code
stringlengths
11
173k
docstring
stringlengths
2
593k
func_name
stringlengths
2
189
language
stringclasses
1 value
repo
stringclasses
844 values
path
stringlengths
11
294
url
stringlengths
60
339
license
stringclasses
4 values
public ROC(int thresholdSteps, boolean rocRemoveRedundantPts, int exactAllocBlockSize) { if (thresholdSteps > 0) { this.thresholdSteps = thresholdSteps; double step = 1.0 / thresholdSteps; for (int i = 0; i <= thresholdSteps; i++) { double currThreshold = i * step; counts.put(currThreshold, new CountsForThreshold(currThreshold)); } isExact = false; } else { //Exact isExact = true; } this.rocRemoveRedundantPts = rocRemoveRedundantPts; this.exactAllocBlockSize = exactAllocBlockSize; }
@param thresholdSteps Number of threshold steps to use for the ROC calculation. If set to 0: use exact calculation @param rocRemoveRedundantPts Usually set to true. If true, remove any redundant points from ROC and P-R curves @param exactAllocBlockSize if using exact mode, the block size relocation. Users can likely use the default setting in almost all cases
Metric::ROC
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/ROC.java
Apache-2.0
public Evaluation(int numClasses) { this(numClasses, (numClasses == 2 ? 1 : null)); }
The number of classes to account for in the evaluation @param numClasses the number of classes to account for in the evaluation
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(int numClasses, Integer binaryPositiveClass){ this(createLabels(numClasses), 1); if(binaryPositiveClass != null){ Preconditions.checkArgument(binaryPositiveClass == 0 || binaryPositiveClass == 1, "Only 0 and 1 are valid inputs for binaryPositiveClass; got " + binaryPositiveClass); Preconditions.checkArgument(numClasses == 2, "Cannot set binaryPositiveClass argument " + "when number of classes is not equal to 2 (got: numClasses=" + numClasses + ")"); } this.binaryPositiveClass = binaryPositiveClass; }
Constructor for specifying the number of classes, and optionally the positive class for binary classification. See Evaluation javadoc for more details on evaluation in the binary case @param numClasses The number of classes for the evaluation. Must be 2, if binaryPositiveClass is non-null @param binaryPositiveClass If non-null, the positive class (0 or 1).
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels) { this(labels, 1); }
The labels to include with the evaluation. This constructor can be used for generating labeled output rather than just numbers for the labels @param labels the labels to use for the output
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(Map<Integer, String> labels) { this(createLabelsFromMap(labels), 1); }
Use a map to generate labels Pass in a label index with the actual label you want to use for output @param labels a map of label index to label value
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels, int topN) { this.labelsList = labels; if (labels != null) { createConfusion(labels.size()); } this.topN = topN; if(labels != null && labels.size() == 2){ this.binaryPositiveClass = 1; } }
Constructor to use for top N accuracy @param labels Labels for the classes (may be null) @param topN Value to use for top N accuracy calculation (<=1: standard accuracy). Note that with top N accuracy, an example is considered 'correct' if the probability for the true class is one of the highest N values
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(double binaryDecisionThreshold) { this(binaryDecisionThreshold, 1); }
Create an evaluation instance with a custom binary decision threshold. Note that binary decision thresholds can only be used with binary classifiers.<br> Defaults to class 1 for the positive class - see class javadoc, and use {@link #Evaluation(double, Integer)} to change this. @param binaryDecisionThreshold Decision threshold to use for binary predictions
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(double binaryDecisionThreshold, @NonNull Integer binaryPositiveClass) { if(binaryPositiveClass != null){ Preconditions.checkArgument(binaryPositiveClass == 0 || binaryPositiveClass == 1, "Only 0 and 1 are valid inputs for binaryPositiveClass; got " + binaryPositiveClass); } this.binaryDecisionThreshold = binaryDecisionThreshold; this.topN = 1; this.binaryPositiveClass = binaryPositiveClass; }
Create an evaluation instance with a custom binary decision threshold. Note that binary decision thresholds can only be used with binary classifiers.<br> This constructor also allows the user to specify the positive class for binary classification. See class javadoc for more details. @param binaryDecisionThreshold Decision threshold to use for binary predictions
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(INDArray costArray) { this(null, costArray); }
Created evaluation instance with the specified cost array. A cost array can be used to bias the multi class predictions towards or away from certain classes. The predicted class is determined using argMax(cost * probability) instead of argMax(probability) when no cost array is present. @param costArray Row vector cost array. May be null
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Evaluation(List<String> labels, INDArray costArray) { if (costArray != null && !costArray.isRowVectorOrScalar()) { throw new IllegalArgumentException("Invalid cost array: must be a row vector (got shape: " + Arrays.toString(costArray.shape()) + ")"); } if (costArray != null && costArray.minNumber().doubleValue() < 0.0) { throw new IllegalArgumentException("Invalid cost array: Cost array values must be positive"); } this.labelsList = labels; this.costArray = costArray == null ? null : costArray.castTo(DataType.FLOAT); this.topN = 1; }
Created evaluation instance with the specified cost array. A cost array can be used to bias the multi class predictions towards or away from certain classes. The predicted class is determined using argMax(cost * probability) instead of argMax(probability) when no cost array is present. @param labels Labels for the output classes. May be null @param costArray Row vector cost array. May be null
JsonDeserialize::Evaluation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void setAxis(int axis){ this.axis = axis; }
Set the axis for evaluation - this is the dimension along which the probability (and label classes) are present.<br> For DL4J, this can be left as the default setting (axis = 1).<br> Axis should be set as follows:<br> For 2D (OutputLayer), shape [minibatch, numClasses] - axis = 1<br> For 3D, RNNs/CNN1D (DL4J RnnOutputLayer), NCW format, shape [minibatch, numClasses, sequenceLength] - axis = 1<br> For 3D, RNNs/CNN1D (DL4J RnnOutputLayer), NWC format, shape [minibatch, sequenceLength, numClasses] - axis = 2<br> For 4D, CNN2D (DL4J CnnLossLayer), NCHW format, shape [minibatch, channels, height, width] - axis = 1<br> For 4D, CNN2D, NHWC format, shape [minibatch, height, width, channels] - axis = 3<br> @param axis Axis to use for evaluation
