code
stringlengths
11
173k
docstring
stringlengths
2
593k
func_name
stringlengths
2
189
language
stringclasses
1 value
repo
stringclasses
844 values
path
stringlengths
11
294
url
stringlengths
60
339
license
stringclasses
4 values
public void closeBuffer() { printAllocationTraceIfNeeded(); if(Nd4j.getEnvironment().isFuncTracePrintDeallocate()) { System.out.println("Java side deallocation current trace: \n " + currentTrace()); } Nd4j.getNativeOps().dbClose(this); }
This method releases underlying buffer
OpaqueDataBuffer::closeBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public OpExecTrace(Pointer p) { super(p); }
/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ***************************************************************************** package org.nd4j.nativeblas; import org.bytedeco.javacpp.*; import org.bytedeco.javacpp.annotation.*; import java.nio.DoubleBuffer; import java.nio.IntBuffer; import java.nio.LongBuffer; @Namespace("sd::ops") @NoOffset public class OpExecTrace extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}.
OpExecTrace::OpExecTrace
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpExecTrace.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpExecTrace.java
Apache-2.0
public OpExecTrace(long size) { super((Pointer)null); allocateArray(size); }
/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ***************************************************************************** package org.nd4j.nativeblas; import org.bytedeco.javacpp.*; import org.bytedeco.javacpp.annotation.*; import java.nio.DoubleBuffer; import java.nio.IntBuffer; import java.nio.LongBuffer; @Namespace("sd::ops") @NoOffset public class OpExecTrace extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. public OpExecTrace(Pointer p) { super(p); } /** Native array allocator. Access with {@link Pointer#position(long)}.
OpExecTrace::OpExecTrace
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpExecTrace.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpExecTrace.java
Apache-2.0
public static OpaqueNDArrayArr createFrom(List<INDArray> array) { OpaqueNDArray[] inputs = array.stream() .map(OpaqueNDArray::fromINDArray).toArray(OpaqueNDArray[]::new); OpaqueNDArrayArr inputsOpaque = (OpaqueNDArrayArr) new OpaqueNDArrayArr().capacity(inputs.length); inputsOpaque.put(inputs); return inputsOpaque; }
@see {@link #createFrom(INDArray...)} @param array @return
OpaqueNDArrayArr::createFrom
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArrayArr.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArrayArr.java
Apache-2.0
public static String validate(TestCase testCase) { return validate(testCase, false); }
Run test case @param testCase Test case to run @return NULL if test passes, or error message otherwise
OpValidation::validate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpValidation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpValidation.java
Apache-2.0
public static String validate(OpTestCase testCase) { collectCoverageInformation(testCase); //Check shape function: List<LongShapeDescriptor> outShapes; try { outShapes = Nd4j.getExecutioner().calculateOutputShape(testCase.op()); } catch (Throwable t) { throw new IllegalStateException("Error calculating output shapes during op validation", t); } if (outShapes.size() != testCase.testFns().size()) { return "Expected number of output shapes and number of outputs differ. " + outShapes.size() + " output shapes," + " but OpTestCase specifies " + testCase.testFns().size() + " outputs expected"; } for (int i = 0; i < outShapes.size(); i++) { val act = outShapes.get(i); val exp = testCase.expShapes().get(i); if(!Objects.equals(exp.dataType(), act.dataType())) { return "Shape function check failed for output " + i + ": expected shape " + exp + ", actual shape " + act; } if(!Arrays.equals(act.getShape(), exp.getShape())){ return "Shape function check failed for output " + i + ": expected shape " + exp + ", actual shape " + act; } } //Check the outputs: try { Nd4j.getExecutioner().execAndReturn(testCase.op()); } catch (Throwable t) { throw new IllegalStateException("Error during op execution", t); } for (int i = 0; i < testCase.testFns().size(); i++) { String error; try { error = testCase.testFns().get(i).apply(testCase.op().outputArguments().get(i)); } catch (Throwable t) { throw new IllegalStateException("Exception thrown during op output validation for output " + i, t); } if (error != null) { return "Output " + i + " failed: " + error; } } return null; //OK }
Validate the outputs of a single op @param testCase Op test case to run @return NULL if test is OK, or an error message otherwise
OpValidation::validate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpValidation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpValidation.java
Apache-2.0
public OpTestCase expectedOutput(int outputNum, INDArray expected) { return expectedOutput(outputNum,expected,1e-3); }
Validate the op output using INDArray.equals(INDArray) @param outputNum Number of the output @param expected Expected INDArray
OpTestCase::expectedOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
Apache-2.0
public OpTestCase expectedOutput(int outputNum, INDArray expected,double eps) { testFns.put(outputNum, new EqualityFn(expected,eps)); expShapes.put(outputNum, expected.shapeDescriptor()); return this; }
Validate the op output using INDArray.equals(INDArray) @param outputNum Number of the output @param expected Expected INDArray
OpTestCase::expectedOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
Apache-2.0
