for-python
sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_gremlin_resources_operations.py
169457edbea5e3c5557246cfcf8bd635d528bae4
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class GremlinResourcesOperations(object): """GremlinResourcesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.cosmosdb.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_gremlin_databases( self, resource_group_name, # type: str account_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.GremlinDatabaseListResult"] """Lists the Gremlin databases under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either GremlinDatabaseListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.cosmosdb.models.GremlinDatabaseListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_gremlin_databases.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('GremlinDatabaseListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_gremlin_databases.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases'} # type: ignore def get_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.GremlinDatabaseGetResults" """Gets the Gremlin databases under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GremlinDatabaseGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.GremlinDatabaseGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_database.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def _create_update_gremlin_database_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str create_update_gremlin_database_parameters, # type: "models.GremlinDatabaseCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.GremlinDatabaseGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GremlinDatabaseGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_update_gremlin_database_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(create_update_gremlin_database_parameters, 'GremlinDatabaseCreateUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_update_gremlin_database_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def begin_create_update_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str create_update_gremlin_database_parameters, # type: "models.GremlinDatabaseCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.GremlinDatabaseGetResults"] """Create or update an Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param create_update_gremlin_database_parameters: The parameters to provide for the current Gremlin database. :type create_update_gremlin_database_parameters: ~azure.mgmt.cosmosdb.models.GremlinDatabaseCreateUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either GremlinDatabaseGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.GremlinDatabaseGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinDatabaseGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_update_gremlin_database_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, create_update_gremlin_database_parameters=create_update_gremlin_database_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GremlinDatabaseGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_update_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def _delete_gremlin_database_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" # Construct URL url = self._delete_gremlin_database_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_gremlin_database_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def begin_delete_gremlin_database( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes an existing Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_gremlin_database_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete_gremlin_database.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}'} # type: ignore def get_gremlin_database_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ThroughputSettingsGetResults" """Gets the RUs per second of the Gremlin database under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ThroughputSettingsGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_database_throughput.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_database_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def _update_gremlin_database_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_gremlin_database_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(update_throughput_parameters, 'ThroughputSettingsUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_gremlin_database_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def begin_update_gremlin_database_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Update RUs per second of an Azure Cosmos DB Gremlin database. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param update_throughput_parameters: The RUs per second of the parameters to provide for the current Gremlin database. :type update_throughput_parameters: ~azure.mgmt.cosmosdb.models.ThroughputSettingsUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_gremlin_database_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, update_throughput_parameters=update_throughput_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_gremlin_database_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default'} # type: ignore def _migrate_gremlin_database_to_autoscale_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_database_to_autoscale_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_database_to_autoscale_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def begin_migrate_gremlin_database_to_autoscale( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin database from manual throughput to autoscale. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_database_to_autoscale_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_database_to_autoscale.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def _migrate_gremlin_database_to_manual_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_database_to_manual_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_database_to_manual_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def begin_migrate_gremlin_database_to_manual_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin database from autoscale to manual throughput. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_database_to_manual_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_database_to_manual_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def list_gremlin_graphs( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.GremlinGraphListResult"] """Lists the Gremlin graph under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either GremlinGraphListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.cosmosdb.models.GremlinGraphListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_gremlin_graphs.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('GremlinGraphListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_gremlin_graphs.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs'} # type: ignore def get_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.GremlinGraphGetResults" """Gets the Gremlin graph under an existing Azure Cosmos DB database account. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GremlinGraphGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.GremlinGraphGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_graph.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def _create_update_gremlin_graph_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str create_update_gremlin_graph_parameters, # type: "models.GremlinGraphCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.GremlinGraphGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.GremlinGraphGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_update_gremlin_graph_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(create_update_gremlin_graph_parameters, 'GremlinGraphCreateUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_update_gremlin_graph_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def begin_create_update_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str create_update_gremlin_graph_parameters, # type: "models.GremlinGraphCreateUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.GremlinGraphGetResults"] """Create or update an Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :param create_update_gremlin_graph_parameters: The parameters to provide for the current Gremlin graph. :type create_update_gremlin_graph_parameters: ~azure.mgmt.cosmosdb.models.GremlinGraphCreateUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either GremlinGraphGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.GremlinGraphGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.GremlinGraphGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_update_gremlin_graph_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, create_update_gremlin_graph_parameters=create_update_gremlin_graph_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('GremlinGraphGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_update_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def _delete_gremlin_graph_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" # Construct URL url = self._delete_gremlin_graph_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_gremlin_graph_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def begin_delete_gremlin_graph( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes an existing Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_gremlin_graph_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete_gremlin_graph.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}'} # type: ignore def get_gremlin_graph_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ThroughputSettingsGetResults" """Gets the Gremlin graph throughput under an existing Azure Cosmos DB database account with the provided name. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ThroughputSettingsGetResults, or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self.get_gremlin_graph_throughput.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gremlin_graph_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def _update_gremlin_graph_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_gremlin_graph_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(update_throughput_parameters, 'ThroughputSettingsUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_gremlin_graph_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def begin_update_gremlin_graph_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str update_throughput_parameters, # type: "models.ThroughputSettingsUpdateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Update RUs per second of an Azure Cosmos DB Gremlin graph. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :param update_throughput_parameters: The RUs per second of the parameters to provide for the current Gremlin graph. :type update_throughput_parameters: ~azure.mgmt.cosmosdb.models.ThroughputSettingsUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_gremlin_graph_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, update_throughput_parameters=update_throughput_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_gremlin_graph_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default'} # type: ignore def _migrate_gremlin_graph_to_autoscale_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_graph_to_autoscale_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_graph_to_autoscale_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def begin_migrate_gremlin_graph_to_autoscale( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin graph from manual throughput to autoscale. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_graph_to_autoscale_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_graph_to_autoscale.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToAutoscale'} # type: ignore def _migrate_gremlin_graph_to_manual_throughput_initial( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> Optional["models.ThroughputSettingsGetResults"] cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.ThroughputSettingsGetResults"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" accept = "application/json" # Construct URL url = self._migrate_gremlin_graph_to_manual_throughput_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=50, min_length=3, pattern=r'^[a-z0-9]+(-[a-z0-9]+)*'), 'databaseName': self._serialize.url("database_name", database_name, 'str'), 'graphName': self._serialize.url("graph_name", graph_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _migrate_gremlin_graph_to_manual_throughput_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore def begin_migrate_gremlin_graph_to_manual_throughput( self, resource_group_name, # type: str account_name, # type: str database_name, # type: str graph_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller["models.ThroughputSettingsGetResults"] """Migrate an Azure Cosmos DB Gremlin graph from autoscale to manual throughput. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param account_name: Cosmos DB database account name. :type account_name: str :param database_name: Cosmos DB database name. :type database_name: str :param graph_name: Cosmos DB graph name. :type graph_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ThroughputSettingsGetResults or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.ThroughputSettingsGetResults] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ThroughputSettingsGetResults"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._migrate_gremlin_graph_to_manual_throughput_initial( resource_group_name=resource_group_name, account_name=account_name, database_name=database_name, graph_name=graph_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ThroughputSettingsGetResults', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_migrate_gremlin_graph_to_manual_throughput.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/databaseAccounts/{accountName}/gremlinDatabases/{databaseName}/graphs/{graphName}/throughputSettings/default/migrateToManualThroughput'} # type: ignore
[((25, 8, 25, 20), 'typing.TypeVar', 'TypeVar', ({(25, 16, 25, 19): '"""T"""'}, {}), "('T')", False, 'from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union\n'), ((120, 15, 122, 9), 'azure.core.paging.ItemPaged', 'ItemPaged', ({(121, 12, 121, 20): 'get_next', (121, 22, 121, 34): 'extract_data'}, {}), '(get_next, extract_data)', False, 'from azure.core.paging import ItemPaged\n'), ((929, 15, 931, 9), 'azure.core.paging.ItemPaged', 'ItemPaged', ({(930, 12, 930, 20): 'get_next', (930, 22, 930, 34): 'extract_data'}, {}), '(get_next, extract_data)', False, 'from azure.core.paging import ItemPaged\n'), ((178, 12, 178, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((179, 18, 179, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((234, 12, 234, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((235, 18, 235, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((304, 45, 304, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(304, 56, 304, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((308, 19, 313, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((315, 19, 315, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(315, 29, 315, 41): 'self._client', (315, 43, 315, 53): 'raw_result', (315, 55, 315, 78): 'get_long_running_output', (315, 80, 315, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((355, 12, 355, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((356, 18, 356, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((412, 45, 412, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(412, 56, 412, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((416, 19, 421, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((423, 19, 423, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(423, 29, 423, 41): 'self._client', (423, 43, 423, 53): 'raw_result', (423, 55, 423, 78): 'get_long_running_output', (423, 80, 423, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((479, 12, 479, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((480, 18, 480, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((535, 12, 535, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((536, 18, 536, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((605, 45, 605, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(605, 56, 605, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((609, 19, 614, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((616, 19, 616, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(616, 29, 616, 41): 'self._client', (616, 43, 616, 53): 'raw_result', (616, 55, 616, 78): 'get_long_running_output', (616, 80, 616, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((658, 12, 658, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((659, 18, 659, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((723, 45, 723, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(723, 56, 723, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((727, 19, 732, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((734, 19, 734, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(734, 29, 734, 41): 'self._client', (734, 43, 734, 53): 'raw_result', (734, 55, 734, 78): 'get_long_running_output', (734, 80, 734, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((776, 12, 776, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((777, 18, 777, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((841, 45, 841, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(841, 56, 841, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((845, 19, 850, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((852, 19, 852, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(852, 29, 852, 41): 'self._client', (852, 43, 852, 53): 'raw_result', (852, 55, 852, 78): 'get_long_running_output', (852, 80, 852, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((990, 12, 990, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((991, 18, 991, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1048, 12, 1048, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1049, 18, 1049, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1122, 45, 1122, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(1122, 56, 1122, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((1126, 19, 1131, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1133, 19, 1133, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(1133, 29, 1133, 41): 'self._client', (1133, 43, 1133, 53): 'raw_result', (1133, 55, 1133, 78): 'get_long_running_output', (1133, 80, 1133, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1175, 12, 1175, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1176, 18, 1176, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1236, 45, 1236, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(1236, 56, 1236, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((1240, 19, 1245, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1247, 19, 1247, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(1247, 29, 1247, 41): 'self._client', (1247, 43, 1247, 53): 'raw_result', (1247, 55, 1247, 78): 'get_long_running_output', (1247, 80, 1247, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1307, 12, 1307, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1308, 18, 1308, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1365, 12, 1365, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1366, 18, 1366, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1439, 45, 1439, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(1439, 56, 1439, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((1443, 19, 1448, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1450, 19, 1450, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(1450, 29, 1450, 41): 'self._client', (1450, 43, 1450, 53): 'raw_result', (1450, 55, 1450, 78): 'get_long_running_output', (1450, 80, 1450, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1494, 12, 1494, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1495, 18, 1495, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1563, 45, 1563, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(1563, 56, 1563, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((1567, 19, 1572, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1574, 19, 1574, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(1574, 29, 1574, 41): 'self._client', (1574, 43, 1574, 53): 'raw_result', (1574, 55, 1574, 78): 'get_long_running_output', (1574, 80, 1574, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1618, 12, 1618, 95), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1619, 18, 1619, 83), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1687, 45, 1687, 77), 'azure.mgmt.core.polling.arm_polling.ARMPolling', 'ARMPolling', ({(1687, 56, 1687, 65): 'lro_delay'}, {}), '(lro_delay, **kwargs)', False, 'from azure.mgmt.core.polling.arm_polling import ARMPolling\n'), ((1691, 19, 1696, 13), 'azure.core.polling.LROPoller.from_continuation_token', 'LROPoller.from_continuation_token', (), '', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1698, 19, 1698, 95), 'azure.core.polling.LROPoller', 'LROPoller', ({(1698, 29, 1698, 41): 'self._client', (1698, 43, 1698, 53): 'raw_result', (1698, 55, 1698, 78): 'get_long_running_output', (1698, 80, 1698, 94): 'polling_method'}, {}), '(self._client, raw_result, get_long_running_output, polling_method)', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((115, 16, 115, 99), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((116, 22, 116, 87), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((305, 48, 305, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((413, 48, 413, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((606, 48, 606, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((724, 48, 724, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((842, 48, 842, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((924, 16, 924, 99), 'azure.core.exceptions.map_error', 'map_error', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((925, 22, 925, 87), 'azure.core.exceptions.HttpResponseError', 'HttpResponseError', (), '', False, 'from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error\n'), ((1123, 48, 1123, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1237, 48, 1237, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1440, 48, 1440, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1564, 48, 1564, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n'), ((1688, 48, 1688, 59), 'azure.core.polling.NoPolling', 'NoPolling', ({}, {}), '()', False, 'from azure.core.polling import LROPoller, NoPolling, PollingMethod\n')]
yura505/core
homeassistant/components/tasmota/discovery.py
0fc5f4b0421c6c5204d3ccb562153ac3836441a9
"""Support for MQTT discovery.""" import asyncio import logging from hatasmota.discovery import ( TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash, ) from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.typing import HomeAssistantType from .const import DOMAIN _LOGGER = logging.getLogger(__name__) SUPPORTED_PLATFORMS = [ "switch", ] ALREADY_DISCOVERED = "tasmota_discovered_components" CONFIG_ENTRY_IS_SETUP = "tasmota_config_entry_is_setup" DATA_CONFIG_ENTRY_LOCK = "tasmota_config_entry_lock" TASMOTA_DISCOVERY_DEVICE = "tasmota_discovery_device" TASMOTA_DISCOVERY_ENTITY_NEW = "tasmota_discovery_entity_new_{}" TASMOTA_DISCOVERY_ENTITY_UPDATED = "tasmota_discovery_entity_updated_{}_{}_{}_{}" def clear_discovery_hash(hass, discovery_hash): """Clear entry in ALREADY_DISCOVERED list.""" del hass.data[ALREADY_DISCOVERED][discovery_hash] def set_discovery_hash(hass, discovery_hash): """Set entry in ALREADY_DISCOVERED list.""" hass.data[ALREADY_DISCOVERED][discovery_hash] = {} async def async_start( hass: HomeAssistantType, discovery_topic, config_entry, tasmota_mqtt ) -> bool: """Start MQTT Discovery.""" async def _load_platform(platform): """Load a Tasmota platform if not already done.""" async with hass.data[DATA_CONFIG_ENTRY_LOCK]: config_entries_key = f"{platform}.tasmota" if config_entries_key not in hass.data[CONFIG_ENTRY_IS_SETUP]: await hass.config_entries.async_forward_entry_setup( config_entry, platform ) hass.data[CONFIG_ENTRY_IS_SETUP].add(config_entries_key) async def _discover_entity(tasmota_entity_config, discovery_hash, platform): """Handle adding or updating a discovered entity.""" if not tasmota_entity_config: # Entity disabled, clean up entity registry entity_registry = await hass.helpers.entity_registry.async_get_registry() unique_id = unique_id_from_hash(discovery_hash) entity_id = entity_registry.async_get_entity_id(platform, DOMAIN, unique_id) if entity_id: _LOGGER.debug("Removing entity: %s %s", platform, discovery_hash) entity_registry.async_remove(entity_id) return if discovery_hash in hass.data[ALREADY_DISCOVERED]: _LOGGER.debug( "Entity already added, sending update: %s %s", platform, discovery_hash, ) async_dispatcher_send( hass, TASMOTA_DISCOVERY_ENTITY_UPDATED.format(*discovery_hash), tasmota_entity_config, ) else: _LOGGER.debug("Adding new entity: %s %s", platform, discovery_hash) tasmota_entity = tasmota_get_entity(tasmota_entity_config, tasmota_mqtt) hass.data[ALREADY_DISCOVERED][discovery_hash] = None async_dispatcher_send( hass, TASMOTA_DISCOVERY_ENTITY_NEW.format(platform), tasmota_entity, discovery_hash, ) async def async_device_discovered(payload, mac): """Process the received message.""" if ALREADY_DISCOVERED not in hass.data: hass.data[ALREADY_DISCOVERED] = {} _LOGGER.debug("Received discovery data for tasmota device: %s", mac) tasmota_device_config = tasmota_get_device_config(payload) async_dispatcher_send( hass, TASMOTA_DISCOVERY_DEVICE, tasmota_device_config, mac ) if not payload: return for platform in SUPPORTED_PLATFORMS: if not tasmota_has_entities_with_platform(payload, platform): continue await _load_platform(platform) for platform in SUPPORTED_PLATFORMS: tasmota_entities = tasmota_get_entities_for_platform(payload, platform) for (tasmota_entity_config, discovery_hash) in tasmota_entities: await _discover_entity(tasmota_entity_config, discovery_hash, platform) hass.data[DATA_CONFIG_ENTRY_LOCK] = asyncio.Lock() hass.data[CONFIG_ENTRY_IS_SETUP] = set() tasmota_discovery = TasmotaDiscovery(discovery_topic, tasmota_mqtt) await tasmota_discovery.start_discovery(async_device_discovered, None)
[((19, 10, 19, 37), 'logging.getLogger', 'logging.getLogger', ({(19, 28, 19, 36): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((119, 40, 119, 54), 'asyncio.Lock', 'asyncio.Lock', ({}, {}), '()', False, 'import asyncio\n'), ((122, 24, 122, 71), 'hatasmota.discovery.TasmotaDiscovery', 'TasmotaDiscovery', ({(122, 41, 122, 56): 'discovery_topic', (122, 58, 122, 70): 'tasmota_mqtt'}, {}), '(discovery_topic, tasmota_mqtt)', False, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n'), ((101, 32, 101, 66), 'hatasmota.discovery.get_device_config', 'tasmota_get_device_config', ({(101, 58, 101, 65): 'payload'}, {}), '(payload)', True, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n'), ((102, 8, 104, 9), 'homeassistant.helpers.dispatcher.async_dispatcher_send', 'async_dispatcher_send', ({(103, 12, 103, 16): 'hass', (103, 18, 103, 42): 'TASMOTA_DISCOVERY_DEVICE', (103, 44, 103, 65): 'tasmota_device_config', (103, 67, 103, 70): 'mac'}, {}), '(hass, TASMOTA_DISCOVERY_DEVICE, tasmota_device_config,\n mac)', False, 'from homeassistant.helpers.dispatcher import async_dispatcher_send\n'), ((63, 24, 63, 59), 'hatasmota.discovery.unique_id_from_hash', 'unique_id_from_hash', ({(63, 44, 63, 58): 'discovery_hash'}, {}), '(discovery_hash)', False, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n'), ((83, 29, 83, 84), 'hatasmota.discovery.get_entity', 'tasmota_get_entity', ({(83, 48, 83, 69): 'tasmota_entity_config', (83, 71, 83, 83): 'tasmota_mqtt'}, {}), '(tasmota_entity_config, tasmota_mqtt)', True, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n'), ((115, 31, 115, 83), 'hatasmota.discovery.get_entities_for_platform', 'tasmota_get_entities_for_platform', ({(115, 65, 115, 72): 'payload', (115, 74, 115, 82): 'platform'}, {}), '(payload, platform)', True, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n'), ((110, 19, 110, 72), 'hatasmota.discovery.has_entities_with_platform', 'tasmota_has_entities_with_platform', ({(110, 54, 110, 61): 'payload', (110, 63, 110, 71): 'platform'}, {}), '(payload, platform)', True, 'from hatasmota.discovery import TasmotaDiscovery, get_device_config as tasmota_get_device_config, get_entities_for_platform as tasmota_get_entities_for_platform, get_entity as tasmota_get_entity, has_entities_with_platform as tasmota_has_entities_with_platform, unique_id_from_hash\n')]
TimoKerr/tfx
tfx/components/infra_validator/executor.py
10d13d57eeac21514fed73118cb43464dada67f1
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX InfraValidator executor definition.""" import contextlib import functools import os import signal import threading import time from typing import Any, Dict, List, Optional from absl import logging from tfx import types from tfx.components.infra_validator import error_types from tfx.components.infra_validator import request_builder from tfx.components.infra_validator import serving_bins from tfx.components.infra_validator import types as iv_types from tfx.components.infra_validator.model_server_runners import kubernetes_runner from tfx.components.infra_validator.model_server_runners import local_docker_runner from tfx.dsl.components.base import base_executor from tfx.proto import infra_validator_pb2 from tfx.types import artifact_utils from tfx.types.standard_component_specs import BLESSING_KEY from tfx.types.standard_component_specs import EXAMPLES_KEY from tfx.types.standard_component_specs import MODEL_KEY from tfx.types.standard_component_specs import REQUEST_SPEC_KEY from tfx.types.standard_component_specs import SERVING_SPEC_KEY from tfx.types.standard_component_specs import VALIDATION_SPEC_KEY from tfx.utils import io_utils from tfx.utils import path_utils from tfx.utils import proto_utils from tfx.utils.model_paths import tf_serving_flavor from tensorflow_serving.apis import classification_pb2 from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_log_pb2 from tensorflow_serving.apis import regression_pb2 _DEFAULT_NUM_TRIES = 5 _DEFAULT_POLLING_INTERVAL_SEC = 1 _DEFAULT_MAX_LOADING_TIME_SEC = 300 _DEFAULT_MODEL_NAME = 'infra-validation-model' # Proto message keys for oneof block. _TENSORFLOW_SERVING = 'tensorflow_serving' _LOCAL_DOCKER = 'local_docker' _KUBERNETES = 'kubernetes' # Artifact property keys _BLESSED_KEY = 'blessed' _MODEL_FLAG_KEY = 'has_model' # Filename of infra blessing artifact on succeed. _BLESSED_FILENAME = 'INFRA_BLESSED' # Filename of infra blessing artifact on fail. _NOT_BLESSED_FILENAME = 'INFRA_NOT_BLESSED' def _create_model_server_runner( model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec): """Create a ModelServerRunner from a model, a ServingBinary and a ServingSpec. Args: model_path: An IV-flavored model path. (See model_path_utils.py) serving_binary: One of ServingBinary instances parsed from the `serving_spec`. serving_spec: A ServingSpec instance of this infra validation. Returns: A ModelServerRunner. """ platform = serving_spec.WhichOneof('serving_platform') if platform == 'local_docker': return local_docker_runner.LocalDockerRunner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec ) elif platform == 'kubernetes': return kubernetes_runner.KubernetesRunner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec ) else: raise NotImplementedError('Invalid serving_platform {}'.format(platform)) def _convert_to_prediction_log(request: iv_types.Request): """Try convert infra validation request to TF-Serving PredictionLog.""" if isinstance(request, classification_pb2.ClassificationRequest): return prediction_log_pb2.PredictionLog( classify_log=prediction_log_pb2.ClassifyLog(request=request)) elif isinstance(request, regression_pb2.RegressionRequest): return prediction_log_pb2.PredictionLog( regress_log=prediction_log_pb2.RegressLog(request=request)) elif isinstance(request, predict_pb2.PredictRequest): return prediction_log_pb2.PredictionLog( predict_log=prediction_log_pb2.PredictLog(request=request)) else: raise NotImplementedError( f'Cannot convert {type(request)} to PredictionLog') def _mark_blessed(blessing: types.Artifact) -> None: logging.info('Model passed infra validation.') io_utils.write_string_file( os.path.join(blessing.uri, _BLESSED_FILENAME), '') blessing.set_int_custom_property(_BLESSED_KEY, 1) def _mark_not_blessed(blessing: types.Artifact) -> None: logging.info('Model failed infra validation.') io_utils.write_string_file( os.path.join(blessing.uri, _NOT_BLESSED_FILENAME), '') blessing.set_int_custom_property(_BLESSED_KEY, 0) class Executor(base_executor.BaseExecutor): """TFX infra validator executor.""" def __init__(self, context: Optional[base_executor.BaseExecutor.Context] = None): super(Executor, self).__init__(context) self._cleanups = [] def _AddCleanup(self, function, *args, **kwargs): self._cleanups.append(functools.partial(function, *args, **kwargs)) def _Cleanup(self): for cleanup in self._cleanups: try: cleanup() except: # pylint: disable=broad-except, bare-except logging.warning('Error occurred during cleanup.', exc_info=True) def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: """Contract for running InfraValidator Executor. Args: input_dict: - `model`: Single `Model` artifact that we're validating. - `examples`: `Examples` artifacts to be used for test requests. output_dict: - `blessing`: Single `InfraBlessing` artifact containing the validated result and optinally validated model if warmup requests are appended. Artifact URI includes an empty file with the name either of INFRA_BLESSED or INFRA_NOT_BLESSED. exec_properties: - `serving_spec`: Serialized `ServingSpec` configuration. - `validation_spec`: Serialized `ValidationSpec` configuration. - `request_spec`: Serialized `RequestSpec` configuration. """ self._log_startup(input_dict, output_dict, exec_properties) model = artifact_utils.get_single_instance(input_dict[MODEL_KEY]) blessing = artifact_utils.get_single_instance(output_dict[BLESSING_KEY]) if input_dict.get(EXAMPLES_KEY): examples = artifact_utils.get_single_instance(input_dict[EXAMPLES_KEY]) else: examples = None serving_spec = infra_validator_pb2.ServingSpec() proto_utils.json_to_proto(exec_properties[SERVING_SPEC_KEY], serving_spec) if not serving_spec.model_name: serving_spec.model_name = _DEFAULT_MODEL_NAME validation_spec = infra_validator_pb2.ValidationSpec() if exec_properties.get(VALIDATION_SPEC_KEY): proto_utils.json_to_proto(exec_properties[VALIDATION_SPEC_KEY], validation_spec) if not validation_spec.num_tries: validation_spec.num_tries = _DEFAULT_NUM_TRIES if not validation_spec.max_loading_time_seconds: validation_spec.max_loading_time_seconds = _DEFAULT_MAX_LOADING_TIME_SEC if exec_properties.get(REQUEST_SPEC_KEY): request_spec = infra_validator_pb2.RequestSpec() proto_utils.json_to_proto(exec_properties[REQUEST_SPEC_KEY], request_spec) else: request_spec = None with self._InstallGracefulShutdownHandler(): self._Do( model=model, examples=examples, blessing=blessing, serving_spec=serving_spec, validation_spec=validation_spec, request_spec=request_spec, ) @contextlib.contextmanager def _InstallGracefulShutdownHandler(self): # pylint: disable=g-doc-return-or-yield """Install graceful shutdown behavior. Caveat: InfraValidator currently only recognizes SIGTERM signal as a graceful shutdown. Furthermore, SIGTERM can be handled only if the executor is running on the MainThread (the thread that runs the python interpreter) due to the limitation of Python API. When the executor is running on Kubernetes, SIGTERM is a standard way to signal the graceful shutdown. Python default behavior for receiving SIGTERM is to terminate the process without raising any exception. By registering a handler that raises on signal, we can effectively transform the signal to an exception, and we can reuse our cleanup code inside "except" or "finally" block during the grace period. When the executor is run by the local Beam DirectRunner, the executor thread is one of the worker threads (not a MainThread) therefore SIGTERM cannot be recognized. If either of MainThread or worker thread receives SIGTERM, executor will die immediately without grace period. Even if the executor fails to shutdown gracefully, external resources that are created by model server runner can be cleaned up if the platform supports such mechanism (e.g. activeDeadlineSeconds in Kubernetes). """ def _handler(signum, frame): del frame # Unused. raise error_types.GracefulShutdown('Got signal {}.'