JsonDeserialize::setAxis
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int getAxis(){ return axis; }
Get the axis - see {@link #setAxis(int)} for details
JsonDeserialize::getAxis
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void eval(INDArray realOutcomes, INDArray guesses) { eval(realOutcomes, guesses, (List<Serializable>) null); }
Collects statistics on the real outcomes vs the guesses. This is for logistic outcome matrices. <p> Note that an IllegalArgumentException is thrown if the two passed in matrices aren't the same length. @param realOutcomes the real outcomes (labels - usually binary) @param guesses the guesses/prediction (usually a probability vector)
JsonDeserialize::eval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void eval(int predictedIdx, int actualIdx) { // Add the number of rows to numRowCounter numRowCounter++; // If confusion is null, then Evaluation is instantiated without providing the classes if (confusion == null) { throw new UnsupportedOperationException( "Cannot evaluate single example without initializing confusion matrix first"); } addToConfusion(actualIdx, predictedIdx); // If they are equal if (predictedIdx == actualIdx) { // Then add 1 to True Positive // (For a particular label) incrementTruePositives(predictedIdx); // And add 1 for each negative class that is accurately predicted (True Negative) //(For a particular label) for (Integer clazz : confusion().getClasses()) { if (clazz != predictedIdx) trueNegatives.incrementCount(clazz, 1.0f); } } else { // Otherwise the real label is predicted as negative (False Negative) incrementFalseNegatives(actualIdx); // Otherwise the prediction is predicted as falsely positive (False Positive) incrementFalsePositives(predictedIdx); // Otherwise true negatives for (Integer clazz : confusion().getClasses()) { if (clazz != predictedIdx && clazz != actualIdx) trueNegatives.incrementCount(clazz, 1.0f); } } }
Evaluate a single prediction (one prediction at a time) @param predictedIdx Index of class predicted by the network @param actualIdx Index of actual class
JsonDeserialize::eval
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats() { return stats(false); }
Report the classification statistics as a String @return Classification statistics as a String
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats(boolean suppressWarnings) { return stats(suppressWarnings, numClasses() <= CONFUSION_PRINT_MAX_CLASSES, numClasses() > CONFUSION_PRINT_MAX_CLASSES); }
Method to obtain the classification report as a String @param suppressWarnings whether or not to output warnings related to the evaluation results @return A (multi-line) String with accuracy, precision, recall, f1 score etc
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String stats(boolean suppressWarnings, boolean includeConfusion){ return stats(suppressWarnings, includeConfusion, false); }
Method to obtain the classification report as a String @param suppressWarnings whether or not to output warnings related to the evaluation results @param includeConfusion whether the confusion matrix should be included it the returned stats or not @return A (multi-line) String with accuracy, precision, recall, f1 score etc
JsonDeserialize::stats
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String confusionMatrix(){ int nClasses = numClasses(); if(confusion == null){ return "Confusion matrix: <no data>"; } //First: work out the maximum count List<Integer> classes = confusion.getClasses(); int maxCount = 1; for (Integer i : classes) { for (Integer j : classes) { int count = confusion().getCount(i, j); maxCount = Math.max(maxCount, count); } } maxCount = Math.max(maxCount, nClasses); //Include this as header might be bigger than actual values int numDigits = (int)Math.ceil(Math.log10(maxCount)); if(numDigits < 1) numDigits = 1; String digitFormat = "%" + (numDigits+1) + "d"; StringBuilder sb = new StringBuilder(); //Build header: for( int i=0; i<nClasses; i++ ){ sb.append(String.format(digitFormat, i)); } sb.append("\n"); int numDividerChars = (numDigits+1) * nClasses + 1; for( int i=0; i<numDividerChars; i++ ){ sb.append("-"); } sb.append("\n"); //Build each row: for( int actual=0; actual<nClasses; actual++){ String actualName = resolveLabelForClass(actual); for( int predicted=0; predicted<nClasses; predicted++){ int count = confusion.getCount(actual, predicted); sb.append(String.format(digitFormat, count)); } sb.append(" | ").append(actual).append(" = ").append(actualName).append("\n"); } sb.append("\nConfusion matrix format: Actual (rowClass) predicted as (columnClass) N times"); return sb.toString(); }
Get the confusion matrix as a String @return Confusion matrix as a String
JsonDeserialize::confusionMatrix
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(Integer classLabel) { return precision(classLabel, DEFAULT_EDGE_VALUE); }
Returns the precision for a given class label @param classLabel the label @return the precision for the label
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(Integer classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get precision: no evaluation has been performed"); double tpCount = truePositives.getCount(classLabel); double fpCount = falsePositives.getCount(classLabel); return EvaluationUtils.precision((long) tpCount, (long) fpCount, edgeCase); }
Returns the precision for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return the precision for the label
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision() { if(binaryPositiveClass != null && numClasses() == 2){ return precision(binaryPositiveClass); } return precision(EvaluationAveraging.Macro); }
Precision based on guesses so far.<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged precision, equivalent to {@code precision(EvaluationAveraging.Macro)}<br> @return the total precision based on guesses so far
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double precision(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get precision: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroPrecision = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisClassPrec = precision(i, -1); if (thisClassPrec != -1) { macroPrecision += thisClassPrec; count++; } } macroPrecision /= count; return macroPrecision; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); } return EvaluationUtils.precision(tpCount, fpCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average precision for all classes. Can specify whether macro or micro averaging should be used NOTE: if any classes have tp=0 and fp=0, (precision=0/0) these are excluded from the average @param averaging Averaging method - macro or micro @return Average precision
JsonDeserialize::precision
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averagePrecisionNumClassesExcluded() { return numClassesExcluded("precision"); }