public OpTestCase expectedOutputRelError(int outputNum, @NonNull INDArray expected, double maxRelError, double minAbsError) { testFns.put(outputNum, new RelErrorFn(expected, maxRelError, minAbsError)); expShapes.put(outputNum, expected.shapeDescriptor()); return this; }
Validate the output for a single variable using element-wise relative error: relError = abs(x-y)/(abs(x)+abs(y)), with x=y=0 case defined to be 0.0. Also has a minimum absolute error condition, which must be satisfied for the relative error failure to be considered legitimate @param outputNum output number @param expected Expected INDArray @param maxRelError Maximum allowable relative error @param minAbsError Minimum absolute error for a failure to be considered legitimate
OpTestCase::expectedOutputRelError
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
Apache-2.0
public OpTestCase expectedOutput(int outputNum, @NonNull LongShapeDescriptor expShape, @NonNull Function<INDArray, String> validationFn) { testFns.put(outputNum, validationFn); expShapes.put(outputNum, expShape); return this; }
@param outputNum Output number to check @param expShape Expected shape for the output @param validationFn Function to use to validate the correctness of the specific Op. Should return null if validation passes, or an error message if the op validation fails
OpTestCase::expectedOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/OpTestCase.java
Apache-2.0
public static boolean checkActivationGradients(ActGradConfig config){ SameDiff sd = config.getSd(); List<String> actGrads = config.getActivationGradsToCheck(); double maxRelError = config.getMaxRelError(); double minAbsError = config.getMinAbsError(); Preconditions.checkState(sd != null, "SameDiff instance was not set in configuration"); Preconditions.checkState(actGrads != null && !actGrads.isEmpty(), "No activation gradients were specified to gradient check"); Preconditions.checkState(config.getEps() > 0.0, "Epsilon has not been set"); Preconditions.checkState(maxRelError > 0.0, "Max relative error must be set (is 0.0)"); for(String s : actGrads){ SDVariable v = sd.getVariables().get(s).getVariable(); Preconditions.checkState(v != null, "No variable with name \"%s\" was found", s); Preconditions.checkState(v.getVariableType() == VariableType.ARRAY, "Only variables with type ARRAY may be " + "gradient checked using this method. Variable \"%s\" has type %s", s, v.getVariableType()); Preconditions.checkState(v.dataType().isFPType(), "Cannot gradient check activation variable \"%s\": must be floating point type. Is type: %s", s, v.dataType()); if(v.dataType() != DataType.DOUBLE){ log.warn("Floating point variable {} is not double precision - this may result in spurious failures due to limited precision. Variable is type: {}", s, v.dataType()); } } boolean debugBefore = sd.isDebugMode(); if(config.isDebugMode()){ sd.enableDebugMode(); } //Validation sanity checks: if(!config.isSkipValidation()){ validateInternalState(sd, true); } //Loss function variables List<String> lossFnVariables = sd.getLossVariables(); Preconditions.checkState(lossFnVariables != null && !lossFnVariables.isEmpty(), "Expected 1 or more loss function variables for gradient check, got %s", lossFnVariables); //TODO also check that all inputs are non-zero (otherwise: consider out = sum(x * y) with all x and y being 0 // in this case, gradients of x and y are all 0 too //Collect names of variables to get gradients for - i.e., the names of the GRADIENT variables for the specified activations sd.createGradFunction(); Set<String> varsRequiringGrads = new HashSet<>(); for(String s : actGrads){ SDVariable grad = sd.getVariable(s).gradient(); Preconditions.checkState( grad != null,"Could not get gradient for activation \"%s\": gradient variable is null", s); varsRequiringGrads.add(s); } //Calculate analytical gradients Map<String,INDArray> grads = sd.calculateGradients(config.getPlaceholderValues(), new ArrayList<>(varsRequiringGrads)); Map<String,INDArray> gradientsForAct = new HashMap<>(); for(String s : actGrads){ INDArray arr = grads.get(s); Preconditions.checkState(arr != null, "No activation gradient array for variable \"%s\"", s); gradientsForAct.put(s, arr.dup()); } //Now, check gradients int totalNFailures = 0; int totalCount = 0; double maxError = 0.0; ActivationGradientCheckListener listener = new ActivationGradientCheckListener(); sd.setListeners(listener); Random r = new Random(12345); int maxPerParam = config.getMaxPerParam(); for(String s : actGrads){ long n = gradientsForAct.get(s).length(); if(config.isPrint()){ log.info("Starting test for variable \"{}\" with {} values", s, n); } Iterator<long[]> iter; if(maxPerParam > 0 && config.getSubset() != null && maxPerParam < n){ //Subset case long[] shape = gradientsForAct.get(s).shape(); List<long[]> l = new ArrayList<>(); if(config.getSubset() == Subset.RANDOM){ Set<Integer> set = new HashSet<>(); while(set.size() < maxPerParam){ int next = r.nextInt((int)n); set.add(next); } List<Integer> sorted = new ArrayList<>(set); Collections.sort(sorted); for(Integer i : sorted){ long[] pos = Shape.ind2subC(shape, i); l.add(pos); } } else { //Every N long everyN = n / maxPerParam; long curr = 0; while(curr < n){ long[] pos = Shape.ind2subC(shape, curr); l.add(pos); curr += everyN; } } iter = l.iterator(); } else { //Standard case: do all parameters iter = new NdIndexIterator('c',gradientsForAct.get(s).shape()); } INDArray varMask = (config.getGradCheckMask() == null ? null : config.getGradCheckMask().get(s)); listener.setVariableName(s); int i=0; while(iter.hasNext()){ long[] idx = iter.next(); String strIdx = null; if(config.isPrint()){ strIdx = Arrays.toString(idx).replaceAll(" ",""); } boolean maskValue = (varMask == null || (varMask.getDouble(idx) != 0)); if(!maskValue){ //Skip this specific entry (masked out) continue; } //Set listener to apply eps, then do forward pass: listener.setIdx(idx); listener.setEps(config.getEps()); double scorePlus = 0.0; Map<String,INDArray> m = sd.output(config.getPlaceholderValues(), lossFnVariables); for(INDArray arr : m.values()){ scorePlus += arr.sumNumber().doubleValue(); } listener.setEps(-config.getEps()); m = sd.output(config.getPlaceholderValues(), lossFnVariables); double scoreMinus = 0.0; for(INDArray arr : m.values()){ scoreMinus += arr.sumNumber().doubleValue(); } double numericalGrad = (scorePlus - scoreMinus) / (2 * config.getEps()); double analyticGrad = gradientsForAct.get(s).getDouble(idx); if (Double.isInfinite(numericalGrad) || Double.isNaN(numericalGrad)) { throw new IllegalStateException("Numerical gradient was " + numericalGrad + " for variable \"" + s + "\", parameter " + i + " of " + n + " (position: " + strIdx + ")"); } if (Double.isInfinite(analyticGrad) || Double.isNaN(analyticGrad)) { throw new IllegalStateException("Analytic (SameDiff) gradient was " + analyticGrad + " for variable \"" + s + "\", parameter " + i + " of " + n + " (position: " + strIdx + ")"); } double relError; if(numericalGrad == 0.0 && analyticGrad == 0.0){ relError = 0.0; } else { relError = Math.abs(analyticGrad - numericalGrad) / (Math.abs(Math.abs(analyticGrad) + Math.abs(numericalGrad))); } if (relError > maxError) maxError = relError; if (relError > maxRelError || Double.isNaN(relError)) { double absError = Math.abs(analyticGrad - numericalGrad); if (absError < minAbsError) { if(config.isPrint()) { log.info("Param " + i + " (" + s + strIdx + ") passed: grad= " + analyticGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError + "; absolute error = " + absError + " < minAbsoluteError = " + minAbsError); } } else { if (config.isPrint()) log.info("Param " + i + " (" + s + strIdx + ") FAILED: grad= " + analyticGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError + ", absError=" + absError + ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus); if (config.isExitOnFirstFailure()) return false; totalNFailures++; } } else if (config.isPrint()) { log.info("Param " + i + " (" + s + strIdx + ") passed: grad= " + analyticGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError); } i++; } } return totalNFailures == 0; }
Gradient check the ACTIVATIONS (i.e., ARRAY type SDVariables) as opposed to the parameters of a network (as are tested in {@link #checkGradients(SameDiff, Map, double, double, double, boolean, boolean, boolean, boolean, Set, Map, int, Subset)} @param config Configuration for gradient check @return True if gradient checks pass
Subset::checkActivationGradients
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/GradCheckUtil.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/GradCheckUtil.java
Apache-2.0
public TestCase(SameDiff sameDiff) { this.sameDiff = sameDiff; }
@param sameDiff SameDiff instance to test. Note: All of the required inputs should already be set
TestSerialization::TestCase
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expectedOutput(@NonNull String name, @NonNull INDArray expected,double eps) { return expected(name, new EqualityFn(expected,eps)); }
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray) @param name Name of the variable to check @param expected Expected INDArray @param eps the expected epsilon, defaults to 1e-3
TestSerialization::expectedOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expectedOutput(@NonNull String name, @NonNull INDArray expected) { return expectedOutput(name,expected,1e-3); }
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray) @param name Name of the variable to check @param expected Expected INDArray
TestSerialization::expectedOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expectedOutputRelError(@NonNull String name, @NonNull INDArray expected, double maxRelError, double minAbsError) { return expected(name, new RelErrorFn(expected, maxRelError, minAbsError)); }
Validate the output (forward pass) for a single variable using element-wise relative error: relError = abs(x-y)/(abs(x)+abs(y)), with x=y=0 case defined to be 0.0. Also has a minimum absolute error condition, which must be satisfied for the relative error failure to be considered legitimate @param name Name of the variable to check @param expected Expected INDArray @param maxRelError Maximum allowable relative error @param minAbsError Minimum absolute error for a failure to be considered legitimate
TestSerialization::expectedOutputRelError
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expected(@NonNull SDVariable var, @NonNull INDArray output) { return expected(var.name(), output); }
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray) @param var Variable to check @param output Expected INDArray
TestSerialization::expected
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expected(@NonNull String name, @NonNull INDArray output) { return expectedOutput(name, output); }
Validate the output (forward pass) for a single variable using INDArray.equals(INDArray) @param name Name of the variable to check @param output Expected INDArray
TestSerialization::expected
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase expected(String name, Function<INDArray, String> validationFn) { if (fwdTestFns == null) fwdTestFns = new LinkedHashMap<>(); fwdTestFns.put(name, validationFn); return this; }
@param name The name of the variable to check @param validationFn Function to use to validate the correctness of the specific Op. Should return null if validation passes, or an error message if the op validation fails
TestSerialization::expected