.format(signum)) try: old_handler = signal.signal(signal.SIGTERM, _handler) except ValueError: # If current thread is not a MainThread, it is not allowed to register # the signal handler (ValueError raised). logging.info('Unable to register signal handler for non-MainThread ' '(name=%s). SIGTERM will not be handled.', threading.current_thread().name) old_handler = None try: yield finally: self._Cleanup() if old_handler: signal.signal(signal.SIGTERM, old_handler) def _Do( self, model: types.Artifact, examples: Optional[types.Artifact], blessing: types.Artifact, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, request_spec: Optional[infra_validator_pb2.RequestSpec], ): if examples and request_spec: logging.info('InfraValidator will be run in LOAD_AND_QUERY mode.') requests = request_builder.build_requests( model_name=serving_spec.model_name, model=model, examples=examples, request_spec=request_spec) else: logging.info('InfraValidator will be run in LOAD_ONLY mode.') requests = [] model_path = self._PrepareModelPath(model, serving_spec) # TODO(jjong): Make logic parallel. all_passed = True for serving_binary in serving_bins.parse_serving_binaries(serving_spec): all_passed &= self._ValidateWithRetry( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec, validation_spec=validation_spec, requests=requests) if all_passed: _mark_blessed(blessing) if requests and request_spec.make_warmup: self._CreateWarmupModel(blessing, model_path, warmup_requests=requests) else: _mark_not_blessed(blessing) def _CreateWarmupModel(self, blessing: types.Artifact, model_path: str, warmup_requests: List[iv_types.Request]): output_model_path = path_utils.stamped_model_path(blessing.uri) io_utils.copy_dir(src=model_path, dst=output_model_path) io_utils.write_tfrecord_file( path_utils.warmup_file_path(output_model_path), *[_convert_to_prediction_log(r) for r in warmup_requests]) blessing.set_int_custom_property(_MODEL_FLAG_KEY, 1) def _PrepareModelPath(self, model: types.Artifact, serving_spec: infra_validator_pb2.ServingSpec) -> str: model_path = path_utils.serving_model_path( model.uri, path_utils.is_old_model_artifact(model)) serving_binary = serving_spec.WhichOneof('serving_binary') if serving_binary == _TENSORFLOW_SERVING: # TensorFlow Serving requires model to be stored in its own directory # structure flavor. If current model_path does not conform to the flavor, # we need to make a copy to the temporary path. try: # Check whether current model_path conforms to the tensorflow serving # model path flavor. (Parsed without exception) tf_serving_flavor.parse_model_path( model_path, expected_model_name=serving_spec.model_name) except ValueError: # Copy the model to comply with the tensorflow serving model path # flavor. temp_model_path = tf_serving_flavor.make_model_path( model_base_path=self._get_tmp_dir(), model_name=serving_spec.model_name, version=int(time.time())) io_utils.copy_dir(src=model_path, dst=temp_model_path) self._AddCleanup(io_utils.delete_dir, self._context.get_tmp_path()) return temp_model_path return model_path def _ValidateWithRetry( self, model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, requests: List[iv_types.Request]): for i in range(validation_spec.num_tries): logging.info('Starting infra validation (attempt %d/%d).', i + 1, validation_spec.num_tries) try: self._ValidateOnce( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec, validation_spec=validation_spec, requests=requests) except error_types.GracefulShutdown: # GracefulShutdown means infra validation aborted. No more retry and # escalate the error. raise except Exception as e: # pylint: disable=broad-except # Other exceptions indicates validation failure. Log the error and # retry. logging.exception('Infra validation (attempt %d/%d) failed.', i + 1, validation_spec.num_tries) if isinstance(e, error_types.DeadlineExceeded): logging.info('Consider increasing the value of ' 'ValidationSpec.max_loading_time_seconds.') else: # If validation has passed without any exception, succeeded. return True # Every trial has failed. Marking model as not blessed. return False def _ValidateOnce( self, model_path: str, serving_binary: serving_bins.ServingBinary, serving_spec: infra_validator_pb2.ServingSpec, validation_spec: infra_validator_pb2.ValidationSpec, requests: List[iv_types.Request]): deadline = time.time() + validation_spec.max_loading_time_seconds runner = _create_model_server_runner( model_path=model_path, serving_binary=serving_binary, serving_spec=serving_spec) try: logging.info('Starting %r.', runner) runner.Start() # Check model is successfully loaded. runner.WaitUntilRunning(deadline) client = serving_binary.MakeClient(runner.GetEndpoint()) client.WaitUntilModelLoaded( deadline, polling_interval_sec=_DEFAULT_POLLING_INTERVAL_SEC) # Check model can be successfully queried. if requests: client.SendRequests(requests) finally: logging.info('Stopping %r.', runner) runner.Stop()
[((120, 2, 120, 48), 'absl.logging.info', 'logging.info', ({(120, 15, 120, 47): '"""Model passed infra validation."""'}, {}), "('Model passed infra validation.')", False, 'from absl import logging\n'), ((127, 2, 127, 48), 'absl.logging.info', 'logging.info', ({(127, 15, 127, 47): '"""Model failed infra validation."""'}, {}), "('Model failed infra validation.')", False, 'from absl import logging\n'), ((88, 11, 92, 5), 'tfx.components.infra_validator.model_server_runners.local_docker_runner.LocalDockerRunner', 'local_docker_runner.LocalDockerRunner', (), '', False, 'from tfx.components.infra_validator.model_server_runners import local_docker_runner\n'), ((122, 6, 122, 51), 'os.path.join', 'os.path.join', ({(122, 19, 122, 31): 'blessing.uri', (122, 33, 122, 50): '_BLESSED_FILENAME'}, {}), '(blessing.uri, _BLESSED_FILENAME)', False, 'import os\n'), ((129, 6, 129, 55), 'os.path.join', 'os.path.join', ({(129, 19, 129, 31): 'blessing.uri', (129, 33, 129, 54): '_NOT_BLESSED_FILENAME'}, {}), '(blessing.uri, _NOT_BLESSED_FILENAME)', False, 'import os\n'), ((172, 12, 172, 69), 'tfx.types.artifact_utils.get_single_instance', 'artifact_utils.get_single_instance', ({(172, 47, 172, 68): 'input_dict[MODEL_KEY]'}, {}), '(input_dict[MODEL_KEY])', False, 'from tfx.types import artifact_utils\n'), ((173, 15, 173, 76), 'tfx.types.artifact_utils.get_single_instance', 'artifact_utils.get_single_instance', ({(173, 50, 173, 75): 'output_dict[BLESSING_KEY]'}, {}), '(output_dict[BLESSING_KEY])', False, 'from tfx.types import artifact_utils\n'), ((180, 19, 180, 52), 'tfx.proto.infra_validator_pb2.ServingSpec', 'infra_validator_pb2.ServingSpec', ({}, {}), '()', False, 'from tfx.proto import infra_validator_pb2\n'), ((181, 4, 181, 78), 'tfx.utils.proto_utils.json_to_proto', 'proto_utils.json_to_proto', ({(181, 30, 181, 63): 'exec_properties[SERVING_SPEC_KEY]', (181, 65, 181, 77): 'serving_spec'}, {}), '(exec_properties[SERVING_SPEC_KEY], serving_spec)', False, 'from tfx.utils import proto_utils\n'), ((185, 22, 185, 58), 'tfx.proto.infra_validator_pb2.ValidationSpec', 'infra_validator_pb2.ValidationSpec', ({}, {}), '()', False, 'from tfx.proto import infra_validator_pb2\n'), ((283, 26, 283, 75), 'tfx.components.infra_validator.serving_bins.parse_serving_binaries', 'serving_bins.parse_serving_binaries', ({(283, 62, 283, 74): 'serving_spec'}, {}), '(serving_spec)', False, 'from tfx.components.infra_validator import serving_bins\n'), ((300, 24, 300, 67), 'tfx.utils.path_utils.stamped_model_path', 'path_utils.stamped_model_path', ({(300, 54, 300, 66): 'blessing.uri'}, {}), '(blessing.uri)', False, 'from tfx.utils import path_utils\n'), ((301, 4, 301, 60), 'tfx.utils.io_utils.copy_dir', 'io_utils.copy_dir', (), '', False, 'from tfx.utils import io_utils\n'), ((94, 11, 98, 5), 'tfx.components.infra_validator.model_server_runners.kubernetes_runner.KubernetesRunner', 'kubernetes_runner.KubernetesRunner', (), '', False, 'from tfx.components.infra_validator.model_server_runners import kubernetes_runner\n'), ((142, 26, 142, 70), 'functools.partial', 'functools.partial', ({(142, 44, 142, 52): 'function', (142, 54, 142, 59): '*args'}, {}), '(function, *args, **kwargs)', False, 'import functools\n'), ((176, 17, 176, 77), 'tfx.types.artifact_utils.get_single_instance', 'artifact_utils.get_single_instance', ({(176, 52, 176, 76): 'input_dict[EXAMPLES_KEY]'}, {}), '(input_dict[EXAMPLES_KEY])', False, 'from tfx.types import artifact_utils\n'), ((187, 6, 188, 48), 'tfx.utils.proto_utils.json_to_proto', 'proto_utils.json_to_proto', ({(187, 32, 187, 68): 'exec_properties[VALIDATION_SPEC_KEY]', (188, 32, 188, 47): 'validation_spec'}, {}), '(exec_properties[VALIDATION_SPEC_KEY], validation_spec\n )', False, 'from tfx.utils import proto_utils\n'), ((195, 21, 195, 54), 'tfx.proto.infra_validator_pb2.RequestSpec', 'infra_validator_pb2.RequestSpec', ({}, {}), '()', False, 'from tfx.proto import infra_validator_pb2\n'), ((196, 6, 197, 45), 'tfx.utils.proto_utils.json_to_proto', 'proto_utils.json_to_proto', ({(196, 32, 196, 65): 'exec_properties[REQUEST_SPEC_KEY]', (197, 32, 197, 44): 'request_spec'}, {}), '(exec_properties[REQUEST_SPEC_KEY], request_spec)', False, 'from tfx.utils import proto_utils\n'), ((243, 20, 243, 59), 'signal.signal', 'signal.signal', ({(243, 34, 243, 48): 'signal.SIGTERM', (243, 50, 243, 58): '_handler'}, {}), '(signal.SIGTERM, _handler)', False, 'import signal\n'), ((270, 6, 270, 72), 'absl.logging.info', 'logging.info', ({(270, 19, 270, 71): '"""InfraValidator will be run in LOAD_AND_QUERY mode."""'}, {}), "('InfraValidator will be run in LOAD_AND_QUERY mode.')", False, 'from absl import logging\n'), ((271, 17, 275, 36), 'tfx.components.infra_validator.request_builder.build_requests', 'request_builder.build_requests', (), '', False, 'from tfx.components.infra_validator import request_builder\n'), ((277, 6, 277, 67), 'absl.logging.info', 'logging.info', ({(277, 19, 277, 66): '"""InfraValidator will be run in LOAD_ONLY mode."""'}, {}), "('InfraValidator will be run in LOAD_ONLY mode.')", False, 'from absl import logging\n'), ((303, 8, 303, 54), 'tfx.utils.path_utils.warmup_file_path', 'path_utils.warmup_file_path', ({(303, 36, 303, 53): 'output_model_path'}, {}), '(output_model_path)', False, 'from tfx.utils import path_utils\n'), ((310, 19, 310, 58), 'tfx.utils.path_utils.is_old_model_artifact', 'path_utils.is_old_model_artifact', ({(310, 52, 310, 57): 'model'}, {}), '(model)', False, 'from tfx.utils import path_utils\n'), ((343, 6, 344, 45), 'absl.logging.info', 'logging.info', ({(343, 19, 343, 63): '"""Starting infra validation (attempt %d/%d)."""', (343, 65, 343, 70): '(i + 1)', (344, 19, 344, 44): 'validation_spec.num_tries'}, {}), "('Starting infra validation (attempt %d/%d).', i + 1,\n validation_spec.num_tries)", False, 'from absl import logging\n'), ((378, 15, 378, 26), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((385, 6, 385, 42), 'absl.logging.info', 'logging.info', ({(385, 19, 385, 33): '"""Starting %r."""', (385, 35, 385, 41): 'runner'}, {}), "('Starting %r.', runner)", False, 'from absl import logging\n'), ((398, 6, 398, 42), 'absl.logging.info', 'logging.info', ({(398, 19, 398, 33): '"""Stopping %r."""', (398, 35, 398, 41): 'runner'}, {}), "('Stopping %r.', runner)", False, 'from absl import logging\n'), ((107, 21, 107, 68), 'tensorflow_serving.apis.prediction_log_pb2.ClassifyLog', 'prediction_log_pb2.ClassifyLog', (), '', False, 'from tensorflow_serving.apis import prediction_log_pb2\n'), ((257, 8, 257, 50), 'signal.signal', 'signal.signal', ({(257, 22, 257, 36): 'signal.SIGTERM', (257, 38, 257, 49): 'old_handler'}, {}), '(signal.SIGTERM, old_handler)', False, 'import signal\n'), ((319, 8, 321, 56), 'tfx.utils.model_paths.tf_serving_flavor.parse_model_path', 'tf_serving_flavor.parse_model_path', (), '', False, 'from tfx.utils.model_paths import tf_serving_flavor\n'), ((110, 20, 110, 66), 'tensorflow_serving.apis.prediction_log_pb2.RegressLog', 'prediction_log_pb2.RegressLog', (), '', False, 'from tensorflow_serving.apis import prediction_log_pb2\n'), ((149, 8, 149, 72), 'absl.logging.warning', 'logging.warning', (), '', False, 'from absl import logging\n'), ((329, 8, 329, 62), 'tfx.utils.io_utils.copy_dir', 'io_utils.copy_dir', (), '', False, 'from tfx.utils import io_utils\n'), ((359, 8, 360, 52), 'absl.logging.exception', 'logging.exception', ({(359, 26, 359, 68): '"""Infra validation (attempt %d/%d) failed."""', (359, 70, 359, 75): '(i + 1)', (360, 26, 360, 51): 'validation_spec.num_tries'}, {}), "('Infra validation (attempt %d/%d) failed.', i + 1,\n validation_spec.num_tries)", False, 'from absl import logging\n'), ((113, 20, 113, 66), 'tensorflow_serving.apis.prediction_log_pb2.PredictLog', 'prediction_log_pb2.PredictLog', (), '', False, 'from tensorflow_serving.apis import prediction_log_pb2\n'), ((249, 19, 249, 45), 'threading.current_thread', 'threading.current_thread', ({}, {}), '()', False, 'import threading\n'), ((362, 10, 363, 66), 'absl.logging.info', 'logging.info', ({(362, 23, 363, 65): '"""Consider increasing the value of ValidationSpec.max_loading_time_seconds."""'}, {}), "(\n 'Consider increasing the value of ValidationSpec.max_loading_time_seconds.'\n )", False, 'from absl import logging\n'), ((328, 24, 328, 35), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n')]
ykyang/org.allnix.python
learning_python/org/allnix/util.py
f9d74db2db026b20e925ac40dbca7d21b3ac0b0f
def write(message: str): print("org.allnix", message) def read() -> str: """Returns a string""" return "org.allnix"
[]
happys2333/DL-2021-fall
metr-la/model/Double_C_STTN.py
e110d737d1a70c8238f2de3278e6aebce07c7a66
# from folder workMETRLA # MODEL CODE # -*- coding: utf-8 -*- """ Created on Mon Sep 28 10:28:06 2020 @author: wb """ import torch import torch.nn as nn import math # from GCN_models import GCN # from One_hot_encoder import One_hot_encoder import torch.nn.functional as F import numpy as np from scipy.sparse.linalg import eigs from Param import * from torchsummary import summary DEVICE = 'cuda:1' class One_hot_encoder(nn.Module): def __init__(self, embed_size, time_num=288): super(One_hot_encoder, self).__init__() self.time_num = time_num self.I = nn.Parameter(torch.eye(time_num, time_num, requires_grad=True)) self.onehot_Linear = nn.Linear(time_num, embed_size) # 线性层改变one hot编码维度 def forward(self, i, N=25, T=12): if i % self.time_num + T > self.time_num: o1 = self.I[i % self.time_num:, :] o2 = self.I[0: (i + T) % self.time_num, :] onehot = torch.cat((o1, o2), 0) else: onehot = self.I[i % self.time_num: i % self.time_num + T, :] # onehot = onehot.repeat(N, 1, 1) onehot = onehot.expand(N, T, self.time_num) onehot = self.onehot_Linear(onehot) return onehot ''' Attention 基础代码 ScaledDotProductAttention 是通用的 解释dk: 数据进来的时候是B,N,T,C,做attention的时候,C=1 ,不能很好的表征数据高维空间的特征,C ---> embedded size 32 or 64 加入dk = 32, 那么一个头就是32,然后加上多头注意力机制的话,比如8个head,8个头,那就是32*8=256,如果要跟NIPS17 tranformer论文完全对应上,那么dk=64,head = 8 ,all embeded size = 512 ''' class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V): ''' Q: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] K: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] V: [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k] attn_mask: [batch_size, n_heads, seq_len, seq_len] 可能没有 ''' B, n_heads, len1, len2, d_k = Q.shape scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), N(Spatial) or T(Temporal)] # scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is True. attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) # [batch_size, n_heads, T(Spatial) or N(Temporal), N(Spatial) or T(Temporal), d_k]] return context ''' S 代表spatial ,MultiHeadAttention 代表多头注意力机制 ''' class SMultiHeadAttention(nn.Module): def __init__(self, embed_size, heads): super(SMultiHeadAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" # 用Linear来做投影矩阵 # 但这里如果是多头的话,是不是需要声明多个矩阵??? self.W_V = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_K = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_Q = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size) def forward(self, input_Q, input_K, input_V): ''' input_Q: [batch_size, N, T, C] input_K: [batch_size, N, T, C] input_V: [batch_size, N, T, C] attn_mask: [batch_size, seq_len, seq_len] ''' B, N, T, C = input_Q.shape # [B, N, T, C] --> [B, N, T, h * d_k] --> [B, N, T, h, d_k] --> [B, h, T, N, d_k] Q = self.W_Q(input_Q).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # Q: [B, N, T, C] --[B, N, T, self.heads, self.head_dim] -> [B,h,T,N,dk] 然后是为了把N,dk这两维度考虑去做ScaledDotProductAttention ,代表着是spatial attention K = self.W_K(input_K).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # K: [B, h, T, N, d_k] V = self.W_V(input_V).view(B, N, T, self.heads, self.head_dim).transpose(1, 3) # V: [B, h, T, N, d_k] # attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] seq_len = N # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] context = ScaledDotProductAttention()(Q, K, V) # [B, h, T, N, d_k] context = context.permute(0, 3, 2, 1, 4) # [B, N, T, h, d_k] context = context.reshape(B, N, T, self.heads * self.head_dim) # [B, N, T, C] # context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc_out(context) # [batch_size, len_q, d_model] return output ''' T 代表Temporal ,MultiHeadAttention 代表多头注意力机制 ''' class TMultiHeadAttention(nn.Module): def __init__(self, embed_size, heads): super(TMultiHeadAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert ( self.head_dim * heads == embed_size ), "Embedding size needs to be divisible by heads" # 用Linear来做投影矩阵 # 但这里如果是多头的话,是不是需要声明多个矩阵??? self.W_V = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_K = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.W_Q = nn.Linear(self.embed_size, self.head_dim * self.heads, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size) def forward(self, input_Q, input_K, input_V): ''' input_Q: [batch_size, N, T, C] input_K: [batch_size, N, T, C] input_V: [batch_size, N, T, C] attn_mask: [batch_size, seq_len, seq_len] ''' B, N, T, C = input_Q.shape # [B, N, T, C] --> [B, N, T, h * d_k] --> [B, N, T, h, d_k] --> [B, h, N, T, d_k] Q = self.W_Q(input_Q).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # Q: [B, h, N, T, d_k] T,dk 就代表是temporal attention K = self.W_K(input_K).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # K: [B, h, N, T, d_k] V = self.W_V(input_V).view(B, N, T, self.heads, self.head_dim).permute(0, 3, 1, 2, 4) # V: [B, h, N, T, d_k] # attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] # context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k] context = ScaledDotProductAttention()(Q, K, V) # [B, h, N, T, d_k] context = context.permute(0, 2, 3, 1, 4) # [B, N, T, h, d_k] context = context.reshape(B, N, T, self.heads * self.head_dim) # [B, N, T, C] # context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc_out(context) # [batch_size, len_q, d_model] return output class STransformer(nn.Module): def __init__(self, embed_size, heads, adj, cheb_K, dropout, forward_expansion): super(STransformer, self).__init__() # Spatial Embedding self.adj = adj self.D_S = adj.to(DEVICE) self.embed_liner = nn.Linear(adj.shape[0], embed_size) self.attention = SMultiHeadAttention(embed_size, heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion * embed_size), nn.ReLU(), nn.Linear(forward_expansion * embed_size, embed_size), ) # 调用GCN self.norm_adj = nn.InstanceNorm2d(1) # 对邻接矩阵归一化 self.dropout = nn.Dropout(dropout) self.fs = nn.Linear(embed_size, embed_size) self.fg = nn.Linear(embed_size, embed_size) def forward(self, value, key, query): # value, key, query: [N, T, C] [B, N, T, C] # Spatial Embedding 部分 # N, T, C = query.shape # D_S = self.embed_liner(self.D_S) # [N, C] # D_S = D_S.expand(T, N, C) #[T, N, C]相当于在第一维复制了T份 # D_S = D_S.permute(1, 0, 2) #[N, T, C] B, N, T, C = query.shape D_S = self.embed_liner(self.D_S) # [N, C] ---position encoding D_S = D_S.expand(B, T, N, C) # [B, T, N, C] 相当于在第2维复制了T份, 第一维复制B份 D_S = D_S.permute(0, 2, 1, 3) # [B, N, T, C] # Spatial Transformer 部分 query = query + D_S attention = self.attention(query, query, query) # (B, N, T, C) # Add skip connection, run through normalization and finally dropout x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) U_S = self.dropout(self.norm2(forward + x)) # 融合 STransformer and GCN g = torch.sigmoid(self.fs(U_S)) # (7) out = g * U_S + (1 - g) # (8) return out # (B, N, T, C) class TTransformer(nn.Module): def __init__(self, embed_size, heads, time_num, dropout, forward_expansion): super(TTransformer, self).__init__() # Temporal embedding One hot self.time_num = time_num # self.one_hot = One_hot_encoder(embed_size, time_num) # temporal embedding选用one-hot方式 或者 self.temporal_embedding = nn.Embedding(time_num, embed_size) # temporal embedding选用nn.Embedding self.attention = TMultiHeadAttention(embed_size, heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion * embed_size), nn.ReLU(), nn.Linear(forward_expansion * embed_size, embed_size), ) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, t): B, N, T, C = query.shape # D_T = self.one_hot(t, N, T) # temporal embedding选用one-hot方式 或者 D_T = self.temporal_embedding(torch.arange(0, T).to(DEVICE)) # temporal embedding选用nn.Embedding D_T = D_T.expand(B, N, T, C) # temporal embedding加到query。 原论文采用concatenated query = query + D_T attention = self.attention(query, query, query) # Add skip connection, run through normalization and finally dropout x = self.dropout(self.norm1(attention + query)) forward = self.feed_forward(x) out = self.dropout(self.norm2(forward + x)) return out ### STBlock class STTransformerBlock(nn.Module): def __init__(self, embed_size, heads, adj, time_num, cheb_K, dropout, forward_expansion): super(STTransformerBlock, self).__init__() self.STransformer = STransformer(embed_size, heads, adj, cheb_K, dropout, forward_expansion) self.TTransformer = TTransformer(embed_size, heads, time_num, dropout, forward_expansion) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, t): # value, key, query: [N, T, C] [B, N, T, C] # Add skip connection,run through normalization and finally dropout x1 = self.norm1(self.STransformer(value, key, query) + query) # (B, N, T, C) x2 = self.dropout(self.norm2(self.TTransformer(x1, x1, x1, t) + x1)) return x2 ### Encoder class Encoder(nn.Module): # 堆叠多层 ST-Transformer Block def __init__( self, embed_size, num_layers, heads, adj, time_num, device, forward_expansion, cheb_K, dropout, ): super(Encoder, self).__init__() self.embed_size = embed_size self.device = device self.layers = nn.ModuleList( [ STTransformerBlock( embed_size, heads, adj, time_num, cheb_K, dropout=dropout, forward_expansion=forward_expansion ) for _ in range(num_layers) ] ) self.dropout = nn.Dropout(dropout) def forward(self, x, t): # x: [N, T, C] [B, N, T, C] out = self.dropout(x) # In the Encoder the query, key, value are all the same. for layer in self.layers: out = layer(out, out, out, t) return out ### Transformer class Transformer(nn.Module): def __init__( self, adj, embed_size, num_layers, heads, time_num, forward_expansion, ##? cheb_K, dropout, device=DEVICE ): super(Transformer, self).__init__() self.encoder = Encoder( embed_size, num_layers, heads, adj, time_num, device, forward_expansion, cheb_K, dropout ) self.device = device def forward(self, src, t): ## scr: [N, T, C] [B, N, T, C] enc_src = self.encoder(src, t) return enc_src # [B, N, T, C] ### ST Transformer: Total Model class STTransformer(nn.Module): def __init__( self, adj, in_channels, embed_size, time_num, num_layers, T_dim, output_T_dim, heads, cheb_K, forward_expansion, dropout=0 ): super(STTransformer, self).__init__() self.forward_expansion = forward_expansion # feed forward 的 embeded size 8,16,32....1024 # 第一次卷积扩充通道数 self.conv1 = nn.Conv2d(in_channels, embed_size, 1) # Channel = 1 给 扩维,成 embeded size self.Transformer = Transformer( adj, embed_size, num_layers, heads, time_num, forward_expansion, cheb_K, dropout=0 ) # 缩小时间维度。 例:T_dim=12到output_T_dim=3,输入12维降到输出3维 or 12in 12 out self.conv2 = nn.Conv2d(T_dim, output_T_dim, 1) # 缩小通道数,降到1维。 self.conv3 = nn.Conv2d(embed_size, in_channels, 1) self.relu = nn.ReLU() # 和归一化搭配好,防止梯度爆炸,消失。 def forward(self, x): # platform: (CHANNEL, TIMESTEP_IN, N_NODE) # input x shape[ C, N, T] # C:通道数量。 N:传感器数量。 T:时间数量 # x = x.unsqueeze(0) # x = np.transpose(x,(0,2,1)).to(DEVICE) input_Transformer = self.conv1(x) # conv 要求第二维度是C, 也就是必须得B C + 其他 # input_Transformer = input_Transformer.squeeze(0) # input_Transformer = input_Transformer.permute(1, 2, 0) input_Transformer = input_Transformer.permute(0, 2, 3, 1) # input_Transformer shape[N, T, C] [B, N, T, C] output_Transformer = self.Transformer(input_Transformer, self.forward_expansion) # [B, N, T, C] output_Transformer = output_Transformer.permute(0, 2, 1, 3) # output_Transformer shape[B, T, N, C] # output_Transformer = output_Transformer.unsqueeze(0) out = self.relu(self.conv2(output_Transformer)) # 等号左边 out shape: [1, output_T_dim, N, C] out = out.permute(0, 3, 2, 1) # 等号左边 out shape: [B, C, N, output_T_dim] out = self.conv3(out) # 等号左边 out shape: [B, 1, N, output_T_dim] # out = out.squeeze(1) out = out.permute(0, 1, 3, 2) # print('out: ',out.shape) return out # [B, N, output_dim] # return out shape: [N, output_dim] def print_params(model_name, model): param_count = 0 for name, param in model.named_parameters(): if param.requires_grad: param_count += param.numel() print(f'{model_name}, {param_count} trainable parameters in total.') return import sys import pandas as pd def main(): GPU = sys.argv[-1] if len(sys.argv) == 2 else '1' device = torch.device("cuda:{}".format(GPU)) if torch.cuda.is_available() else torch.device("cpu") in_channels = 2 # Channels of input embed_size = 32 # Dimension of hidden embedding features time_num = 288 num_layers = 2 # Number of ST Block T_dim = 12 # Input length, should be the same as prepareData.py output_T_dim = 12 # Output Expected length heads = 4 # Number of Heads in MultiHeadAttention cheb_K = 2 # Order for Chebyshev Polynomials (Eq 2) forward_expansion = 32 # Dimension of Feed Forward Network: embed_size --> embed_size * forward_expansion --> embed_size dropout = 0 A = pd.read_csv(ADJPATH).values A = torch.Tensor(A) ### Construct Network model = STTransformer( A, in_channels, embed_size, time_num, num_layers, T_dim, output_T_dim, heads, cheb_K, forward_expansion, dropout).to(DEVICE) summary(model, (2, N_NODE, TIMESTEP_IN), device=device) print_params('STTransformer', model) if __name__ == '__main__': main() ''' 布置作业: 1. 设计 only Spatial Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 2. 设计 only Temporal Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 3. 设计 Temporal-Spatial Transformer 的版本,跑出PEMSBAY的结果 12 步in 12 步 out 4. 前面的版本完成后,全部升级为,C 维度由1变成2,多的一个C是时间戳,时间戳的写法,参考 也就是说原来是B N T C=1 ,现在要求改成 B,N,T,C=2, 然后跑出1,2,3 升级版结果。 12 步in 12 步 out PEMSBAY 数据集 '''
[((469, 8, 469, 23), 'torch.Tensor', 'torch.Tensor', ({(469, 21, 469, 22): 'A'}, {}), '(A)', False, 'import torch\n'), ((484, 4, 484, 59), 'torchsummary.summary', 'summary', (), '', False, 'from torchsummary import summary\n'), ((32, 29, 32, 60), 'torch.nn.Linear', 'nn.Linear', ({(32, 39, 32, 47): 'time_num', (32, 49, 32, 59): 'embed_size'}, {}), '(time_num, embed_size)', True, 'import torch.nn as nn\n'), ((78, 18, 79, 33), 'torch.matmul', 'torch.matmul', ({(78, 31, 78, 35): 'attn', (79, 31, 79, 32): 'V'}, {}), '(attn, V)', False, 'import torch\n'), ((103, 19, 103, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((104, 19, 104, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((105, 19, 105, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((106, 22, 106, 66), 'torch.nn.Linear', 'nn.Linear', ({(106, 32, 106, 53): 'heads * self.head_dim', (106, 55, 106, 65): 'embed_size'}, {}), '(heads * self.head_dim, embed_size)', True, 'import torch.nn as nn\n'), ((153, 19, 153, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((154, 19, 154, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((155, 19, 155, 85), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((156, 22, 156, 66), 'torch.nn.Linear', 'nn.Linear', ({(156, 32, 156, 53): 'heads * self.head_dim', (156, 55, 156, 65): 'embed_size'}, {}), '(heads * self.head_dim, embed_size)', True, 'import torch.nn as nn\n'), ((189, 27, 189, 62), 'torch.nn.Linear', 'nn.Linear', ({(189, 37, 189, 49): 'adj.shape[0]', (189, 51, 189, 61): 'embed_size'}, {}), '(adj.shape[0], embed_size)', True, 'import torch.nn as nn\n'), ((192, 21, 192, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(192, 34, 192, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((193, 21, 193, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(193, 34, 193, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((202, 24, 202, 44), 'torch.nn.InstanceNorm2d', 'nn.InstanceNorm2d', ({(202, 42, 202, 43): '1'}, {}), '(1)', True, 'import torch.nn as nn\n'), ((204, 23, 204, 42), 'torch.nn.Dropout', 'nn.Dropout', ({(204, 34, 204, 41): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((205, 18, 205, 51), 'torch.nn.Linear', 'nn.Linear', ({(205, 28, 205, 38): 'embed_size', (205, 40, 205, 50): 'embed_size'}, {}), '(embed_size, embed_size)', True, 'import torch.nn as nn\n'), ((206, 18, 206, 51), 'torch.nn.Linear', 'nn.Linear', ({(206, 28, 206, 38): 'embed_size', (206, 40, 206, 50): 'embed_size'}, {}), '(embed_size, embed_size)', True, 'import torch.nn as nn\n'), ((242, 34, 242, 68), 'torch.nn.Embedding', 'nn.Embedding', ({(242, 47, 242, 55): 'time_num', (242, 57, 242, 67): 'embed_size'}, {}), '(time_num, embed_size)', True, 'import torch.nn as nn\n'), ((245, 21, 245, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(245, 34, 245, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((246, 21, 246, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(246, 34, 246, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((253, 23, 253, 42), 'torch.nn.Dropout', 'nn.Dropout', ({(253, 34, 253, 41): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((281, 21, 281, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(281, 34, 281, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((282, 21, 282, 45), 'torch.nn.LayerNorm', 'nn.LayerNorm', ({(282, 34, 282, 44): 'embed_size'}, {}), '(embed_size)', True, 'import torch.nn as nn\n'), ((283, 23, 283, 42), 'torch.nn.Dropout', 'nn.Dropout', ({(283, 34, 283, 41): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((326, 23, 326, 42), 'torch.nn.Dropout', 'nn.Dropout', ({(326, 34, 326, 41): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((394, 21, 394, 58), 'torch.nn.Conv2d', 'nn.Conv2d', ({(394, 31, 394, 42): 'in_channels', (394, 44, 394, 54): 'embed_size', (394, 56, 394, 57): '1'}, {}), '(in_channels, embed_size, 1)', True, 'import torch.nn as nn\n'), ((407, 21, 407, 54), 'torch.nn.Conv2d', 'nn.Conv2d', ({(407, 31, 407, 36): 'T_dim', (407, 38, 407, 50): 'output_T_dim', (407, 52, 407, 53): '1'}, {}), '(T_dim, output_T_dim, 1)', True, 'import torch.nn as nn\n'), ((409, 21, 409, 58), 'torch.nn.Conv2d', 'nn.Conv2d', ({(409, 31, 409, 41): 'embed_size', (409, 43, 409, 54): 'in_channels', (409, 56, 409, 57): '1'}, {}), '(embed_size, in_channels, 1)', True, 'import torch.nn as nn\n'), ((410, 20, 410, 29), 'torch.nn.ReLU', 'nn.ReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((457, 52, 457, 77), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((457, 83, 457, 102), 'torch.device', 'torch.device', ({(457, 96, 457, 101): '"""cpu"""'}, {}), "('cpu')", False, 'import torch\n'), ((468, 8, 468, 28), 'pandas.read_csv', 'pd.read_csv', ({(468, 20, 468, 27): 'ADJPATH'}, {}), '(ADJPATH)', True, 'import pandas as pd\n'), ((31, 30, 31, 79), 'torch.eye', 'torch.eye', (), '', False, 'import torch\n'), ((39, 21, 39, 43), 'torch.cat', 'torch.cat', ({(39, 31, 39, 39): '(o1, o2)', (39, 41, 39, 42): '0'}, {}), '((o1, o2), 0)', False, 'import torch\n'), ((73, 56, 73, 68), 'numpy.sqrt', 'np.sqrt', ({(73, 64, 73, 67): 'd_k'}, {}), '(d_k)', True, 'import numpy as np\n'), ((77, 15, 77, 33), 'torch.nn.Softmax', 'nn.Softmax', (), '', True, 'import torch.nn as nn\n'), ((196, 12, 196, 65), 'torch.nn.Linear', 'nn.Linear', ({(196, 22, 196, 32): 'embed_size', (196, 34, 196, 64): 'forward_expansion * embed_size'}, {}), '(embed_size, forward_expansion * embed_size)', True, 'import torch.nn as nn\n'), ((197, 12, 197, 21), 'torch.nn.ReLU', 'nn.ReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((198, 12, 198, 65), 'torch.nn.Linear', 'nn.Linear', ({(198, 22, 198, 52): 'forward_expansion * embed_size', (198, 54, 198, 64): 'embed_size'}, {}), '(forward_expansion * embed_size, embed_size)', True, 'import torch.nn as nn\n'), ((249, 12, 249, 65), 'torch.nn.Linear', 'nn.Linear', ({(249, 22, 249, 32): 'embed_size', (249, 34, 249, 64): 'forward_expansion * embed_size'}, {}), '(embed_size, forward_expansion * embed_size)', True, 'import torch.nn as nn\n'), ((250, 12, 250, 21), 'torch.nn.ReLU', 'nn.ReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((251, 12, 251, 65), 'torch.nn.Linear', 'nn.Linear', ({(251, 22, 251, 52): 'forward_expansion * embed_size', (251, 54, 251, 64): 'embed_size'}, {}), '(forward_expansion * embed_size, embed_size)', True, 'import torch.nn as nn\n'), ((259, 38, 259, 56), 'torch.arange', 'torch.arange', ({(259, 51, 259, 52): '0', (259, 54, 259, 55): 'T'}, {}), '(0, T)', False, 'import torch\n')]
daniel-chuang/tetris
tetrisanim3.py
518bd7b1fd80babc34a1da323b2f50d88c31ed4a