When calculating the (macro) average precision, how many classes are excluded from the average due to no predictions - i.e., precision would be the edge case of 0/0 @return Number of classes excluded from the average precision
JsonDeserialize::averagePrecisionNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageRecallNumClassesExcluded() { return numClassesExcluded("recall"); }
When calculating the (macro) average Recall, how many classes are excluded from the average due to no predictions - i.e., recall would be the edge case of 0/0 @return Number of classes excluded from the average recall
JsonDeserialize::averageRecallNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageF1NumClassesExcluded() { return numClassesExcluded("f1"); }
When calculating the (macro) average F1, how many classes are excluded from the average due to no predictions - i.e., F1 would be calculated from a precision or recall of 0/0 @return Number of classes excluded from the average F1
JsonDeserialize::averageF1NumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int averageFBetaNumClassesExcluded() { return numClassesExcluded("fbeta"); }
When calculating the (macro) average FBeta, how many classes are excluded from the average due to no predictions - i.e., FBeta would be calculated from a precision or recall of 0/0 @return Number of classes excluded from the average FBeta
JsonDeserialize::averageFBetaNumClassesExcluded
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(int classLabel) { return recall(classLabel, DEFAULT_EDGE_VALUE); }
Returns the recall for a given label @param classLabel the label @return Recall rate as a double
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(int classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get recall: no evaluation has been performed"); double tpCount = truePositives.getCount(classLabel); double fnCount = falseNegatives.getCount(classLabel); return EvaluationUtils.recall((long) tpCount, (long) fnCount, edgeCase); }
Returns the recall for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return Recall rate as a double
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall() { if(binaryPositiveClass != null && numClasses() == 2){ return recall(binaryPositiveClass); } return recall(EvaluationAveraging.Macro); }
Recall based on guesses so far<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged recall, equivalent to {@code recall(EvaluationAveraging.Macro)}<br> @return the recall for the outcomes
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double recall(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get recall: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroRecall = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisClassRecall = recall(i, -1); if (thisClassRecall != -1) { macroRecall += thisClassRecall; count++; } } macroRecall /= count; return macroRecall; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fnCount += falseNegatives.getCount(i); } return EvaluationUtils.recall(tpCount, fnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average recall for all classes - can specify whether macro or micro averaging should be used NOTE: if any classes have tp=0 and fn=0, (recall=0/0) these are excluded from the average @param averaging Averaging method - macro or micro @return Average recall
JsonDeserialize::recall
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate(int classLabel) { return falsePositiveRate(classLabel, DEFAULT_EDGE_VALUE); }
Returns the false positive rate for a given label @param classLabel the label @return fpr as a double
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate(int classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get false positive rate: no evaluation has been performed"); double fpCount = falsePositives.getCount(classLabel); double tnCount = trueNegatives.getCount(classLabel); return EvaluationUtils.falsePositiveRate((long) fpCount, (long) tnCount, edgeCase); }
Returns the false positive rate for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return fpr as a double
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate() { if(binaryPositiveClass != null && numClasses() == 2){ return falsePositiveRate(binaryPositiveClass); } return falsePositiveRate(EvaluationAveraging.Macro); }
False positive rate based on guesses so far<br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false positive rate, equivalent to {@code falsePositiveRate(EvaluationAveraging.Macro)}<br> @return the fpr for the outcomes
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falsePositiveRate(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get false positive rate: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroFPR = 0.0; for (int i = 0; i < nClasses; i++) { macroFPR += falsePositiveRate(i); } macroFPR /= nClasses; return macroFPR; } else if (averaging == EvaluationAveraging.Micro) { long fpCount = 0; long tnCount = 0; for (int i = 0; i < nClasses; i++) { fpCount += falsePositives.getCount(i); tnCount += trueNegatives.getCount(i); } return EvaluationUtils.falsePositiveRate(fpCount, tnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average false positive rate across all classes. Can specify whether macro or micro averaging should be used @param averaging Averaging method - macro or micro @return Average false positive rate
JsonDeserialize::falsePositiveRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate(Integer classLabel) { return falseNegativeRate(classLabel, DEFAULT_EDGE_VALUE); }
Returns the false negative rate for a given label @param classLabel the label @return fnr as a double
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate(Integer classLabel, double edgeCase) { Preconditions.checkState(numRowCounter > 0, "Cannot get false negative rate: no evaluation has been performed"); double fnCount = falseNegatives.getCount(classLabel); double tpCount = truePositives.getCount(classLabel); return EvaluationUtils.falseNegativeRate((long) fnCount, (long) tpCount, edgeCase); }
Returns the false negative rate for a given label @param classLabel the label @param edgeCase What to output in case of 0/0 @return fnr as a double
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate() { if(binaryPositiveClass != null && numClasses() == 2){ return falseNegativeRate(binaryPositiveClass); } return falseNegativeRate(EvaluationAveraging.Macro); }
False negative rate based on guesses so far Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false negative rate, equivalent to {@code falseNegativeRate(EvaluationAveraging.Macro)}<br> @return the fnr for the outcomes