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public TestCase gradCheckSkipVariables(String... toSkip) { if (gradCheckSkipVariables == null) gradCheckSkipVariables = new LinkedHashSet<>(); Collections.addAll(gradCheckSkipVariables, toSkip); return this; }
Specify the input variables that should NOT be gradient checked. For example, if an input is an integer index (not real valued) it should be skipped as such an input cannot be gradient checked @param toSkip Name of the input variables to skip gradient check for
TestSerialization::gradCheckSkipVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/validation/TestCase.java
Apache-2.0
public static Map<String, INDArray> stackOutputs(List<Map<String, INDArray>> outputs){ Map<String, List<INDArray>> outs = new HashMap<>(); for(Map<String, INDArray> batch : outputs){ for(String k : batch.keySet()){ if(!outs.containsKey(k)) outs.put(k, new ArrayList<INDArray>()); outs.get(k).add(batch.get(k)); } } Map<String, INDArray> ret = new HashMap<>(); for(String k : outs.keySet()){ try { ret.put(k, Nd4j.concat(0, outs.get(k).toArray(new INDArray[0]))); } catch(Exception e){ throw new ND4JException("Error concatenating batch outputs", e); } } return ret; }
Stack batch outputs, like an output from {@link org.nd4j.autodiff.samediff.SameDiff#output(MultiDataSetIterator, String...)}
TrainingUtils::stackOutputs
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/TrainingUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/TrainingUtils.java
Apache-2.0
public static List<INDArray> getSingleOutput(List<Map<String, INDArray>> outputs, String output){ List<INDArray> batches = new ArrayList<>(); for(Map<String, INDArray> batch : outputs) batches.add(batch.get(output)); return batches; }
Get a list of batch outputs for a single variable from a list of batch outputs for all variables
TrainingUtils::getSingleOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/TrainingUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/TrainingUtils.java
Apache-2.0
public static boolean executedOn(String className,int lineNumber,DifferentialFunction funcToTest) { if(funcToTest.getCreationLocation() != null) { return funcToTest.getCreationLocation().getLineNumber() == lineNumber && funcToTest.getCreationLocation().getClassName().equals(className); } return false; }
Tests whether the given function was executed on the given line number and class name. Note: In order for this function to work correctly, ensure that {@link Environment#isVerbose()}} or {@link Environment#isDebug()} is true set via {@link Environment#setDebug(boolean)} or {@link Environment#setVerbose(boolean)} or {@link org.nd4j.linalg.api.ops.executioner.OpExecutioner#enableDebugMode(boolean)} or {@link org.nd4j.linalg.api.ops.executioner.OpExecutioner#enableVerboseMode(boolean)} @param className class name to test @param lineNumber line number to test @param funcToTest function to test @return
SameDiffUtils::executedOn
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
Apache-2.0
public static Map<String, INDArray> stackOutputs(List<ExecutionResult> outputs){ Map<String, List<INDArray>> outs = new HashMap<>(); for(ExecutionResult batch : outputs) { if(batch.getOutputs() != null) { for(String k : batch.getOutputs().keySet()) { if(!outs.containsKey(k)) outs.put(k, new ArrayList<>()); outs.get(k).add(batch.getOutputs().get(k).get()); } } else if(batch.getValueOutputs() != null) { for(String k : batch.getValueOutputs().keySet()) { if(!outs.containsKey(k)) outs.put(k, new ArrayList<>()); outs.get(k).add(batch.getValueOutputs().get(k).getTensorValue()); } } } Map<String, INDArray> ret = new HashMap<>(); for(String k : outs.keySet()) { try { ret.put(k, Nd4j.concat(0, outs.get(k).toArray(new INDArray[0]))); } catch(Exception e){ throw new ND4JException("Error concatenating batch outputs", e); } } return ret; }
Stack batch outputs, like an output from {@link SameDiff#output(MultiDataSetIterator, String...)}
SameDiffUtils::stackOutputs
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
Apache-2.0
public static List<INDArray> getSingleOutput(List<Map<String, INDArray>> outputs, String output){ List<INDArray> batches = new ArrayList<>(); for(Map<String, INDArray> batch : outputs) batches.add(batch.get(output)); return batches; }
Get a list of batch outputs for a single variable from a list of batch outputs for all variables
SameDiffUtils::getSingleOutput
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
Apache-2.0
public static SDVariable reductionBroadcastableWithOrigShape(int origRank, int[] reduceDims, SDVariable toExpand) { if (Shape.isWholeArray(origRank, reduceDims)) { //Output is [1,1] which is already broadcastable return toExpand; } else if (origRank == 2 && reduceDims.length == 1) { //In this case: [a,b] -> [1,b] or [a,b] -> [a,1] //both are already broadcastable return toExpand; } else { //Example: [a,b,c].sum(1) -> [a,c]... want [a,1,c] for (int d : reduceDims) { toExpand = toExpand.getSameDiff().expandDims(toExpand, d); } return toExpand; } }
Add 1s as required to the array make an array possible to be broadcast with the original (pre-reduce) array. <p> Example: if doing [a,b,c].sum(1), result is [a,c]. To 'undo' this in a way that can be auto-broadcast, we want to expand as required - i.e., [a,c] -> [a,1,c] which can be auto-broadcast with the original [a,b,c]. This is typically only used with reduction operations backprop. @param origRank Rank of the original array, before the reduction was executed @param reduceDims Dimensions that the original array was reduced from @param toExpand Array to add 1s to the shape to (such that it can be @return Reshaped array.