# animation for medium article from termcolor import colored import time import imageio import pyautogui pyautogui.FAILSAFE = True matrix = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 2, 0, 0, 0], [0, 0, 0, 0, 0, 2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 1, 1, 1, 1, 1, 1, 1, 0], [1, 0, 1, 0, 0, 0, 0, 1, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 0, 1, 0, 1, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] lst = set() for i in range(21): for z in range(10): for row in range(len(matrix)): if 0 not in matrix[row]: lst.add(row) if (i == 20 or i > row) and row in lst: print(colored("1 " * 10, "green")) else: for element in range(len(matrix[row])): if i == row and z == element: print(colored(matrix[row][element], "green"), end=" ", flush=False) elif matrix[row][element] == 1: print(colored(matrix[row][element], "red"), end=" ", flush=False) elif matrix[row][element] == 2: print(colored(matrix[row][element], "blue"), end=" ", flush=False) else: print(matrix[row][element], end=" ", flush=False) print("") print("") # takes a screenshot pyautogui.moveTo(338, 580, duration = 0) pyautogui.hotkey('command', 'shift', '4') pyautogui.dragTo(547, 1000, duration = 0, button = 'left')
[((52, 8, 52, 48), 'pyautogui.moveTo', 'pyautogui.moveTo', (), '', False, 'import pyautogui\n'), ((53, 8, 53, 49), 'pyautogui.hotkey', 'pyautogui.hotkey', ({(53, 25, 53, 34): '"""command"""', (53, 36, 53, 43): '"""shift"""', (53, 45, 53, 48): '"""4"""'}, {}), "('command', 'shift', '4')", False, 'import pyautogui\n'), ((54, 8, 54, 66), 'pyautogui.dragTo', 'pyautogui.dragTo', (), '', False, 'import pyautogui\n'), ((38, 22, 38, 49), 'termcolor.colored', 'colored', ({(38, 30, 38, 39): "('1 ' * 10)", (38, 41, 38, 48): '"""green"""'}, {}), "('1 ' * 10, 'green')", False, 'from termcolor import colored\n'), ((42, 30, 42, 68), 'termcolor.colored', 'colored', ({(42, 38, 42, 58): 'matrix[row][element]', (42, 60, 42, 67): '"""green"""'}, {}), "(matrix[row][element], 'green')", False, 'from termcolor import colored\n'), ((44, 30, 44, 66), 'termcolor.colored', 'colored', ({(44, 38, 44, 58): 'matrix[row][element]', (44, 60, 44, 65): '"""red"""'}, {}), "(matrix[row][element], 'red')", False, 'from termcolor import colored\n'), ((46, 30, 46, 67), 'termcolor.colored', 'colored', ({(46, 38, 46, 58): 'matrix[row][element]', (46, 60, 46, 66): '"""blue"""'}, {}), "(matrix[row][element], 'blue')", False, 'from termcolor import colored\n')]
destodasoftware/kately_api
inventories/models.py
89e4e80a93ebf8e5d2f2981d108ce5efde75d0dd
from django.db import models from products.models import Product from utils.models import Utility class Inventory(Utility): inventory_number = models.CharField(unique=True, max_length=100, blank=True, null=True) supplier = models.CharField(max_length=100, blank=True, null=True) user = models.ForeignKey('auth.User', on_delete=models.SET_NULL, blank=True, null=True) is_adjusment = models.BooleanField(default=False) def __str__(self): return self.inventory_number class InventoryItem(Utility): inventory = models.ForeignKey(Inventory, on_delete=models.CASCADE) product = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) def __str__(self): return self.product.name
[((8, 23, 8, 91), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((9, 15, 9, 70), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((10, 11, 10, 91), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((11, 19, 11, 53), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import models\n'), ((18, 16, 18, 70), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((19, 14, 19, 66), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((20, 15, 20, 53), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', (), '', False, 'from django.db import models\n')]
stephken/Hierarchical_assessment
hierarchical_app/views.py
537219903357d97d1354a8f262badba9729fb5e0
from django.shortcuts import render from hierarchical_app.models import Folder # Create your views here. def index_view(request): return render(request, 'index.html', {'welcome': "Welcome to Kens Hierarchical Data and You assessment", 'folders': Folder.objects.all()})
[((7, 120, 7, 140), 'hierarchical_app.models.Folder.objects.all', 'Folder.objects.all', ({}, {}), '()', False, 'from hierarchical_app.models import Folder\n')]
ramizdundar/Chexpert
bin/train_vit.py
6a5f005f1df421538182ad8497725b78e6de29be
import sys import os import argparse import logging import json import time import subprocess from shutil import copyfile import numpy as np from sklearn import metrics from easydict import EasyDict as edict import torch from torch.utils.data import DataLoader import torch.nn.functional as F from torch.nn import DataParallel from vit_pytorch import ViT from tensorboardX import SummaryWriter sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') torch.manual_seed(0) torch.cuda.manual_seed_all(0) from data.dataset import ImageDataset # noqa from model.classifier import Classifier # noqa from utils.misc import lr_schedule # noqa from model.utils import get_optimizer # noqa parser = argparse.ArgumentParser(description='Train model') parser.add_argument('cfg_path', default=None, metavar='CFG_PATH', type=str, help="Path to the config file in yaml format") parser.add_argument('save_path', default=None, metavar='SAVE_PATH', type=str, help="Path to the saved models") parser.add_argument('--num_workers', default=8, type=int, help="Number of " "workers for each data loader") parser.add_argument('--device_ids', default='0,1,2,3', type=str, help="GPU indices ""comma separated, e.g. '0,1' ") parser.add_argument('--pre_train', default=None, type=str, help="If get" "parameters from pretrained model") parser.add_argument('--resume', default=0, type=int, help="If resume from " "previous run") parser.add_argument('--logtofile', default=False, type=bool, help="Save log " "in save_path/log.txt if set True") parser.add_argument('--verbose', default=False, type=bool, help="Detail info") def get_loss(output, target, index, device, cfg): if cfg.criterion == 'BCE': for num_class in cfg.num_classes: assert num_class == 1 target = target[:, index].view(-1) pos_weight = torch.from_numpy( np.array(cfg.pos_weight, dtype=np.float32)).to(device).type_as(target) if cfg.batch_weight: if target.sum() == 0: loss = torch.tensor(0., requires_grad=True).to(device) else: weight = (target.size()[0] - target.sum()) / target.sum() loss = F.binary_cross_entropy_with_logits( output[index].view(-1), target, pos_weight=weight) else: loss = F.binary_cross_entropy_with_logits( output[index].view(-1), target, pos_weight=pos_weight[index]) label = torch.sigmoid(output[index].view(-1)).ge(0.5).float() acc = (target == label).float().sum() / len(label) else: raise Exception('Unknown criterion : {}'.format(cfg.criterion)) return (loss, acc) def train_epoch(summary, summary_dev, cfg, args, model, dataloader, dataloader_dev, optimizer, summary_writer, best_dict, dev_header): torch.set_grad_enabled(True) model.train() device_ids = list(map(int, args.device_ids.split(','))) device = torch.device('cuda:{}'.format(device_ids[0])) steps = len(dataloader) dataiter = iter(dataloader) label_header = dataloader.dataset._label_header num_tasks = len(cfg.num_classes) time_now = time.time() loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) for step in range(steps): image, target = next(dataiter) image = image.to(device) target = target.to(device) # output, logit_map = model(image) output = model(image) output = [torch.unsqueeze(i, 1) for i in output.T] # different number of tasks loss = 0 for t in range(num_tasks): loss_t, acc_t = get_loss(output, target, t, device, cfg) loss += loss_t loss_sum[t] += loss_t.item() acc_sum[t] += acc_t.item() optimizer.zero_grad() loss.backward() optimizer.step() summary['step'] += 1 if summary['step'] % cfg.log_every == 0: time_spent = time.time() - time_now time_now = time.time() loss_sum /= cfg.log_every acc_sum /= cfg.log_every loss_str = ' '.join(map(lambda x: '{:.5f}'.format(x), loss_sum)) acc_str = ' '.join(map(lambda x: '{:.3f}'.format(x), acc_sum)) logging.info( '{}, Train, Epoch : {}, Step : {}, Loss : {}, ' 'Acc : {}, Run Time : {:.2f} sec' .format(time.strftime("%Y-%m-%d %H:%M:%S"), summary['epoch'] + 1, summary['step'], loss_str, acc_str, time_spent)) for t in range(num_tasks): summary_writer.add_scalar( 'train/loss_{}'.format(label_header[t]), loss_sum[t], summary['step']) summary_writer.add_scalar( 'train/acc_{}'.format(label_header[t]), acc_sum[t], summary['step']) loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) if summary['step'] % cfg.test_every == 0: time_now = time.time() summary_dev, predlist, true_list = test_epoch( summary_dev, cfg, args, model, dataloader_dev) time_spent = time.time() - time_now auclist = [] for i in range(len(cfg.num_classes)): y_pred = predlist[i] y_true = true_list[i] fpr, tpr, thresholds = metrics.roc_curve( y_true, y_pred, pos_label=1) auc = metrics.auc(fpr, tpr) auclist.append(auc) summary_dev['auc'] = np.array(auclist) loss_dev_str = ' '.join(map(lambda x: '{:.5f}'.format(x), summary_dev['loss'])) acc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['acc'])) auc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['auc'])) logging.info( '{}, Dev, Step : {}, Loss : {}, Acc : {}, Auc : {},' 'Mean auc: {:.3f} ''Run Time : {:.2f} sec' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary['step'], loss_dev_str, acc_dev_str, auc_dev_str, summary_dev['auc'].mean(), time_spent)) for t in range(len(cfg.num_classes)): summary_writer.add_scalar( 'dev/loss_{}'.format(dev_header[t]), summary_dev['loss'][t], summary['step']) summary_writer.add_scalar( 'dev/acc_{}'.format(dev_header[t]), summary_dev['acc'][t], summary['step']) summary_writer.add_scalar( 'dev/auc_{}'.format(dev_header[t]), summary_dev['auc'][t], summary['step']) save_best = False mean_acc = summary_dev['acc'][cfg.save_index].mean() if mean_acc >= best_dict['acc_dev_best']: best_dict['acc_dev_best'] = mean_acc if cfg.best_target == 'acc': save_best = True mean_auc = summary_dev['auc'][cfg.save_index].mean() if mean_auc >= best_dict['auc_dev_best']: best_dict['auc_dev_best'] = mean_auc if cfg.best_target == 'auc': save_best = True mean_loss = summary_dev['loss'][cfg.save_index].mean() if mean_loss <= best_dict['loss_dev_best']: best_dict['loss_dev_best'] = mean_loss if cfg.best_target == 'loss': save_best = True if save_best: torch.save( {'epoch': summary['epoch'], 'step': summary['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'best{}.ckpt'.format( best_dict['best_idx'])) ) best_dict['best_idx'] += 1 if best_dict['best_idx'] > cfg.save_top_k: best_dict['best_idx'] = 1 logging.info( '{}, Best, Step : {}, Loss : {}, Acc : {},Auc :{},' 'Best Auc : {:.3f}' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary['step'], loss_dev_str, acc_dev_str, auc_dev_str, best_dict['auc_dev_best'])) model.train() torch.set_grad_enabled(True) summary['epoch'] += 1 return summary, best_dict def test_epoch(summary, cfg, args, model, dataloader): torch.set_grad_enabled(False) model.eval() device_ids = list(map(int, args.device_ids.split(','))) device = torch.device('cuda:{}'.format(device_ids[0])) steps = len(dataloader) dataiter = iter(dataloader) num_tasks = len(cfg.num_classes) loss_sum = np.zeros(num_tasks) acc_sum = np.zeros(num_tasks) predlist = list(x for x in range(len(cfg.num_classes))) true_list = list(x for x in range(len(cfg.num_classes))) for step in range(steps): image, target = next(dataiter) image = image.to(device) target = target.to(device) output = model(image) output = [torch.unsqueeze(i, 1) for i in output.T] # different number of tasks for t in range(len(cfg.num_classes)): loss_t, acc_t = get_loss(output, target, t, device, cfg) # AUC output_tensor = torch.sigmoid( output[t].view(-1)).cpu().detach().numpy() target_tensor = target[:, t].view(-1).cpu().detach().numpy() if step == 0: predlist[t] = output_tensor true_list[t] = target_tensor else: predlist[t] = np.append(predlist[t], output_tensor) true_list[t] = np.append(true_list[t], target_tensor) loss_sum[t] += loss_t.item() acc_sum[t] += acc_t.item() summary['loss'] = loss_sum / steps summary['acc'] = acc_sum / steps return summary, predlist, true_list def run(args): with open(args.cfg_path) as f: cfg = edict(json.load(f)) if args.verbose is True: print(json.dumps(cfg, indent=4)) if not os.path.exists(args.save_path): os.mkdir(args.save_path) if args.logtofile is True: logging.basicConfig(filename=args.save_path + '/log.txt', filemode="w", level=logging.INFO) else: logging.basicConfig(level=logging.INFO) if not args.resume: with open(os.path.join(args.save_path, 'cfg.json'), 'w') as f: json.dump(cfg, f, indent=1) device_ids = list(map(int, args.device_ids.split(','))) num_devices = torch.cuda.device_count() if num_devices < len(device_ids): raise Exception( '#available gpu : {} < --device_ids : {}' .format(num_devices, len(device_ids))) device = torch.device('cuda:{}'.format(device_ids[0])) # model = Classifier(cfg) model = ViT( cfg = cfg, image_size=cfg.width, patch_size=32, num_classes=5, dim=1024, depth=6, heads=8, mlp_dim=512, dropout=0.3, emb_dropout=0.3, channels=3 ) if args.verbose is True: from torchsummary import summary if cfg.fix_ratio: h, w = cfg.long_side, cfg.long_side else: h, w = cfg.height, cfg.width summary(model.to(device), (3, h, w)) model = DataParallel(model, device_ids=device_ids).to(device).train() if args.pre_train is not None: if os.path.exists(args.pre_train): ckpt = torch.load(args.pre_train, map_location=device) model.module.load_state_dict(ckpt) optimizer = get_optimizer(model.parameters(), cfg) src_folder = os.path.dirname(os.path.abspath(__file__)) + '/../' dst_folder = os.path.join(args.save_path, 'classification') rc, size = subprocess.getstatusoutput('du --max-depth=0 %s | cut -f1' % src_folder) if rc != 0: raise Exception('Copy folder error : {}'.format(rc)) rc, err_msg = subprocess.getstatusoutput('cp -R %s %s' % (src_folder, dst_folder)) if rc != 0: raise Exception('copy folder error : {}'.format(err_msg)) copyfile(cfg.train_csv, os.path.join(args.save_path, 'train.csv')) copyfile(cfg.dev_csv, os.path.join(args.save_path, 'dev.csv')) dataloader_train = DataLoader( ImageDataset(cfg.train_csv, cfg, mode='train'), batch_size=cfg.train_batch_size, num_workers=args.num_workers, drop_last=True, shuffle=True) dataloader_dev = DataLoader( ImageDataset(cfg.dev_csv, cfg, mode='dev'), batch_size=cfg.dev_batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False) dev_header = dataloader_dev.dataset._label_header summary_train = {'epoch': 0, 'step': 0} summary_dev = {'loss': float('inf'), 'acc': 0.0} summary_writer = SummaryWriter(args.save_path) epoch_start = 0 best_dict = { "acc_dev_best": 0.0, "auc_dev_best": 0.0, "loss_dev_best": float('inf'), "fused_dev_best": 0.0, "best_idx": 1} if args.resume: ckpt_path = os.path.join(args.save_path, 'train.ckpt') ckpt = torch.load(ckpt_path, map_location=device) model.module.load_state_dict(ckpt['state_dict']) summary_train = {'epoch': ckpt['epoch'], 'step': ckpt['step']} best_dict['acc_dev_best'] = ckpt['acc_dev_best'] best_dict['loss_dev_best'] = ckpt['loss_dev_best'] best_dict['auc_dev_best'] = ckpt['auc_dev_best'] epoch_start = ckpt['epoch'] for epoch in range(epoch_start, cfg.epoch): lr = lr_schedule(cfg.lr, cfg.lr_factor, summary_train['epoch'], cfg.lr_epochs) for param_group in optimizer.param_groups: param_group['lr'] = lr summary_train, best_dict = train_epoch( summary_train, summary_dev, cfg, args, model, dataloader_train, dataloader_dev, optimizer, summary_writer, best_dict, dev_header) time_now = time.time() summary_dev, predlist, true_list = test_epoch( summary_dev, cfg, args, model, dataloader_dev) time_spent = time.time() - time_now auclist = [] for i in range(len(cfg.num_classes)): y_pred = predlist[i] y_true = true_list[i] fpr, tpr, thresholds = metrics.roc_curve( y_true, y_pred, pos_label=1) auc = metrics.auc(fpr, tpr) auclist.append(auc) summary_dev['auc'] = np.array(auclist) loss_dev_str = ' '.join(map(lambda x: '{:.5f}'.format(x), summary_dev['loss'])) acc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['acc'])) auc_dev_str = ' '.join(map(lambda x: '{:.3f}'.format(x), summary_dev['auc'])) logging.info( '{}, Dev, Step : {}, Loss : {}, Acc : {}, Auc : {},' 'Mean auc: {:.3f} ''Run Time : {:.2f} sec' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary_train['step'], loss_dev_str, acc_dev_str, auc_dev_str, summary_dev['auc'].mean(), time_spent)) for t in range(len(cfg.num_classes)): summary_writer.add_scalar( 'dev/loss_{}'.format(dev_header[t]), summary_dev['loss'][t], summary_train['step']) summary_writer.add_scalar( 'dev/acc_{}'.format(dev_header[t]), summary_dev['acc'][t], summary_train['step']) summary_writer.add_scalar( 'dev/auc_{}'.format(dev_header[t]), summary_dev['auc'][t], summary_train['step']) save_best = False mean_acc = summary_dev['acc'][cfg.save_index].mean() if mean_acc >= best_dict['acc_dev_best']: best_dict['acc_dev_best'] = mean_acc if cfg.best_target == 'acc': save_best = True mean_auc = summary_dev['auc'][cfg.save_index].mean() if mean_auc >= best_dict['auc_dev_best']: best_dict['auc_dev_best'] = mean_auc if cfg.best_target == 'auc': save_best = True mean_loss = summary_dev['loss'][cfg.save_index].mean() if mean_loss <= best_dict['loss_dev_best']: best_dict['loss_dev_best'] = mean_loss if cfg.best_target == 'loss': save_best = True if save_best: torch.save( {'epoch': summary_train['epoch'], 'step': summary_train['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'best{}.ckpt'.format(best_dict['best_idx'])) ) best_dict['best_idx'] += 1 if best_dict['best_idx'] > cfg.save_top_k: best_dict['best_idx'] = 1 logging.info( '{}, Best, Step : {}, Loss : {}, Acc : {},' 'Auc :{},Best Auc : {:.3f}' .format( time.strftime("%Y-%m-%d %H:%M:%S"), summary_train['step'], loss_dev_str, acc_dev_str, auc_dev_str, best_dict['auc_dev_best'])) torch.save({'epoch': summary_train['epoch'], 'step': summary_train['step'], 'acc_dev_best': best_dict['acc_dev_best'], 'auc_dev_best': best_dict['auc_dev_best'], 'loss_dev_best': best_dict['loss_dev_best'], 'state_dict': model.module.state_dict()}, os.path.join(args.save_path, 'train.ckpt')) summary_writer.close() def main(): args = parser.parse_args() if args.verbose is True: print('Using the specified args:') print(args) run(args) if __name__ == '__main__': main()
[((22, 0, 22, 20), 'torch.manual_seed', 'torch.manual_seed', ({(22, 18, 22, 19): '(0)'}, {}), '(0)', False, 'import torch\n'), ((23, 0, 23, 29), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', ({(23, 27, 23, 28): '(0)'}, {}), '(0)', False, 'import torch\n'), ((30, 9, 30, 59), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((78, 4, 78, 32), 'torch.set_grad_enabled', 'torch.set_grad_enabled', ({(78, 27, 78, 31): '(True)'}, {}), '(True)', False, 'import torch\n'), ((87, 15, 87, 26), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((88, 15, 88, 34), 'numpy.zeros', 'np.zeros', ({(88, 24, 88, 33): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((89, 14, 89, 33), 'numpy.zeros', 'np.zeros', ({(89, 23, 89, 32): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((234, 4, 234, 33), 'torch.set_grad_enabled', 'torch.set_grad_enabled', ({(234, 27, 234, 32): '(False)'}, {}), '(False)', False, 'import torch\n'), ((242, 15, 242, 34), 'numpy.zeros', 'np.zeros', ({(242, 24, 242, 33): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((243, 14, 243, 33), 'numpy.zeros', 'np.zeros', ({(243, 23, 243, 32): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((295, 18, 295, 43), 'torch.cuda.device_count', 'torch.cuda.device_count', ({}, {}), '()', False, 'import torch\n'), ((303, 12, 315, 5), 'vit_pytorch.ViT', 'ViT', (), '', False, 'from vit_pytorch import ViT\n'), ((331, 17, 331, 63), 'os.path.join', 'os.path.join', ({(331, 30, 331, 44): 'args.save_path', (331, 46, 331, 62): '"""classification"""'}, {}), "(args.save_path, 'classification')", False, 'import os\n'), ((332, 15, 333, 55), 'subprocess.getstatusoutput', 'subprocess.getstatusoutput', ({(332, 42, 333, 54): "'du --max-depth=0 %s | cut -f1' % src_folder"}, {}), "('du --max-depth=0 %s | cut -f1' % src_folder)", False, 'import subprocess\n'), ((336, 18, 337, 74), 'subprocess.getstatusoutput', 'subprocess.getstatusoutput', ({(336, 45, 337, 73): "'cp -R %s %s' % (src_folder, dst_folder)"}, {}), "('cp -R %s %s' % (src_folder, dst_folder))", False, 'import subprocess\n'), ((356, 21, 356, 50), 'tensorboardX.SummaryWriter', 'SummaryWriter', ({(356, 35, 356, 49): 'args.save_path'}, {}), '(args.save_path)', False, 'from tensorboardX import SummaryWriter\n'), ((227, 8, 227, 36), 'torch.set_grad_enabled', 'torch.set_grad_enabled', ({(227, 31, 227, 35): '(True)'}, {}), '(True)', False, 'import torch\n'), ((282, 11, 282, 41), 'os.path.exists', 'os.path.exists', ({(282, 26, 282, 40): 'args.save_path'}, {}), '(args.save_path)', False, 'import os\n'), ((283, 8, 283, 32), 'os.mkdir', 'os.mkdir', ({(283, 17, 283, 31): 'args.save_path'}, {}), '(args.save_path)', False, 'import os\n'), ((285, 8, 286, 61), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((288, 8, 288, 47), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((325, 11, 325, 41), 'os.path.exists', 'os.path.exists', ({(325, 26, 325, 40): 'args.pre_train'}, {}), '(args.pre_train)', False, 'import os\n'), ((341, 28, 341, 69), 'os.path.join', 'os.path.join', ({(341, 41, 341, 55): 'args.save_path', (341, 57, 341, 68): '"""train.csv"""'}, {}), "(args.save_path, 'train.csv')", False, 'import os\n'), ((342, 26, 342, 65), 'os.path.join', 'os.path.join', ({(342, 39, 342, 53): 'args.save_path', (342, 55, 342, 64): '"""dev.csv"""'}, {}), "(args.save_path, 'dev.csv')", False, 'import os\n'), ((345, 8, 345, 54), 'data.dataset.ImageDataset', 'ImageDataset', (), '', False, 'from data.dataset import ImageDataset\n'), ((349, 8, 349, 50), 'data.dataset.ImageDataset', 'ImageDataset', (), '', False, 'from data.dataset import ImageDataset\n'), ((366, 20, 366, 62), 'os.path.join', 'os.path.join', ({(366, 33, 366, 47): 'args.save_path', (366, 49, 366, 61): '"""train.ckpt"""'}, {}), "(args.save_path, 'train.ckpt')", False, 'import os\n'), ((367, 15, 367, 57), 'torch.load', 'torch.load', (), '', False, 'import torch\n'), ((376, 13, 377, 39), 'utils.misc.lr_schedule', 'lr_schedule', ({(376, 25, 376, 31): 'cfg.lr', (376, 33, 376, 46): 'cfg.lr_factor', (376, 48, 376, 70): "summary_train['epoch']", (377, 25, 377, 38): 'cfg.lr_epochs'}, {}), "(cfg.lr, cfg.lr_factor, summary_train['epoch'], cfg.lr_epochs)", False, 'from utils.misc import lr_schedule\n'), ((386, 19, 386, 30), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((399, 29, 399, 46), 'numpy.array', 'np.array', ({(399, 38, 399, 45): 'auclist'}, {}), '(auclist)', True, 'import numpy as np\n'), ((20, 32, 20, 57), 'os.path.abspath', 'os.path.abspath', ({(20, 48, 20, 56): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((96, 18, 96, 39), 'torch.unsqueeze', 'torch.unsqueeze', ({(96, 34, 96, 35): 'i', (96, 37, 96, 38): '(1)'}, {}), '(i, 1)', False, 'import torch\n'), ((114, 23, 114, 34), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((136, 23, 136, 42), 'numpy.zeros', 'np.zeros', ({(136, 32, 136, 41): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((137, 22, 137, 41), 'numpy.zeros', 'np.zeros', ({(137, 31, 137, 40): 'num_tasks'}, {}), '(num_tasks)', True, 'import numpy as np\n'), ((140, 23, 140, 34), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((153, 33, 153, 50), 'numpy.array', 'np.array', ({(153, 42, 153, 49): 'auclist'}, {}), '(auclist)', True, 'import numpy as np\n'), ((252, 18, 252, 39), 'torch.unsqueeze', 'torch.unsqueeze', ({(252, 34, 252, 35): 'i', (252, 37, 252, 38): '(1)'}, {}), '(i, 1)', False, 'import torch\n'), ((278, 20, 278, 32), 'json.load', 'json.load', ({(278, 30, 278, 31): 'f'}, {}), '(f)', False, 'import json\n'), ((292, 12, 292, 39), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((326, 19, 326, 66), 'torch.load', 'torch.load', (), '', False, 'import torch\n'), ((330, 33, 330, 58), 'os.path.abspath', 'os.path.abspath', ({(330, 49, 330, 57): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((389, 21, 389, 32), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((395, 35, 396, 44), 'sklearn.metrics.roc_curve', 'metrics.roc_curve', (), '', False, 'from sklearn import metrics\n'), ((397, 18, 397, 39), 'sklearn.metrics.auc', 'metrics.auc', ({(397, 30, 397, 33): 'fpr', (397, 35, 397, 38): 'tpr'}, {}), '(fpr, tpr)', False, 'from sklearn import metrics\n'), ((479, 19, 479, 61), 'os.path.join', 'os.path.join', ({(479, 32, 479, 46): 'args.save_path', (479, 48, 479, 60): '"""train.ckpt"""'}, {}), "(args.save_path, 'train.ckpt')", False, 'import os\n'), ((113, 25, 113, 36), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((143, 25, 143, 36), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((149, 39, 150, 48), 'sklearn.metrics.roc_curve', 'metrics.roc_curve', (), '', False, 'from sklearn import metrics\n'), ((151, 22, 151, 43), 'sklearn.metrics.auc', 'metrics.auc', ({(151, 34, 151, 37): 'fpr', (151, 39, 151, 42): 'tpr'}, {}), '(fpr, tpr)', False, 'from sklearn import metrics\n'), ((265, 30, 265, 67), 'numpy.append', 'np.append', ({(265, 40, 265, 51): 'predlist[t]', (265, 53, 265, 66): 'output_tensor'}, {}), '(predlist[t], output_tensor)', True, 'import numpy as np\n'), ((266, 31, 266, 69), 'numpy.append', 'np.append', ({(266, 41, 266, 53): 'true_list[t]', (266, 55, 266, 68): 'target_tensor'}, {}), '(true_list[t], target_tensor)', True, 'import numpy as np\n'), ((280, 18, 280, 43), 'json.dumps', 'json.dumps', (), '', False, 'import json\n'), ((291, 18, 291, 58), 'os.path.join', 'os.path.join', ({(291, 31, 291, 45): 'args.save_path', (291, 47, 291, 57): '"""cfg.json"""'}, {}), "(args.save_path, 'cfg.json')", False, 'import os\n'), ((411, 16, 411, 50), 'time.strftime', 'time.strftime', ({(411, 30, 411, 49): '"""%Y-%m-%d %H:%M:%S"""'}, {}), "('%Y-%m-%d %H:%M:%S')", False, 'import time\n'), ((124, 24, 124, 58), 'time.strftime', 'time.strftime', ({(124, 38, 124, 57): '"""%Y-%m-%d %H:%M:%S"""'}, {}), "('%Y-%m-%d %H:%M:%S')", False, 'import time\n'), ((165, 20, 165, 54), 'time.strftime', 'time.strftime', ({(165, 34, 165, 53): '"""%Y-%m-%d %H:%M:%S"""'}, {}), "('%Y-%m-%d %H:%M:%S')", False, 'import time\n'), ((323, 12, 323, 54), 'torch.nn.DataParallel', 'DataParallel', (), '', False, 'from torch.nn import DataParallel\n'), ((467, 20, 467, 54), 'time.strftime', 'time.strftime', ({(467, 34, 467, 53): '"""%Y-%m-%d %H:%M:%S"""'}, {}), "('%Y-%m-%d %H:%M:%S')", False, 'import time\n'), ((58, 23, 58, 59), 'torch.tensor', 'torch.tensor', (), '', False, 'import torch\n'), ((220, 24, 220, 58), 'time.strftime', 'time.strftime', ({(220, 38, 220, 57): '"""%Y-%m-%d %H:%M:%S"""'}, {}), "('%Y-%m-%d %H:%M:%S')", False, 'import time\n'), ((54, 12, 55, 38), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n')]
AndreasGeiger/hackerrank-python
Sets/the capaint s room.py
a436c207e62b32f70a6b4279bb641a3c4d90e112
groupSize = input() groups = list(map(int,input().split(' '))) tmpArray1 = set() tmpArray2 = set() for i in groups: if i in tmpArray1: tmpArray2.discard(i) else: tmpArray1.add(i) tmpArray2.add(i) for i in tmpArray2: print(i)
[]
gtmadureira/Python
tests/testsoma.py
38de6c56fec1d22662f30c1ff4d4f4f411678484
import unittest from hf_src.main import soma class TestSoma(unittest.TestCase): def test_retorno_soma_15_30(self): self.assertEqual(soma(15, 30), 45)
[((7, 25, 7, 37), 'hf_src.main.soma', 'soma', ({(7, 30, 7, 32): '(15)', (7, 34, 7, 36): '(30)'}, {}), '(15, 30)', False, 'from hf_src.main import soma\n')]
rohe/oictest
src/oictest/setup.py
f6f0800220befd5983b8cb34a5c984f98855d089
import copy import json from oic.utils.authn.client import CLIENT_AUTHN_METHOD from oic.utils.keyio import KeyJar from oic.utils.keyio import KeyBundle __author__ = 'roland' import logging logger = logging.getLogger(__name__) class OIDCError(Exception): pass def flow2sequence(operations, item): flow = operations.FLOWS[item] return [operations.PHASES[phase] for phase in flow["sequence"]] class OIDCTestSetup(object): def __init__(self, client_cls, config, test_defs): """ :param config: Imported configuration module :return: """ self.client_cls = client_cls self.config = config self.test_features = [] self.client = self.create_client(**config.CLIENT) self.test_defs = test_defs def create_client(self, **kwargs): """ Instantiate a _client instance :param: Keyword arguments Keys are ["srv_discovery_url", "client_info", "client_registration", "provider_info". "keys] :return: _client instance """ _key_set = set(kwargs.keys()) args = {} _client = self.client_cls(client_authn_method=CLIENT_AUTHN_METHOD, behaviour=kwargs["behaviour"], verify_ssl=self.config.VERIFY_SSL, **args) # The behaviour parameter is not significant for the election process _key_set.discard("behaviour") try: setattr(_client, "allow", kwargs["allow"]) except KeyError: pass else: _key_set.discard("allow") try: jwks = self.construct_jwks(_client, kwargs["keys"]) except KeyError: pass else: # export JWKS f = open("export/jwk.json", "w") f.write(json.dumps(jwks)) f.close() _client.jwks_uri = self.config.CLIENT["key_export_url"] self.test_features = _key_set try: _client.client_prefs = copy.copy(kwargs["preferences"]) except KeyError: pass else: _key_set.discard("preferences") if "client_info" in _key_set: _client.redirect_uris = self.config.CLIENT[ "client_info"]["redirect_uris"] elif "client_registration" in _key_set: reg_info = self.config.CLIENT["client_registration"] _client.redirect_uris = reg_info["redirect_uris"] _client.client_id = reg_info["client_id"] _client.client_secret = reg_info["client_secret"] return _client @staticmethod def construct_jwks(_client, key_conf): """ Construct the jwks """ if _client.keyjar is None: _client.keyjar = KeyJar() kbl = [] kid_template = "a%d" kid = 0 for typ, info in key_conf.items(): kb = KeyBundle(source="file://%s" % info["key"], fileformat="der", keytype=typ) for k in kb.keys(): k.serialize() k.kid = kid_template % kid kid += 1 _client.kid[k.use][k.kty] = k.kid _client.keyjar.add_kb("", kb) kbl.append(kb) jwks = {"keys": []} for kb in kbl: # ignore simple keys jwks["keys"].extend([k.to_dict() for k in kb.keys() if k.kty != 'oct']) return jwks def make_sequence(self, flow): """ Translate a flow name into a sequence of request/responses. :param flow: Which test flow to use :return: test sequence and test definitions """ sequence = flow2sequence(self.test_defs, flow) res = {"sequence": sequence, "tests": {"pre": [], "post": []}, "flow": [flow], "block": [], "mode": "", "expect_exception": False} _flow = self.test_defs.FLOWS[flow] for param in ["tests", "block", "mode", "expect_exception"]: try: res[param] = _flow[param] except KeyError: pass return res def add_init(self, test_spec): """ Add _client registration and provider info gathering if necessary :param test_spec: :return: """ _seq = test_spec["sequence"] _flow = test_spec["flow"] if "client_info" in self.test_features and \ "registration" not in test_spec["block"]: _register = True # May not be the first item in the sequence for sq in _seq: try: if sq[0].request == "RegistrationRequest": _register = False except TypeError: pass if _register: _ext = self.test_defs.PHASES["oic-registration"] _seq.insert(0, _ext) _flow.insert(0, "oic-registration") if "srv_discovery_url" in self.test_features: op_spec = self.test_defs.PHASES["provider-discovery"] if op_spec not in _seq: _seq.insert(0, op_spec) _flow.insert(0, "provider-discovery") return test_spec def request_and_return(conv, url, response=None, method="GET", body=None, body_type="json", state="", http_args=None, **kwargs): """ :param url: The URL to which the request should be sent :param response: Response type :param method: Which HTTP method to use :param body: A message body if any :param body_type: The format of the body of the return message :param http_args: Arguments for the HTTP _client :return: A cls or ErrorResponse instance or the HTTP response instance if no response body was expected. """ if http_args is None: http_args = {} _cli = conv._client try: _resp = _cli.http_request(url, method, data=body, **http_args) except Exception: raise conv.position = url conv.last_response = _resp conv.last_content = _resp.content if not "keyjar" in kwargs: kwargs["keyjar"] = conv.keyjar _response = _cli.parse_request_response(_resp, response, body_type, state, **kwargs) conv.protocol_response.append((_response, _resp.content)) return _response def test_summation(conv, sid): status = 0 for item in conv.test_output: if item["status"] > status: status = item["status"] if status == 0: status = 1 info = { "id": sid, "status": status, "tests": conv.test_output } return info
[((12, 9, 12, 36), 'logging.getLogger', 'logging.getLogger', ({(12, 27, 12, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((77, 35, 77, 67), 'copy.copy', 'copy.copy', ({(77, 45, 77, 66): "kwargs['preferences']"}, {}), "(kwargs['preferences'])", False, 'import copy\n'), ((100, 29, 100, 37), 'oic.utils.keyio.KeyJar', 'KeyJar', ({}, {}), '()', False, 'from oic.utils.keyio import KeyJar\n'), ((106, 17, 107, 39), 'oic.utils.keyio.KeyBundle', 'KeyBundle', (), '', False, 'from oic.utils.keyio import KeyBundle\n'), ((70, 20, 70, 36), 'json.dumps', 'json.dumps', ({(70, 31, 70, 35): 'jwks'}, {}), '(jwks)', False, 'import json\n')]
PKUfudawei/cmssw
HLTrigger/Configuration/python/HLT_75e33/modules/hltPFPuppiNoLep_cfi.py
8fbb5ce74398269c8a32956d7c7943766770c093
import FWCore.ParameterSet.Config as cms hltPFPuppiNoLep = cms.EDProducer("PuppiProducer", DeltaZCut = cms.double(0.1), DeltaZCutForChargedFromPUVtxs = cms.double(0.2), EtaMaxCharged = cms.double(99999.0), EtaMaxPhotons = cms.double(2.5), EtaMinUseDeltaZ = cms.double(-1.0), MinPuppiWeight = cms.double(0.01), NumOfPUVtxsForCharged = cms.uint32(0), PUProxyValue = cms.InputTag("hltPixelClustersMultiplicity"), PtMaxCharged = cms.double(-1.0), PtMaxNeutrals = cms.double(200.0), PtMaxNeutralsStartSlope = cms.double(0.0), PtMaxPhotons = cms.double(20.0), UseDeltaZCut = cms.bool(True), UseFromPVLooseTight = cms.bool(False), algos = cms.VPSet( cms.PSet( EtaMaxExtrap = cms.double(2.0), MedEtaSF = cms.vdouble(1.0, 1.0), MinNeutralPt = cms.vdouble(0.5105, 0.821), MinNeutralPtSlope = cms.vdouble(9.51e-06, 1.902e-05), RMSEtaSF = cms.vdouble(1.0, 1.0), etaMax = cms.vdouble(2.5, 3.5), etaMin = cms.vdouble(0.0, 2.5), ptMin = cms.vdouble(0.0, 0.0), puppiAlgos = cms.VPSet(cms.PSet( algoId = cms.int32(5), applyLowPUCorr = cms.bool(True), combOpt = cms.int32(0), cone = cms.double(0.4), rmsPtMin = cms.double(0.1), rmsScaleFactor = cms.double(1.0), useCharged = cms.bool(True) )) ), cms.PSet( EtaMaxExtrap = cms.double(2.0), MedEtaSF = cms.vdouble(0.75), MinNeutralPt = cms.vdouble(3.656), MinNeutralPtSlope = cms.vdouble(5.072e-05), RMSEtaSF = cms.vdouble(1.0), etaMax = cms.vdouble(10.0), etaMin = cms.vdouble(3.5), ptMin = cms.vdouble(0.0), puppiAlgos = cms.VPSet(cms.PSet( algoId = cms.int32(5), applyLowPUCorr = cms.bool(True), combOpt = cms.int32(0), cone = cms.double(0.4), rmsPtMin = cms.double(0.5), rmsScaleFactor = cms.double(1.0), useCharged = cms.bool(False) )) ) ), applyCHS = cms.bool(True), candName = cms.InputTag("particleFlowTmp"), clonePackedCands = cms.bool(False), invertPuppi = cms.bool(False), puppiDiagnostics = cms.bool(False), puppiNoLep = cms.bool(True), useExistingWeights = cms.bool(False), useExp = cms.bool(False), usePUProxyValue = cms.bool(True), vertexName = cms.InputTag("goodOfflinePrimaryVertices"), vtxNdofCut = cms.int32(4), vtxZCut = cms.double(24) )