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseNegativeRate(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get false negative rate: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroFNR = 0.0; for (int i = 0; i < nClasses; i++) { macroFNR += falseNegativeRate(i); } macroFNR /= nClasses; return macroFNR; } else if (averaging == EvaluationAveraging.Micro) { long fnCount = 0; long tnCount = 0; for (int i = 0; i < nClasses; i++) { fnCount += falseNegatives.getCount(i); tnCount += trueNegatives.getCount(i); } return EvaluationUtils.falseNegativeRate(fnCount, tnCount, DEFAULT_EDGE_VALUE); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average false negative rate for all classes - can specify whether macro or micro averaging should be used @param averaging Averaging method - macro or micro @return Average false negative rate
JsonDeserialize::falseNegativeRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double falseAlarmRate() { if(binaryPositiveClass != null && numClasses() == 2){ return (falsePositiveRate(binaryPositiveClass) + falseNegativeRate(binaryPositiveClass)) / 2.0; } return (falsePositiveRate() + falseNegativeRate()) / 2.0; }
False Alarm Rate (FAR) reflects rate of misclassified to classified records <a href="http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw">http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw</a><br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged false alarm rate) @return the fpr for the outcomes
JsonDeserialize::falseAlarmRate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1(int classLabel) { return fBeta(1.0, classLabel); }
Calculate f1 score for a given class @param classLabel the label to calculate f1 for @return the f1 score for the given label
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, int classLabel) { return fBeta(beta, classLabel, 0.0); }
Calculate the f_beta for a given class, where f_beta is defined as:<br> (1+beta^2) * (precision * recall) / (beta^2 * precision + recall).<br> F1 is a special case of f_beta, with beta=1.0 @param beta Beta value to use @param classLabel Class label @return F_beta
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, int classLabel, double defaultValue) { Preconditions.checkState(numRowCounter > 0, "Cannot get fBeta score: no evaluation has been performed"); double precision = precision(classLabel, -1); double recall = recall(classLabel, -1); if (precision == -1 || recall == -1) { return defaultValue; } return EvaluationUtils.fBeta(beta, precision, recall); }
Calculate the f_beta for a given class, where f_beta is defined as:<br> (1+beta^2) * (precision * recall) / (beta^2 * precision + recall).<br> F1 is a special case of f_beta, with beta=1.0 @param beta Beta value to use @param classLabel Class label @param defaultValue Default value to use when precision or recall is undefined (0/0 for prec. or recall) @return F_beta
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1() { if(binaryPositiveClass != null && numClasses() == 2){ return f1(binaryPositiveClass); } return f1(EvaluationAveraging.Macro); }
Calculate the F1 score<br> F1 score is defined as:<br> TP: true positive<br> FP: False Positive<br> FN: False Negative<br> F1 score: 2 * TP / (2TP + FP + FN)<br> <br> Note: value returned will differ depending on number of classes and settings.<br> 1. For binary classification, if the positive class is set (via default value of 1, via constructor, or via {@link #setBinaryPositiveClass(Integer)}), the returned value will be for the specified positive class only.<br> 2. For the multi-class case, or when {@link #getBinaryPositiveClass()} is null, the returned value is macro-averaged across all classes. i.e., is macro-averaged f1, equivalent to {@code f1(EvaluationAveraging.Macro)}<br> @return the f1 score or harmonic mean of precision and recall based on current guesses
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double f1(EvaluationAveraging averaging) { return fBeta(1.0, averaging); }
Calculate the average F1 score across all classes, using macro or micro averaging @param averaging Averaging method to use
JsonDeserialize::f1
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double fBeta(double beta, EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get fBeta score: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (nClasses == 2) { return EvaluationUtils.fBeta(beta, (long) truePositives.getCount(1), (long) falsePositives.getCount(1), (long) falseNegatives.getCount(1)); } if (averaging == EvaluationAveraging.Macro) { double macroFBeta = 0.0; int count = 0; for (int i = 0; i < nClasses; i++) { double thisFBeta = fBeta(beta, i, -1); if (thisFBeta != -1) { macroFBeta += thisFBeta; count++; } } macroFBeta /= count; return macroFBeta; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); fnCount += falseNegatives.getCount(i); } return EvaluationUtils.fBeta(beta, tpCount, fpCount, fnCount); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average F_beta score across all classes, using macro or micro averaging @param beta Beta value to use @param averaging Averaging method to use
JsonDeserialize::fBeta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double gMeasure(int output) { Preconditions.checkState(numRowCounter > 0, "Cannot get gMeasure: no evaluation has been performed"); double precision = precision(output); double recall = recall(output); return EvaluationUtils.gMeasure(precision, recall); }
Calculate the G-measure for the given output @param output The specified output @return The G-measure for the specified output
JsonDeserialize::gMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double gMeasure(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get gMeasure: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroGMeasure = 0.0; for (int i = 0; i < nClasses; i++) { macroGMeasure += gMeasure(i); } macroGMeasure /= nClasses; return macroGMeasure; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; long fnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); fnCount += falseNegatives.getCount(i); } double precision = EvaluationUtils.precision(tpCount, fpCount, DEFAULT_EDGE_VALUE); double recall = EvaluationUtils.recall(tpCount, fnCount, DEFAULT_EDGE_VALUE); return EvaluationUtils.gMeasure(precision, recall); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculates the average G measure for all outputs using micro or macro averaging @param averaging Averaging method to use @return Average G measure
JsonDeserialize::gMeasure
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double accuracy() { Preconditions.checkState(numRowCounter > 0, "Cannot get accuracy: no evaluation has been performed"); //Accuracy: sum the counts on the diagonal of the confusion matrix, divide by total int nClasses = confusion().getClasses().size(); int countCorrect = 0; for (int i = 0; i < nClasses; i++) { countCorrect += confusion().getCount(i, i); } return countCorrect / (double) getNumRowCounter(); }
Accuracy: (TP + TN) / (P + N) @return the accuracy of the guesses so far