SameDiffUtils::reductionBroadcastableWithOrigShape
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/util/SameDiffUtils.java
Apache-2.0
public Operands addArgument(@NonNull String id, @NonNull INDArray array) { map.put(NodeDescriptor.builder().name(id).build(), array); return this; }
This method allows to pass array to the node identified by its name @param id @param array @return
Operands::addArgument
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public Operands addArgument(int id, @NonNull INDArray array) { map.put(NodeDescriptor.builder().id(id).build(), array); return this; }
This method allows to pass array to the node identified by numeric id @param id @param array @return
Operands::addArgument
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public Operands addArgument( int id, int index, @NonNull INDArray array) { map.put(NodeDescriptor.builder().id(id).index(index).build(), array); return this; }
This method allows to pass array to multi-output node in the graph @param id @param index @param array @return
Operands::addArgument
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public Operands addArgument(String name, int id, int index, @NonNull INDArray array) { map.put(NodeDescriptor.builder().name(name).id(id).index(index).build(), array); return this; }
This method allows to pass array to multi-output node in the graph @param id @param index @param array @return
Operands::addArgument
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public INDArray getById(@NonNull String name) { return map.get(NodeDescriptor.builder().name(name).build()); }
This method returns array identified its name @param name @return
Operands::getById
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public INDArray getById(int id) { return map.get(NodeDescriptor.builder().id(id).build()); }
This method returns array identified its numeric id @param name @return
Operands::getById
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public INDArray getById(int id, int index) { return map.get(NodeDescriptor.builder().id(id).index(index).build()); }
This method returns array identified its numeric id and index @param name @return
Operands::getById
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public INDArray[] asArray() { val val = map.values(); val res = new INDArray[val.size()]; int cnt = 0; for (val v: val) res[cnt++] = v; return res; }
This method return operands as array, in order of addition @return
Operands::asArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public Collection<Pair<NodeDescriptor, INDArray>> asCollection() { val c = new HashSet<Pair<NodeDescriptor, INDArray>>(); for (val k: map.keySet()) c.add(Pair.makePair(k, map.get(k))); return c; }
This method returns contents of this entity as collection of key->value pairs @return
Operands::asCollection
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public int size() { return map.size(); }
This method returns number of values in this entity @return
Operands::size
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/input/Operands.java
Apache-2.0
public int getFlatConfiguration(FlatBufferBuilder builder) { byte prof = profilingMode == OpExecutioner.ProfilingMode.INF_PANIC ? ProfilingMode.INF_PANIC : profilingMode == OpExecutioner.ProfilingMode.NAN_PANIC ? ProfilingMode.NAN_PANIC : profilingMode == OpExecutioner.ProfilingMode.ANY_PANIC ? ProfilingMode.ANY_PANIC : ProfilingMode.NONE; byte exec = executionMode == ExecutionMode.SEQUENTIAL ? org.nd4j.graph.ExecutionMode.SEQUENTIAL : executionMode == ExecutionMode.AUTO ? org.nd4j.graph.ExecutionMode.AUTO : executionMode == ExecutionMode.STRICT ? org.nd4j.graph.ExecutionMode.STRICT : -1; byte outp = outputMode == OutputMode.IMPLICIT ? org.nd4j.graph.OutputMode.IMPLICIT : outputMode == OutputMode.EXPLICIT ? org.nd4j.graph.OutputMode.EXPLICIT : outputMode == OutputMode.EXPLICIT_AND_IMPLICIT ? org.nd4j.graph.OutputMode.EXPLICIT_AND_IMPLICIT : outputMode == OutputMode.VARIABLE_SPACE ? org.nd4j.graph.OutputMode.VARIABLE_SPACE : -1; if (exec == -1) throw new UnsupportedOperationException("Unknown values were passed into configuration as ExecutionMode: [" + executionMode + "]"); if (outp == -1) throw new UnsupportedOperationException("Unknown values were passed into configuration as OutputMode: [" + outputMode + "]"); return FlatConfiguration.createFlatConfiguration(builder, -1, prof, exec, outp, gatherTimings, footprintForward, footprintBackward, Direction.FORWARD_ONLY); }
This method @param builder @return
ExecutorConfiguration::getFlatConfiguration
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/conf/ExecutorConfiguration.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/execution/conf/ExecutorConfiguration.java
Apache-2.0
public ListenerVariables otherRequiredVariables(SameDiff sd){ return ListenerVariables.empty(); }
Return any requested variables that are not part of the evaluations
BaseEvaluationListener::otherRequiredVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
Apache-2.0
public void epochStartEvaluations(SameDiff sd, At at){ //No op }
See {@link Listener#epochStart(SameDiff, At)}
BaseEvaluationListener::epochStartEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
Apache-2.0
public ListenerResponse epochEndEvaluations(SameDiff sd, At at, LossCurve lossCurve, long epochTimeMillis, EvaluationRecord evaluations) { //No op return ListenerResponse.CONTINUE; }
See {@link Listener#epochEnd(SameDiff, At, LossCurve, long)}, also provided the requested evaluations
BaseEvaluationListener::epochEndEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
Apache-2.0
public ListenerResponse validationDoneEvaluations(SameDiff sd, At at, long validationTimeMillis, EvaluationRecord evaluations) { //No op return ListenerResponse.CONTINUE; }
See {@link Listener#validationDone(SameDiff, At, long)}, also provided the requested evaluations