[((4, 16, 4, 31), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(4, 27, 4, 30): '0.1'}, {}), '(0.1)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((5, 36, 5, 51), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(5, 47, 5, 50): '0.2'}, {}), '(0.2)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((6, 20, 6, 39), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(6, 31, 6, 38): '99999.0'}, {}), '(99999.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((7, 20, 7, 35), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(7, 31, 7, 34): '2.5'}, {}), '(2.5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((8, 22, 8, 38), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(8, 33, 8, 37): '-1.0'}, {}), '(-1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((9, 21, 9, 37), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(9, 32, 9, 36): '0.01'}, {}), '(0.01)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((10, 28, 10, 41), 'FWCore.ParameterSet.Config.uint32', 'cms.uint32', ({(10, 39, 10, 40): '0'}, {}), '(0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((11, 19, 11, 63), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', ({(11, 32, 11, 62): '"""hltPixelClustersMultiplicity"""'}, {}), "('hltPixelClustersMultiplicity')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((12, 19, 12, 35), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(12, 30, 12, 34): '-1.0'}, {}), '(-1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((13, 20, 13, 37), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(13, 31, 13, 36): '200.0'}, {}), '(200.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((14, 30, 14, 45), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(14, 41, 14, 44): '0.0'}, {}), '(0.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((15, 19, 15, 35), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(15, 30, 15, 34): '20.0'}, {}), '(20.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((16, 19, 16, 33), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(16, 28, 16, 32): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((17, 26, 17, 41), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(17, 35, 17, 40): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((58, 15, 58, 29), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(58, 24, 58, 28): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((59, 15, 59, 46), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', ({(59, 28, 59, 45): '"""particleFlowTmp"""'}, {}), "('particleFlowTmp')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((60, 23, 60, 38), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(60, 32, 60, 37): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((61, 18, 61, 33), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(61, 27, 61, 32): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((62, 23, 62, 38), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(62, 32, 62, 37): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((63, 17, 63, 31), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(63, 26, 63, 30): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((64, 25, 64, 40), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(64, 34, 64, 39): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((65, 13, 65, 28), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(65, 22, 65, 27): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((66, 22, 66, 36), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(66, 31, 66, 35): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((67, 17, 67, 59), 'FWCore.ParameterSet.Config.InputTag', 'cms.InputTag', ({(67, 30, 67, 58): '"""goodOfflinePrimaryVertices"""'}, {}), "('goodOfflinePrimaryVertices')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((68, 17, 68, 29), 'FWCore.ParameterSet.Config.int32', 'cms.int32', ({(68, 27, 68, 28): '4'}, {}), '(4)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((69, 14, 69, 28), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(69, 25, 69, 27): '24'}, {}), '(24)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((20, 27, 20, 42), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(20, 38, 20, 41): '2.0'}, {}), '(2.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((21, 23, 21, 44), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(21, 35, 21, 38): '1.0', (21, 40, 21, 43): '1.0'}, {}), '(1.0, 1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((22, 27, 22, 53), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(22, 39, 22, 45): '0.5105', (22, 47, 22, 52): '0.821'}, {}), '(0.5105, 0.821)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((23, 32, 23, 64), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(23, 44, 23, 52): '9.51e-06', (23, 54, 23, 63): '1.902e-05'}, {}), '(9.51e-06, 1.902e-05)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((24, 23, 24, 44), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(24, 35, 24, 38): '1.0', (24, 40, 24, 43): '1.0'}, {}), '(1.0, 1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((25, 21, 25, 42), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(25, 33, 25, 36): '2.5', (25, 38, 25, 41): '3.5'}, {}), '(2.5, 3.5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((26, 21, 26, 42), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(26, 33, 26, 36): '0.0', (26, 38, 26, 41): '2.5'}, {}), '(0.0, 2.5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((27, 20, 27, 41), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(27, 32, 27, 35): '0.0', (27, 37, 27, 40): '0.0'}, {}), '(0.0, 0.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((39, 27, 39, 42), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(39, 38, 39, 41): '2.0'}, {}), '(2.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((40, 23, 40, 40), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(40, 35, 40, 39): '0.75'}, {}), '(0.75)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((41, 27, 41, 45), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(41, 39, 41, 44): '3.656'}, {}), '(3.656)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((42, 32, 42, 54), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(42, 44, 42, 53): '5.072e-05'}, {}), '(5.072e-05)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((43, 23, 43, 39), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(43, 35, 43, 38): '1.0'}, {}), '(1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((44, 21, 44, 38), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(44, 33, 44, 37): '10.0'}, {}), '(10.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((45, 21, 45, 37), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(45, 33, 45, 36): '3.5'}, {}), '(3.5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((46, 20, 46, 36), 'FWCore.ParameterSet.Config.vdouble', 'cms.vdouble', ({(46, 32, 46, 35): '0.0'}, {}), '(0.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((29, 25, 29, 37), 'FWCore.ParameterSet.Config.int32', 'cms.int32', ({(29, 35, 29, 36): '5'}, {}), '(5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((30, 33, 30, 47), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(30, 42, 30, 46): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((31, 26, 31, 38), 'FWCore.ParameterSet.Config.int32', 'cms.int32', ({(31, 36, 31, 37): '0'}, {}), '(0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((32, 23, 32, 38), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(32, 34, 32, 37): '0.4'}, {}), '(0.4)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((33, 27, 33, 42), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(33, 38, 33, 41): '0.1'}, {}), '(0.1)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((34, 33, 34, 48), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(34, 44, 34, 47): '1.0'}, {}), '(1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((35, 29, 35, 43), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(35, 38, 35, 42): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((48, 25, 48, 37), 'FWCore.ParameterSet.Config.int32', 'cms.int32', ({(48, 35, 48, 36): '5'}, {}), '(5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((49, 33, 49, 47), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(49, 42, 49, 46): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((50, 26, 50, 38), 'FWCore.ParameterSet.Config.int32', 'cms.int32', ({(50, 36, 50, 37): '0'}, {}), '(0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((51, 23, 51, 38), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(51, 34, 51, 37): '0.4'}, {}), '(0.4)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((52, 27, 52, 42), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(52, 38, 52, 41): '0.5'}, {}), '(0.5)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((53, 33, 53, 48), 'FWCore.ParameterSet.Config.double', 'cms.double', ({(53, 44, 53, 47): '1.0'}, {}), '(1.0)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((54, 29, 54, 44), 'FWCore.ParameterSet.Config.bool', 'cms.bool', ({(54, 38, 54, 43): 'False'}, {}), '(False)', True, 'import FWCore.ParameterSet.Config as cms\n')]
RogueScholar/debreate
wizbin/build.py
0abc168c51336b31ff87c61f84bc7bb6000e88f4
# -*- coding: utf-8 -*- ## \package wizbin.build # MIT licensing # See: docs/LICENSE.txt import commands, os, shutil, subprocess, traceback, wx from dbr.functions import FileUnstripped from dbr.language import GT from dbr.log import DebugEnabled from dbr.log import Logger from dbr.md5 import WriteMD5 from fileio.fileio import ReadFile from fileio.fileio import WriteFile from globals.bitmaps import ICON_EXCLAMATION from globals.bitmaps import ICON_INFORMATION from globals.errorcodes import dbrerrno from globals.execute import ExecuteCommand from globals.execute import GetExecutable from globals.execute import GetSystemInstaller from globals.ident import btnid from globals.ident import chkid from globals.ident import inputid from globals.ident import pgid from globals.paths import ConcatPaths from globals.paths import PATH_app from globals.strings import GS from globals.strings import RemoveEmptyLines from globals.strings import TextIsEmpty from globals.system import PY_VER_MAJ from globals.tooltips import SetPageToolTips from input.toggle import CheckBox from input.toggle import CheckBoxESS from startup.tests import UsingTest from ui.button import CreateButton from ui.checklist import CheckListDialog from ui.dialog import DetailedMessageDialog from ui.dialog import ShowErrorDialog from ui.layout import BoxSizer from ui.output import OutputLog from ui.panel import BorderedPanel from ui.progress import PD_DEFAULT_STYLE from ui.progress import ProgressDialog from ui.progress import TimedProgressDialog from ui.style import layout as lyt from wiz.helper import FieldEnabled from wiz.helper import GetField from wiz.helper import GetMainWindow from wiz.helper import GetPage from wiz.wizard import WizardPage ## Build page class Page(WizardPage): ## Constructor # # \param parent # Parent <b><i>wx.Window</i></b> instance def __init__(self, parent): WizardPage.__init__(self, parent, pgid.BUILD) # ----- Extra Options pnl_options = BorderedPanel(self) self.chk_md5 = CheckBoxESS(pnl_options, chkid.MD5, GT(u'Create md5sums file'), name=u'MD5', defaultValue=True, commands=u'md5sum') # The » character denotes that an alternate tooltip should be shown if the control is disabled self.chk_md5.tt_name = u'md5»' self.chk_md5.col = 0 # Option to strip binaries self.chk_strip = CheckBoxESS(pnl_options, chkid.STRIP, GT(u'Strip binaries'), name=u'strip»', defaultValue=True, commands=u'strip') self.chk_strip.col = 0 # Deletes the temporary build tree self.chk_rmstage = CheckBoxESS(pnl_options, chkid.DELETE, GT(u'Delete staged directory'), name=u'RMSTAGE', defaultValue=True) self.chk_rmstage.col = 0 # Checks the output .deb for errors self.chk_lint = CheckBoxESS(pnl_options, chkid.LINT, GT(u'Check package for errors with lintian'), name=u'LINTIAN', defaultValue=True, commands=u'lintian') self.chk_lint.tt_name = u'lintian»' self.chk_lint.col = 0 # Installs the deb on the system self.chk_install = CheckBox(pnl_options, chkid.INSTALL, GT(u'Install package after build'), name=u'INSTALL', commands=(u'gdebi-gtk', u'gdebi-kde',)) self.chk_install.tt_name = u'install»' self.chk_install.col = 0 # *** Lintian Overrides *** # if UsingTest(u'alpha'): # FIXME: Move next to lintian check box Logger.Info(__name__, u'Enabling alpha feature "lintian overrides" option') self.lint_overrides = [] btn_lint_overrides = CreateButton(self, label=GT(u'Lintian overrides')) btn_lint_overrides.Bind(wx.EVT_BUTTON, self.OnSetLintOverrides) btn_build = CreateButton(self, btnid.BUILD, GT(u'Build'), u'build', 64) # Display log dsp_log = OutputLog(self) SetPageToolTips(self) # *** Event Handling *** # btn_build.Bind(wx.EVT_BUTTON, self.OnBuild) # *** Layout *** # lyt_options = wx.GridBagSizer() next_row = 0 prev_row = next_row for CHK in pnl_options.Children: row = next_row FLAGS = lyt.PAD_LR if CHK.col: row = prev_row FLAGS = wx.RIGHT lyt_options.Add(CHK, (row, CHK.col), flag=FLAGS, border=5) if not CHK.col: prev_row = next_row next_row += 1 pnl_options.SetSizer(lyt_options) pnl_options.SetAutoLayout(True) pnl_options.Layout() lyt_buttons = BoxSizer(wx.HORIZONTAL) lyt_buttons.Add(btn_build, 1) lyt_main = BoxSizer(wx.VERTICAL) lyt_main.AddSpacer(10) lyt_main.Add(wx.StaticText(self, label=GT(u'Extra Options')), 0, lyt.ALGN_LB|wx.LEFT, 5) lyt_main.Add(pnl_options, 0, wx.LEFT, 5) lyt_main.AddSpacer(5) if UsingTest(u'alpha'): #lyt_main.Add(wx.StaticText(self, label=GT(u'Lintian overrides')), 0, wx.LEFT, 5) lyt_main.Add(btn_lint_overrides, 0, wx.LEFT, 5) lyt_main.AddSpacer(5) lyt_main.Add(lyt_buttons, 0, lyt.ALGN_C) lyt_main.Add(dsp_log, 2, wx.EXPAND|lyt.PAD_LRB, 5) self.SetAutoLayout(True) self.SetSizer(lyt_main) self.Layout() ## Method that builds the actual Debian package # # \param task_list # \b \e dict : Task string IDs & page data # \param build_path # \b \e unicode|str : Directory where .deb will be output # \param filename # \b \e unicode|str : Basename of output file without .deb extension # \return # \b \e dbrerror : SUCCESS if build completed successfully def Build(self, task_list, build_path, filename): # Declare this here in case of error before progress dialog created build_progress = None try: # Other mandatory tasks that will be processed mandatory_tasks = ( u'stage', u'install_size', u'control', u'build', ) # Add other mandatory tasks for T in mandatory_tasks: task_list[T] = None task_count = len(task_list) # Add each file for updating progress dialog if u'files' in task_list: task_count += len(task_list[u'files']) # Add each script for updating progress dialog if u'scripts' in task_list: task_count += len(task_list[u'scripts']) if DebugEnabled(): task_msg = GT(u'Total tasks: {}').format(task_count) print(u'DEBUG: [{}] {}'.format(__name__, task_msg)) for T in task_list: print(u'\t{}'.format(T)) create_changelog = u'changelog' in task_list create_copyright = u'copyright' in task_list pg_control = GetPage(pgid.CONTROL) pg_menu = GetPage(pgid.MENU) stage_dir = u'{}/{}__dbp__'.format(build_path, filename) if os.path.isdir(u'{}/DEBIAN'.format(stage_dir)): try: shutil.rmtree(stage_dir) except OSError: ShowErrorDialog(GT(u'Could not free stage directory: {}').format(stage_dir), title=GT(u'Cannot Continue')) return (dbrerrno.EEXIST, None) # Actual path to new .deb deb = u'"{}/{}.deb"'.format(build_path, filename) progress = 0 task_msg = GT(u'Preparing build tree') Logger.Debug(__name__, task_msg) wx.Yield() build_progress = ProgressDialog(GetMainWindow(), GT(u'Building'), task_msg, maximum=task_count, style=PD_DEFAULT_STYLE|wx.PD_ELAPSED_TIME|wx.PD_ESTIMATED_TIME|wx.PD_CAN_ABORT) DIR_debian = ConcatPaths((stage_dir, u'DEBIAN')) # Make a fresh build tree os.makedirs(DIR_debian) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) def UpdateProgress(current_task, message=None): task_eval = u'{} / {}'.format(current_task, task_count) if message: Logger.Debug(__name__, u'{} ({})'.format(message, task_eval)) wx.Yield() build_progress.Update(current_task, message) return wx.Yield() build_progress.Update(current_task) # *** Files *** # if u'files' in task_list: UpdateProgress(progress, GT(u'Copying files')) no_follow_link = GetField(GetPage(pgid.FILES), chkid.SYMLINK).IsChecked() # TODO: move this into a file functions module def _copy(f_src, f_tgt, exe=False): # NOTE: Python 3 appears to have follow_symlinks option for shutil.copy # FIXME: copying nested symbolic link may not work if os.path.isdir(f_src): if os.path.islink(f_src) and no_follow_link: Logger.Debug(__name__, u'Adding directory symbolic link to stage: {}'.format(f_tgt)) os.symlink(os.readlink(f_src), f_tgt) else: Logger.Debug(__name__, u'Adding directory to stage: {}'.format(f_tgt)) shutil.copytree(f_src, f_tgt) os.chmod(f_tgt, 0o0755) elif os.path.isfile(f_src): if os.path.islink(f_src) and no_follow_link: Logger.Debug(__name__, u'Adding file symbolic link to stage: {}'.format(f_tgt)) os.symlink(os.readlink(f_src), f_tgt) else: if exe: Logger.Debug(__name__, u'Adding executable to stage: {}'.format(f_tgt)) else: Logger.Debug(__name__, u'Adding file to stage: {}'.format(f_tgt)) shutil.copy(f_src, f_tgt) # Set FILE permissions if exe: os.chmod(f_tgt, 0o0755) else: os.chmod(f_tgt, 0o0644) files_data = task_list[u'files'] for FILE in files_data: file_defs = FILE.split(u' -> ') source_file = file_defs[0] target_file = u'{}{}/{}'.format(stage_dir, file_defs[2], file_defs[1]) target_dir = os.path.dirname(target_file) if not os.path.isdir(target_dir): os.makedirs(target_dir) # Remove asteriks from exectuables exe = False if source_file[-1] == u'*': exe = True source_file = source_file[:-1] _copy(source_file, u'{}/{}'.format(target_dir, os.path.basename(source_file)), exe) # Individual files progress += 1 UpdateProgress(progress) # Entire file task progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Strip files ***# # FIXME: Needs only be run if 'files' step is used if u'strip' in task_list: UpdateProgress(progress, GT(u'Stripping binaries')) for ROOT, DIRS, FILES in os.walk(stage_dir): #@UnusedVariable for F in FILES: # Don't check files in DEBIAN directory if ROOT != DIR_debian: F = ConcatPaths((ROOT, F)) if FileUnstripped(F): Logger.Debug(__name__, u'Unstripped file: {}'.format(F)) # FIXME: Strip command should be set as class member? ExecuteCommand(GetExecutable(u'strip'), F) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) package = GetField(pg_control, inputid.PACKAGE).GetValue() # Make sure that the directory is available in which to place documentation if create_changelog or create_copyright: doc_dir = u'{}/usr/share/doc/{}'.format(stage_dir, package) if not os.path.isdir(doc_dir): os.makedirs(doc_dir) # *** Changelog *** # if create_changelog: UpdateProgress(progress, GT(u'Creating changelog')) # If changelog will be installed to default directory changelog_target = task_list[u'changelog'][0] if changelog_target == u'STANDARD': changelog_target = ConcatPaths((u'{}/usr/share/doc'.format(stage_dir), package)) else: changelog_target = ConcatPaths((stage_dir, changelog_target)) if not os.path.isdir(changelog_target): os.makedirs(changelog_target) WriteFile(u'{}/changelog'.format(changelog_target), task_list[u'changelog'][1]) CMD_gzip = GetExecutable(u'gzip') if CMD_gzip: UpdateProgress(progress, GT(u'Compressing changelog')) c = u'{} -n --best "{}/changelog"'.format(CMD_gzip, changelog_target) clog_status = commands.getstatusoutput(c.encode(u'utf-8')) if clog_status[0]: ShowErrorDialog(GT(u'Could not compress changelog'), clog_status[1], warn=True, title=GT(u'Warning')) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Copyright *** # if create_copyright: UpdateProgress(progress, GT(u'Creating copyright')) WriteFile(u'{}/usr/share/doc/{}/copyright'.format(stage_dir, package), task_list[u'copyright']) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # Characters that should not be in filenames invalid_chars = (u' ', u'/') # *** Menu launcher *** # if u'launcher' in task_list: UpdateProgress(progress, GT(u'Creating menu launcher')) # This might be changed later to set a custom directory menu_dir = u'{}/usr/share/applications'.format(stage_dir) menu_filename = pg_menu.GetOutputFilename() # Remove invalid characters from filename for char in invalid_chars: menu_filename = menu_filename.replace(char, u'_') if not os.path.isdir(menu_dir): os.makedirs(menu_dir) WriteFile(u'{}/{}.desktop'.format(menu_dir, menu_filename), task_list[u'launcher']) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** md5sums file *** # # Good practice to create hashes before populating DEBIAN directory if u'md5sums' in task_list: UpdateProgress(progress, GT(u'Creating md5sums')) if not WriteMD5(stage_dir, parent=build_progress): # Couldn't call md5sum command build_progress.Cancel() progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Scripts *** # if u'scripts' in task_list: UpdateProgress(progress, GT(u'Creating scripts')) scripts = task_list[u'scripts'] for SCRIPT in scripts: script_name = SCRIPT script_text = scripts[SCRIPT] script_filename = ConcatPaths((stage_dir, u'DEBIAN', script_name)) WriteFile(script_filename, script_text) # Make sure scipt path is wrapped in quotes to avoid whitespace errors os.chmod(script_filename, 0755) os.system((u'chmod +x "{}"'.format(script_filename))) # Individual scripts progress += 1 UpdateProgress(progress) # Entire script task progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Control file *** # UpdateProgress(progress, GT(u'Getting installed size')) # Get installed-size installed_size = os.popen((u'du -hsk "{}"'.format(stage_dir))).readlines() installed_size = installed_size[0].split(u'\t') installed_size = installed_size[0] # Insert Installed-Size into control file control_data = pg_control.Get().split(u'\n') control_data.insert(2, u'Installed-Size: {}'.format(installed_size)) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # Create final control file UpdateProgress(progress, GT(u'Creating control file')) # dpkg fails if there is no newline at end of file control_data = u'\n'.join(control_data).strip(u'\n') # Ensure there is only one empty trailing newline # Two '\n' to show physical empty line, but not required # Perhaps because string is not null terminated??? control_data = u'{}\n\n'.format(control_data) WriteFile(u'{}/DEBIAN/control'.format(stage_dir), control_data, noStrip=u'\n') progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Final build *** # UpdateProgress(progress, GT(u'Running dpkg')) working_dir = os.path.split(stage_dir)[0] c_tree = os.path.split(stage_dir)[1] deb_package = u'{}.deb'.format(filename) # Move the working directory becuase dpkg seems to have problems with spaces in path os.chdir(working_dir) # HACK to fix file/dir permissions for ROOT, DIRS, FILES in os.walk(stage_dir): for D in DIRS: D = u'{}/{}'.format(ROOT, D) os.chmod(D, 0o0755) for F in FILES: F = u'{}/{}'.format(ROOT, F) if os.access(F, os.X_OK): os.chmod(F, 0o0755) else: os.chmod(F, 0o0644) # FIXME: Should check for working fakeroot & dpkg-deb executables build_status = commands.getstatusoutput((u'{} {} -b "{}" "{}"'.format(GetExecutable(u'fakeroot'), GetExecutable(u'dpkg-deb'), c_tree, deb_package))) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** Delete staged directory *** # if u'rmstage' in task_list: UpdateProgress(progress, GT(u'Removing temp directory')) try: shutil.rmtree(stage_dir) except OSError: ShowErrorDialog(GT(u'An error occurred when trying to delete the build tree'), parent=build_progress) progress += 1 if build_progress.WasCancelled(): build_progress.Destroy() return (dbrerrno.ECNCLD, None) # *** ERROR CHECK if u'lintian' in task_list: UpdateProgress(progress, GT(u'Checking package for errors')) # FIXME: Should be set as class memeber? CMD_lintian = GetExecutable(u'lintian') errors = commands.getoutput((u'{} {}'.format(CMD_lintian, deb))) if errors != wx.EmptyString: e1 = GT(u'Lintian found some issues with the package.') e2 = GT(u'Details saved to {}').format(filename) WriteFile(u'{}/{}.lintian'.format(build_path, filename), errors) DetailedMessageDialog(build_progress, GT(u'Lintian Errors'), ICON_INFORMATION, u'{}\n{}.lintian'.format(e1, e2), errors).ShowModal() progress += 1 # Close progress dialog wx.Yield() build_progress.Update(progress) build_progress.Destroy() # Build completed successfullly if not build_status[0]: return (dbrerrno.SUCCESS, deb_package) if PY_VER_MAJ <= 2: # Unicode decoder has trouble with certain characters. Replace any # non-decodable characters with � (0xFFFD). build_output = list(build_status[1]) # String & unicode string incompatibilities index = 0 for C in build_output: try: GS(C) except UnicodeDecodeError: build_output[index] = u'�' index += 1 build_status = (build_status[0], u''.join(build_output)) # Build failed return (build_status[0], build_status[1]) except: if build_progress: build_progress.Destroy() return(dbrerrno.EUNKNOWN, traceback.format_exc()) ## TODO: Doxygen # # \return # \b \e tuple containing Return code & build details def BuildPrep(self): # Declare these here in case of error before dialogs created save_dia = None prebuild_progress = None try: # List of tasks for build process # 'stage' should be very first task task_list = {} # Control page pg_control = GetPage(pgid.CONTROL) fld_package = GetField(pg_control, inputid.PACKAGE) fld_version = GetField(pg_control, inputid.VERSION) fld_maint = GetField(pg_control, inputid.MAINTAINER) fld_email = GetField(pg_control, inputid.EMAIL) fields_control = ( fld_package, fld_version, fld_maint, fld_email, ) # Menu launcher page pg_launcher = GetPage(pgid.MENU) # Check to make sure that all required fields have values required = list(fields_control) if pg_launcher.IsOkay(): task_list[u'launcher'] = pg_launcher.Get() required.append(GetField(pg_launcher, inputid.NAME)) if not GetField(pg_launcher, chkid.FNAME).GetValue(): required.append(GetField(pg_launcher, inputid.FNAME)) for item in required: if TextIsEmpty(item.GetValue()): field_name = GT(item.GetName().title()) page_name = pg_control.GetName() if item not in fields_control: page_name = pg_launcher.GetName() return (dbrerrno.FEMPTY, u'{} ➜ {}'.format(page_name, field_name)) # Get information from control page for default filename package = fld_package.GetValue() # Remove whitespace package = package.strip(u' \t') package = u'-'.join(package.split(u' ')) version = fld_version.GetValue() # Remove whitespace version = version.strip(u' \t') version = u''.join(version.split()) arch = GetField(pg_control, inputid.ARCH).GetStringSelection() # Dialog for save destination ttype = GT(u'Debian packages') save_dia = wx.FileDialog(self, GT(u'Save'), os.getcwd(), wx.EmptyString, u'{}|*.deb'.format(ttype), wx.FD_SAVE|wx.FD_OVERWRITE_PROMPT|wx.FD_CHANGE_DIR) save_dia.SetFilename(u'{}_{}_{}.deb'.format(package, version, arch)) if not save_dia.ShowModal() == wx.ID_OK: return (dbrerrno.ECNCLD, None) build_path = os.path.split(save_dia.GetPath())[0] filename = os.path.split(save_dia.GetPath())[1].split(u'.deb')[0] # Control, menu, & build pages not added to this list page_checks = ( (pgid.FILES, u'files'), (pgid.SCRIPTS, u'scripts'), (pgid.CHANGELOG, u'changelog'), (pgid.COPYRIGHT, u'copyright'), ) # Install step is not added to this list # 'control' should be after 'md5sums' # 'build' should be after 'control' other_checks = ( (self.chk_md5, u'md5sums'), (self.chk_strip, u'strip'), (self.chk_rmstage, u'rmstage'), (self.chk_lint, u'lintian'), ) prep_task_count = len(page_checks) + len(other_checks) progress = 0 wx.Yield() prebuild_progress = ProgressDialog(GetMainWindow(), GT(u'Preparing to build'), maximum=prep_task_count) if wx.MAJOR_VERSION < 3: # Resize dialog for better fit pb_size = prebuild_progress.GetSizeTuple() pb_size = (pb_size[0]+200, pb_size[1]) prebuild_progress.SetSize(pb_size) prebuild_progress.CenterOnParent() for PID, id_string in page_checks: wx.Yield() prebuild_progress.Update(progress, GT(u'Checking {}').format(id_string)) wizard_page = GetPage(PID) if wizard_page.IsOkay(): task_list[id_string] = wizard_page.Get() progress += 1 for task_check, id_string in other_checks: wx.Yield() prebuild_progress.Update(progress, GT(u'Testing for: {}').format(task_check.GetLabel())) if task_check.GetValue(): task_list[id_string] = None progress += 1 # Close progress dialog wx.Yield() prebuild_progress.Update(progress) prebuild_progress.Destroy() return (dbrerrno.SUCCESS, (task_list, build_path, filename)) except: if save_dia: save_dia.Destroy() if prebuild_progress: prebuild_progress.Destroy() return (dbrerrno.EUNKNOWN, traceback.format_exc()) ## TODO: Doxygen def GetSaveData(self): build_list = [] options = ( self.chk_md5, self.chk_rmstage, self.chk_lint, ) for O in options: if O.GetValue(): build_list.append(u'1') else: build_list.append(u'0') if self.chk_strip.GetValue(): build_list.append(u'strip') return u'<<BUILD>>\n{}\n<</BUILD>>'.format(u'\n'.join(build_list)) ## Installs the built .deb package onto the system # # Uses the system's package installer: # gdebi if available or dpkg # # Shows a success dialog if installed. Otherwise shows an # error dialog. # \param package # \b \e unicode|str : Path to package to be installed def InstallPackage(self, package): system_installer = GetSystemInstaller() if not system_installer: ShowErrorDialog( GT(u'Cannot install package'), GT(u'A compatible package manager could not be found on the system'), __name__, warn=True ) return Logger.Info(__name__, GT(u'Attempting to install package: {}').format(package)) Logger.Info(__name__, GT(u'Installing with {}').format(system_installer)) install_cmd = (system_installer, package,) wx.Yield() # FIXME: Use ExecuteCommand here install_output = subprocess.Popen(install_cmd) # Command appears to not have been executed correctly if install_output == None: ShowErrorDialog( GT(u'Could not install package: {}'), GT(u'An unknown error occurred'), __name__ ) return # Command executed but did not return success code if install_output.returncode: err_details = ( GT(u'Process returned code {}').format(install_output.returncode), GT(u'Command executed: {}').format(u' '.join(install_cmd)), ) ShowErrorDialog( GT(u'An error occurred during installation'), u'\n'.join(err_details), __name__ ) return ## TODO: Doxygen def OnBuild(self, event=None): # Build preparation ret_code, build_prep = self.BuildPrep() if ret_code == dbrerrno.ECNCLD: return if ret_code == dbrerrno.FEMPTY: err_dia = DetailedMessageDialog(GetMainWindow(), GT(u'Cannot Continue'), ICON_EXCLAMATION, text=u'{}\n{}'.format(GT(u'One of the required fields is empty:'), build_prep)) err_dia.ShowModal() err_dia.Destroy() return if ret_code == dbrerrno.SUCCESS: task_list, build_path, filename = build_prep # Actual build ret_code, result = self.Build(task_list, build_path, filename) # FIXME: Check .deb package timestamp to confirm build success if ret_code == dbrerrno.SUCCESS: DetailedMessageDialog(GetMainWindow(), GT(u'Success'), ICON_INFORMATION, text=GT(u'Package created successfully')).ShowModal() # Installing the package if FieldEnabled(self.chk_install) and self.chk_install.GetValue(): self.InstallPackage(result) return if result: ShowErrorDialog(GT(u'Package build failed'), result) else: ShowErrorDialog(GT(u'Package build failed with unknown error')) return if build_prep: ShowErrorDialog(GT(u'Build preparation failed'), build_prep) else: ShowErrorDialog(GT(u'Build preparation failed with unknown error')) ## TODO: Doxygen # # TODO: Show warning dialog that this could take a while # TODO: Add cancel option to progress dialog # FIXME: List should be cached so no need for re-scanning def OnSetLintOverrides(self, event=None): Logger.Debug(__name__, GT(u'Setting Lintian overrides...')) lintian_tags_file = u'{}/data/lintian/tags'.format(PATH_app) if not os.path.isfile(lintian_tags_file): Logger.Error(__name__, u'Lintian tags file is missing: {}'.format(lintian_tags_file)) return False lint_tags = RemoveEmptyLines(ReadFile(lintian_tags_file, split=True)) if lint_tags: Logger.Debug(__name__, u'Lintian tags set') # DEBUG: Start if DebugEnabled() and len(lint_tags) > 50: print(u' Reducing tag count to 200 ...') lint_tags = lint_tags[:50] Logger.Debug(__name__, u'Processing {} tags'.format(len(lint_tags))) # DEBUG: End tag_count = len(lint_tags) def GetProgressMessage(message, count=tag_count): return u'{} ({} {})'.format(message, count, GT(u'tags')) progress = TimedProgressDialog(GetMainWindow(), GT(u'Building Tag List'), GetProgressMessage(GT(u'Scanning default tags'))) progress.Start() wx.Yield() # Create the dialog overrides_dialog = CheckListDialog(GetMainWindow(), title=GT(u'Lintian Overrides'), allow_custom=True) # FIXME: Needs progress dialog overrides_dialog.InitCheckList(tuple(lint_tags)) progress.SetMessage(GetProgressMessage(GT(u'Setting selected overrides'))) for T in lint_tags: if T in self.lint_overrides: overrides_dialog.SetItemCheckedByLabel(T) self.lint_overrides.remove(T) progress.SetMessage(GetProgressMessage(GT(u'Adding custom tags'), len(self.lint_overrides))) # Remaining tags should be custom entries # FIXME: if self.lint_overrides: for T in self.lint_overrides: overrides_dialog.AddItem(T, True) progress.Stop() if overrides_dialog.ShowModal() == wx.ID_OK: # Remove old overrides self.lint_overrides = [] for L in overrides_dialog.GetCheckedLabels(): Logger.Debug(__name__, GT(u'Adding Lintian override: {}').format(L)) self.lint_overrides.append(L) return True else: Logger.Debug(__name__, u'Setting lintian tags failed') return False ## TODO: Doxygen # # TODO: Use string names in project file but retain # compatibility with older projects that use # integer values. def Set(self, data): # ???: Redundant self.Reset() build_data = data.split(u'\n') if GetExecutable(u'md5sum'): try: self.chk_md5.SetValue(int(build_data[0])) except IndexError: pass try: self.chk_rmstage.SetValue(int(build_data[1])) except IndexError: pass if GetExecutable(u'lintian'): try: self.chk_lint.SetValue(int(build_data[2])) except IndexError: pass self.chk_strip.SetValue(GetExecutable(u'strip') and u'strip' in build_data) ## TODO: Doxygen def SetSummary(self, event=None): pg_scripts = GetPage(pgid.SCRIPTS) # Make sure the page is not destroyed so no error is thrown if self: # Set summary when "Build" page is shown # Get the file count files_total = GetPage(pgid.FILES).GetFileCount() f = GT(u'File Count') file_count = u'{}: {}'.format(f, files_total) # Scripts to make scripts_to_make = [] scripts = ((u'preinst', pg_scripts.chk_preinst), (u'postinst', pg_scripts.chk_postinst), (u'prerm', pg_scripts.chk_prerm), (u'postrm', pg_scripts.chk_postrm)) for script in scripts: if script[1].IsChecked(): scripts_to_make.append(script[0]) s = GT(u'Scripts') if len(scripts_to_make): scripts_to_make = u'{}: {}'.format(s, u', '.join(scripts_to_make)) else: scripts_to_make = u'{}: 0'.format(s) self.summary.SetValue(u'\n'.join((file_count, scripts_to_make)))
[]
maelstromdat/YOSHI
__main__.py
67e5176f24ff12e598025d4250b408da564f53d1