JsonDeserialize::accuracy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double topNAccuracy() { if (topN <= 1) return accuracy(); if (topNTotalCount == 0) return 0.0; return topNCorrectCount / (double) topNTotalCount; }
Top N accuracy of the predictions so far. For top N = 1 (default), equivalent to {@link #accuracy()} @return Top N accuracy
JsonDeserialize::topNAccuracy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double matthewsCorrelation(int classIdx) { Preconditions.checkState(numRowCounter > 0, "Cannot get Matthews correlation: no evaluation has been performed"); return EvaluationUtils.matthewsCorrelation((long) truePositives.getCount(classIdx), (long) falsePositives.getCount(classIdx), (long) falseNegatives.getCount(classIdx), (long) trueNegatives.getCount(classIdx)); }
Calculate the binary Mathews correlation coefficient, for the specified class.<br> MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN))<br> @param classIdx Class index to calculate Matthews correlation coefficient for
JsonDeserialize::matthewsCorrelation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public double matthewsCorrelation(EvaluationAveraging averaging) { Preconditions.checkState(numRowCounter > 0, "Cannot get Matthews correlation: no evaluation has been performed"); int nClasses = confusion().getClasses().size(); if (averaging == EvaluationAveraging.Macro) { double macroMatthewsCorrelation = 0.0; for (int i = 0; i < nClasses; i++) { macroMatthewsCorrelation += matthewsCorrelation(i); } macroMatthewsCorrelation /= nClasses; return macroMatthewsCorrelation; } else if (averaging == EvaluationAveraging.Micro) { long tpCount = 0; long fpCount = 0; long fnCount = 0; long tnCount = 0; for (int i = 0; i < nClasses; i++) { tpCount += truePositives.getCount(i); fpCount += falsePositives.getCount(i); fnCount += falseNegatives.getCount(i); tnCount += trueNegatives.getCount(i); } return EvaluationUtils.matthewsCorrelation(tpCount, fpCount, fnCount, tnCount); } else { throw new UnsupportedOperationException("Unknown averaging approach: " + averaging); } }
Calculate the average binary Mathews correlation coefficient, using macro or micro averaging.<br> MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN))<br> Note: This is NOT the same as the multi-class Matthews correlation coefficient @param averaging Averaging approach @return Average
JsonDeserialize::matthewsCorrelation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> truePositives() { return convertToMap(truePositives, confusion().getClasses().size()); }
True positives: correctly rejected @return the total true positives so far
JsonDeserialize::truePositives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> trueNegatives() { return convertToMap(trueNegatives, confusion().getClasses().size()); }
True negatives: correctly rejected @return the total true negatives so far
JsonDeserialize::trueNegatives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> falsePositives() { return convertToMap(falsePositives, confusion().getClasses().size()); }
False positive: wrong guess @return the count of the false positives
JsonDeserialize::falsePositives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> falseNegatives() { return convertToMap(falseNegatives, confusion().getClasses().size()); }
False negatives: correctly rejected @return the total false negatives so far
JsonDeserialize::falseNegatives
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> negative() { return addMapsByKey(trueNegatives(), falsePositives()); }
Total negatives true negatives + false negatives @return the overall negative count
JsonDeserialize::negative
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public Map<Integer, Integer> positive() { return addMapsByKey(truePositives(), falseNegatives()); }
Returns all of the positive guesses: true positive + false negative
JsonDeserialize::positive
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public void addToConfusion(Integer real, Integer guess) { confusion().add(real, guess); }
Adds to the confusion matrix @param real the actual guess @param guess the system guess
JsonDeserialize::addToConfusion
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int classCount(Integer clazz) { return confusion().getActualTotal(clazz); }
Returns the number of times the given label has actually occurred @param clazz the label @return the number of times the label actually occurred
JsonDeserialize::classCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int getTopNCorrectCount() { if (confusion == null) return 0; if (topN <= 1) { int nClasses = confusion().getClasses().size(); int countCorrect = 0; for (int i = 0; i < nClasses; i++) { countCorrect += confusion().getCount(i, i); } return countCorrect; } return topNCorrectCount; }
Return the number of correct predictions according to top N value. For top N = 1 (default) this is equivalent to the number of correct predictions @return Number of correct top N predictions
JsonDeserialize::getTopNCorrectCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public int getTopNTotalCount() { if (topN <= 1) { return getNumRowCounter(); } return topNTotalCount; }
Return the total number of top N evaluations. Most of the time, this is exactly equal to {@link #getNumRowCounter()}, but may differ in the case of using {@link #eval(int, int)} as top N accuracy cannot be calculated in that case (i.e., requires the full probability distribution, not just predicted/actual indices) @return Total number of top N predictions
JsonDeserialize::getTopNTotalCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public ConfusionMatrix<Integer> getConfusionMatrix() { return confusion; }
Returns the confusion matrix variable @return confusion matrix variable for this evaluation
JsonDeserialize::getConfusionMatrix
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public String confusionToString() { int nClasses = confusion().getClasses().size(); //First: work out the longest label size int maxLabelSize = 0; for (String s : labelsList) { maxLabelSize = Math.max(maxLabelSize, s.length()); } //Build the formatting for the rows: int labelSize = Math.max(maxLabelSize + 5, 10); StringBuilder sb = new StringBuilder(); sb.append("%-3d"); sb.append("%-"); sb.append(labelSize); sb.append("s | "); StringBuilder headerFormat = new StringBuilder(); headerFormat.append(" %-").append(labelSize).append("s "); for (int i = 0; i < nClasses; i++) { sb.append("%7d"); headerFormat.append("%7d"); } String rowFormat = sb.toString(); StringBuilder out = new StringBuilder(); //First: header row Object[] headerArgs = new Object[nClasses + 1]; headerArgs[0] = "Predicted:"; for (int i = 0; i < nClasses; i++) headerArgs[i + 1] = i; out.append(String.format(headerFormat.toString(), headerArgs)).append("\n"); //Second: divider rows out.append(" Actual:\n"); //Finally: data rows for (int i = 0; i < nClasses; i++) { Object[] args = new Object[nClasses + 2]; args[0] = i; args[1] = labelsList.get(i); for (int j = 0; j < nClasses; j++) { args[j + 2] = confusion().getCount(i, j); } out.append(String.format(rowFormat, args)); out.append("\n"); } return out.toString(); }