BaseEvaluationListener::validationDoneEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
Apache-2.0
public void activationAvailableEvaluations(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, String varName, INDArray activation){ //No op }
See {@link Listener#activationAvailable(SameDiff, At, MultiDataSet, SameDiffOp, String, INDArray)}
BaseEvaluationListener::activationAvailableEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/BaseEvaluationListener.java
Apache-2.0
public Map<String, List<IEvaluation>> trainEvaluations() { return trainEvaluations; }
Get the requested training evaluations
ListenerEvaluations::trainEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Map<String, Integer> trainEvaluationLabels() { return trainEvaluationLabels; }
Get the label indices for the requested training evaluations
ListenerEvaluations::trainEvaluationLabels
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Map<String, List<IEvaluation>> validationEvaluations() { return validationEvaluations; }
Get the requested validation evaluations
ListenerEvaluations::validationEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Map<String, Integer> validationEvaluationLabels() { return validationEvaluationLabels; }
Get the label indices for the requested validation evaluations
ListenerEvaluations::validationEvaluationLabels
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public ListenerVariables requiredVariables() { return new ListenerVariables(trainEvaluations.keySet(), validationEvaluations.keySet(), new HashSet<String>(), new HashSet<String>()); }
Get the required variables for these evaluations
ListenerEvaluations::requiredVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public boolean isEmpty() { return trainEvaluations.isEmpty() && validationEvaluations.isEmpty(); }
@return true if there are no requested evaluations
ListenerEvaluations::isEmpty
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Builder trainEvaluation(@NonNull String variableName, int labelIndex, @NonNull IEvaluation... evaluations) { addEvaluations(false, this.trainEvaluations, this.trainEvaluationLabels, variableName, labelIndex, evaluations); return this; }
Add requested training evaluations for a parm/variable @param variableName The variable to evaluate @param labelIndex The index of the label to evaluate against @param evaluations The evaluations to run
Builder::trainEvaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Builder trainEvaluation(@NonNull SDVariable variable, int labelIndex, @NonNull IEvaluation... evaluations) { return trainEvaluation(variable.name(), labelIndex, evaluations); }
Add requested training evaluations for a parm/variable @param variable The variable to evaluate @param labelIndex The index of the label to evaluate against @param evaluations The evaluations to run
Builder::trainEvaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Builder validationEvaluation(@NonNull String variableName, int labelIndex, @NonNull IEvaluation... evaluations) { addEvaluations(true, this.validationEvaluations, this.validationEvaluationLabels, variableName, labelIndex, evaluations); return this; }
Add requested validation evaluations for a parm/variable @param variableName The variable to evaluate @param labelIndex The index of the label to evaluate against @param evaluations The evaluations to run
Builder::validationEvaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Builder validationEvaluation(@NonNull SDVariable variable, int labelIndex, @NonNull IEvaluation... evaluations) { return validationEvaluation(variable.name(), labelIndex, evaluations); }
Add requested validation evaluations for a parm/variable @param variable The variable to evaluate @param labelIndex The index of the label to evaluate against @param evaluations The evaluations to run
Builder::validationEvaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Builder addEvaluations(boolean validation, @NonNull String variableName, int labelIndex, @NonNull IEvaluation... evaluations) { if (validation) { return validationEvaluation(variableName, labelIndex, evaluations); } else { return trainEvaluation(variableName, labelIndex, evaluations); } }
Add requested evaluations for a parm/variable, for either training or validation @param validation Whether to add these evaluations as validation or training @param variableName The variable to evaluate @param labelIndex The index of the label to evaluate against @param evaluations The evaluations to run
Builder::addEvaluations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerEvaluations.java
Apache-2.0
public Set<String> trainingVariables() { return trainingVariables; }
Get required training variables
ListenerVariables::trainingVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Set<String> validationVariables() { return validationVariables; }
Get required validation variables
ListenerVariables::validationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Set<String> evaluationVariables() { return evaluationVariables; }
Get required evaluation variables
ListenerVariables::evaluationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Set<String> inferenceVariables() { return inferenceVariables; }
Get required inference variables
ListenerVariables::inferenceVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Set<String> requiredVariables(Operation op) { switch (op) { case TRAINING: return trainingVariables; case TRAINING_VALIDATION: return validationVariables; case INFERENCE: return inferenceVariables; case EVALUATION: return evaluationVariables; } throw new IllegalArgumentException("Unknown operation " + op); }
Get required variables for specified op