from YoshiViz import Gui if __name__ == '__main__': #file director gui = Gui.Gui() """ report_generator.\ generate_pdf_report(fileDirectory, repositoryName, tempCommunityType) """ print('the type of', repositoryName, 'is', tempCommunityType, '\n"check .\YoshiViz\output"')
[((6, 10, 6, 19), 'YoshiViz.Gui.Gui', 'Gui.Gui', ({}, {}), '()', False, 'from YoshiViz import Gui\n')]
LarsenClose/dr.hpotter
hpotter/src/lazy_init.py
ef6199ab563a92f3e4916277dbde9217126f36a9
''' Wrap an __init__ function so that I don't have to assign all the parameters to a self. variable. ''' # https://stackoverflow.com/questions/5048329/python-decorator-for-automatic-binding-init-arguments import inspect from functools import wraps def lazy_init(init): ''' Create an annotation to assign all the parameters to a self. variable. ''' arg_names = inspect.getfullargspec(init)[0] # pylint: disable=E1101 @wraps(init) def new_init(self, *args): for name, value in zip(arg_names[1:], args): setattr(self, name, value) init(self, *args) return new_init
[((15, 5, 15, 16), 'functools.wraps', 'wraps', ({(15, 11, 15, 15): 'init'}, {}), '(init)', False, 'from functools import wraps\n'), ((12, 16, 12, 44), 'inspect.getfullargspec', 'inspect.getfullargspec', ({(12, 39, 12, 43): 'init'}, {}), '(init)', False, 'import inspect\n')]
technojam/MLian
main.py
7632c5c7d4c44b1d87de9ab23c1ed7293962ca49
# def register_feed(): import os import cv2 path = '/UserImage' cam = cv2.VideoCapture(0) name=input("Name: ") cv2.namedWindow("test") img_counter = 0 while True: ret, frame = cam.read() if not ret: print("failed to grab frame") break else: cv2.imshow("test", frame) k = cv2.waitKey(1) if k%256 == 27: # ESC pressed print("Escape hit, closing...") break elif k%256 == 32: # SPACE pressed # img_name = "opencv_frame_{}.png".format(img_counter) cv2.imwrite(name + ".jpg", frame) # print("{} written!".format(img_name)) print("Image Captured! Proceed...") img_counter += 1 cam.release() cv2.destroyAllWindows()
[((5, 6, 5, 25), 'cv2.VideoCapture', 'cv2.VideoCapture', ({(5, 23, 5, 24): '0'}, {}), '(0)', False, 'import cv2\n'), ((8, 0, 8, 23), 'cv2.namedWindow', 'cv2.namedWindow', ({(8, 16, 8, 22): '"""test"""'}, {}), "('test')", False, 'import cv2\n'), ((35, 0, 35, 23), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ({}, {}), '()', False, 'import cv2\n'), ((18, 8, 18, 33), 'cv2.imshow', 'cv2.imshow', ({(18, 19, 18, 25): '"""test"""', (18, 27, 18, 32): 'frame'}, {}), "('test', frame)", False, 'import cv2\n'), ((20, 12, 20, 26), 'cv2.waitKey', 'cv2.waitKey', ({(20, 24, 20, 25): '1'}, {}), '(1)', False, 'import cv2\n'), ((28, 12, 28, 45), 'cv2.imwrite', 'cv2.imwrite', ({(28, 24, 28, 37): "(name + '.jpg')", (28, 39, 28, 44): 'frame'}, {}), "(name + '.jpg', frame)", False, 'import cv2\n')]
Hiwyl/keras_cnn_finetune
models/train.py
f424302a72c8d05056a9af6f9b293003acb8398d
# -*- encoding: utf-8 -*- ''' @Author : lance @Email : [email protected] ''' import time from model_cx.inceptionresnet import inceptionresnet from model_cx.vgg19two import vgg19_all_lr from model_cx.inceptionv3 import inceptionv3 from model_cx.densenet import densenet from model_cx.nasnet import nasnet from model_cx.merge import merge from model_cx.bcnn import bilinearnet from model_cx.resnet import ResNet50 from model_cx.mobilenetv2 import mobilenetv2 from model_cx.senet import senet if __name__=="__main__": classes = 1 epochs = 100 steps_per_epoch = 113 validation_steps = 48 shape=(224,224) print("开始训练...") start = time.time() # # try: # print("densenet") # densenet(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("bcnn") # bilinearnet(classes, epochs, steps_per_epoch, validation_steps, shape) # # except Exception as e: # print(e) # try: # print("resnet") # ResNet50(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) try: print("merge") merge(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) # try: # print("ince_res") # inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, (299, 299)) # # inceptionresnet(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("mobilenetv2") # mobilenetv2(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) # try: # print("inceptionv3") # inceptionv3(classes, epochs, steps_per_epoch, validation_steps, (299, 299)) # # inceptionv3(classes, epochs, steps_per_epoch, validation_steps, shape) # except Exception as e: # print(e) try: print("nasnet") nasnet(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) try: print("vgg19two") vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, shape) except Exception as e: print(e) try: print("senet") vgg19_all_lr(classes, epochs, steps_per_epoch, validation_steps, (100,100)) except Exception as e: print(e) end = time.time() print("ETA:", (end - start) / 3600)
[((29, 12, 29, 23), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((84, 10, 84, 21), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((49, 8, 49, 72), 'model_cx.merge.merge', 'merge', ({(49, 14, 49, 21): 'classes', (49, 23, 49, 29): 'epochs', (49, 31, 49, 46): 'steps_per_epoch', (49, 48, 49, 64): 'validation_steps', (49, 66, 49, 71): 'shape'}, {}), '(classes, epochs, steps_per_epoch, validation_steps, shape)', False, 'from model_cx.merge import merge\n'), ((71, 8, 71, 73), 'model_cx.nasnet.nasnet', 'nasnet', ({(71, 15, 71, 22): 'classes', (71, 24, 71, 30): 'epochs', (71, 32, 71, 47): 'steps_per_epoch', (71, 49, 71, 65): 'validation_steps', (71, 67, 71, 72): 'shape'}, {}), '(classes, epochs, steps_per_epoch, validation_steps, shape)', False, 'from model_cx.nasnet import nasnet\n'), ((76, 8, 76, 79), 'model_cx.vgg19two.vgg19_all_lr', 'vgg19_all_lr', ({(76, 21, 76, 28): 'classes', (76, 30, 76, 36): 'epochs', (76, 38, 76, 53): 'steps_per_epoch', (76, 55, 76, 71): 'validation_steps', (76, 73, 76, 78): 'shape'}, {}), '(classes, epochs, steps_per_epoch, validation_steps, shape)', False, 'from model_cx.vgg19two import vgg19_all_lr\n'), ((81, 8, 81, 83), 'model_cx.vgg19two.vgg19_all_lr', 'vgg19_all_lr', ({(81, 21, 81, 28): 'classes', (81, 30, 81, 36): 'epochs', (81, 38, 81, 53): 'steps_per_epoch', (81, 55, 81, 71): 'validation_steps', (81, 73, 81, 82): '(100, 100)'}, {}), '(classes, epochs, steps_per_epoch, validation_steps, (100, 100))', False, 'from model_cx.vgg19two import vgg19_all_lr\n')]
alpiges/probnum
src/probnum/randprocs/markov/integrator/_preconditioner.py
2e4153cb0df559984e09ec74487ef6c9d3f6d464
"""Coordinate changes in state space models.""" import abc try: # cached_property is only available in Python >=3.8 from functools import cached_property except ImportError: from cached_property import cached_property import numpy as np import scipy.special # for vectorised factorial from probnum import config, linops, randvars def apply_precon(precon, rv): # public (because it is needed in some integrator implementations), # but not exposed to the 'randprocs' namespace # (i.e. not imported in any __init__.py). # There is no way of checking whether `rv` has its Cholesky factor computed already or not. # Therefore, since we need to update the Cholesky factor for square-root filtering, # we also update the Cholesky factor for non-square-root algorithms here, # which implies additional cost. # See Issues #319 and #329. # When they are resolved, this function here will hopefully be superfluous. new_mean = precon @ rv.mean new_cov_cholesky = precon @ rv.cov_cholesky # precon is diagonal, so this is valid new_cov = new_cov_cholesky @ new_cov_cholesky.T return randvars.Normal(new_mean, new_cov, cov_cholesky=new_cov_cholesky) class Preconditioner(abc.ABC): """Coordinate change transformations as preconditioners in state space models. For some models, this makes the filtering and smoothing steps more numerically stable. """ @abc.abstractmethod def __call__(self, step) -> np.ndarray: # if more than step is needed, add them into the signature in the future raise NotImplementedError @cached_property def inverse(self) -> "Preconditioner": raise NotImplementedError class NordsieckLikeCoordinates(Preconditioner): """Nordsieck-like coordinates. Similar to Nordsieck coordinates (which store the Taylor coefficients instead of the derivatives), but better for ODE filtering and smoothing. Used in integrator-transitions, e.g. in :class:`IntegratedWienerTransition`. """ def __init__(self, powers, scales, dimension): # Clean way of assembling these coordinates cheaply, # because the powers and scales of the inverse # are better read off than inverted self.powers = powers self.scales = scales self.dimension = dimension @classmethod def from_order(cls, order, dimension): # used to conveniently initialise in the beginning powers = np.arange(order, -1, -1) scales = scipy.special.factorial(powers) return cls( powers=powers + 0.5, scales=scales, dimension=dimension, ) def __call__(self, step): scaling_vector = np.abs(step) ** self.powers / self.scales if config.matrix_free: return linops.Kronecker( A=linops.Identity(self.dimension), B=linops.Scaling(factors=scaling_vector), ) return np.kron(np.eye(self.dimension), np.diag(scaling_vector)) @cached_property def inverse(self) -> "NordsieckLikeCoordinates": return NordsieckLikeCoordinates( powers=-self.powers, scales=1.0 / self.scales, dimension=self.dimension, )
[((33, 11, 33, 76), 'probnum.randvars.Normal', 'randvars.Normal', (), '', False, 'from probnum import config, linops, randvars\n'), ((72, 17, 72, 41), 'numpy.arange', 'np.arange', ({(72, 27, 72, 32): 'order', (72, 34, 72, 36): '-1', (72, 38, 72, 40): '-1'}, {}), '(order, -1, -1)', True, 'import numpy as np\n'), ((87, 23, 87, 45), 'numpy.eye', 'np.eye', ({(87, 30, 87, 44): 'self.dimension'}, {}), '(self.dimension)', True, 'import numpy as np\n'), ((87, 47, 87, 70), 'numpy.diag', 'np.diag', ({(87, 55, 87, 69): 'scaling_vector'}, {}), '(scaling_vector)', True, 'import numpy as np\n'), ((81, 25, 81, 37), 'numpy.abs', 'np.abs', ({(81, 32, 81, 36): 'step'}, {}), '(step)', True, 'import numpy as np\n'), ((84, 18, 84, 49), 'probnum.linops.Identity', 'linops.Identity', ({(84, 34, 84, 48): 'self.dimension'}, {}), '(self.dimension)', False, 'from probnum import config, linops, randvars\n'), ((85, 18, 85, 56), 'probnum.linops.Scaling', 'linops.Scaling', (), '', False, 'from probnum import config, linops, randvars\n')]
mina-gaid/scp
allauth/socialaccount/providers/linkedin/provider.py
38e1cd303d4728a987df117f666ce194e241ed1a
from allauth.socialaccount import providers from allauth.socialaccount.providers.base import ProviderAccount from allauth.socialaccount.providers.oauth.provider import OAuthProvider from allauth.socialaccount import app_settings class LinkedInAccount(ProviderAccount): def get_profile_url(self): return self.account.extra_data.get('public-profile-url') def get_avatar_url(self): # try to return the higher res picture-urls::(original) first try: if self.account.extra_data.get('picture-urls', {}).get( 'picture-url'): return self.account.extra_data.get('picture-urls', {}).get( 'picture-url') except: # if we can't get higher res for any reason, we'll just return the # low res pass return self.account.extra_data.get('picture-url') def to_str(self): dflt = super(LinkedInAccount, self).to_str() name = self.account.extra_data.get('name', dflt) first_name = self.account.extra_data.get('first-name', None) last_name = self.account.extra_data.get('last-name', None) if first_name and last_name: name = first_name + ' ' + last_name return name class LinkedInProvider(OAuthProvider): id = 'linkedin' name = 'LinkedIn' account_class = LinkedInAccount def get_default_scope(self): scope = [] if app_settings.QUERY_EMAIL: scope.append('r_emailaddress') return scope def get_profile_fields(self): default_fields = ['id', 'first-name', 'last-name', 'email-address', 'picture-url', 'picture-urls::(original)', # picture-urls::(original) is higher res 'public-profile-url'] fields = self.get_settings().get('PROFILE_FIELDS', default_fields) return fields def extract_uid(self, data): return data['id'] def extract_common_fields(self, data): return dict(email=data.get('email-address'), first_name=data.get('first-name'), last_name=data.get('last-name')) providers.registry.register(LinkedInProvider)
[((67, 0, 67, 45), 'allauth.socialaccount.providers.registry.register', 'providers.registry.register', ({(67, 28, 67, 44): 'LinkedInProvider'}, {}), '(LinkedInProvider)', False, 'from allauth.socialaccount import providers\n')]
CCTQL/2048-api
game2048/myNew.py
a75316a90e9a7c8c9171e39e1d1fc24cbac3ba1a
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets from torch.autograd import Variable from sklearn.model_selection import train_test_split import time import pandas as pd import numpy as np import csv batch_size = 128 NUM_EPOCHS = 30 LR = 0.001 TIME_STEP = 4 class CCRNN(nn.Module): def __init__(self): # 继承RNN super(CCRNN, self).__init__() self.ccLSTM = nn.LSTM( input_size=4, hidden_size=128, num_layers=4, bidirectional=True, batch_first=True ) self.ccCNN22 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=2, stride=2, padding=0 ) self.ccCNN14 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=(1, 4), stride=1, padding=0 ) self.ccCNN41 = nn.Conv2d( in_channels=1, out_channels=1, kernel_size=(4, 1), stride=1, padding=0 ) self.CNN22toFC = nn.Linear(4, 64) self.CNN41toFC = nn.Linear(4, 32) self.CNN14toFC = nn.Linear(4, 32) self.LSTMtoFC = nn.Linear(256, 128) self.FCtoOut = nn.Linear(256, 4) def forward(self, x): LSTM_out, (h_n, c_n) = self.ccLSTM(x, None) CNN_in = torch.unsqueeze(x[:, 0:4, :], 1) CNN_out22 = self.ccCNN22(CNN_in) CNN_out41 = self.ccCNN41(CNN_in) CNN_out14 = self.ccCNN14(CNN_in) CNN22_reshape = CNN_out22.view(-1, 4) CNN14_reshape = CNN_out41.view(-1, 4) CNN41_reshape = CNN_out14.view(-1, 4) CNN22toFC = self.CNN22toFC(CNN22_reshape) CNN14toFC = self.CNN14toFC(CNN14_reshape) CNN41toFC = self.CNN41toFC(CNN41_reshape) LSTMtoFC = self.LSTMtoFC(LSTM_out[:, -1, :]) CNNandLSTM = torch.cat((CNN22toFC, CNN41toFC, CNN14toFC, LSTMtoFC), 1) out = self.FCtoOut(CNNandLSTM) return out #------------------读入数据----------------------------- csv_data = pd.read_csv('./drive/My Drive/DATA.csv') csv_data = csv_data.values A = csv_data.shape[0] board_data = csv_data[:,0:16] # X = np.log2(X) X = torch.FloatTensor(board_data) X = np.int64(board_data) # 转置后拼接 X = np.reshape(X, (-1,4,4)) XT = X.transpose(0,2,1) X = np.concatenate((X,XT),axis=1) print(X.shape) direction_data = csv_data[:,16] Y = np.int64(direction_data) #------------------------------------------------------- X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,shuffle=False) X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) Y_train = torch.LongTensor(Y_train) Y_test = torch.LongTensor(Y_test) train_dataset = torch.utils.data.TensorDataset(X_train,Y_train) # test_dataset = torch.utils.data.TensorDataset(X_test,Y_test) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True ) # test_loader = torch.utils.data.DataLoader(dataset=test_dataset, # batch_size=batch_size, # shuffle=False # ) batch_size = 128 NUM_EPOCHS = 30 LR = 0.001 TIME_STEP = 4 #------------------读入数据----------------------------- csv_data = pd.read_csv('./drive/My Drive/DATA.csv') csv_data = csv_data.values A = csv_data.shape[0] board_data = csv_data[:,0:16] # X = np.log2(X) X = torch.FloatTensor(board_data) X = np.int64(board_data) # 转置后拼接 X = np.reshape(X, (-1,4,4)) XT = X.transpose(0,2,1) X = np.concatenate((X,XT),axis=1) print(X.shape) direction_data = csv_data[:,16] Y = np.int64(direction_data) model = CCRNN() model = model.cuda() optimizer = optim.Adam(model.parameters(), lr = 0.001) def train(epoch): for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data).cuda(), Variable(target).cuda() data = data/11.0 optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 50 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\t Loss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) torch.save(self.model, 'rnn_model_' + str(epoch) + '.pkl') if __name__ == '__main__': for epoch in range(0, NUM_EPOCHS): train(epoch)
[((83, 11, 83, 51), 'pandas.read_csv', 'pd.read_csv', ({(83, 23, 83, 50): '"""./drive/My Drive/DATA.csv"""'}, {}), "('./drive/My Drive/DATA.csv')", True, 'import pandas as pd\n'), ((88, 4, 88, 33), 'torch.FloatTensor', 'torch.FloatTensor', ({(88, 22, 88, 32): 'board_data'}, {}), '(board_data)', False, 'import torch\n'), ((89, 4, 89, 24), 'numpy.int64', 'np.int64', ({(89, 13, 89, 23): 'board_data'}, {}), '(board_data)', True, 'import numpy as np\n'), ((92, 4, 92, 27), 'numpy.reshape', 'np.reshape', ({(92, 15, 92, 16): 'X', (92, 18, 92, 26): '(-1, 4, 4)'}, {}), '(X, (-1, 4, 4))', True, 'import numpy as np\n'), ((95, 4, 95, 33), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((99, 4, 99, 28), 'numpy.int64', 'np.int64', ({(99, 13, 99, 27): 'direction_data'}, {}), '(direction_data)', True, 'import numpy as np\n'), ((105, 35, 105, 86), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((106, 10, 106, 36), 'torch.FloatTensor', 'torch.FloatTensor', ({(106, 28, 106, 35): 'X_train'}, {}), '(X_train)', False, 'import torch\n'), ((107, 9, 107, 34), 'torch.FloatTensor', 'torch.FloatTensor', ({(107, 27, 107, 33): 'X_test'}, {}), '(X_test)', False, 'import torch\n'), ((108, 10, 108, 35), 'torch.LongTensor', 'torch.LongTensor', ({(108, 27, 108, 34): 'Y_train'}, {}), '(Y_train)', False, 'import torch\n'), ((109, 9, 109, 33), 'torch.LongTensor', 'torch.LongTensor', ({(109, 26, 109, 32): 'Y_test'}, {}), '(Y_test)', False, 'import torch\n'), ((111, 16, 111, 63), 'torch.utils.data.TensorDataset', 'torch.utils.data.TensorDataset', ({(111, 47, 111, 54): 'X_train', (111, 55, 111, 62): 'Y_train'}, {}), '(X_train, Y_train)', False, 'import torch\n'), ((114, 15, 117, 1), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (), '', False, 'import torch\n'), ((131, 11, 131, 51), 'pandas.read_csv', 'pd.read_csv', ({(131, 23, 131, 50): '"""./drive/My Drive/DATA.csv"""'}, {}), "('./drive/My Drive/DATA.csv')", True, 'import pandas as pd\n'), ((136, 4, 136, 33), 'torch.FloatTensor', 'torch.FloatTensor', ({(136, 22, 136, 32): 'board_data'}, {}), '(board_data)', False, 'import torch\n'), ((137, 4, 137, 24), 'numpy.int64', 'np.int64', ({(137, 13, 137, 23): 'board_data'}, {}), '(board_data)', True, 'import numpy as np\n'), ((140, 4, 140, 27), 'numpy.reshape', 'np.reshape', ({(140, 15, 140, 16): 'X', (140, 18, 140, 26): '(-1, 4, 4)'}, {}), '(X, (-1, 4, 4))', True, 'import numpy as np\n'), ((143, 4, 143, 33), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((147, 4, 147, 28), 'numpy.int64', 'np.int64', ({(147, 13, 147, 27): 'direction_data'}, {}), '(direction_data)', True, 'import numpy as np\n'), ((25, 22, 32, 9), 'torch.nn.LSTM', 'nn.LSTM', (), '', True, 'import torch.nn as nn\n'), ((34, 23, 40, 9), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((42, 23, 48, 9), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((50, 23, 56, 9), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((58, 25, 58, 41), 'torch.nn.Linear', 'nn.Linear', ({(58, 35, 58, 36): '4', (58, 38, 58, 40): '64'}, {}), '(4, 64)', True, 'import torch.nn as nn\n'), ((59, 25, 59, 41), 'torch.nn.Linear', 'nn.Linear', ({(59, 35, 59, 36): '4', (59, 38, 59, 40): '32'}, {}), '(4, 32)', True, 'import torch.nn as nn\n'), ((60, 25, 60, 41), 'torch.nn.Linear', 'nn.Linear', ({(60, 35, 60, 36): '4', (60, 38, 60, 40): '32'}, {}), '(4, 32)', True, 'import torch.nn as nn\n'), ((61, 24, 61, 43), 'torch.nn.Linear', 'nn.Linear', ({(61, 34, 61, 37): '256', (61, 39, 61, 42): '128'}, {}), '(256, 128)', True, 'import torch.nn as nn\n'), ((62, 23, 62, 40), 'torch.nn.Linear', 'nn.Linear', ({(62, 33, 62, 36): '256', (62, 38, 62, 39): '4'}, {}), '(256, 4)', True, 'import torch.nn as nn\n'), ((66, 17, 66, 49), 'torch.unsqueeze', 'torch.unsqueeze', ({(66, 33, 66, 45): 'x[:, 0:4, :]', (66, 47, 66, 48): '1'}, {}), '(x[:, 0:4, :], 1)', False, 'import torch\n'), ((78, 21, 78, 78), 'torch.cat', 'torch.cat', ({(78, 31, 78, 74): '(CNN22toFC, CNN41toFC, CNN14toFC, LSTMtoFC)', (78, 76, 78, 77): '1'}, {}), '((CNN22toFC, CNN41toFC, CNN14toFC, LSTMtoFC), 1)', False, 'import torch\n'), ((161, 15, 161, 46), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', ({(161, 31, 161, 37): 'output', (161, 39, 161, 45): 'target'}, {}), '(output, target)', True, 'import torch.nn.functional as F\n'), ((157, 23, 157, 37), 'torch.autograd.Variable', 'Variable', ({(157, 32, 157, 36): 'data'}, {}), '(data)', False, 'from torch.autograd import Variable\n'), ((157, 46, 157, 62), 'torch.autograd.Variable', 'Variable', ({(157, 55, 157, 61): 'target'}, {}), '(target)', False, 'from torch.autograd import Variable\n')]
yliu120/dbsystem
HW2/dbsys-hw2/Database.py
d1b008f411929058a34a1dd2c44c9ee2cf899865
import json, io, os, os.path from Catalog.Schema import DBSchema, DBSchemaEncoder, DBSchemaDecoder from Query.Plan import PlanBuilder from Storage.StorageEngine import StorageEngine class Database: """ A top-level database engine class. For now, this primarily maintains a simple catalog, mapping relation names to schema objects. Also, it provides the ability to construct query plan objects, as well as wrapping the storage layer methods. """ checkpointEncoding = "latin1" checkpointFile = "db.catalog" def __init__(self, **kwargs): other = kwargs.get("other", None) if other: self.fromOther(other) else: storageArgs = {k:v for (k,v) in kwargs.items() \ if k in ["pageSize", "poolSize", "dataDir", "indexDir"]} self.relationMap = kwargs.get("relations", {}) self.defaultPageSize = kwargs.get("pageSize", io.DEFAULT_BUFFER_SIZE) self.storage = kwargs.get("storage", StorageEngine(**storageArgs)) checkpointFound = os.path.exists(os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile)) restoring = "restore" in kwargs if not restoring and checkpointFound: self.restore() def fromOther(self, other): self.relationMap = other.relationMap self.defaultPageSize = other.defaultPageSize self.storage = other.storage def close(self): if self.storage: self.storage.close() # Database internal components def storageEngine(self): return self.storage def bufferPool(self): return self.storage.bufferPool if self.storage else None def fileManager(self): return self.storage.fileMgr if self.storage else None # User API # Catalog methods def relations(self): return self.relationMap.keys() def hasRelation(self, relationName): return relationName in self.relationMap def relationSchema(self, relationName): if relationName in self.relationMap: return self.relationMap[relationName] # DDL statements def createRelation(self, relationName, relationFields): if relationName not in self.relationMap: schema = DBSchema(relationName, relationFields) self.relationMap[relationName] = schema self.storage.createRelation(relationName, schema) self.checkpoint() else: raise ValueError("Relation '" + relationName + "' already exists") def removeRelation(self, relationName): if relationName in self.relationMap: del self.relationMap[relationName] self.storage.removeRelation(relationName) self.checkpoint() else: raise ValueError("No relation '" + relationName + "' found in database") # DML statements # Returns a tuple id for the newly inserted data. def insertTuple(self, relationName, tupleData): if relationName in self.relationMap: return self.storage.insertTuple(relationName, tupleData) else: raise ValueError("Unknown relation '" + relationName + "' while inserting a tuple") def deleteTuple(self, tupleId): self.storage.deleteTuple(tupleId) def updateTuple(self, tupleId, tupleData): self.storage.updateTuple(tupleId, tupleData) # Queries # Returns an empty query builder that can access the current database. def query(self): return PlanBuilder(db=self) # Returns an iterable for query results, after initializing the given plan. def processQuery(self, queryPlan): return queryPlan.prepare(self) # Save the database internals to the data directory. def checkpoint(self): if self.storage: dbcPath = os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile) with open(dbcPath, 'w', encoding=Database.checkpointEncoding) as f: f.write(self.pack()) # Load relations and schema from an existing data directory. def restore(self): if self.storage: dbcPath = os.path.join(self.storage.fileMgr.dataDir, Database.checkpointFile) with open(dbcPath, 'r', encoding=Database.checkpointEncoding) as f: other = Database.unpack(f.read(), self.storage) self.fromOther(other) # Database schema catalog serialization def pack(self): if self.relationMap is not None: return json.dumps([self.relationMap, self.defaultPageSize], cls=DBSchemaEncoder) @classmethod def unpack(cls, buffer, storageEngine): (relationMap, pageSize) = json.loads(buffer, cls=DBSchemaDecoder) return cls(relations=relationMap, pageSize=pageSize, storage=storageEngine, restore=True) if __name__ == "__main__": import doctest doctest.testmod()
[((144, 4, 144, 21), 'doctest.testmod', 'doctest.testmod', ({}, {}), '()', False, 'import doctest\n'), ((110, 11, 110, 31), 'Query.Plan.PlanBuilder', 'PlanBuilder', (), '', False, 'from Query.Plan import PlanBuilder\n'), ((139, 30, 139, 69), 'json.loads', 'json.loads', (), '', False, 'import json, io, os, os.path\n'), ((76, 15, 76, 53), 'Catalog.Schema.DBSchema', 'DBSchema', ({(76, 24, 76, 36): 'relationName', (76, 38, 76, 52): 'relationFields'}, {}), '(relationName, relationFields)', False, 'from Catalog.Schema import DBSchema, DBSchemaEncoder, DBSchemaDecoder\n'), ((120, 16, 120, 83), 'os.path.join', 'os.path.join', ({(120, 29, 120, 57): 'self.storage.fileMgr.dataDir', (120, 59, 120, 82): 'Database.checkpointFile'}, {}), '(self.storage.fileMgr.dataDir, Database.checkpointFile)', False, 'import json, io, os, os.path\n'), ((127, 16, 127, 83), 'os.path.join', 'os.path.join', ({(127, 29, 127, 57): 'self.storage.fileMgr.dataDir', (127, 59, 127, 82): 'Database.checkpointFile'}, {}), '(self.storage.fileMgr.dataDir, Database.checkpointFile)', False, 'import json, io, os, os.path\n'), ((135, 13, 135, 86), 'json.dumps', 'json.dumps', (), '', False, 'import json, io, os, os.path\n'), ((32, 51, 32, 79), 'Storage.StorageEngine.StorageEngine', 'StorageEngine', ({}, {}), '(**storageArgs)', False, 'from Storage.StorageEngine import StorageEngine\n'), ((34, 39, 34, 106), 'os.path.join', 'os.path.join', ({(34, 52, 34, 80): 'self.storage.fileMgr.dataDir', (34, 82, 34, 105): 'Database.checkpointFile'}, {}), '(self.storage.fileMgr.dataDir, Database.checkpointFile)', False, 'import json, io, os, os.path\n')]
dboyliao/TaipeiPy-pybind11-buffer-array
tests/test_arr_add_value.py
22e764d9fbf605950c0de10e3a341de36bc9bf89
import numpy as np import mylib def test_arr_add_value(): for _ in range(10): shape = np.random.randint(1, 10, size=np.random.randint(3, 10)).tolist() in_arr = np.random.rand(*shape).astype(np.double) ok = np.allclose(mylib.array_add_value(in_arr, np.pi), in_arr + np.pi) if not ok: raise ValueError("incorrect result")
[((10, 25, 10, 61), 'mylib.array_add_value', 'mylib.array_add_value', ({(10, 47, 10, 53): 'in_arr', (10, 55, 10, 60): 'np.pi'}, {}), '(in_arr, np.pi)', False, 'import mylib\n'), ((9, 17, 9, 39), 'numpy.random.rand', 'np.random.rand', ({(9, 32, 9, 38): '*shape'}, {}), '(*shape)', True, 'import numpy as np\n'), ((8, 46, 8, 70), 'numpy.random.randint', 'np.random.randint', ({(8, 64, 8, 65): '3', (8, 67, 8, 69): '10'}, {}), '(3, 10)', True, 'import numpy as np\n')]
DavideRuzza/moderngl-window
moderngl_window/resources/data.py
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
""" Registry general data files """ from typing import Any from moderngl_window.resources.base import BaseRegistry from moderngl_window.meta import DataDescription class DataFiles(BaseRegistry): """Registry for requested data files""" settings_attr = "DATA_LOADERS" def load(self, meta: DataDescription) -> Any: """Load data file with the configured loaders. Args: meta (:py:class:`~moderngl_window.meta.data.DataDescription`): the resource description Returns: Any: The loaded resource """ return super().load(meta) data = DataFiles()
[]
frewsxcv/routes
tests/test_units/test_mapper_str.py
7690fc1016e56739855435fb54c96acccfa29009
import unittest from routes import Mapper class TestMapperStr(unittest.TestCase): def test_str(self): m = Mapper() m.connect('/{controller}/{action}') m.connect('entries', '/entries', controller='entry', action='index') m.connect('entry', '/entries/{id}', controller='entry', action='show') expected = """\ Route name Methods Path /{controller}/{action} entries /entries entry /entries/{id}""" for expected_line, actual_line in zip(expected.splitlines(), str(m).splitlines()): assert expected_line == actual_line.rstrip()
[((6, 12, 6, 20), 'routes.Mapper', 'Mapper', ({}, {}), '()', False, 'from routes import Mapper\n')]
HAOYUatHZ/pyquarkchain
quarkchain/tools/config_slave.py
b2c7c02e4415aa26917c2cbb5e7571c9fef16c5b
""" python config_slave.py 127.0.0.1 38000 38006 127.0.0.2 18999 18002 will generate 4 slave server configs accordingly. will be used in deployment automation to configure a cluster. usage: python config_slave.py <host1> <port1> <port2> <host2> <port3> ... """ import argparse import collections import json import os FILE = "../../testnet/2/cluster_config_template.json" if "QKC_CONFIG" in os.environ: FILE = os.environ["QKC_CONFIG"] def main(): parser = argparse.ArgumentParser() parser.add_argument( "hostports", nargs="+", metavar="hostports", help="Host and ports for slave config", ) args = parser.parse_args() abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) ############### # parse hosts and ports to form a slave list ############### host_port_mapping = collections.defaultdict(list) last_host = None for host_or_port in args.hostports: # type: str if not host_or_port.isdigit(): # host last_host = host_or_port else: # port host_port_mapping[last_host].append(host_or_port) assert None not in host_port_mapping slave_num = sum(len(port_list) for port_list in host_port_mapping.values()) # make sure number of slaves is power of 2 assert slave_num > 0 and (slave_num & (slave_num - 1) == 0) slave_servers, i = [], 0 for host, port_list in host_port_mapping.items(): for port in port_list: s = { "HOST": host, "PORT": int(port), "ID": "S%d" % i, "CHAIN_MASK_LIST": [i | slave_num], } slave_servers.append(s) i += 1 ############### # read config file and substitute with updated slave config ############### with open(FILE, "r+") as f: parsed_config = json.load(f) parsed_config["SLAVE_LIST"] = slave_servers f.seek(0) f.truncate() f.write(json.dumps(parsed_config, indent=4)) if __name__ == "__main__": main()
[((18, 13, 18, 38), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((27, 14, 27, 39), 'os.path.abspath', 'os.path.abspath', ({(27, 30, 27, 38): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((28, 12, 28, 36), 'os.path.dirname', 'os.path.dirname', ({(28, 28, 28, 35): 'abspath'}, {}), '(abspath)', False, 'import os\n'), ((29, 4, 29, 19), 'os.chdir', 'os.chdir', ({(29, 13, 29, 18): 'dname'}, {}), '(dname)', False, 'import os\n'), ((35, 24, 35, 53), 'collections.defaultdict', 'collections.defaultdict', ({(35, 48, 35, 52): 'list'}, {}), '(list)', False, 'import collections\n'), ((65, 24, 65, 36), 'json.load', 'json.load', ({(65, 34, 65, 35): 'f'}, {}), '(f)', False, 'import json\n'), ((69, 16, 69, 51), 'json.dumps', 'json.dumps', (), '', False, 'import json\n')]
MauMendes/python3-programming-specialization
python-function-files-dictionaries/week4-assignment1.py
8bd259f0ac559c6004baa0e759b6ec4bc25e1320
#1) Write a function, sublist, that takes in a list of numbers as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the number 5 (it should not contain the number 5). def sublist(input_lst): out_lst = list() number = 0 i = 0 print(input_lst) print(len(input_lst)) length = len(input_lst) while i<length: number = input_lst[i] i+=1 if number==5: break else : out_lst.append(number) print(out_lst) return out_lst #2) Write a function called check_nums that takes a list as its parameter, and contains a while loop that only stops once the element of the # list is the number 7. What is returned is a list of all of the numbers up until it reaches 7.def check_nums(input_lst): def check_nums(input_lst): out_lst = list() number = 0 i = 0 print(input_lst) print(len(input_lst)) length = len(input_lst) while i<length: number = input_lst[i] i+=1 if number==7: break else : out_lst.append(number) print(out_lst) return out_lst #3) Write a function, sublist, that takes in a list of strings as the parameter. In the function, use a while loop to return a sublist of the input list. # The sublist should contain the same values of the original list up until it reaches the string “STOP” (it should not contain the string “STOP”). def sublist(in_lst): out_list = list() str = "" i = 0 while str!="STOP": str = in_lst[i] i+=1 if str=="STOP": break else: out_list.append(str) return out_list #4) Write a function called stop_at_z that iterates through a list of strings. Using a while loop, append each string to a new list until the string that # appears is “z”. The function should return the new list. def stop_at_z(in_lst): out_list = list() str = "" i = 0 while str!="z": str = in_lst[i] i+=1 if str=="z": break else: out_list.append(str) return out_list #5) Below is a for loop that works. Underneath the for loop, rewrite the problem so that it does the same thing, but using a while loop instead of a for loop. # Assign the accumulated total in the while loop code to the variable sum2. Once complete, sum2 should equal sum1. lst = [65, 78, 21, 33] lenght = len(lst) i = 0 sum2 = 0 while i<lenght: sum2 += lst[i] i+=1 #6) Challenge: Write a function called beginning that takes a list as input and contains a while loop that only stops once the element of the list is the string ‘bye’. # What is returned is a list that contains up to the first 10 strings, regardless of where the loop stops. (i.e., if it stops on the 32nd element, the first 10 are # returned. If “bye” is the 5th element, the first 4 are returned.) If you want to make this even more of a challenge, do this without slicing def beginning(in_list): length = len(in_list) out_lst = list() i = 0 str = "" while i<length: str = in_list[i] i+=1 if str=="bye" or i>10: break out_lst.append(str) return out_lst
[]
Canway-shiisa/bk-iam-saas
saas/backend/apps/group/views.py
73c3770d9647c9cc8d515427cd1d053d8af9d071