Get a String representation of the confusion matrix
JsonDeserialize::confusionToString
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public List<Prediction> getPredictionErrors() { if (this.confusionMatrixMetaData == null) return null; List<Prediction> list = new ArrayList<>(); List<Map.Entry<Pair<Integer, Integer>, List<Object>>> sorted = new ArrayList<>(confusionMatrixMetaData.entrySet()); Collections.sort(sorted, new Comparator<Map.Entry<Pair<Integer, Integer>, List<Object>>>() { @Override public int compare(Map.Entry<Pair<Integer, Integer>, List<Object>> o1, Map.Entry<Pair<Integer, Integer>, List<Object>> o2) { Pair<Integer, Integer> p1 = o1.getKey(); Pair<Integer, Integer> p2 = o2.getKey(); int order = Integer.compare(p1.getFirst(), p2.getFirst()); if (order != 0) return order; order = Integer.compare(p1.getSecond(), p2.getSecond()); return order; } }); for (Map.Entry<Pair<Integer, Integer>, List<Object>> entry : sorted) { Pair<Integer, Integer> p = entry.getKey(); if (p.getFirst().equals(p.getSecond())) { //predicted = actual -> not an error -> skip continue; } for (Object m : entry.getValue()) { list.add(new Prediction(p.getFirst(), p.getSecond(), m)); } } return list; }
Get a list of prediction errors, on a per-record basis<br> <p> <b>Note</b>: Prediction errors are ONLY available if the "evaluate with metadata" method is used: {@link #eval(INDArray, INDArray, List)} Otherwise (if the metadata hasn't been recorded via that previously mentioned eval method), there is no value in splitting each prediction out into a separate Prediction object - instead, use the confusion matrix to get the counts, via {@link #getConfusionMatrix()} @return A list of prediction errors, or null if no metadata has been recorded
JsonDeserialize::getPredictionErrors
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public List<Prediction> getPredictionsByActualClass(int actualClass) { if (confusionMatrixMetaData == null) return null; List<Prediction> out = new ArrayList<>(); for (Map.Entry<Pair<Integer, Integer>, List<Object>> entry : confusionMatrixMetaData.entrySet()) { //Entry Pair: (Actual,Predicted) if (entry.getKey().getFirst() == actualClass) { int actual = entry.getKey().getFirst(); int predicted = entry.getKey().getSecond(); for (Object m : entry.getValue()) { out.add(new Prediction(actual, predicted, m)); } } } return out; }
Get a list of predictions, for all data with the specified <i>actual</i> class, regardless of the predicted class. <p> <b>Note</b>: Prediction errors are ONLY available if the "evaluate with metadata" method is used: {@link #eval(INDArray, INDArray, List)} Otherwise (if the metadata hasn't been recorded via that previously mentioned eval method), there is no value in splitting each prediction out into a separate Prediction object - instead, use the confusion matrix to get the counts, via {@link #getConfusionMatrix()} @param actualClass Actual class to get predictions for @return List of predictions, or null if the "evaluate with metadata" method was not used
JsonDeserialize::getPredictionsByActualClass
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public List<Prediction> getPredictionByPredictedClass(int predictedClass) { if (confusionMatrixMetaData == null) return null; List<Prediction> out = new ArrayList<>(); for (Map.Entry<Pair<Integer, Integer>, List<Object>> entry : confusionMatrixMetaData.entrySet()) { //Entry Pair: (Actual,Predicted) if (entry.getKey().getSecond() == predictedClass) { int actual = entry.getKey().getFirst(); int predicted = entry.getKey().getSecond(); for (Object m : entry.getValue()) { out.add(new Prediction(actual, predicted, m)); } } } return out; }
Get a list of predictions, for all data with the specified <i>predicted</i> class, regardless of the actual data class. <p> <b>Note</b>: Prediction errors are ONLY available if the "evaluate with metadata" method is used: {@link #eval(INDArray, INDArray, List)} Otherwise (if the metadata hasn't been recorded via that previously mentioned eval method), there is no value in splitting each prediction out into a separate Prediction object - instead, use the confusion matrix to get the counts, via {@link #getConfusionMatrix()} @param predictedClass Actual class to get predictions for @return List of predictions, or null if the "evaluate with metadata" method was not used
JsonDeserialize::getPredictionByPredictedClass
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public List<Prediction> getPredictions(int actualClass, int predictedClass) { if (confusionMatrixMetaData == null) return null; List<Prediction> out = new ArrayList<>(); List<Object> list = confusionMatrixMetaData.get(new Pair<>(actualClass, predictedClass)); if (list == null) return out; for (Object meta : list) { out.add(new Prediction(actualClass, predictedClass, meta)); } return out; }
Get a list of predictions in the specified confusion matrix entry (i.e., for the given actua/predicted class pair) @param actualClass Actual class @param predictedClass Predicted class @return List of predictions that match the specified actual/predicted classes, or null if the "evaluate with metadata" method was not used
JsonDeserialize::getPredictions
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/classification/Evaluation.java
Apache-2.0
public static <R> MergeLambda<R> mergeConcatenate(){ return new MergeLambda<R>() { @Override public List<R> merge(List<R> a, List<R> b) { List<R> res = Lists.newArrayList(a); res.addAll(b); return res; } }; }
A MergeLambda that merges by concatenating the two lists
Metric::mergeConcatenate
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/custom/CustomEvaluation.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/evaluation/custom/CustomEvaluation.java
Apache-2.0
public void updateProperties(InputStream inputStream) { try { conf.load(inputStream); conf.putAll(System.getProperties()); } catch (IOException e) { log.warn("Error loading system properties from input stream", e); } }
Load the additional properties from an input stream and load all system properties @param inputStream
Nd4jContext::updateProperties
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/context/Nd4jContext.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/context/Nd4jContext.java
Apache-2.0
public Properties getConf() { return conf; }
Get the configuration for nd4j @return
Nd4jContext::getConf
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/context/Nd4jContext.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/context/Nd4jContext.java
Apache-2.0
public OpaqueNDArray(Pointer p) { super(p); }
Constructs an OpaqueNDArray from a given Pointer. @param p The Pointer object representing the native memory address.