ListenerVariables::requiredVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public ListenerVariables merge(ListenerVariables other) { return new ListenerVariables( Sets.newHashSet(Sets.union(trainingVariables, other.trainingVariables)), Sets.newHashSet(Sets.union(validationVariables, other.validationVariables)), Sets.newHashSet(Sets.union(evaluationVariables, other.evaluationVariables)), Sets.newHashSet(Sets.union(inferenceVariables, other.inferenceVariables))); }
Return a new ListenerVariables that contains the variables of this ListenerVariables and of other
ListenerVariables::merge
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder requireVariables(@NonNull Operation op, @NonNull String... variables) { switch (op) { case TRAINING: trainingVariables.addAll(Arrays.asList(variables)); break; case TRAINING_VALIDATION: validationVariables.addAll(Arrays.asList(variables)); break; case INFERENCE: inferenceVariables.addAll(Arrays.asList(variables)); break; case EVALUATION: evaluationVariables.addAll(Arrays.asList(variables)); break; } return this; }
Add required variables for the specified op @param op The op to require the variable for
Builder::requireVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder requireVariables(@NonNull Operation op, @NonNull SDVariable... variables) { String[] names = new String[variables.length]; for (int i = 0; i < variables.length; i++) names[i] = variables[i].name(); return requireVariables(op, names); }
Add required variables for the specified op @param op The op to require the variable for
Builder::requireVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder trainingVariables(@NonNull String... variables) { return requireVariables(Operation.TRAINING, variables); }
Add required variables for training
Builder::trainingVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder trainingVariables(@NonNull SDVariable... variables) { return requireVariables(Operation.TRAINING, variables); }
Add required variables for training
Builder::trainingVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder validationVariables(@NonNull String... variables) { return requireVariables(Operation.TRAINING_VALIDATION, variables); }
Add required variables for validation
Builder::validationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder validationVariables(@NonNull SDVariable... variables) { return requireVariables(Operation.TRAINING_VALIDATION, variables); }
Add required variables for validation
Builder::validationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder inferenceVariables(@NonNull String... variables) { return requireVariables(Operation.INFERENCE, variables); }
Add required variables for inference
Builder::inferenceVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder inferenceVariables(@NonNull SDVariable... variables) { return requireVariables(Operation.INFERENCE, variables); }
Add required variables for inference
Builder::inferenceVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder evaluationVariables(@NonNull String... variables) { return requireVariables(Operation.EVALUATION, variables); }
Add required variables for evaluation
Builder::evaluationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Builder evaluationVariables(@NonNull SDVariable... variables) { return requireVariables(Operation.EVALUATION, variables); }
Add required variables for evaluation
Builder::evaluationVariables
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/ListenerVariables.java
Apache-2.0
public Loss(@NonNull List<String> lossNames, @NonNull double[] losses) { Preconditions.checkState(lossNames.size() == losses.length, "Expected equal number of loss names and loss values"); this.lossNames = lossNames; this.losses = losses; }
@param lossNames Names of the losses @param losses Values for each loss. Must be same length as lossNames
Loss::Loss
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public int numLosses() { return lossNames.size(); }
@return Number of loss values (i.e., length of lossNames and losses)
Loss::numLosses
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public List<String> lossNames() { return lossNames; }
@return Names of all of the loss components
Loss::lossNames
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public double[] lossValues() { return losses; }
@return Values corresponding to each of the losses (same order as lossNames())
Loss::lossValues
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public double getLoss(@NonNull String lossName) { int idx = lossNames.indexOf(lossName); Preconditions.checkState(idx >= 0, "No loss with name \"%s\" exists. All loss names: %s", lossName, lossNames); return losses[idx]; }
Get the specified loss by name @param lossName Name of the loss (must exist) @return Specified loss value
Loss::getLoss
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public double totalLoss() { double sum = 0.0; for (double d : losses) { sum += d; } return sum; }
@return The total loss (sum of all loss components)
Loss::totalLoss
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/Loss.java
Apache-2.0
public static At defaultAt(){ return new At(0, 0, 0, 0, null, Operation.INFERENCE); }
@return A new instance with everything set to 0, and operation set to INFERENCE
At::defaultAt
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public static At defaultAt(@NonNull Operation op){ return new At(0, 0, 0, 0, null, op); }
@param op Operation @return A new instance with everything set to 0, except for the specified operation
At::defaultAt
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public int epoch(){ return epoch; }
@return The current training epoch
At::epoch
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public int iteration(){ return iteration; }
@return The current training iteration
At::iteration
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public int trainingThreadNum(){ return trainingThreadNum; }
@return The number of the SameDiff thread
At::trainingThreadNum
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public long javaThreadNum(){ return javaThreadNum; }