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from functools import wraps from typing import List from django.shortcuts import get_object_or_404 from django.utils.translation import gettext as _ from drf_yasg.utils import swagger_auto_schema from pydantic.tools import parse_obj_as from rest_framework import serializers, status, views from rest_framework.pagination import LimitOffsetPagination from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet, mixins from backend.account.permissions import RolePermission, role_perm_class from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ from backend.apps.group import tasks # noqa from backend.apps.group.models import Group from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ from backend.apps.template.models import PermTemplatePolicyAuthorized from backend.audit.audit import audit_context_setter, view_audit_decorator from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz from backend.biz.policy_tag import ConditionTagBean, ConditionTagBiz from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker from backend.biz.template import TemplateBiz from backend.common.error_codes import error_codes from backend.common.filters import NoCheckModelFilterBackend from backend.common.serializers import SystemQuerySLZ from backend.common.time import PERMANENT_SECONDS from backend.service.constants import PermissionCodeEnum, RoleType, SubjectType from backend.service.models import Subject from backend.trans.group import GroupTrans from .audit import ( GroupCreateAuditProvider, GroupDeleteAuditProvider, GroupMemberCreateAuditProvider, GroupMemberDeleteAuditProvider, GroupMemberRenewAuditProvider, GroupPolicyDeleteAuditProvider, GroupPolicyUpdateAuditProvider, GroupTemplateCreateAuditProvider, GroupTransferAuditProvider, GroupUpdateAuditProvider, ) from .constants import OperateEnum from .filters import GroupFilter, GroupTemplateSystemFilter from .serializers import ( GroupAddMemberSLZ, GroupAuthoriedConditionSLZ, GroupAuthorizationSLZ, GroupCreateSLZ, GroupDeleteMemberSLZ, GroupIdSLZ, GroupMemberUpdateExpiredAtSLZ, GroupPolicyUpdateSLZ, GroupSLZ, GroupTemplateDetailSchemaSLZ, GroupTemplateDetailSLZ, GroupTemplateSchemaSLZ, GroupTemplateSLZ, GroupTransferSLZ, GroupUpdateSLZ, MemberSLZ, SearchMemberSLZ, ) permission_logger = logging.getLogger("permission") def check_readonly_group(operation): """用户组可读检测""" def decorate(func): @wraps(func) def wrapper(view, request, *args, **kwargs): group = view.get_object() readonly = group.readonly if readonly: raise error_codes.FORBIDDEN.format( message=_("只读用户组({})无法进行({})操作!").format(group.id, operation), replace=True ) response = func(view, request, *args, **kwargs) return response return wrapper return decorate class GroupQueryMixin: def get_queryset(self): request = self.request return RoleListQuery(request.role, request.user).query_group() class GroupPermissionMixin: def check_object_permissions(self, request, obj): if not RoleObjectRelationChecker(request.role).check_group(obj): self.permission_denied(request, message=f"{request.role.type} role can not access group {obj.id}") class GroupViewSet(mixins.RetrieveModelMixin, mixins.ListModelMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "create": PermissionCodeEnum.MANAGE_GROUP.value, "update": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, } queryset = Group.objects.all() serializer_class = GroupSLZ filterset_class = GroupFilter lookup_field = "id" group_biz = GroupBiz() group_check_biz = GroupCheckBiz() role_biz = RoleBiz() group_trans = GroupTrans() @swagger_auto_schema( operation_description="创建用户组", request_body=GroupCreateSLZ(label="用户组"), responses={status.HTTP_201_CREATED: GroupIdSLZ(label="用户组ID")}, tags=["group"], ) @view_audit_decorator(GroupCreateAuditProvider) def create(self, request, *args, **kwargs): """ 创建用户组 """ serializer = GroupCreateSLZ(data=request.data) serializer.is_valid(raise_exception=True) user_id = request.user.username data = serializer.validated_data # 用户组名称在角色内唯一 self.group_check_biz.check_role_group_name_unique(request.role.id, data["name"]) # 用户组数量在角色内是否超限 number_of_new_group = 1 # 接口只支持创建一个用户组,不支持批量,所以新增用户组数量为1 self.group_check_biz.check_role_group_limit(request.role, number_of_new_group) # 检测成员是否满足管理的授权范围 members = parse_obj_as(List[Subject], data["members"]) self.group_check_biz.check_role_subject_scope(request.role, members) group = self.group_biz.create_and_add_members( request.role.id, data["name"], data["description"], user_id, members, data["expired_at"] ) # 使用长时任务触发多个模板同时授权 if data["templates"]: templates = self.group_trans.from_group_grant_data(data["templates"]) self.group_biz.grant(request.role, group, templates) # 写入审计上下文 audit_context_setter(group=group) return Response({"id": group.id}, status=status.HTTP_201_CREATED) def get_queryset(self): request = self.request role = request.role username = request.user.username filter_role_id = request.query_params.get("role_id") # 如果当前角色是staff 并且 存在筛选的role_id if role.type == RoleType.STAFF.value and filter_role_id: # 检查用户是否在角色的授权范围内 filter_role = self.role_biz.get_role_scope_include_user(filter_role_id, username) if not filter_role: return Group.objects.none() # 返回角色的用户组列表 return RoleListQuery(filter_role, request.user).query_group() return RoleListQuery(role, request.user).query_group() @swagger_auto_schema( operation_description="用户组列表", responses={status.HTTP_200_OK: GroupSLZ(label="用户组", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): return super().list(request, *args, **kwargs) @swagger_auto_schema( operation_description="用户组详情", responses={status.HTTP_200_OK: GroupSLZ(label="用户组")}, tags=["group"], ) def retrieve(self, request, *args, **kwargs): return super().retrieve(request, *args, **kwargs) @swagger_auto_schema( operation_description="修改用户组", request_body=GroupUpdateSLZ(label="用户组"), responses={status.HTTP_200_OK: GroupUpdateSLZ(label="用户组")}, tags=["group"], ) @view_audit_decorator(GroupUpdateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_UPDATE.label) def update(self, request, *args, **kwargs): group = self.get_object() serializer = GroupUpdateSLZ(group, data=request.data) serializer.is_valid(raise_exception=True) user_id = request.user.username data = serializer.validated_data # 用户组名称在角色内唯一 self.group_check_biz.check_role_group_name_unique(request.role.id, data["name"], group.id) group = self.group_biz.update(group, data["name"], data["description"], user_id) # 写入审计上下文 audit_context_setter(group=group) return Response(serializer.data) @swagger_auto_schema( operation_description="删除用户组", responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_DELETE.label) def destroy(self, request, *args, **kwargs): group = self.get_object() self.group_biz.delete(group.id) # 写入审计上下文 audit_context_setter(group=group) return Response({}) class GroupMemberViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "list": PermissionCodeEnum.MANAGE_GROUP.value, "create": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, } queryset = Group.objects.all() lookup_field = "id" biz = GroupBiz() group_check_biz = GroupCheckBiz() @swagger_auto_schema( operation_description="用户组成员列表", query_serializer=SearchMemberSLZ(label="keyword"), responses={status.HTTP_200_OK: MemberSLZ(label="成员")}, tags=["group"], ) def list(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) # 校验权限 checker = RoleObjectRelationChecker(request.role) if not checker.check_group(group): raise error_codes.FORBIDDEN.format(message=_("用户组({})不在当前用户身份可访问的范围内").format(group.id), replace=True) if request.query_params.get("keyword"): slz = SearchMemberSLZ(data=request.query_params) slz.is_valid(raise_exception=True) keyword = slz.validated_data["keyword"].lower() group_members = self.biz.search_member_by_keyword(group.id, keyword) return Response({"results": [one.dict() for one in group_members]}) pagination = LimitOffsetPagination() limit = pagination.get_limit(request) offset = pagination.get_offset(request) count, group_members = self.biz.list_paging_group_member(group.id, limit, offset) return Response({"count": count, "results": [one.dict() for one in group_members]}) @swagger_auto_schema( operation_description="用户组添加成员", request_body=GroupAddMemberSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberCreateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_CREATE.label) def create(self, request, *args, **kwargs): serializer = GroupAddMemberSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data members_data = data["members"] expired_at = data["expired_at"] # 成员Dict结构转换为Subject结构,并去重 members = list(set(parse_obj_as(List[Subject], members_data))) # 检测成员是否满足管理的授权范围 self.group_check_biz.check_role_subject_scope(request.role, members) self.group_check_biz.check_member_count(group.id, len(members)) permission_logger.info("group %s add members %s by user %s", group.id, members, request.user.username) # 添加成员 self.biz.add_members(group.id, members, expired_at) # 写入审计上下文 audit_context_setter(group=group, members=[m.dict() for m in members]) return Response({}, status=status.HTTP_201_CREATED) @swagger_auto_schema( operation_description="用户组删除成员", request_body=GroupDeleteMemberSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_DELETE.label) def destroy(self, request, *args, **kwargs): serializer = GroupDeleteMemberSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data permission_logger.info( "group %s delete members %s by user %s", group.id, data["members"], request.user.username ) self.biz.remove_members(str(group.id), parse_obj_as(List[Subject], data["members"])) # 写入审计上下文 audit_context_setter(group=group, members=data["members"]) return Response({}) class GroupMemberUpdateExpiredAtViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [role_perm_class(PermissionCodeEnum.MANAGE_GROUP.value)] queryset = Group.objects.all() lookup_field = "id" # service group_biz = GroupBiz() @swagger_auto_schema( operation_description="用户组成员续期", request_body=GroupMemberUpdateExpiredAtSLZ(label="成员"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupMemberRenewAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_MEMBER_RENEW.label) def create(self, request, *args, **kwargs): serializer = GroupMemberUpdateExpiredAtSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data permission_logger.info( "group %s update members %s expired_at by user %s", group.id, data["members"], request.user.username ) for m in data["members"]: m["policy_expired_at"] = m.pop("expired_at") self.group_biz.update_members_expired_at( group.id, parse_obj_as(List[GroupMemberExpiredAtBean], data["members"]) ) # 写入审计上下文 audit_context_setter(group=group, members=data["members"]) return Response({}) class GroupTemplateViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = {"create": PermissionCodeEnum.MANAGE_GROUP.value} pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() filterset_class = GroupTemplateSystemFilter filter_backends = [NoCheckModelFilterBackend] lookup_field = "id" template_biz = TemplateBiz() @swagger_auto_schema( operation_description="用户组拥有的权限模板列表", responses={status.HTTP_200_OK: GroupTemplateSchemaSLZ(label="权限模板", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) queryset = PermTemplatePolicyAuthorized.objects.filter_by_subject(subject).defer("_data") queryset = self.filter_queryset(queryset) return Response(GroupTemplateSLZ(queryset, many=True).data) @swagger_auto_schema( operation_description="用户组权限模板授权信息", responses={status.HTTP_200_OK: GroupTemplateDetailSchemaSLZ(label="授权信息")}, tags=["group"], ) def retrieve(self, request, *args, **kwargs): group = get_object_or_404(self.queryset, pk=kwargs["id"]) template_id = kwargs["template_id"] subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) authorized_template = PermTemplatePolicyAuthorized.objects.get_by_subject_template(subject, int(template_id)) return Response(GroupTemplateDetailSLZ(authorized_template).data) class GroupPolicyViewSet(GroupPermissionMixin, GenericViewSet): permission_classes = [RolePermission] action_permission = { "create": PermissionCodeEnum.MANAGE_GROUP.value, "destroy": PermissionCodeEnum.MANAGE_GROUP.value, "update": PermissionCodeEnum.MANAGE_GROUP.value, } pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() lookup_field = "id" policy_query_biz = PolicyQueryBiz() policy_operation_biz = PolicyOperationBiz() group_biz = GroupBiz() group_trans = GroupTrans() @swagger_auto_schema( operation_description="用户组添加权限", request_body=GroupAuthorizationSLZ(label="授权信息"), responses={status.HTTP_201_CREATED: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupTemplateCreateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_CREATE.label) def create(self, request, *args, **kwargs): serializer = GroupAuthorizationSLZ(data=request.data) serializer.is_valid(raise_exception=True) group = self.get_object() data = serializer.validated_data templates = self.group_trans.from_group_grant_data(data["templates"]) self.group_biz.grant(request.role, group, templates) # 写入审计上下文 audit_context_setter( group=group, templates=[{"system_id": t["system_id"], "template_id": t["template_id"]} for t in data["templates"]], ) return Response({}, status=status.HTTP_201_CREATED) @swagger_auto_schema( operation_description="用户组自定义权限列表", query_serializer=SystemQuerySLZ, responses={status.HTTP_200_OK: PolicySLZ(label="策略", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): slz = SystemQuerySLZ(data=request.query_params) slz.is_valid(raise_exception=True) system_id = slz.validated_data["system_id"] group = get_object_or_404(self.queryset, pk=kwargs["id"]) subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) policies = self.policy_query_biz.list_by_subject(system_id, subject) # ResourceNameAutoUpdate updated_policies = self.policy_operation_biz.update_due_to_renamed_resource(system_id, subject, policies) return Response([p.dict() for p in updated_policies]) @swagger_auto_schema( operation_description="用户组删除自定义权限", request_body=PolicyDeleteSLZ(label="ids"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupPolicyDeleteAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_DELETE.label) def destroy(self, request, *args, **kwargs): slz = PolicyDeleteSLZ(data=request.data) slz.is_valid(raise_exception=True) system_id = slz.validated_data["system_id"] ids = slz.validated_data["ids"] group = self.get_object() subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) permission_logger.info( "subject type=%s, id=%s policy deleted by user %s", subject.type, subject.id, request.user.username ) policy_list = self.policy_query_biz.query_policy_list_by_policy_ids(system_id, subject, ids) # 删除权限 self.policy_operation_biz.delete_by_ids(system_id, subject, ids) # 写入审计上下文 audit_context_setter(group=group, system_id=system_id, policies=policy_list.policies) return Response() @swagger_auto_schema( operation_description="用户组权限修改", request_body=GroupPolicyUpdateSLZ(label="修改策略"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupPolicyUpdateAuditProvider) @check_readonly_group(operation=OperateEnum.GROUP_POLICY_UPDATE.label) def update(self, request, *args, **kwargs): group = self.get_object() slz = GroupPolicyUpdateSLZ(data=request.data) slz.is_valid(raise_exception=True) data = slz.validated_data system_id = data["system_id"] template_id = data["template_id"] policies = [PolicyBean(expired_at=PERMANENT_SECONDS, **action) for action in data["actions"]] self.group_biz.update_policies(request.role, group.id, system_id, template_id, policies) # 写入审计上下文 audit_context_setter(group=group, system_id=system_id, template_id=template_id, policies=policies) return Response({}) class GroupSystemViewSet(GenericViewSet): pagination_class = None # 去掉swagger中的limit offset参数 queryset = Group.objects.all() lookup_field = "id" biz = GroupBiz() @swagger_auto_schema( operation_description="用户组有权限的所有系统列表", responses={status.HTTP_200_OK: PolicySystemSLZ(label="系统", many=True)}, tags=["group"], ) def list(self, request, *args, **kwargs): group = self.get_object() data = self.biz.list_system_counter(group.id) return Response([one.dict() for one in data]) class GroupTransferView(views.APIView): """ 用户组转出 """ permission_classes = [role_perm_class(PermissionCodeEnum.TRANSFER_GROUP.value)] role_biz = RoleBiz() @swagger_auto_schema( operation_description="用户组批量转出", request_body=GroupTransferSLZ(label="用户转移"), responses={status.HTTP_200_OK: serializers.Serializer()}, tags=["group"], ) @view_audit_decorator(GroupTransferAuditProvider) def post(self, request, *args, **kwargs): slz = GroupTransferSLZ(data=request.data, context={"role": request.role}) slz.is_valid(raise_exception=True) group_ids = slz.validated_data["group_ids"] role_id = slz.validated_data["role_id"] self.role_biz.transfer_groups_role(group_ids, role_id) audit_context_setter(group_ids=group_ids, role_id=role_id) return Response({}) class GroupTemplateConditionCompareView(GroupPermissionMixin, GenericViewSet): condition_biz = ConditionTagBiz() template_biz = TemplateBiz() queryset = Group.objects.all() lookup_field = "id" @swagger_auto_schema( operation_description="权限模板操作条件对比", request_body=GroupAuthoriedConditionSLZ(label="操作条件"), responses={status.HTTP_200_OK: ConditionTagSLZ(label="条件差异", many=True)}, tags=["group"], ) def create(self, request, *args, **kwargs): serializer = GroupAuthoriedConditionSLZ(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data group = self.get_object() action_id = data["action_id"] resource_group_id = data["resource_group_id"] related_resource_type = data["related_resource_type"] new_condition = parse_obj_as(List[ConditionTagBean], related_resource_type["condition"]) # 从模板数据中查找匹配的操作, 资源类型的条件 template_id = kwargs["template_id"] subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) authorized_template = PermTemplatePolicyAuthorized.objects.get_by_subject_template(subject, int(template_id)) for action in authorized_template.data["actions"]: policy = PolicyBean.parse_obj(action) # 查询对应的操作 if policy.action_id == action_id: # 操作操作中对应于资源类型的操作 related_resource_type = policy.get_related_resource_type( resource_group_id, related_resource_type["system_id"], related_resource_type["type"] ) old_condition = related_resource_type.condition if related_resource_type else [] # 对比用户组已有的条件与用户提交的条件 conditions = self.condition_biz.compare_and_tag( new_condition, parse_obj_as(List[ConditionTagBean], old_condition), is_template=True ) return Response([c.dict() for c in conditions]) raise error_codes.VALIDATE_ERROR.format(_("模板: {} 没有操作: {} 的权限").format(template_id, action_id)) class GroupCustomPolicyConditionCompareView(GroupPermissionMixin, GenericViewSet): policy_biz = PolicyQueryBiz() condition_biz = ConditionTagBiz() queryset = Group.objects.all() lookup_field = "id" @swagger_auto_schema( operation_description="条件差异对比", request_body=ConditionCompareSLZ(label="资源条件"), responses={status.HTTP_200_OK: ConditionTagSLZ(label="条件差异", many=True)}, tags=["group"], ) def create(self, request, *args, **kwargs): serializer = ConditionCompareSLZ(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data group = self.get_object() subject = Subject(type=SubjectType.GROUP.value, id=str(group.id)) # 1. 查询policy的condition related_resource_type = data["related_resource_type"] old_condition = self.policy_biz.get_policy_resource_type_conditions( subject, data["policy_id"], data["resource_group_id"], related_resource_type["system_id"], related_resource_type["type"], ) # 2. 对比合并差异 conditions = self.condition_biz.compare_and_tag( parse_obj_as(List[ConditionTagBean], related_resource_type["condition"]), parse_obj_as(List[ConditionTagBean], old_condition), is_template=True, ) return Response([c.dict() for c in conditions])
[((78, 20, 78, 51), 'logging.getLogger', 'logging.getLogger', ({(78, 38, 78, 50): '"""permission"""'}, {}), "('permission')", False, 'import logging\n'), ((125, 15, 125, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((130, 16, 130, 26), 'backend.biz.group.GroupBiz', 'GroupBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((131, 22, 131, 37), 'backend.biz.group.GroupCheckBiz', 'GroupCheckBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((132, 15, 132, 24), 'backend.biz.role.RoleBiz', 'RoleBiz', ({}, {}), '()', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((134, 18, 134, 30), 'backend.trans.group.GroupTrans', 'GroupTrans', ({}, {}), '()', False, 'from backend.trans.group import GroupTrans\n'), ((142, 5, 142, 51), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(142, 26, 142, 50): 'GroupCreateAuditProvider'}, {}), '(GroupCreateAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((217, 5, 217, 51), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(217, 26, 217, 50): 'GroupUpdateAuditProvider'}, {}), '(GroupUpdateAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((242, 5, 242, 51), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(242, 26, 242, 50): 'GroupDeleteAuditProvider'}, {}), '(GroupDeleteAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((264, 15, 264, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((267, 10, 267, 20), 'backend.biz.group.GroupBiz', 'GroupBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((268, 22, 268, 37), 'backend.biz.group.GroupCheckBiz', 'GroupCheckBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((306, 5, 306, 57), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(306, 26, 306, 56): 'GroupMemberCreateAuditProvider'}, {}), '(GroupMemberCreateAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((340, 5, 340, 57), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(340, 26, 340, 56): 'GroupMemberDeleteAuditProvider'}, {}), '(GroupMemberDeleteAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((365, 15, 365, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((369, 16, 369, 26), 'backend.biz.group.GroupBiz', 'GroupBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((377, 5, 377, 56), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(377, 26, 377, 55): 'GroupMemberRenewAuditProvider'}, {}), '(GroupMemberRenewAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((409, 15, 409, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((414, 19, 414, 32), 'backend.biz.template.TemplateBiz', 'TemplateBiz', ({}, {}), '()', False, 'from backend.biz.template import TemplateBiz\n'), ((453, 15, 453, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((456, 23, 456, 39), 'backend.biz.policy.PolicyQueryBiz', 'PolicyQueryBiz', ({}, {}), '()', False, 'from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz\n'), ((457, 27, 457, 47), 'backend.biz.policy.PolicyOperationBiz', 'PolicyOperationBiz', ({}, {}), '()', False, 'from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz\n'), ((458, 16, 458, 26), 'backend.biz.group.GroupBiz', 'GroupBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((460, 18, 460, 30), 'backend.trans.group.GroupTrans', 'GroupTrans', ({}, {}), '()', False, 'from backend.trans.group import GroupTrans\n'), ((468, 5, 468, 59), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(468, 26, 468, 58): 'GroupTemplateCreateAuditProvider'}, {}), '(GroupTemplateCreateAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((516, 5, 516, 57), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(516, 26, 516, 56): 'GroupPolicyDeleteAuditProvider'}, {}), '(GroupPolicyDeleteAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((547, 5, 547, 57), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(547, 26, 547, 56): 'GroupPolicyUpdateAuditProvider'}, {}), '(GroupPolicyUpdateAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((571, 15, 571, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((574, 10, 574, 20), 'backend.biz.group.GroupBiz', 'GroupBiz', ({}, {}), '()', False, 'from backend.biz.group import GroupBiz, GroupCheckBiz, GroupMemberExpiredAtBean\n'), ((594, 15, 594, 24), 'backend.biz.role.RoleBiz', 'RoleBiz', ({}, {}), '()', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((602, 5, 602, 53), 'backend.audit.audit.view_audit_decorator', 'view_audit_decorator', ({(602, 26, 602, 52): 'GroupTransferAuditProvider'}, {}), '(GroupTransferAuditProvider)', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((618, 20, 618, 37), 'backend.biz.policy_tag.ConditionTagBiz', 'ConditionTagBiz', ({}, {}), '()', False, 'from backend.biz.policy_tag import ConditionTagBean, ConditionTagBiz\n'), ((619, 19, 619, 32), 'backend.biz.template.TemplateBiz', 'TemplateBiz', ({}, {}), '()', False, 'from backend.biz.template import TemplateBiz\n'), ((621, 15, 621, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((668, 17, 668, 33), 'backend.biz.policy.PolicyQueryBiz', 'PolicyQueryBiz', ({}, {}), '()', False, 'from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz\n'), ((669, 20, 669, 37), 'backend.biz.policy_tag.ConditionTagBiz', 'ConditionTagBiz', ({}, {}), '()', False, 'from backend.biz.policy_tag import ConditionTagBean, ConditionTagBiz\n'), ((671, 15, 671, 34), 'backend.apps.group.models.Group.objects.all', 'Group.objects.all', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((85, 9, 85, 20), 'functools.wraps', 'wraps', ({(85, 15, 85, 19): 'func'}, {}), '(func)', False, 'from functools import wraps\n'), ((160, 18, 160, 62), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(160, 31, 160, 44): 'List[Subject]', (160, 46, 160, 61): "data['members']"}, {}), "(List[Subject], data['members'])", False, 'from pydantic.tools import parse_obj_as\n'), ((173, 8, 173, 41), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((175, 15, 175, 73), 'rest_framework.response.Response', 'Response', (), '', False, 'from rest_framework.response import Response\n'), ((233, 8, 233, 41), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((235, 15, 235, 40), 'rest_framework.response.Response', 'Response', ({(235, 24, 235, 39): 'serializer.data'}, {}), '(serializer.data)', False, 'from rest_framework.response import Response\n'), ((250, 8, 250, 41), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((252, 15, 252, 27), 'rest_framework.response.Response', 'Response', ({(252, 24, 252, 26): '{}'}, {}), '({})', False, 'from rest_framework.response import Response\n'), ((277, 16, 277, 65), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (), '', False, 'from django.shortcuts import get_object_or_404\n'), ((280, 18, 280, 57), 'backend.biz.role.RoleObjectRelationChecker', 'RoleObjectRelationChecker', ({(280, 44, 280, 56): 'request.role'}, {}), '(request.role)', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((293, 21, 293, 44), 'rest_framework.pagination.LimitOffsetPagination', 'LimitOffsetPagination', ({}, {}), '()', False, 'from rest_framework.pagination import LimitOffsetPagination\n'), ((332, 15, 332, 59), 'rest_framework.response.Response', 'Response', (), '', False, 'from rest_framework.response import Response\n'), ((356, 8, 356, 66), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((358, 15, 358, 27), 'rest_framework.response.Response', 'Response', ({(358, 24, 358, 26): '{}'}, {}), '({})', False, 'from rest_framework.response import Response\n'), ((363, 26, 363, 80), 'backend.account.permissions.role_perm_class', 'role_perm_class', ({(363, 42, 363, 79): 'PermissionCodeEnum.MANAGE_GROUP.value'}, {}), '(PermissionCodeEnum.MANAGE_GROUP.value)', False, 'from backend.account.permissions import RolePermission, role_perm_class\n'), ((398, 8, 398, 66), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((400, 15, 400, 27), 'rest_framework.response.Response', 'Response', ({(400, 24, 400, 26): '{}'}, {}), '({})', False, 'from rest_framework.response import Response\n'), ((422, 16, 422, 65), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (), '', False, 'from django.shortcuts import get_object_or_404\n'), ((435, 16, 435, 65), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (), '', False, 'from django.shortcuts import get_object_or_404\n'), ((481, 8, 484, 9), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((486, 15, 486, 59), 'rest_framework.response.Response', 'Response', (), '', False, 'from rest_framework.response import Response\n'), ((495, 14, 495, 55), 'backend.common.serializers.SystemQuerySLZ', 'SystemQuerySLZ', (), '', False, 'from backend.common.serializers import SystemQuerySLZ\n'), ((499, 16, 499, 65), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (), '', False, 'from django.shortcuts import get_object_or_404\n'), ((519, 14, 519, 48), 'backend.apps.policy.serializers.PolicyDeleteSLZ', 'PolicyDeleteSLZ', (), '', False, 'from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ\n'), ((537, 8, 537, 93), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((539, 15, 539, 25), 'rest_framework.response.Response', 'Response', ({}, {}), '()', False, 'from rest_framework.response import Response\n'), ((563, 8, 563, 106), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((565, 15, 565, 27), 'rest_framework.response.Response', 'Response', ({(565, 24, 565, 26): '{}'}, {}), '({})', False, 'from rest_framework.response import Response\n'), ((592, 26, 592, 82), 'backend.account.permissions.role_perm_class', 'role_perm_class', ({(592, 42, 592, 81): 'PermissionCodeEnum.TRANSFER_GROUP.value'}, {}), '(PermissionCodeEnum.TRANSFER_GROUP.value)', False, 'from backend.account.permissions import RolePermission, role_perm_class\n'), ((612, 8, 612, 66), 'backend.audit.audit.audit_context_setter', 'audit_context_setter', (), '', False, 'from backend.audit.audit import audit_context_setter, view_audit_decorator\n'), ((614, 15, 614, 27), 'rest_framework.response.Response', 'Response', ({(614, 24, 614, 26): '{}'}, {}), '({})', False, 'from rest_framework.response import Response\n'), ((641, 24, 641, 96), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(641, 37, 641, 59): 'List[ConditionTagBean]', (641, 61, 641, 95): "related_resource_type['condition']"}, {}), "(List[ConditionTagBean], related_resource_type['condition'])", False, 'from pydantic.tools import parse_obj_as\n'), ((681, 21, 681, 59), 'backend.apps.application.serializers.ConditionCompareSLZ', 'ConditionCompareSLZ', (), '', False, 'from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ\n'), ((353, 47, 353, 91), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(353, 60, 353, 73): 'List[Subject]', (353, 75, 353, 90): "data['members']"}, {}), "(List[Subject], data['members'])", False, 'from pydantic.tools import parse_obj_as\n'), ((394, 22, 394, 83), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(394, 35, 394, 65): 'List[GroupMemberExpiredAtBean]', (394, 67, 394, 82): "data['members']"}, {}), "(List[GroupMemberExpiredAtBean], data['members'])", False, 'from pydantic.tools import parse_obj_as\n'), ((512, 21, 512, 49), 'backend.apps.policy.serializers.PolicyDeleteSLZ', 'PolicyDeleteSLZ', (), '', False, 'from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ\n'), ((559, 20, 559, 70), 'backend.biz.policy.PolicyBean', 'PolicyBean', (), '', False, 'from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz\n'), ((648, 21, 648, 49), 'backend.biz.policy.PolicyBean.parse_obj', 'PolicyBean.parse_obj', ({(648, 42, 648, 48): 'action'}, {}), '(action)', False, 'from backend.biz.policy import PolicyBean, PolicyOperationBiz, PolicyQueryBiz\n'), ((701, 12, 701, 84), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(701, 25, 701, 47): 'List[ConditionTagBean]', (701, 49, 701, 83): "related_resource_type['condition']"}, {}), "(List[ConditionTagBean], related_resource_type['condition'])", False, 'from pydantic.tools import parse_obj_as\n'), ((702, 12, 702, 63), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(702, 25, 702, 47): 'List[ConditionTagBean]', (702, 49, 702, 62): 'old_condition'}, {}), '(List[ConditionTagBean], old_condition)', False, 'from pydantic.tools import parse_obj_as\n'), ((676, 21, 676, 62), 'backend.apps.application.serializers.ConditionCompareSLZ', 'ConditionCompareSLZ', (), '', False, 'from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ\n'), ((107, 15, 107, 56), 'backend.biz.role.RoleListQuery', 'RoleListQuery', ({(107, 29, 107, 41): 'request.role', (107, 43, 107, 55): 'request.user'}, {}), '(request.role, request.user)', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((188, 23, 188, 43), 'backend.apps.group.models.Group.objects.none', 'Group.objects.none', ({}, {}), '()', False, 'from backend.apps.group.models import Group\n'), ((193, 15, 193, 48), 'backend.biz.role.RoleListQuery', 'RoleListQuery', ({(193, 29, 193, 33): 'role', (193, 35, 193, 47): 'request.user'}, {}), '(role, request.user)', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((239, 39, 239, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((319, 27, 319, 68), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(319, 40, 319, 53): 'List[Subject]', (319, 55, 319, 67): 'members_data'}, {}), '(List[Subject], members_data)', False, 'from pydantic.tools import parse_obj_as\n'), ((303, 39, 303, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((337, 39, 337, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((374, 39, 374, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((424, 19, 424, 82), 'backend.apps.template.models.PermTemplatePolicyAuthorized.objects.filter_by_subject', 'PermTemplatePolicyAuthorized.objects.filter_by_subject', ({(424, 74, 424, 81): 'subject'}, {}), '(subject)', False, 'from backend.apps.template.models import PermTemplatePolicyAuthorized\n'), ((465, 44, 465, 68), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((491, 39, 491, 75), 'backend.apps.policy.serializers.PolicySLZ', 'PolicySLZ', (), '', False, 'from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ\n'), ((513, 39, 513, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((544, 39, 544, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((578, 39, 578, 81), 'backend.apps.policy.serializers.PolicySystemSLZ', 'PolicySystemSLZ', (), '', False, 'from backend.apps.policy.serializers import PolicyDeleteSLZ, PolicySLZ, PolicySystemSLZ\n'), ((599, 39, 599, 63), 'rest_framework.serializers.Serializer', 'serializers.Serializer', ({}, {}), '()', False, 'from rest_framework import serializers, status, views\n'), ((627, 39, 627, 87), 'backend.apps.application.serializers.ConditionTagSLZ', 'ConditionTagSLZ', (), '', False, 'from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ\n'), ((677, 39, 677, 87), 'backend.apps.application.serializers.ConditionTagSLZ', 'ConditionTagSLZ', (), '', False, 'from backend.apps.application.serializers import ConditionCompareSLZ, ConditionTagSLZ\n'), ((112, 15, 112, 54), 'backend.biz.role.RoleObjectRelationChecker', 'RoleObjectRelationChecker', ({(112, 41, 112, 53): 'request.role'}, {}), '(request.role)', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((191, 19, 191, 59), 'backend.biz.role.RoleListQuery', 'RoleListQuery', ({(191, 33, 191, 44): 'filter_role', (191, 46, 191, 58): 'request.user'}, {}), '(filter_role, request.user)', False, 'from backend.biz.role import RoleBiz, RoleListQuery, RoleObjectRelationChecker\n'), ((659, 35, 659, 86), 'pydantic.tools.parse_obj_as', 'parse_obj_as', ({(659, 48, 659, 70): 'List[ConditionTagBean]', (659, 72, 659, 85): 'old_condition'}, {}), '(List[ConditionTagBean], old_condition)', False, 'from pydantic.tools import parse_obj_as\n'), ((664, 48, 664, 90), 'django.utils.translation.gettext', '_', ({(664, 50, 664, 89): '"""模板: {} 没有操作: {} 的权限"""'}, {}), "('模板: {} 没有操作: {} 的权限')", True, 'from django.utils.translation import gettext as _\n'), ((282, 55, 282, 118), 'django.utils.translation.gettext', '_', ({(282, 57, 282, 117): '"""用户组({})不在当前用户身份可访问的范围内"""'}, {}), "('用户组({})不在当前用户身份可访问的范围内')", True, 'from django.utils.translation import gettext as _\n'), ((92, 28, 92, 77), 'django.utils.translation.gettext', '_', ({(92, 30, 92, 76): '"""只读用户组({})无法进行({})操作!"""'}, {}), "('只读用户组({})无法进行({})操作!')", True, 'from django.utils.translation import gettext as _\n')]
fillest/7drl2013
towers.py
96d291dce08a85d3871713c99f3a036de482d6ca