OpaqueNDArray::OpaqueNDArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static OpaqueNDArray create( OpaqueDataBuffer shapeInfo, OpaqueDataBuffer buffer, OpaqueDataBuffer specialBuffer, long offset) { return Nd4j.getNativeOps().create(shapeInfo, buffer, specialBuffer, offset); }
Creates an OpaqueNDArray with given buffers and offset. This method delegates the creation to {@link Nd4j#getNativeOps()}. @param shapeInfo The shape information buffer. @param buffer The primary data buffer. @param specialBuffer The special buffer (e.g., for GPU data). @param offset The offset in the buffer. @return A new OpaqueNDArray.
OpaqueNDArray::create
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public DataType dataType() { return ArrayOptionsHelper.dataType(extras()); }
Gets the data type of the OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the data type. @return The DataType of the array.
OpaqueNDArray::dataType
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public long extras() { return Shape.extras(shapeInfo()); }
Gets the extra information of the OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the extra information. @return A long value representing the extra information.
OpaqueNDArray::extras
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static long getOpaqueNDArrayOffset(OpaqueNDArray array) { return Nd4j.getNativeOps().getOpaqueNDArrayOffset(array); }
Retrieves the offset of an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the offset. @param array The OpaqueNDArray whose offset is to be retrieved. @return The offset value.
OpaqueNDArray::getOpaqueNDArrayOffset
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static long[] getOpaqueNDArrayShapeInfo(OpaqueNDArray array) { LongPointer ret = Nd4j.getNativeOps().getOpaqueNDArrayShapeInfo(array); long len = Nd4j.getNativeOps().getShapeInfoLength(array); ret.capacity(len); long[] retArr = new long[(int) len]; ret.get(retArr); return retArr; }
Retrieves the shape information of an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the shape information. @param array The OpaqueNDArray whose shape information is to be retrieved. @return An array of long values representing the shape information.
OpaqueNDArray::getOpaqueNDArrayShapeInfo
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static Pointer getOpaqueNDArrayBuffer(OpaqueNDArray array) { return Nd4j.getNativeOps().getOpaqueNDArrayBuffer(array); }
Retrieves the primary buffer of an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the buffer. @param array The OpaqueNDArray whose buffer is to be retrieved. @return A Pointer to the buffer.
OpaqueNDArray::getOpaqueNDArrayBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static Pointer getOpaqueNDArraySpecialBuffer(OpaqueNDArray array) { return Nd4j.getNativeOps().getOpaqueNDArraySpecialBuffer(array); }
Retrieves the special buffer of an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the special buffer. @param array The OpaqueNDArray whose special buffer is to be retrieved. @return A Pointer to the special buffer.
OpaqueNDArray::getOpaqueNDArraySpecialBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static long getOpaqueNDArrayLength(OpaqueNDArray array) { return Nd4j.getNativeOps().getOpaqueNDArrayLength(array); }
Gets the length of the OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to retrieve the length. @param array The OpaqueNDArray whose length is to be retrieved. @return The length of the array.
OpaqueNDArray::getOpaqueNDArrayLength
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static void deleteNDArray(OpaqueNDArray array) { Nd4j.getNativeOps().deleteNDArray(array); }
Deletes an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to delete the array. @param array The OpaqueNDArray to delete.
OpaqueNDArray::deleteNDArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static void delete(OpaqueNDArray array) { if (array != null && !array.isNull()) { deleteNDArray(array); array.setNull(); } }
Deletes and nullifies an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to delete the array. @param array The OpaqueNDArray to delete.
OpaqueNDArray::delete
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static OpaqueNDArray fromINDArrayUncached(INDArray array) { if (array == null) { return null; } DataBuffer buffer = array.data(); DataBuffer shapeInfo = array.shapeInfoDataBuffer(); return create( shapeInfo.opaqueBuffer(), array.isEmpty() ? null : buffer.opaqueBuffer(), array.isEmpty() ? null :buffer.opaqueBuffer(), array.offset() ); }
Converts an INDArray to an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to create the OpaqueNDArray. @param array The INDArray to convert. @return The corresponding OpaqueNDArray.