@return The Java/JVM thread number for training
At::javaThreadNum
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public Operation operation(){ return operation; }
@return The current operation
At::operation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public At copy(){ return new At(epoch, iteration, trainingThreadNum, javaThreadNum, frameIter, operation); }
@return A copy of the current At instance
At::copy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public At copy(Operation operation){ return new At(epoch, iteration, trainingThreadNum, javaThreadNum, frameIter, operation); }
@param operation Operation to set in the new instance @return A copy of the current instance, but with the specified operation
At::copy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/At.java
Apache-2.0
public static ObjectMapper jsonMapper() { ObjectMapper json = new ObjectMapper(); json.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false); json.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false); json.configure(MapperFeature.SORT_PROPERTIES_ALPHABETICALLY, false); json.disable(SerializationFeature.INDENT_OUTPUT); //One line return json; }
Get a new JSON mapper for use in serializing/deserializing JSON format
ProfilingListener::jsonMapper
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public static Builder builder(File outputFile) { return new Builder(outputFile); }
Create a new builder @param outputFile Output file. Will be overwritten if file already exists
ProfilingListener::builder
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public Builder recordAll() { this.all = true; this.nIter = -1; this.nMs = -1; return this; }
If called, all data will be profiled with no limits (other than a warmup, if set)
Builder::recordAll
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public Builder warmup(int iterations) { this.warmup = iterations; return this; }
Specify the number of warmup iterations - i.e., these will be excluded from profiling results
Builder::warmup
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public Builder maxProfileIterations(int iterations) { this.nIter = iterations; this.all = false; return this; }
Set a limit on the maximum number of iterations to profile (after warmup, if any). Any ops executed after the specified number of iterations will not be profiled/recorded
Builder::maxProfileIterations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public Builder maxProfilerMilliseconds(long ms) { this.nMs = ms; this.all = false; return this; }
Set a limit on the maximum duration for profiling, in milliseconds. Any ops executed after the specified amount of time since the first (non-warmup) operation start will not be profiled/recorded
Builder::maxProfilerMilliseconds
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public Builder operations(Operation... operations) { this.operations = operations; return this; }
Specify the operations (training, inference, etc) to profile. If not set, all operations are profiled
Builder::operations
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public ProfilingListener build() { return new ProfilingListener(outputFile, all, warmup, nIter, nMs, operations); }
Create the profiling listener
Builder::build
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/profiler/ProfilingListener.java
Apache-2.0
public OpBenchmarkListener(Operation operation, @NonNull Mode mode, long minRuntime) { this.operation = operation; this.mode = mode; this.minRuntime = minRuntime; }
@param operation Operation to collect stats for @param mode Mode - see {@link OpBenchmarkListener} @param minRuntime Minimum runtime - only applies to Mode.SINGLE_ITER_PRINT. If op runtime below this: don't print
Mode::OpBenchmarkListener
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/debugging/OpBenchmarkListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/debugging/OpBenchmarkListener.java
Apache-2.0
public ExecDebuggingListener(PrintMode printMode, int maxIterations, boolean logIter){ this.printMode = printMode; this.maxIterations = maxIterations; this.logIter = logIter; }
@param printMode Print mode, see {@link PrintMode} @param maxIterations Maximum number of iterations to print. <= 0 for "all iterations" @param logIter If true: prefix iteration/epoch, such as "(iter=1,epoch=0,op=3)" to the output
PrintMode::ExecDebuggingListener
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/debugging/ExecDebuggingListener.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/debugging/ExecDebuggingListener.java
Apache-2.0
public List<EvaluationRecord> trainingEval(){ return trainingHistory; }
Get the training evaluations
History::trainingEval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public List<EvaluationRecord> validationEval(){ return validationHistory; }
Get the validation evaluations
History::validationEval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public LossCurve lossCurve(){ return lossCurve; }
Get the loss curve
History::lossCurve
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public long trainingTimeMillis(){ return trainingTimeMillis; }
Get the total training time, in milliseconds
History::trainingTimeMillis
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public List<Long> validationTimesMillis(){ return validationTimesMillis; }
Get the total validation time, in milliseconds
History::validationTimesMillis
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public int trainingEpochs(){ return trainingHistory.size(); }
Get the number of epochs trained for
History::trainingEpochs
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0
public int validationEpochs(){ return validationHistory.size(); }
Get the number of epochs validation was ran on
History::validationEpochs
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/autodiff/listeners/records/History.java
Apache-2.0