import util import libtcodpy as tcod import enemies import operator class Missile (util.Entity): sym = '*' color = tcod.white class BasicMissile (Missile): color = tcod.yellow class IceMissile (Missile): color = tcod.light_blue class AoeMissile (Missile): color = tcod.red class Building (util.Entity): sym = '@' max_hp = 1 cost = 0 def __init__ (self, *args): super(Building, self).__init__(*args) self.hp = self.max_hp def hurt (self, hp): self.hp -= hp if self.hp < 1: self.die() def hit (self, e): if e in self.state.entities: e.hurt(self.damage) def die (self): if self in self.state.entities: self.delete() def put (self): assert self.state.energy > 0 self.state.entities.append(self) self.state.energy -= self.cost return self def delete (self): self.state.entities.remove(self) self.state.energy += self.cost return self class Heart (Building): sym = '&' color = tcod.darker_red max_hp = 20 def delete (self): self.state.is_paused = True return super(Heart, self).delete() class Bait (Building): sym = Heart.sym color = tcod.pink max_hp = 10 class Tower (Building): radius = 15 max_hp = 10 damage = 1 missile = None def __init__ (self, *args): super(Tower, self).__init__(*args) self.cooldown = False def update (self): if not self.cooldown: # dist_min = None # target = None # for e in self.state.entities.enemies(): # d = util.dist(self.x, self.y, e.x, e.y) # if d < (self.radius + 1) and ((dist_min is None) or (d < dist_min)): # dist_min = d # target = e preferred_targets = [] other_targets = [] for e in self.state.entities.enemies(): d = util.dist(self.x, self.y, e.x, e.y) if d < (self.radius + 1): if e in self.state.targets_towers: total_damage = sum([t.damage for t in self.state.targets_towers[e]]) if total_damage < e.hp: preferred_targets.append((d, e)) else: other_targets.append((d, e)) else: preferred_targets.append((d, e)) target = None if preferred_targets: _d, target = sorted(preferred_targets, key = operator.itemgetter(0))[0] elif other_targets: _d, target = sorted(other_targets, key = operator.itemgetter(0))[0] if target: self.state.targets_towers[target].append(self) self._shoot(target) def render (self): super(Tower, self).render() if self.mouse_over: # if True: for x in range(self.x - (self.radius + 1), self.x + (self.radius + 1)): for y in range(self.y - (self.radius + 1), self.y + (self.radius + 1)): if util.dist(self.x, self.y, x, y) < (self.radius + 1): tcod.console_set_char_background(0, x, y, tcod.Color(*[15]*3), flag = tcod.BKGND_SET) def _shoot (self, e): self.cooldown = True def clear_cd (): self.cooldown = False self.state.timers.start_run_once(1000, clear_cd) m = self.missile(self.state, self.x, self.y) self.state.entities.append(m) missile_speed = 20 self.state.timers.start(missile_speed, self.update_missile, [m, e]) def update_missile (self, m, e): tcod.line_init(m.x, m.y, e.x, e.y) x, y = tcod.line_step() if x is None: self.state.entities.remove(m) self.hit(e) return util.STOP else: m.x = x m.y = y class BasicTower (Tower): color = tcod.dark_green missile = BasicMissile cost = 1 class ResearchBuilding (Building): color = tcod.dark_sepia cost = 1 def __init__ (self, *args): super(ResearchBuilding, self).__init__(*args) self.timer = self.state.timers.start(1000, self._research) def _research (self): pass class AoeExplosion (util.Entity): sym = '*' color = tcod.dark_red def __init__ (self, radius, *args): super(AoeExplosion, self).__init__(*args) self.radius = radius def render (self): for x in range(self.x - self.radius, self.x + self.radius): for y in range(self.y - self.radius, self.y + self.radius): tcod.console_put_char(0, x, y, self.sym, tcod.BKGND_NONE) tcod.console_set_char_foreground(0, x, y, self.color) class AoeTower (Tower): color = tcod.dark_orange missile = AoeMissile cost = 2 def hit (self, target): radius = 2 for x in range(target.x - radius, target.x + radius): for y in range(target.y - radius, target.y + radius): for e in self.state.entities.enemies(): if (e.x, e.y) == (x, y): if e in self.state.entities: #TODO copypaste e.hurt(self.damage) e = AoeExplosion(radius, self.state, target.x, target.y) self.state.entities.append(e) self.state.timers.start_run_once(70, lambda: self.state.entities.remove(e)) class IceTower (Tower): damage = 0.2 color = tcod.dark_blue missile = IceMissile cost = 1 def hit (self, target): target.hurt(self.damage) if not getattr(target, 'is_debuffed', False): old_speed = target.timer.interval target.timer.interval *= 3 target.timer.time_buf *= 3 target.is_debuffed = True def rollback (): target.timer.interval = old_speed target.timer.time_buf /= 3 target.is_debuffed = False self.rollback_timer = self.state.timers.start_run_once(1000, rollback) elif getattr(self, 'rollback_timer', False): self.rollback_timer.reset()
[((135, 2, 135, 36), 'libtcodpy.line_init', 'tcod.line_init', ({(135, 17, 135, 20): 'm.x', (135, 22, 135, 25): 'm.y', (135, 27, 135, 30): 'e.x', (135, 32, 135, 35): 'e.y'}, {}), '(m.x, m.y, e.x, e.y)', True, 'import libtcodpy as tcod\n'), ((136, 9, 136, 25), 'libtcodpy.line_step', 'tcod.line_step', ({}, {}), '()', True, 'import libtcodpy as tcod\n'), ((92, 8, 92, 43), 'util.dist', 'util.dist', ({(92, 18, 92, 24): 'self.x', (92, 26, 92, 32): 'self.y', (92, 34, 92, 37): 'e.x', (92, 39, 92, 42): 'e.y'}, {}), '(self.x, self.y, e.x, e.y)', False, 'import util\n'), ((174, 4, 174, 61), 'libtcodpy.console_put_char', 'tcod.console_put_char', ({(174, 26, 174, 27): '(0)', (174, 29, 174, 30): 'x', (174, 32, 174, 33): 'y', (174, 35, 174, 43): 'self.sym', (174, 45, 174, 60): 'tcod.BKGND_NONE'}, {}), '(0, x, y, self.sym, tcod.BKGND_NONE)', True, 'import libtcodpy as tcod\n'), ((175, 4, 175, 57), 'libtcodpy.console_set_char_foreground', 'tcod.console_set_char_foreground', ({(175, 37, 175, 38): '(0)', (175, 40, 175, 41): 'x', (175, 43, 175, 44): 'y', (175, 46, 175, 56): 'self.color'}, {}), '(0, x, y, self.color)', True, 'import libtcodpy as tcod\n'), ((119, 8, 119, 39), 'util.dist', 'util.dist', ({(119, 18, 119, 24): 'self.x', (119, 26, 119, 32): 'self.y', (119, 34, 119, 35): 'x', (119, 37, 119, 38): 'y'}, {}), '(self.x, self.y, x, y)', False, 'import util\n'), ((105, 49, 105, 71), 'operator.itemgetter', 'operator.itemgetter', ({(105, 69, 105, 70): '(0)'}, {}), '(0)', False, 'import operator\n'), ((120, 48, 120, 67), 'libtcodpy.Color', 'tcod.Color', ({(120, 59, 120, 66): '*([15] * 3)'}, {}), '(*([15] * 3))', True, 'import libtcodpy as tcod\n'), ((107, 45, 107, 67), 'operator.itemgetter', 'operator.itemgetter', ({(107, 65, 107, 66): '(0)'}, {}), '(0)', False, 'import operator\n')]
lukasjoc/random
python/mandelbrot.py
5be080b424f02491fb219634902fc0cc192aff6c
#!/usr/bin/python3 from PIL import Image from numpy import complex, array from tqdm import tqdm import colorsys W=512 #W=142 def mandelbrot(x, y): def get_colors(i): color = 255 * array(colorsys.hsv_to_rgb(i / 255.0, 1.0, 0.5)) return tuple(color.astype(int)) c, cc = 0, complex(x, y) for i in range(1, 1000): if abs(c) > 2: return get_colors(i) c = c * c + cc return 0,0,0 if __name__ == "__main__": img = Image.new("RGB", (W, int(W / 2))) pixels = img.load() for x in tqdm(range(img.size[0])): for y in tqdm(range(img.size[1])): xx = (x - (0.75 * W)) / (W / 4) yy = (y - (W / 4)) / (W / 4) pixels[x, y] = mandelbrot(xx, yy) img.show() img.save("mandelbrot.jpg")
[((17, 15, 17, 28), 'numpy.complex', 'complex', ({(17, 23, 17, 24): 'x', (17, 26, 17, 27): 'y'}, {}), '(x, y)', False, 'from numpy import complex, array\n'), ((14, 28, 14, 68), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', ({(14, 48, 14, 57): '(i / 255.0)', (14, 59, 14, 62): '(1.0)', (14, 64, 14, 67): '(0.5)'}, {}), '(i / 255.0, 1.0, 0.5)', False, 'import colorsys\n')]
tonyreina/mlt
tests/unit/commands/test_deploy.py
ee490ebdeb5aa6924dbfc0a067a0653754c470f4
# # -*- coding: utf-8 -*- # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # from __future__ import print_function import uuid import pytest from mock import call, MagicMock from mlt.commands.deploy import DeployCommand from test_utils.io import catch_stdout @pytest.fixture def sleep(patch): return patch('time.sleep') @pytest.fixture def fetch_action_arg(patch): return patch('files.fetch_action_arg', MagicMock(return_value='output')) @pytest.fixture def kube_helpers(patch): return patch('kubernetes_helpers') @pytest.fixture def json_mock(patch): return patch('json') @pytest.fixture def open_mock(patch): return patch('open') @pytest.fixture def popen_mock(patch): popen_mock = MagicMock() popen_mock.return_value.poll.return_value = 0 return patch('Popen', popen_mock) @pytest.fixture def process_helpers(patch): return patch('process_helpers') @pytest.fixture def progress_bar(patch): progress_mock = MagicMock() progress_mock.duration_progress.side_effect = lambda x, y, z: print( 'Pushing ') return patch('progress_bar', progress_mock) @pytest.fixture def template(patch): return patch('Template') @pytest.fixture def verify_build(patch): return patch('build_helpers.verify_build') @pytest.fixture def verify_init(patch): return patch('config_helpers.load_config') @pytest.fixture def walk_mock(patch): return patch('os.walk', MagicMock(return_value=['foo', 'bar'])) @pytest.fixture def yaml(patch): return patch('yaml.load') def deploy(no_push, skip_crd_check, interactive, extra_config_args, retries=5): deploy = DeployCommand( {'deploy': True, '--no-push': no_push, '--skip-crd-check': skip_crd_check, '--interactive': interactive, '--retries': retries, '--logs':False}) deploy.config = {'name': 'app', 'namespace': 'namespace'} deploy.config.update(extra_config_args) with catch_stdout() as caught_output: deploy.action() output = caught_output.getvalue() return output def verify_successful_deploy(output, did_push=True, interactive=False): """assert pushing, deploying, then objs created, then pushed""" pushing = output.find('Pushing ') push_skip = output.find('Skipping image push') deploying = output.find('Deploying ') inspecting = output.find('Inspect created objects by running:\n') pushed = output.find('Pushed to ') pod_connect = output.find('Connecting to pod...') if did_push: assert all(var >= 0 for var in ( deploying, inspecting, pushing, pushed)) assert deploying < inspecting, pushing < pushed else: assert all(var == -1 for var in (pushing, pushed)) assert all(var >= 0 for var in (deploying, inspecting, push_skip)) assert push_skip < deploying, deploying < inspecting if interactive: assert pod_connect > inspecting def test_deploy_gce(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=False, skip_crd_check=True, interactive=False, extra_config_args={'gceProject': 'gcr://projectfoo'}) verify_successful_deploy(output) def test_deploy_docker(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=False, skip_crd_check=True, interactive=False, extra_config_args={'registry': 'dockerhub'}) verify_successful_deploy(output) def test_deploy_without_push(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} output = deploy( no_push=True, skip_crd_check=True, interactive=False, extra_config_args={'gceProject': 'gcr://projectfoo'}) verify_successful_deploy(output, did_push=False) def test_deploy_interactive_one_file(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): walk_mock.return_value = ['foo'] yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} json_mock.loads.return_value = {'status': {'phase': 'Running'}} output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub'}) verify_successful_deploy(output, interactive=True) # verify that kubectl commands are specifying namespace for call_args in process_helpers.run_popen.call_args_list: assert isinstance(call_args, type(call)) assert isinstance(call_args[0], tuple) assert len(call_args[0]) > 0 command = call_args[0][0] if command[0] == "kubectl": assert "--namespace" in command def test_deploy_interactive_two_files(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): json_mock.loads.return_value = {'status': {'phase': 'Running'}} yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub', '<kube_spec>': 'r'}) verify_successful_deploy(output, interactive=True) def test_deploy_interactive_pod_not_run(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, sleep, yaml, json_mock): json_mock.loads.return_value = {'status': {'phase': 'Error'}} yaml.return_value = { 'template': {'foo': 'bar'}, 'containers': [{'foo': 'bar'}]} with pytest.raises(ValueError): output = deploy( no_push=False, skip_crd_check=True, interactive=True, extra_config_args={'registry': 'dockerhub', '<kube_spec>': 'r'}) def test_deploy_update_app_run_id(open_mock, json_mock): run_id = str(uuid.uuid4()) json_mock_data = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} json_mock.load.return_value = json_mock_data DeployCommand._update_app_run_id(run_id) assert json_mock_data['app_run_id'] == run_id def test_image_push_error(walk_mock, progress_bar, popen_mock, open_mock, template, kube_helpers, process_helpers, verify_build, verify_init, fetch_action_arg, json_mock): json_mock.load.return_value = { 'last_remote_container': 'gcr.io/app_name:container_id', 'last_push_duration': 0.18889} # setup mock to induce and error during the deploy popen_mock.return_value.poll.return_value = 1 output_str = "normal output..." error_str = "error message..." build_output = MagicMock() build_output.decode.return_value = output_str error_output = MagicMock() error_output.decode.return_value = error_str popen_mock.return_value.communicate.return_value = (build_output, error_output) deploy_cmd = DeployCommand({'deploy': True, '--skip-crd-check': True, '--no-push': False}) deploy_cmd.config = {'name': 'app', 'namespace': 'namespace'} deploy_cmd.config.update({'gceProject': 'gcr://projectfoo'}) with catch_stdout() as caught_output: with pytest.raises(SystemExit): deploy_cmd.action() output = caught_output.getvalue() # assert that we got the normal output, followed by the error message output_location = output.find(output_str) error_location = output.find(error_str) assert all(var >= 0 for var in (output_location, error_location)) assert output_location < error_location
[((58, 17, 58, 28), 'mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from mock import call, MagicMock\n'), ((70, 20, 70, 31), 'mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from mock import call, MagicMock\n'), ((102, 13, 106, 25), 'mlt.commands.deploy.DeployCommand', 'DeployCommand', ({(103, 8, 106, 24): "{'deploy': True, '--no-push': no_push, '--skip-crd-check': skip_crd_check,\n '--interactive': interactive, '--retries': retries, '--logs': False}"}, {}), "({'deploy': True, '--no-push': no_push, '--skip-crd-check':\n skip_crd_check, '--interactive': interactive, '--retries': retries,\n '--logs': False})", False, 'from mlt.commands.deploy import DeployCommand\n'), ((239, 4, 239, 44), 'mlt.commands.deploy.DeployCommand._update_app_run_id', 'DeployCommand._update_app_run_id', ({(239, 37, 239, 43): 'run_id'}, {}), '(run_id)', False, 'from mlt.commands.deploy import DeployCommand\n'), ((255, 19, 255, 30), 'mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from mock import call, MagicMock\n'), ((257, 19, 257, 30), 'mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from mock import call, MagicMock\n'), ((262, 17, 264, 52), 'mlt.commands.deploy.DeployCommand', 'DeployCommand', ({(262, 31, 264, 51): "{'deploy': True, '--skip-crd-check': True, '--no-push': False}"}, {}), "({'deploy': True, '--skip-crd-check': True, '--no-push': False})", False, 'from mlt.commands.deploy import DeployCommand\n'), ((38, 43, 38, 75), 'mock.MagicMock', 'MagicMock', (), '', False, 'from mock import call, MagicMock\n'), ((93, 28, 93, 66), 'mock.MagicMock', 'MagicMock', (), '', False, 'from mock import call, MagicMock\n'), ((110, 9, 110, 23), 'test_utils.io.catch_stdout', 'catch_stdout', ({}, {}), '()', False, 'from test_utils.io import catch_stdout\n'), ((225, 9, 225, 34), 'pytest.raises', 'pytest.raises', ({(225, 23, 225, 33): 'ValueError'}, {}), '(ValueError)', False, 'import pytest\n'), ((233, 17, 233, 29), 'uuid.uuid4', 'uuid.uuid4', ({}, {}), '()', False, 'import uuid\n'), ((268, 9, 268, 23), 'test_utils.io.catch_stdout', 'catch_stdout', ({}, {}), '()', False, 'from test_utils.io import catch_stdout\n'), ((269, 13, 269, 38), 'pytest.raises', 'pytest.raises', ({(269, 27, 269, 37): 'SystemExit'}, {}), '(SystemExit)', False, 'import pytest\n')]
mcvine/mcvine
packages/mccomponents/tests/mccomponentsbpmodule/sample/Broadened_E_Q_Kernel_TestCase.py
42232534b0c6af729628009bed165cd7d833789d
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2010 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # standalone = True import unittestX as unittest import journal debug = journal.debug( "Broadened_E_Q_Kernel_TestCase" ) warning = journal.warning( "Broadened_E_Q_Kernel_TestCase" ) import mcni from mccomposite import mccompositebp from mccomponents import mccomponentsbp class TestCase(unittest.TestCase): def test(self): E_Q = "Q*Q/3." S_Q = "1" sigma_Q = "Q/2." Qmin = 0; Qmax = 10 absorption_coefficient = scattering_coefficient = 1. kernel = mccomponentsbp.create_Broadened_E_Q_Kernel( E_Q, S_Q, sigma_Q, Qmin, Qmax, absorption_coefficient, scattering_coefficient, ) ei = 500 # meV from mcni.utils import conversion vil = conversion.e2v(ei) vi = (0,0,vil) import numpy.linalg as nl import numpy as np for i in range(10): event = mcni.neutron( r = (0,0,0), v = vi, prob = 1, time = 0 ) kernel.scatter( event ); vf = np.array(event.state.velocity) diffv = vi - vf Q = conversion.v2k(nl.norm(diffv)) ef = conversion.v2e(nl.norm(vf)) E = ei - ef # print E, Q, event E1 = eval(E_Q) continue return pass # end of TestCase def main(): unittest.main() return if __name__ == "__main__": main() # version __id__ = "$Id: TestCase.py 696 2010-11-09 06:23:06Z linjiao $" # End of file
[((21, 8, 21, 56), 'journal.debug', 'journal.debug', ({(21, 23, 21, 54): '"""Broadened_E_Q_Kernel_TestCase"""'}, {}), "('Broadened_E_Q_Kernel_TestCase')", False, 'import journal\n'), ((22, 10, 22, 60), 'journal.warning', 'journal.warning', ({(22, 27, 22, 58): '"""Broadened_E_Q_Kernel_TestCase"""'}, {}), "('Broadened_E_Q_Kernel_TestCase')", False, 'import journal\n'), ((72, 4, 72, 19), 'unittestX.main', 'unittest.main', ({}, {}), '()', True, 'import unittestX as unittest\n'), ((37, 17, 42, 13), 'mccomponents.mccomponentsbp.create_Broadened_E_Q_Kernel', 'mccomponentsbp.create_Broadened_E_Q_Kernel', ({(38, 12, 38, 15): 'E_Q', (38, 17, 38, 20): 'S_Q', (38, 22, 38, 29): 'sigma_Q', (39, 12, 39, 16): 'Qmin', (39, 18, 39, 22): 'Qmax', (40, 12, 40, 34): 'absorption_coefficient', (41, 12, 41, 34): 'scattering_coefficient'}, {}), '(E_Q, S_Q, sigma_Q, Qmin, Qmax,\n absorption_coefficient, scattering_coefficient)', False, 'from mccomponents import mccomponentsbp\n'), ((46, 14, 46, 32), 'mcni.utils.conversion.e2v', 'conversion.e2v', ({(46, 29, 46, 31): 'ei'}, {}), '(ei)', False, 'from mcni.utils import conversion\n'), ((52, 20, 54, 36), 'mcni.neutron', 'mcni.neutron', (), '', False, 'import mcni\n'), ((56, 17, 56, 47), 'numpy.array', 'np.array', ({(56, 26, 56, 46): 'event.state.velocity'}, {}), '(event.state.velocity)', True, 'import numpy as np\n'), ((58, 31, 58, 45), 'numpy.linalg.norm', 'nl.norm', ({(58, 39, 58, 44): 'diffv'}, {}), '(diffv)', True, 'import numpy.linalg as nl\n'), ((59, 32, 59, 43), 'numpy.linalg.norm', 'nl.norm', ({(59, 40, 59, 42): 'vf'}, {}), '(vf)', True, 'import numpy.linalg as nl\n')]
robinzixuan/Video-Question-Answering-HRI
baseline/ns-vqa/reason/options/test_options.py
ae68ffee1e6fc1eb13229e457e3b8e3bc3a11579
from .base_options import BaseOptions class TestOptions(BaseOptions): """Test Option Class""" def __init__(self): super(TestOptions, self).__init__() self.parser.add_argument('--load_checkpoint_path', required=True, type=str, help='checkpoint path') self.parser.add_argument('--save_result_path', required=True, type=str, help='save result path') self.parser.add_argument('--max_val_samples', default=None, type=int, help='max val data') self.parser.add_argument('--batch_size', default=256, type=int, help='batch_size') self.is_train = False
[]
keremakdemir/ISONE_UCED
Model_setup/NEISO_data_file/downsampling_generators_v1.py
11ce34c5ac5d34dcab771640f41c0d2ce4ab21f9
# -*- coding: utf-8 -*- """ Created on Fri Apr 24 18:45:34 2020 @author: kakdemi """ import pandas as pd #importing generators all_generators = pd.read_excel('generators2.xlsx', sheet_name='NEISO generators (dispatch)') #getting all oil generators all_oil = all_generators[all_generators['typ']=='oil'].copy() #getting all generators in every zone CT_oil = all_oil[all_oil['zone']=='CT'].copy() ME_oil = all_oil[all_oil['zone']=='ME'].copy() NEMA_oil = all_oil[all_oil['zone']=='NEMA'].copy() NH_oil = all_oil[all_oil['zone']=='NH'].copy() RI_oil = all_oil[all_oil['zone']=='RI'].copy() SEMA_oil = all_oil[all_oil['zone']=='SEMA'].copy() VT_oil = all_oil[all_oil['zone']=='VT'].copy() WCMA_oil = all_oil[all_oil['zone']=='WCMA'].copy() #defining zones zones = ['CT','ME','NEMA','NH','RI','SEMA','VT','WCMA'] #getting all slack generators all_slack = all_generators[all_generators['typ']=='slack'].copy() #getting generators other than slack and oil all_other = all_generators[(all_generators['typ']!='oil') & (all_generators['typ']!='slack')].copy() #defining a function to downsample oil generators def oil_downsampler(zone): #copying the oil generators in that zone and sorting wrt to their seg1 heat rate Selected_line_oil = globals()[zone+'_oil'].copy() sorted_df = Selected_line_oil.sort_values(by=['seg1']) sorted_df_reset = sorted_df.reset_index(drop=True) #creating 3 chunks wrt their heatrates heat_rate = list(sorted_df_reset.loc[:,'seg1']) num = int(len(heat_rate)/3) First_plant = sorted_df_reset.iloc[:num,:].copy() Second_plant = sorted_df_reset.iloc[num:num*2,:].copy() Third_plant = sorted_df_reset.iloc[num*2:,:].copy() #finding the relevant parameters for the downsampled oil plants First_cap = First_plant.loc[:,'netcap'].sum() Second_cap = Second_plant.loc[:,'netcap'].sum() Third_cap = Third_plant.loc[:,'netcap'].sum() netcap = [First_cap, Second_cap, Third_cap] ramp_1 = First_cap ramp_2 = Second_cap ramp_3 = Third_cap ramp = [ramp_1, ramp_2, ramp_3] First_min_cap = First_cap*0.35 Second_min_cap = Second_cap*0.35 Third_min_cap = Third_cap*0.35 min_cap = [First_min_cap, Second_min_cap, Third_min_cap] Min_u = [1, 1, 1] Min_d = [1, 1, 1] zones = [zone, zone, zone] types = ['oil', 'oil', 'oil'] seg_1_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg1'] seg_1_1_new = seg_1_1.sum()/First_plant.loc[:,'netcap'].sum() seg_1_2 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg2'] seg_1_2_new = seg_1_2.sum()/First_plant.loc[:,'netcap'].sum() seg_1_3 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'seg3'] seg_1_3_new = seg_1_3.sum()/First_plant.loc[:,'netcap'].sum() seg_2_1 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg1'] seg_2_1_new = seg_2_1.sum()/Second_plant.loc[:,'netcap'].sum() seg_2_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg2'] seg_2_2_new = seg_2_2.sum()/Second_plant.loc[:,'netcap'].sum() seg_2_3 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'seg3'] seg_2_3_new = seg_2_3.sum()/Second_plant.loc[:,'netcap'].sum() seg_3_1 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg1'] seg_3_1_new = seg_3_1.sum()/Third_plant.loc[:,'netcap'].sum() seg_3_2 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg2'] seg_3_2_new = seg_3_2.sum()/Third_plant.loc[:,'netcap'].sum() seg_3_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'seg3'] seg_3_3_new = seg_3_3.sum()/Third_plant.loc[:,'netcap'].sum() seg_1 = [seg_1_1_new, seg_2_1_new, seg_3_1_new] seg_2 = [seg_1_2_new, seg_2_2_new, seg_3_2_new] seg_3 = [seg_1_3_new, seg_2_3_new, seg_3_3_new] var_om_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'var_om'] var_om_1_new = var_om_1.sum()/First_plant.loc[:,'netcap'].sum() var_om_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'var_om'] var_om_2_new = var_om_2.sum()/Second_plant.loc[:,'netcap'].sum() var_om_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'var_om'] var_om_3_new = var_om_3.sum()/Third_plant.loc[:,'netcap'].sum() var_om = [var_om_1_new, var_om_2_new, var_om_3_new] no_load_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'no_load'] no_load_1_new = no_load_1.sum()/First_plant.loc[:,'netcap'].sum() no_load_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'no_load'] no_load_2_new = no_load_2.sum()/Second_plant.loc[:,'netcap'].sum() no_load_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'no_load'] no_load_3_new = no_load_3.sum()/Third_plant.loc[:,'netcap'].sum() no_load = [no_load_1_new, no_load_2_new, no_load_3_new] st_cost_1 = First_plant.loc[:,'netcap'] * First_plant.loc[:,'st_cost'] st_cost_1_new = st_cost_1.sum()/First_plant.loc[:,'netcap'].sum() st_cost_2 = Second_plant.loc[:,'netcap'] * Second_plant.loc[:,'st_cost'] st_cost_2_new = st_cost_2.sum()/Second_plant.loc[:,'netcap'].sum() st_cost_3 = Third_plant.loc[:,'netcap'] * Third_plant.loc[:,'st_cost'] st_cost_3_new = st_cost_3.sum()/Third_plant.loc[:,'netcap'].sum() st_cost = [st_cost_1_new, st_cost_2_new, st_cost_3_new] name = [zone+'_agg_oil_1', zone+'_agg_oil_2', zone+'_agg_oil_3'] #creating a dataframe that includes downsampled oil generators list_labels = list(WCMA_oil.columns) list_columns = [name, types, zones, netcap, seg_1, seg_2, seg_3, min_cap, ramp, Min_u, Min_d, var_om, no_load, st_cost] zipped_list = list(zip(list_labels, list_columns)) gen_df = dict(zipped_list) df_oils = pd.DataFrame(gen_df) return df_oils #downsampling oil generators in every zone by using the defined function for z in zones: globals()[z+'_agg_oil_df'] = oil_downsampler(z) #adding downsampled oil generators to create a complete list of generators final_generators = pd.concat([all_other, CT_agg_oil_df, ME_agg_oil_df, NEMA_agg_oil_df, NH_agg_oil_df, RI_agg_oil_df, SEMA_agg_oil_df, VT_agg_oil_df, WCMA_agg_oil_df, all_slack], ignore_index=True) #exporting the generators as an Excel file final_generators.to_excel('generators.xlsx', sheet_name='NEISO generators (dispatch)', index=False)
[((11, 17, 11, 92), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((127, 19, 129, 77), 'pandas.concat', 'pd.concat', (), '', True, 'import pandas as pd\n'), ((117, 14, 117, 34), 'pandas.DataFrame', 'pd.DataFrame', ({(117, 27, 117, 33): 'gen_df'}, {}), '(gen_df)', True, 'import pandas as pd\n')]
otmanabdoun/IHM-Python
GUI1.py
624e961c2f6966b98bf2c1bc4dd276b812954ba1
# -*- coding: utf-8 -*- """ Created on Tue Nov 16 19:47:41 2021 @author: User """ import tkinter as tk racine = tk . Tk () label = tk . Label ( racine , text ="J ' adore Python !") bouton = tk . Button ( racine , text =" Quitter ", command = racine . destroy ) label . pack () bouton . pack ()
[((9, 9, 9, 19), 'tkinter.Tk', 'tk.Tk', ({}, {}), '()', True, 'import tkinter as tk\n'), ((10, 8, 10, 57), 'tkinter.Label', 'tk.Label', (), '', True, 'import tkinter as tk\n'), ((11, 9, 11, 79), 'tkinter.Button', 'tk.Button', (), '', True, 'import tkinter as tk\n')]
ertyurk/bugme
app/routes/v1/endpoints/clickup.py
5a3ef3e089e0089055074c1c896c3fdc76600e93
from fastapi import APIRouter, status, Body, HTTPException from fastapi.encoders import jsonable_encoder from starlette.responses import JSONResponse from app.models.common import * from app.models.clickup import * from app.database.crud.clickup import * router = APIRouter() @router.get("/", response_description="Clickup integrations are retrieved.") async def get_clickup_integrations(): clickups = await retrieve_clickups() return ( ResponseModel(clickups, "Clickup integrations data retrieved successfully") if len(clickups) > 0 else ResponseModel(clickups, "Empty list returned") ) @router.post( "/", response_description="Clickup integrations data added into the database." ) async def add_clickup_a_integration(clickup: ClickupModel = Body(...)): clickup = jsonable_encoder(clickup) new_clickup = await add_new_clickup(clickup) return ResponseModel( new_clickup, "clickup integration created successfully.", status.HTTP_201_CREATED, ) @router.get("/{id}/", response_description="Clickup data retrieved.") async def find_clickup_integration(id): clickup = await retrieve_clickup(id) return ( ResponseModel(clickup, "Clickup integrations data retrieved successfully") if clickup else ErrorResponseModel( "An error occured.", status.HTTP_404_NOT_FOUND, "Integration doesn't exist." ) ) @router.put( "/{id}/", response_description="Clickup integrations data updated in the database." ) async def update_a_clickup_integration( id: str, clickup: UpdateClickupModel = Body(...) ): clickup = jsonable_encoder(clickup) updated_clickup = await update_clickup_data(id, clickup) return ( ResponseModel({"id": id}, "Clickup integration updated successfully") if updated_clickup else ErrorResponseModel( "An error occurred", status.HTTP_404_NOT_FOUND, "There was an error updating the Clickup integration.", ) ) @router.delete("/{id}/", response_description="Delete the integration") async def delete_clickup_integration(id: str): deleted_clickup = await delete_integration(id) return ( ResponseModel( "Integration with ID: {} removed".format(id), "Integration deleted successfully", ) if deleted_clickup else ErrorResponseModel( "An error occured", status.HTTP_404_NOT_FOUND, "Integration with id {0} doesn't exist".format(id), ) )
[((9, 9, 9, 20), 'fastapi.APIRouter', 'APIRouter', ({}, {}), '()', False, 'from fastapi import APIRouter, status, Body, HTTPException\n'), ((25, 60, 25, 69), 'fastapi.Body', 'Body', ({(25, 65, 25, 68): '...'}, {}), '(...)', False, 'from fastapi import APIRouter, status, Body, HTTPException\n'), ((26, 14, 26, 39), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', ({(26, 31, 26, 38): 'clickup'}, {}), '(clickup)', False, 'from fastapi.encoders import jsonable_encoder\n'), ((51, 43, 51, 52), 'fastapi.Body', 'Body', ({(51, 48, 51, 51): '...'}, {}), '(...)', False, 'from fastapi import APIRouter, status, Body, HTTPException\n'), ((53, 14, 53, 39), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', ({(53, 31, 53, 38): 'clickup'}, {}), '(clickup)', False, 'from fastapi.encoders import jsonable_encoder\n')]
npeschke/cellfinder-core
cellfinder_core/main.py
7a86a7d2c879c94da529ec6140f7e5c3f02bf288
""" N.B imports are within functions to prevent tensorflow being imported before it's warnings are silenced """ import os import logging from imlib.general.logging import suppress_specific_logs tf_suppress_log_messages = [ "multiprocessing can interact badly with TensorFlow" ] def main( signal_array, background_array, voxel_sizes, start_plane=0, end_plane=-1, trained_model=None, model_weights=None, model="resnet50_tv", batch_size=32, n_free_cpus=2, network_voxel_sizes=[5, 1, 1], soma_diameter=16, ball_xy_size=6, ball_z_size=15, ball_overlap_fraction=0.6, log_sigma_size=0.2, n_sds_above_mean_thresh=10, soma_spread_factor=1.4, max_cluster_size=100000, cube_width=50, cube_height=50, cube_depth=20, network_depth="50", ): suppress_tf_logging(tf_suppress_log_messages) from cellfinder_core.detect import detect from cellfinder_core.classify import classify from cellfinder_core.tools import prep from pathlib import Path home = Path.home() install_path = home / ".cellfinder" logging.info("Detecting cell candidates") points = detect.main( signal_array, start_plane, end_plane, voxel_sizes, soma_diameter, max_cluster_size, ball_xy_size, ball_z_size, ball_overlap_fraction, soma_spread_factor, n_free_cpus, log_sigma_size, n_sds_above_mean_thresh, ) model_weights = prep.prep_classification( trained_model, model_weights, install_path, model, n_free_cpus ) if len(points) > 0: logging.info("Running classification") points = classify.main( points, signal_array, background_array, n_free_cpus, voxel_sizes, network_voxel_sizes, batch_size, cube_height, cube_width, cube_depth, trained_model, model_weights, network_depth, ) else: logging.info("No candidates, skipping classification") return points # logging.info("Saving classified cells") # save_cells(points, classified_points_path) def suppress_tf_logging(tf_suppress_log_messages): """ Prevents many lines of logs such as: "2019-10-24 16:54:41.363978: I tensorflow/stream_executor/platform/default /dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1" """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" for message in tf_suppress_log_messages: suppress_specific_logs("tensorflow", message)
[((47, 11, 47, 22), 'pathlib.Path.home', 'Path.home', ({}, {}), '()', False, 'from pathlib import Path\n'), ((49, 4, 49, 45), 'logging.info', 'logging.info', ({(49, 17, 49, 44): '"""Detecting cell candidates"""'}, {}), "('Detecting cell candidates')", False, 'import logging\n'), ((51, 13, 65, 5), 'cellfinder_core.detect.detect.main', 'detect.main', ({(52, 8, 52, 20): 'signal_array', (53, 8, 53, 19): 'start_plane', (54, 8, 54, 17): 'end_plane', (55, 8, 55, 19): 'voxel_sizes', (56, 8, 56, 21): 'soma_diameter', (57, 8, 57, 24): 'max_cluster_size', (58, 8, 58, 20): 'ball_xy_size', (59, 8, 59, 19): 'ball_z_size', (60, 8, 60, 29): 'ball_overlap_fraction', (61, 8, 61, 26): 'soma_spread_factor', (62, 8, 62, 19): 'n_free_cpus', (63, 8, 63, 22): 'log_sigma_size', (64, 8, 64, 31): 'n_sds_above_mean_thresh'}, {}), '(signal_array, start_plane, end_plane, voxel_sizes,\n soma_diameter, max_cluster_size, ball_xy_size, ball_z_size,\n ball_overlap_fraction, soma_spread_factor, n_free_cpus, log_sigma_size,\n n_sds_above_mean_thresh)', False, 'from cellfinder_core.detect import detect\n'), ((67, 20, 69, 5), 'cellfinder_core.tools.prep.prep_classification', 'prep.prep_classification', ({(68, 8, 68, 21): 'trained_model', (68, 23, 68, 36): 'model_weights', (68, 38, 68, 50): 'install_path', (68, 52, 68, 57): 'model', (68, 59, 68, 70): 'n_free_cpus'}, {}), '(trained_model, model_weights, install_path, model,\n n_free_cpus)', False, 'from cellfinder_core.tools import prep\n'), ((71, 8, 71, 46), 'logging.info', 'logging.info', ({(71, 21, 71, 45): '"""Running classification"""'}, {}), "('Running classification')", False, 'import logging\n'), ((72, 17, 86, 9), 'cellfinder_core.classify.classify.main', 'classify.main', ({(73, 12, 73, 18): 'points', (74, 12, 74, 24): 'signal_array', (75, 12, 75, 28): 'background_array', (76, 12, 76, 23): 'n_free_cpus', (77, 12, 77, 23): 'voxel_sizes', (78, 12, 78, 31): 'network_voxel_sizes', (79, 12, 79, 22): 'batch_size', (80, 12, 80, 23): 'cube_height', (81, 12, 81, 22): 'cube_width', (82, 12, 82, 22): 'cube_depth', (83, 12, 83, 25): 'trained_model', (84, 12, 84, 25): 'model_weights', (85, 12, 85, 25): 'network_depth'}, {}), '(points, signal_array, background_array, n_free_cpus,\n voxel_sizes, network_voxel_sizes, batch_size, cube_height, cube_width,\n cube_depth, trained_model, model_weights, network_depth)', False, 'from cellfinder_core.classify import classify\n'), ((88, 8, 88, 62), 'logging.info', 'logging.info', ({(88, 21, 88, 61): '"""No candidates, skipping classification"""'}, {}), "('No candidates, skipping classification')", False, 'import logging\n'), ((103, 8, 103, 53), 'imlib.general.logging.suppress_specific_logs', 'suppress_specific_logs', ({(103, 31, 103, 43): '"""tensorflow"""', (103, 45, 103, 52): 'message'}, {}), "('tensorflow', message)", False, 'from imlib.general.logging import suppress_specific_logs\n')]
rezist-ro/rezistenta.tv
server.py
0c0dfa4842061baf2b575688588c5d77cfdba427
# coding=utf-8 import dateutil.parser import flask import json import os import time import urllib import yaml EPISODES = yaml.load(open("episodes.yaml").read()) app = flask.Flask(__name__, static_path="/assets", static_folder="assets") app.jinja_env.filters["strftime"] = \ lambda str, fmt: dateutil.parser.parse(str).strftime(fmt) app.jinja_env.filters["quote_plus"] = lambda u: urllib.quote_plus(u) ASSETS = os.path.join(app.root_path, "assets") @app.route("/favicon.ico") def favicon(): return flask.send_from_directory( ASSETS, "favicon.ico", mimetype="image/icon") @app.route("/") def home(): return flask.render_template("pages/home.html", playlist=os.environ["PLAYLIST"], episodes=EPISODES, autoplay=not app.debug) @app.route("/episod/<int:number>") def episode(number): if number < 1: return "not found" elif number > len(EPISODES): return "coming soon" else: episode = EPISODES[len(EPISODES) - number] template = "pages/episode/%s.html" % ( "youtube" if "yt" in episode else "facebook" ) return flask.render_template(template, number=number, episode=episode, episodes=EPISODES)
[((14, 6, 16, 41), 'flask.Flask', 'flask.Flask', (), '', False, 'import flask\n'), ((23, 9, 23, 46), 'os.path.join', 'os.path.join', ({(23, 22, 23, 35): 'app.root_path', (23, 37, 23, 45): '"""assets"""'}, {}), "(app.root_path, 'assets')", False, 'import os\n'), ((20, 48, 20, 68), 'urllib.quote_plus', 'urllib.quote_plus', ({(20, 66, 20, 67): 'u'}, {}), '(u)', False, 'import urllib\n'), ((26, 11, 29, 30), 'flask.send_from_directory', 'flask.send_from_directory', (), '', False, 'import flask\n'), ((34, 11, 37, 31), 'flask.render_template', 'flask.render_template', (), '', False, 'import flask\n'), ((51, 15, 54, 55), 'flask.render_template', 'flask.render_template', (), '', False, 'import flask\n')]
mazayus/ProjectEuler
problem020.py
64aebd5d80031fab2f0ef3c44c3a1118212ab613
#!/usr/bin/env python3 from functools import * import operator def factorial(number): assert number >= 1 return reduce(operator.mul, range(1, number+1)) def digits(number): yield from (int(digit) for digit in str(number)) print(sum(digits(factorial(100))))
[]
ghafran/KerasPersonLab
transformer.py
fcd80b62247aee8bd1d41ff91e31c822950f561e
import numpy as np from math import cos, sin, pi import cv2 import random from config import config, TransformationParams from data_prep import map_coco_to_personlab class AugmentSelection: def __init__(self, flip=False, degree = 0., crop = (0,0), scale = 1.): self.flip = flip self.degree = degree #rotate self.crop = crop #shift actually self.scale = scale @staticmethod def random(): flip = random.uniform(0.,1.) > TransformationParams.flip_prob degree = random.uniform(-1.,1.) * TransformationParams.max_rotate_degree scale = (TransformationParams.scale_max - TransformationParams.scale_min)*random.uniform(0.,1.)+TransformationParams.scale_min \ if random.uniform(0.,1.) < TransformationParams.scale_prob else 1. x_offset = int(random.uniform(-1.,1.) * TransformationParams.center_perterb_max); y_offset = int(random.uniform(-1.,1.) * TransformationParams.center_perterb_max); return AugmentSelection(flip, degree, (x_offset,y_offset), scale) @staticmethod def unrandom(): flip = False degree = 0. scale = 1. x_offset = 0 y_offset = 0 return AugmentSelection(flip, degree, (x_offset,y_offset), scale) def affine(self, center=(config.IMAGE_SHAPE[1]//2, config.IMAGE_SHAPE[0]//2) , scale_self=1.): # the main idea: we will do all image transformations with one affine matrix. # this saves lot of cpu and make code significantly shorter # same affine matrix could be used to transform joint coordinates afterwards A = self.scale * cos(self.degree / 180. * pi ) B = self.scale * sin(self.degree / 180. * pi ) # scale_size = TransformationParams.target_dist / scale_self * self.scale scale_size = TransformationParams.target_dist / self.scale (width, height) = center center_x = width + self.crop[0] center_y = height + self.crop[1] center2zero = np.array( [[ 1., 0., -center_x], [ 0., 1., -center_y ], [ 0., 0., 1. ]] ) rotate = np.array( [[ A, B, 0 ], [ -B, A, 0 ], [ 0, 0, 1. ] ]) scale = np.array( [[ scale_size, 0, 0 ], [ 0, scale_size, 0 ], [ 0, 0, 1. ] ]) flip = np.array( [[ -1 if self.flip else 1., 0., 0. ], [ 0., 1., 0. ], [ 0., 0., 1. ]] ) center2center = np.array( [[ 1., 0., config.IMAGE_SHAPE[1]//2], [ 0., 1., config.IMAGE_SHAPE[0]//2 ], [ 0., 0., 1. ]] ) # order of combination is reversed combined = center2center.dot(flip).dot(scale).dot(rotate).dot(center2zero) return combined[0:2] class Transformer: @staticmethod def transform(img, masks, keypoints, aug=AugmentSelection.random()): # warp picture and mask M = aug.affine(center=(img.shape[1]//2, img.shape[0]//2)) cv_shape = (config.IMAGE_SHAPE[1], config.IMAGE_SHAPE[0]) # TODO: need to understand this, scale_provided[0] is height of main person divided by 368, caclulated in generate_hdf5.py # print(img.shape) # for i, img in enumerate(input_transform_targets): img = cv2.warpAffine(img, M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(127,127,127)) # concat = np.stack(output_transform_targets, axis=-1) # fix from https://github.com/octiapp/KerasPersonLab/issues/2 # masks = cv2.warpAffine(masks, M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=0) out_masks = np.zeros(cv_shape[::-1]+(masks.shape[-1],)) for i in range(masks.shape[-1]): out_masks[:,:,i] = cv2.warpAffine(masks[:,:,i], M, cv_shape, flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=0) masks = out_masks # warp key points #TODO: joint could be cropped by augmentation, in this case we should mark it as invisible. #update: may be we don't need it actually, original code removed part sliced more than half totally, may be we should keep it keypoints = map_coco_to_personlab(keypoints) original_points = keypoints.copy() # print keypoints original_points[:,:,2]=1 # we reuse 3rd column in completely different way here, it is hack converted_points = np.matmul(M, original_points.transpose([0,2,1])).transpose([0,2,1]) keypoints[:,:,0:2]=converted_points cropped_kp = keypoints[:,:,0] >= config.IMAGE_SHAPE[1] cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,1] >= config.IMAGE_SHAPE[0]) cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,0] < 0) cropped_kp = np.logical_or(cropped_kp, keypoints[:,:,1] < 0) keypoints[cropped_kp, 2] = 0 # we just made image flip, i.e. right leg just became left leg, and vice versa if aug.flip: tmpLeft = keypoints[:, config.LEFT_KP, :] tmpRight = keypoints[:, config.RIGHT_KP, :] keypoints[:, config.LEFT_KP, :] = tmpRight keypoints[:, config.RIGHT_KP, :] = tmpLeft # print keypoints return img, masks, keypoints
[((54, 22, 56, 50), 'numpy.array', 'np.array', ({(54, 32, 56, 48): '[[1.0, 0.0, -center_x], [0.0, 1.0, -center_y], [0.0, 0.0, 1.0]]'}, {}), '([[1.0, 0.0, -center_x], [0.0, 1.0, -center_y], [0.0, 0.0, 1.0]])', True, 'import numpy as np\n'), ((58, 17, 60, 43), 'numpy.array', 'np.array', ({(58, 27, 60, 42): '[[A, B, 0], [-B, A, 0], [0, 0, 1.0]]'}, {}), '([[A, B, 0], [-B, A, 0], [0, 0, 1.0]])', True, 'import numpy as np\n'), ((62, 16, 64, 43), 'numpy.array', 'np.array', ({(62, 26, 64, 42): '[[scale_size, 0, 0], [0, scale_size, 0], [0, 0, 1.0]]'}, {}), '([[scale_size, 0, 0], [0, scale_size, 0], [0, 0, 1.0]])', True, 'import numpy as np\n'), ((66, 15, 68, 43), 'numpy.array', 'np.array', ({(66, 25, 68, 41): '[[-1 if self.flip else 1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]'}, {}), '([[-1 if self.flip else 1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0,\n 1.0]])', True, 'import numpy as np\n'), ((70, 24, 72, 52), 'numpy.array', 'np.array', ({(70, 34, 72, 50): '[[1.0, 0.0, config.IMAGE_SHAPE[1] // 2], [0.0, 1.0, config.IMAGE_SHAPE[0] //\n 2], [0.0, 0.0, 1.0]]'}, {}), '([[1.0, 0.0, config.IMAGE_SHAPE[1] // 2], [0.0, 1.0, config.\n IMAGE_SHAPE[0] // 2], [0.0, 0.0, 1.0]])', True, 'import numpy as np\n'), ((91, 14, 91, 128), 'cv2.warpAffine', 'cv2.warpAffine', (), '', False, 'import cv2\n'), ((96, 20, 96, 63), 'numpy.zeros', 'np.zeros', ({(96, 29, 96, 62): 'cv_shape[::-1] + (masks.shape[-1],)'}, {}), '(cv_shape[::-1] + (masks.shape[-1],))', True, 'import numpy as np\n'), ((104, 20, 104, 52), 'data_prep.map_coco_to_personlab', 'map_coco_to_personlab', ({(104, 42, 104, 51): 'keypoints'}, {}), '(keypoints)', False, 'from data_prep import map_coco_to_personlab\n'), ((112, 21, 112, 89), 'numpy.logical_or', 'np.logical_or', ({(112, 35, 112, 45): 'cropped_kp', (112, 47, 112, 88): 'keypoints[:, :, (1)] >= config.IMAGE_SHAPE[0]'}, {}), '(cropped_kp, keypoints[:, :, (1)] >= config.IMAGE_SHAPE[0])', True, 'import numpy as np\n'), ((113, 21, 113, 68), 'numpy.logical_or', 'np.logical_or', ({(113, 35, 113, 45): 'cropped_kp', (113, 47, 113, 67): 'keypoints[:, :, (0)] < 0'}, {}), '(cropped_kp, keypoints[:, :, (0)] < 0)', True, 'import numpy as np\n'), ((114, 21, 114, 68), 'numpy.logical_or', 'np.logical_or', ({(114, 35, 114, 45): 'cropped_kp', (114, 47, 114, 67): 'keypoints[:, :, (1)] < 0'}, {}), '(cropped_kp, keypoints[:, :, (1)] < 0)', True, 'import numpy as np\n'), ((19, 15, 19, 36), 'random.uniform', 'random.uniform', ({(19, 30, 19, 32): '(0.0)', (19, 33, 19, 35): '(1.0)'}, {}), '(0.0, 1.0)', False, 'import random\n'), ((20, 17, 20, 39), 'random.uniform', 'random.uniform', ({(20, 32, 20, 35): '(-1.0)', (20, 36, 20, 38): '(1.0)'}, {}), '(-1.0, 1.0)', False, 'import random\n'), ((44, 25, 44, 54), 'math.cos', 'cos', ({(44, 29, 44, 52): '(self.degree / 180.0 * pi)'}, {}), '(self.degree / 180.0 * pi)', False, 'from math import cos, sin, pi\n'), ((45, 25, 45, 54), 'math.sin', 'sin', ({(45, 29, 45, 52): '(self.degree / 180.0 * pi)'}, {}), '(self.degree / 180.0 * pi)', False, 'from math import cos, sin, pi\n'), ((98, 31, 98, 142), 'cv2.warpAffine', 'cv2.warpAffine', (), '', False, 'import cv2\n'), ((22, 15, 22, 36), 'random.uniform', 'random.uniform', ({(22, 30, 22, 32): '(0.0)', (22, 33, 22, 35): '(1.0)'}, {}), '(0.0, 1.0)', False, 'import random\n'), ((23, 23, 23, 45), 'random.uniform', 'random.uniform', ({(23, 38, 23, 41): '-1.0', (23, 42, 23, 44): '1.0'}, {}), '(-1.0, 1.0)', False, 'import random\n'), ((24, 23, 24, 45), 'random.uniform', 'random.uniform', ({(24, 38, 24, 41): '-1.0', (24, 42, 24, 44): '1.0'}, {}), '(-1.0, 1.0)', False, 'import random\n'), ((21, 82, 21, 103), 'random.uniform', 'random.uniform', ({(21, 97, 21, 99): '(0.0)', (21, 100, 21, 102): '(1.0)'}, {}), '(0.0, 1.0)', False, 'import random\n')]
mizuno-group/enan
enan/__init__.py
3c9dbe60bebf98e384e858db56980928b5897775
# -*- coding: utf-8 -*- """ Created on Wed Dec 25 15:46:32 2019 @author: tadahaya """ from .binom import BT from .connect import Connect from .fet import FET from .gsea import GSEA from .ssgsea import ssGSEA __copyright__ = 'Copyright (C) 2020 MIZUNO Tadahaya' __version__ = '1.0.3' __license__ = 'MIT' __author__ = 'MIZUNO Tadahaya' __author_email__ = '[email protected]'
[]
Hacker-1202/Selfium
app/helpers/__init__.py
7e798c23c9f24aacab6f6a485d6355f1045bc65c
""" Selfium Helper Files ~~~~~~~~~~~~~~~~~~~ All Helper Files used in Selfium project; :copyright: (c) 2021 - Caillou and ZeusHay; :license: MIT, see LICENSE for more details. """ from .getUser import * from .getGuild import * from .params import * from .notify import * from .sendEmbed import * from .isStaff import *
[]
zhangyimi/Research
NLP/UNIMO/src/finetune/visual_entailment.py
866f91d9774a38d205d6e9a3b1ee6293748261b3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model for visual_entailment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import time import numpy as np import paddle.fluid as fluid from model.unimo_finetune import UNIMOModel from eval import glue_eval from collections import OrderedDict from utils.utils import print_eval_log def kl_divergence_with_logits(q_logits, p_logits): """ symmetric KL-divergence (See SMART, Sec 3.1) q_logits: logits p_logits: delta_logits """ q = fluid.layers.softmax(input=q_logits) p = fluid.layers.softmax(input=p_logits) kl_qp = fluid.layers.reduce_sum(q * (fluid.layers.log(q) - fluid.layers.log(p)), -1) kl_pq = fluid.layers.reduce_sum(p * (fluid.layers.log(p) - fluid.layers.log(q)), -1) vat_loss = fluid.layers.mean(x=kl_qp+kl_pq) return vat_loss def create_model(args, config, pyreader_name="train_reader", is_train=True): """create_model""" shapes = [[-1, args.max_seq_len, 1], # src_ids [-1, args.max_seq_len, 1], # pos_ids [-1, args.max_seq_len, 1], # sent_ids [-1, args.max_img_len + args.max_seq_len, args.max_img_len + args.max_seq_len], # input_mask [-1, args.max_img_len, 1], # v_mask [-1, args.max_seq_len, 1], # t_mask [-1, args.max_img_len, config["image_embedding_size"]], # image_embedding [-1, args.max_img_len, 5], # image_loc [-1, 1] # labels ] dtypes = ['int64', 'int64', 'int64', 'float32', 'float32', 'float32', 'float32','float32', 'int64'] lod_levels = [0, 0, 0, 0, 0, 0, 0, 0, 0] pyreader = fluid.layers.py_reader( capacity=70, shapes=shapes, dtypes=dtypes, lod_levels=lod_levels, name=pyreader_name, use_double_buffer=True) (src_ids, pos_ids, sent_ids, input_mask, v_mask, t_mask, image_embedding, image_loc, labels) \ = fluid.layers.read_file(pyreader) emb_ids = {"word_embedding": src_ids, "sent_embedding": sent_ids, "pos_embedding": pos_ids} image_input = {"image_embedding": image_embedding, "loc_embedding": image_loc} adv_step, adv_lr, norm_type, adv_max_norm, adv_init_mag = \ args.adv_step, args.adv_lr, args.norm_type, args.adv_max_norm, args.adv_init_mag assert adv_step > 0 and adv_init_mag > 0 def get_loss_and_logits(text_feats, image_feats): feats = text_feats + image_feats cls_params_name = ["cls_out_w_0", "cls_out_b_0"] feats = fluid.layers.fc( input=feats, size=2048, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) feats = fluid.layers.dropout( x=feats, dropout_prob=0.1, dropout_implementation="upscale_in_train") cls_params_name = ["cls_out_w_1", "cls_out_b_1"] logits = fluid.layers.fc( input=feats, size=args.num_labels, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) ce_loss, probs = fluid.layers.softmax_with_cross_entropy( logits=logits, label=labels, return_softmax=True) loss = fluid.layers.mean(x=ce_loss) / adv_step return loss, logits, probs def init_delta(input, mask, shape, name='text'): real_seq_len = fluid.layers.shape(input)[1] fake = fluid.layers.data(name=name+"_fake", shape=shape, dtype='float32') mask_slice = fluid.layers.slice(mask, axes=[1], starts=[0], ends=fluid.layers.shape(mask)[1]) length = fluid.layers.reduce_sum(mask_slice, dim=1, keep_dim=True) * shape[-1] # l2 norm delta = fluid.layers.uniform_random_batch_size_like(mask, shape=fake.shape, min=-1.0, max=1.0) delta = fluid.layers.slice(delta, axes=[1], starts=[0], ends=real_seq_len) delta = delta * mask_slice mag = adv_init_mag / fluid.layers.sqrt(length) delta = delta * mag return delta if is_train: text_emb_shape = [-1, args.max_seq_len, config['hidden_size']] text_delta = init_delta(src_ids, t_mask, text_emb_shape, name='text') image_emb_shape = [-1, args.max_img_len, config['image_embedding_size']] image_delta = init_delta(image_embedding, v_mask, image_emb_shape, name='img') else: text_delta, image_delta = None, None def pgd_with_l2(loss, delta): # grad delta_grad = fluid.backward.gradients(loss, delta)[0] # l2 norm delta_norm = fluid.layers.sqrt(fluid.layers.reduce_sum(fluid.layers.pow(fluid.layers.reshape(delta_grad, \ [fluid.layers.shape(delta_grad)[0], -1]), factor=2), dim=1, keep_dim=True)) delta_norm = fluid.layers.clamp(delta_norm, min=float(1e-8)) # pgd delta = delta + adv_lr * delta_grad / delta_norm # projection if adv_max_norm > 0: exceed_mask = (delta_norm > adv_max_norm).astype('float32') reweights = (adv_max_norm / delta_norm) * exceed_mask + (1 - exceed_mask) delta = delta * reweights delta_grad.stop_gradient=True return delta loss = None for iter in range(adv_step): vl_pure = UNIMOModel( emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_text = UNIMOModel( text_adv_delta=text_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_image = UNIMOModel( image_adv_delta=image_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) h_pure_text, h_pure_image = vl_pure.get_pooled_output() h_text_text, h_text_image = vl_text.get_pooled_output() h_image_text, h_image_image = vl_image.get_pooled_output() loss_pure, logit_pure, probs_pure = get_loss_and_logits(h_pure_text, h_pure_image) loss_text, logit_text, probs_text = get_loss_and_logits(h_text_text, h_text_image) loss_image, logit_image, probs_image = get_loss_and_logits(h_image_text, h_image_image) if is_train: text_delta = pgd_with_l2(loss_text, text_delta) image_delta = pgd_with_l2(loss_image, image_delta) kl_adv_text_loss = kl_divergence_with_logits(logit_pure, logit_text) kl_adv_image_loss = kl_divergence_with_logits(logit_pure, logit_image) cur_loss = loss_pure + loss_text + loss_image + kl_adv_text_loss + kl_adv_image_loss loss = cur_loss if loss is None else loss + cur_loss num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs_pure, label=labels, total=num_seqs) graph_vars = { "loss": loss, "probs": probs_pure, "accuracy": accuracy, "labels": labels, "num_seqs": num_seqs } for k, v in graph_vars.items(): v.persistable = False return pyreader, graph_vars def evaluate(args, exe, test_pyreader, graph_vars, eval_phase, dev_count=1, gpu_id=0): """evaluate""" all_mat = [] test_pyreader.start() time_begin = time.time() fetch_list = [graph_vars["probs"].name, graph_vars["labels"].name] while True: try: np_probs, np_labels = exe.run(fetch_list=fetch_list) np_preds = np.argmax(np_probs, axis=1).reshape((-1, 1)) np_labels = np_labels.reshape((-1, 1)) mat = np.concatenate([np_preds, np_labels], axis=1) all_mat.extend(mat.tolist()) except fluid.core.EOFException: test_pyreader.reset() break all_mat = np.array(all_mat) time_end = time.time() save_file = "%s/%s.trainers_%d.part_%d.npy" % (args.eval_dir, eval_phase, dev_count, gpu_id) np.save(save_file, all_mat) tmp_file = "%s/%s.trainers_%d.part_%d.finish" % (args.eval_dir, eval_phase, dev_count, gpu_id) tmp_writer = open(tmp_file, "w") tmp_writer.close() if gpu_id == 0: while True: ret = os.popen('find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"' % (args.eval_dir, eval_phase, dev_count)).readlines() if len(ret) != dev_count: time.sleep(1) continue else: break all_mats = [] save_files = glob.glob("%s/%s.trainers_%d.part_*.npy" % (args.eval_dir, eval_phase, dev_count)) for cur_save_file in save_files: mat = np.load(cur_save_file).tolist() all_mats.extend(mat) all_mats = np.array(all_mats) cur_time = str(int(time.time())) os.system("mkdir %s/%s" % (args.eval_dir, cur_time)) os.system("mv %s/%s.trainers_%d.* %s/%s" % (args.eval_dir, eval_phase, dev_count, args.eval_dir, cur_time)) ret = OrderedDict() ret['phase'] = eval_phase ret['loss'] = -1 ret['data_num'] = all_mats.shape[0] ret['used_time'] = round(time_end - time_begin, 4) metrics = OrderedDict() metrics["simple_accuracy"] = glue_eval.simple_accuracy if args.eval_mertrics in metrics: ret_metric = metrics[args.eval_mertrics](all_mats[:, 0], all_mats[:, 1]) ret.update(ret_metric) print_eval_log(ret) else: raise ValueError('unsupported metric {}'.format(args.eval_mertrics)) return ret else: return None
[((38, 8, 38, 44), 'paddle.fluid.layers.softmax', 'fluid.layers.softmax', (), '', True, 'import paddle.fluid as fluid\n'), ((39, 8, 39, 44), 'paddle.fluid.layers.softmax', 'fluid.layers.softmax', (), '', True, 'import paddle.fluid as fluid\n'), ((42, 15, 42, 47), 'paddle.fluid.layers.mean', 'fluid.layers.mean', (), '', True, 'import paddle.fluid as fluid\n'), ((62, 15, 68, 31), 'paddle.fluid.layers.py_reader', 'fluid.layers.py_reader', (), '', True, 'import paddle.fluid as fluid\n'), ((71, 10, 71, 42), 'paddle.fluid.layers.read_file', 'fluid.layers.read_file', ({(71, 33, 71, 41): 'pyreader'}, {}), '(pyreader)', True, 'import paddle.fluid as fluid\n'), ((195, 15, 195, 56), 'paddle.fluid.layers.create_tensor', 'fluid.layers.create_tensor', (), '', True, 'import paddle.fluid as fluid\n'), ((196, 15, 196, 84), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', (), '', True, 'import paddle.fluid as fluid\n'), ((217, 17, 217, 28), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((230, 14, 230, 31), 'numpy.array', 'np.array', ({(230, 23, 230, 30): 'all_mat'}, {}), '(all_mat)', True, 'import numpy as np\n'), ((231, 15, 231, 26), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((234, 4, 234, 31), 'numpy.save', 'np.save', ({(234, 12, 234, 21): 'save_file', (234, 23, 234, 30): 'all_mat'}, {}), '(save_file, all_mat)', True, 'import numpy as np\n'), ((91, 16, 94, 54), 'paddle.fluid.layers.dropout', 'fluid.layers.dropout', (), '', True, 'import paddle.fluid as fluid\n'), ((104, 25, 105, 61), 'paddle.fluid.layers.softmax_with_cross_entropy', 'fluid.layers.softmax_with_cross_entropy', (), '', True, 'import paddle.fluid as fluid\n'), ((112, 15, 112, 81), 'paddle.fluid.layers.data', 'fluid.layers.data', (), '', True, 'import paddle.fluid as fluid\n'), ((117, 16, 117, 102), 'paddle.fluid.layers.uniform_random_batch_size_like', 'fluid.layers.uniform_random_batch_size_like', (), '', True, 'import paddle.fluid as fluid\n'), ((118, 16, 118, 82), 'paddle.fluid.layers.slice', 'fluid.layers.slice', (), '', True, 'import paddle.fluid as fluid\n'), ((154, 18, 160, 9), 'model.unimo_finetune.UNIMOModel', 'UNIMOModel', (), '', False, 'from model.unimo_finetune import UNIMOModel\n'), ((161, 18, 168, 9), 'model.unimo_finetune.UNIMOModel', 'UNIMOModel', (), '', False, 'from model.unimo_finetune import UNIMOModel\n'), ((169, 19, 176, 9), 'model.unimo_finetune.UNIMOModel', 'UNIMOModel', (), '', False, 'from model.unimo_finetune import UNIMOModel\n'), ((251, 21, 251, 103), 'glob.glob', 'glob.glob', ({(251, 31, 251, 102): "'%s/%s.trainers_%d.part_*.npy' % (args.eval_dir, eval_phase, dev_count)"}, {}), "('%s/%s.trainers_%d.part_*.npy' % (args.eval_dir, eval_phase,\n dev_count))", False, 'import glob\n'), ((255, 19, 255, 37), 'numpy.array', 'np.array', ({(255, 28, 255, 36): 'all_mats'}, {}), '(all_mats)', True, 'import numpy as np\n'), ((258, 8, 258, 60), 'os.system', 'os.system', ({(258, 18, 258, 59): "('mkdir %s/%s' % (args.eval_dir, cur_time))"}, {}), "('mkdir %s/%s' % (args.eval_dir, cur_time))", False, 'import os\n'), ((259, 8, 259, 115), 'os.system', 'os.system', ({(259, 18, 259, 114): "('mv %s/%s.trainers_%d.* %s/%s' % (args.eval_dir, eval_phase, dev_count,\n args.eval_dir, cur_time))"}, {}), "('mv %s/%s.trainers_%d.* %s/%s' % (args.eval_dir, eval_phase,\n dev_count, args.eval_dir, cur_time))", False, 'import os\n'), ((261, 14, 261, 27), 'collections.OrderedDict', 'OrderedDict', ({}, {}), '()', False, 'from collections import OrderedDict\n'), ((267, 18, 267, 31), 'collections.OrderedDict', 'OrderedDict', ({}, {}), '()', False, 'from collections import OrderedDict\n'), ((106, 15, 106, 43), 'paddle.fluid.layers.mean', 'fluid.layers.mean', (), '', True, 'import paddle.fluid as fluid\n'), ((110, 23, 110, 48), 'paddle.fluid.layers.shape', 'fluid.layers.shape', ({(110, 42, 110, 47): 'input'}, {}), '(input)', True, 'import paddle.fluid as fluid\n'), ((114, 17, 114, 74), 'paddle.fluid.layers.reduce_sum', 'fluid.layers.reduce_sum', (), '', True, 'import paddle.fluid as fluid\n'), ((120, 29, 120, 54), 'paddle.fluid.layers.sqrt', 'fluid.layers.sqrt', ({(120, 47, 120, 53): 'length'}, {}), '(length)', True, 'import paddle.fluid as fluid\n'), ((134, 21, 134, 58), 'paddle.fluid.backward.gradients', 'fluid.backward.gradients', ({(134, 46, 134, 50): 'loss', (134, 52, 134, 57): 'delta'}, {}), '(loss, delta)', True, 'import paddle.fluid as fluid\n'), ((225, 18, 225, 63), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((273, 12, 273, 31), 'utils.utils.print_eval_log', 'print_eval_log', ({(273, 27, 273, 30): 'ret'}, {}), '(ret)', False, 'from utils.utils import print_eval_log\n'), ((40, 41, 40, 60), 'paddle.fluid.layers.log', 'fluid.layers.log', ({(40, 58, 40, 59): 'q'}, {}), '(q)', True, 'import paddle.fluid as fluid\n'), ((40, 63, 40, 82), 'paddle.fluid.layers.log', 'fluid.layers.log', ({(40, 80, 40, 81): 'p'}, {}), '(p)', True, 'import paddle.fluid as fluid\n'), ((41, 41, 41, 60), 'paddle.fluid.layers.log', 'fluid.layers.log', ({(41, 58, 41, 59): 'p'}, {}), '(p)', True, 'import paddle.fluid as fluid\n'), ((41, 63, 41, 82), 'paddle.fluid.layers.log', 'fluid.layers.log', ({(41, 80, 41, 81): 'q'}, {}), '(q)', True, 'import paddle.fluid as fluid\n'), ((245, 16, 245, 29), 'time.sleep', 'time.sleep', ({(245, 27, 245, 28): '(1)'}, {}), '(1)', False, 'import time\n'), ((257, 27, 257, 38), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((113, 73, 113, 97), 'paddle.fluid.layers.shape', 'fluid.layers.shape', ({(113, 92, 113, 96): 'mask'}, {}), '(mask)', True, 'import paddle.fluid as fluid\n'), ((223, 23, 223, 50), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n'), ((242, 18, 243, 66), 'os.popen', 'os.popen', ({(242, 27, 243, 65): '\'find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"\' % (args.eval_dir,\n eval_phase, dev_count)'}, {}), '(\'find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"\' % (args\n .eval_dir, eval_phase, dev_count))', False, 'import os\n'), ((253, 18, 253, 40), 'numpy.load', 'np.load', ({(253, 26, 253, 39): 'cur_save_file'}, {}), '(cur_save_file)', True, 'import numpy as np\n'), ((88, 28, 88, 73), 'paddle.fluid.initializer.TruncatedNormal', 'fluid.initializer.TruncatedNormal', (), '', True, 'import paddle.fluid as fluid\n'), ((90, 53, 90, 83), 'paddle.fluid.initializer.Constant', 'fluid.initializer.Constant', ({(90, 80, 90, 82): '0.0'}, {}), '(0.0)', True, 'import paddle.fluid as fluid\n'), ((101, 28, 101, 73), 'paddle.fluid.initializer.TruncatedNormal', 'fluid.initializer.TruncatedNormal', (), '', True, 'import paddle.fluid as fluid\n'), ((103, 53, 103, 83), 'paddle.fluid.initializer.Constant', 'fluid.initializer.Constant', ({(103, 80, 103, 82): '0.0'}, {}), '(0.0)', True, 'import paddle.fluid as fluid\n'), ((138, 17, 138, 47), 'paddle.fluid.layers.shape', 'fluid.layers.shape', ({(138, 36, 138, 46): 'delta_grad'}, {}), '(delta_grad)', True, 'import paddle.fluid as fluid\n')]
oth-datapipeline/ingestion-scripts
src/records.py
48eecf63b0bf06200aa59be63de6839599ec51df
from faust import Record class RssFeed(Record, serializer='json'): feed_source: str title: str link: str published: str = None author: str = None summary: str = None published_parsed: list = None authors: list = None tags: list = None comments: str = None content: list = None source: dict = None class TwitterTrend(Record, serializer='json'): pass class Tweet(Record, serializer="json"): tweet_id: str text: str created_at: str metrics: dict author: dict trend: str place: str = None hashtags: list = None class RedditPost(Record, serializer='json'): id: str title: str author: dict created: str score: int upvote_ratio: float reddit: dict domain: str = None url: str = None comments: list = None keywords: list = None
[]
vaishali-bariwal/Practice-Coding-Questions
leetcode/102-Medium-Binary-Tree-Level-Order-Traversal/answer.py
747bfcb1cb2be5340daa745f2b9938f0ee87c9ac
#!/usr/bin/python3 #------------------------------------------------------------------------------ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def levelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] stack = [(root, 0)] result = [] while stack: (node, level) = stack.pop(0) if level == len(result): result.append([]) result[level].append(node.val) if node.left: stack.append((node.left, level+1)) if node.right: stack.append((node.right, level+1)) return result #------------------------------------------------------------------------------ #Testing
[]
shirayu/fitbit-dumper
setup.py
21cee614e294d84204ad06d81dae9adf9853a135
#!/usr/bin/env python3 from setuptools import setup, find_packages setup( name="", version="0.01", packages=find_packages(), install_requires=[ "fitbit" ], dependency_links=[ ], extras_require={ "tests": [ "flake8", "autopep8", ] } )
[((8, 13, 8, 28), 'setuptools.find_packages', 'find_packages', ({}, {}), '()', False, 'from setuptools import setup, find_packages\n')]
mtnmunuklu/SigmaToExcel
src/main.py
7d11fda19c0075122928ff5f1dbaab7775d30fe9
import sys sys.path.append("../") from src.app.sigma import SigmaConverter if __name__ == "__main__": sigmaconverter = SigmaConverter() sigmaconverter.read_from_file() sigmaconverter.write_to_excel()
[((2, 0, 2, 22), 'sys.path.append', 'sys.path.append', ({(2, 16, 2, 21): '"""../"""'}, {}), "('../')", False, 'import sys\n'), ((7, 21, 7, 37), 'src.app.sigma.SigmaConverter', 'SigmaConverter', ({}, {}), '()', False, 'from src.app.sigma import SigmaConverter\n')]
CloudReactor/task_manager
server/processes/migrations/0132_auto_20201108_0540.py
464ca74371064fabb9a21b1f5bacba30360932ab
# Generated by Django 2.2.14 on 2020-11-08 05:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('processes', '0131_auto_20201107_2316'), ] operations = [ migrations.RunSQL( "UPDATE processes_workflow SET run_environment_id = scheduling_run_environment_id WHERE run_environment_id IS NULL;", reverse_sql='', ), ]
[((13, 8, 16, 9), 'django.db.migrations.RunSQL', 'migrations.RunSQL', (), '', False, 'from django.db import migrations\n')]
pengkangzaia/usad
sparsely_lstmvae_main.py
937a29c24632cfa31e0c626cd5b058b3af74ef94
from model.sparsely_lstm_vae import * import torch.utils.data as data_utils from sklearn import preprocessing from utils.eval_methods import * device = get_default_device() # Read data # normal = pd.read_csv("data/SWaT_Dataset_Normal_v1.csv") # , nrows=1000) normal = pd.read_csv("data/SWaT/SWaT_Dataset_Normal_v1.csv", nrows=10000) # , nrows=1000) normal = normal.drop(["Timestamp", "Normal/Attack"], axis=1) # normal.shape # Transform all columns into float64 for i in list(normal): normal[i] = normal[i].apply(lambda x: str(x).replace(",", ".")) normal = normal.astype(float) # 数据预处理 min_max_scaler = preprocessing.MinMaxScaler() x = normal.values x_scaled = min_max_scaler.fit_transform(x) normal = pd.DataFrame(x_scaled) # Read data # attack = pd.read_csv("data/SWaT_Dataset_Attack_v0.csv", sep=";") # , nrows=1000) attack = pd.read_csv("data/SWaT/SWaT_Dataset_Attack_v0.csv", sep=";", nrows=10000) # , nrows=1000) labels = [float(label != 'Normal') for label in attack["Normal/Attack"].values] attack = attack.drop(["Timestamp", "Normal/Attack"], axis=1) # Transform all columns into float64 for i in list(attack): attack[i] = attack[i].apply(lambda x: str(x).replace(",", ".")) attack = attack.astype(float) x = attack.values x_scaled = min_max_scaler.transform(x) attack = pd.DataFrame(x_scaled) ############## windows ################### window_size = 12 # np.arange(window_size)[None, :] 1*12 (0,1,2,3,4,5,6,7,8,9,10,11)一行12列 # np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*1 (0,1,2,3,4,5...) 988列,每列递增 # np.arange(window_size)[None, :] + np.arange(normal.shape[0] - window_size)[:, None] (1000-12)*12 windows_normal = normal.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] windows_attack = attack.values[np.arange(window_size)[None, :] + np.arange(attack.shape[0] - window_size)[:, None]] ############## training ################### # BATCH_SIZE = 7919 BATCH_SIZE = 200 N_EPOCHS = 100 hidden_size = 100 latent_size = 40 # w_size = windows_normal.shape[1] * windows_normal.shape[2] # window_size * feature_size # z_size = windows_normal.shape[1] * hidden_size # window_size * hidden_size windows_normal_train = windows_normal[:int(np.floor(.8 * windows_normal.shape[0]))] windows_normal_val = windows_normal[int(np.floor(.8 * windows_normal.shape[0])):int(np.floor(windows_normal.shape[0]))] train_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_train).float().view(([windows_normal_train.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) val_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_normal_val).float().view(([windows_normal_val.shape[0], windows_normal_train.shape[1], windows_normal_train.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) test_loader = torch.utils.data.DataLoader(data_utils.TensorDataset( torch.from_numpy(windows_attack).float().view(([windows_attack.shape[0], windows_attack.shape[1], windows_attack.shape[2]])) ), batch_size=BATCH_SIZE, shuffle=False, num_workers=0) model = SparselyLstmVae(BATCH_SIZE, window_size, windows_normal.shape[2], hidden_size, latent_size, former_step=3) model = to_device(model, device) val_loss, train_loss = training(N_EPOCHS, model, train_loader, val_loader) plot_simple_history(val_loss) plot_train_loss(train_loss) torch.save({'ae': model.state_dict()}, "saved_model/model.pth") ############ testing ################# checkpoint = torch.load("model.pth") model.load_state_dict(checkpoint['ae']) # 每一个batch都有一个result。组成result集合 results = testing(model, test_loader) windows_labels = [] for i in range(len(labels) - window_size): windows_labels.append(list(np.int_(labels[i:i + window_size]))) # 窗口中有误差,则为异常,表示为1 y_test = [1.0 if (np.sum(window) > 0) else 0 for window in windows_labels] # 样本太少的话,误差会很大 y_pred = np.concatenate( [torch.stack(results[:-1]).flatten().detach().cpu().numpy(), results[-1].flatten().detach().cpu().numpy()]) y_pred = (y_pred - y_pred.min()) / (y_pred.max() - y_pred.min()) threshold = ROC(y_test, y_pred) t, th = bf_search(y_pred, y_test, start=0, end=1, step_num=1000, display_freq=50)
[((20, 17, 20, 45), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ({}, {}), '()', False, 'from sklearn import preprocessing\n')]
MexsonFernandes/AsynchronousTasks-Django-Celery-RabbitMQ-Redis
src/demo/tasks.py
b64b31cec4ccf8e0dca2cfe9faba40da647b94f7
from __future__ import absolute_import, unicode_literals from dcs.celeryconf import app import time from django.core.mail import EmailMessage @app.task(bind=True, ignore_result=False, max_retries=3) def demo_task1(self): result = { 'val1': 1, 'val2': 2, 'val3': 3, } print("hellp") from_email = '[email protected]' to_list = ['[email protected]',] sendemail = EmailMessage("Message received!!!", "Hello test", str(from_email), to_list) sendemail.send() return result
[((7, 1, 7, 56), 'dcs.celeryconf.app.task', 'app.task', (), '', False, 'from dcs.celeryconf import app\n')]
Ayansam1152/translate
pytorch_translate/models/__init__.py
33d397fc25fb1072abd2975c77c602a2d031c6c4
#!/usr/bin/env python3 import importlib import os # automatically import any Python files in the models/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module("pytorch_translate.models." + model_name)
[((8, 30, 8, 55), 'os.path.dirname', 'os.path.dirname', ({(8, 46, 8, 54): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((11, 8, 11, 73), 'importlib.import_module', 'importlib.import_module', ({(11, 32, 11, 72): "('pytorch_translate.models.' + model_name)"}, {}), "('pytorch_translate.models.' + model_name)", False, 'import importlib\n')]
mapeimapei/awesome-flask-webapp
app/config/secure.py
d0474f447a41e9432a14f9110989166c6595f0fa
# -*- coding: utf-8 -*- __author__ = '带土' SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:[email protected]:3306/awesome' SECRET_KEY = '\x88D\xf09\x91\x07\x98\x89\x87\x96\xa0A\xc68\xf9\xecJ:U\x17\xc5V\xbe\x8b\xef\xd7\xd8\xd3\xe6\x98*4' # Email 配置 MAIL_SERVER = 'smtp.exmail.qq.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USE_TSL = False MAIL_USERNAME = '[email protected]' MAIL_PASSWORD = 'Bmwzy1314520' MAIL_SUBJECT_PREFIX = '[鱼书]' MAIL_SENDER = '鱼书 <[email protected]>' # 开启数据库查询性能测试 SQLALCHEMY_RECORD_QUERIES = True # 性能测试的阀值 DATABASE_QUERY_TIMEOUT = 0.5 SQLALCHEMY_TRACK_MODIFICATIONS = True WTF_CSRF_CHECK_DEFAULT = False SQLALCHEMY_ECHO = True from datetime import timedelta REMEMBER_COOKIE_DURATION = timedelta(days=30) PROXY_API = 'http://ip.yushu.im/get' # PERMANENT_SESSION_LIFETIME = 3600
[((31, 27, 31, 45), 'datetime.timedelta', 'timedelta', (), '', False, 'from datetime import timedelta\n')]