OpaqueNDArray::fromINDArrayUncached
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static OpaqueNDArray fromINDArray(INDArray array) { if(array == null) { return null; } return array.getOrCreateOpaqueNDArray(); }
Converts an INDArray to an OpaqueNDArray. This method uses {@link Nd4j#getNativeOps()} to create the OpaqueNDArray. @param array The INDArray to convert. @return The corresponding OpaqueNDArray.
OpaqueNDArray::fromINDArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public static INDArray toINDArray(OpaqueNDArray opaqueArray) { if (opaqueArray == null || opaqueArray.isNull()) { return null; } long offset = opaqueArray.getOffset(); long[] shapeInfoPtr = opaqueArray.shapeInfo(); Pointer bufferPtr = opaqueArray.buffer(); Pointer specialBufferPtr = opaqueArray.specialBuffer(); long length = opaqueArray.length(); // Extract shape information long[] shape = Shape.shape(shapeInfoPtr); long[] stride = Shape.stride(shapeInfoPtr); char order = Shape.order(shapeInfoPtr); long ews = Shape.elementWiseStride(shapeInfoPtr); long extras = Shape.extras(shapeInfoPtr); // Create LongShapeDescriptor LongShapeDescriptor descriptor = LongShapeDescriptor.builder() .shape(shape) .stride(stride) .offset(offset) .ews(ews) .order(order) .extras(extras) .build(); // Create DataBuffer from the OpaqueNDArray's buffer DataType dataType = ArrayOptionsHelper.dataType(extras); DataBuffer buffer = Nd4j.createBuffer(bufferPtr,specialBufferPtr,length,dataType); // Create INDArray using the descriptor and buffer return Nd4j.create(buffer, descriptor); }
Converts an OpaqueNDArray to an INDArray. This method uses the data and shape information from {@link Nd4j#getNativeOps()} to create the INDArray. @param opaqueArray The OpaqueNDArray to convert. @return The corresponding INDArray.
OpaqueNDArray::toINDArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public long getOffset() { return getOpaqueNDArrayOffset(this); }
Gets the offset of the current OpaqueNDArray. @return The offset of the array.
OpaqueNDArray::getOffset
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public long[] shapeInfo() { return getOpaqueNDArrayShapeInfo(this); }
Gets the shape information of the current OpaqueNDArray. @return An array of long values representing the shape information.
OpaqueNDArray::shapeInfo
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public Pointer buffer() { return getOpaqueNDArrayBuffer(this); }
Gets the primary buffer of the current OpaqueNDArray. @return A Pointer to the buffer.
OpaqueNDArray::buffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public Pointer specialBuffer() { return getOpaqueNDArraySpecialBuffer(this); }
Gets the special buffer of the current OpaqueNDArray. @return A Pointer to the special buffer.
OpaqueNDArray::specialBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public long length() { return getOpaqueNDArrayLength(this); }
Gets the length of the current OpaqueNDArray. @return The length of the array.
OpaqueNDArray::length
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueNDArray.java
Apache-2.0
public StringVector(Pointer p) { super(p); }
/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ***************************************************************************** package org.nd4j.nativeblas; import org.bytedeco.javacpp.BytePointer; import org.bytedeco.javacpp.Loader; import org.bytedeco.javacpp.Pointer; import org.bytedeco.javacpp.annotation.*; @Name("std::vector<std::string>") public class StringVector extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}.
StringVector::StringVector
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/StringVector.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/StringVector.java
Apache-2.0
public static OpaqueDataBuffer allocateDataBuffer(long numElements, @NonNull DataType dataType, boolean allocateBoth) { OpaqueDataBuffer buffer = null; int ec = 0; String em = null; for (int t = 0; t < MAX_TRIES; t++) { try { // try to allocate data buffer buffer = Nd4j.getNativeOps().allocateDataBuffer(numElements, dataType.toInt(), allocateBoth); //when using func trace we want to print allocation traces when deallocation is called. this is used to debug //potential race condition and crashes. c++ prints the equivalent stack trace when func trace is enabled. //This allows us to check where a deallocated buffer that caused an issue was allocated. if(buffer != null && Nd4j.getNativeOps().isFuncTrace()) buffer.captureTrace(); // check error code ec = Nd4j.getNativeOps().lastErrorCode(); if (ec != 0) { em = Nd4j.getNativeOps().lastErrorMessage(); // if allocation failed it might be caused by casual OOM, so we'll try GC System.gc(); // sleeping for 50ms Thread.sleep(50); } else { // just return the buffer return buffer; } } catch (Exception e) { throw new RuntimeException(e); } } // if MAX_TRIES is over, we'll just throw an exception throw new RuntimeException("Allocation failed: [" + em + "] for amount of memory " + numElements * dataType.width() + " bytes"); }
This method allocates new InteropDataBuffer and returns pointer to it @param numElements @param dataType @param allocateBoth @return
OpaqueDataBuffer::allocateDataBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public void expand(long numElements) { int ec = 0; String em = null; for (int t = 0; t < MAX_TRIES; t++) { try { // try to expand the buffer Nd4j.getNativeOps().dbExpand(this, numElements); // check error code ec =Nd4j.getNativeOps().lastErrorCode(); if (ec != 0) { em =Nd4j.getNativeOps().lastErrorMessage(); // if expansion failed it might be caused by casual OOM, so we'll try GC System.gc(); Thread.sleep(50); } else { // just return return; } } catch (Exception e) { throw new RuntimeException(e); } } // if MAX_TRIES is over, we'll just throw an exception throw new RuntimeException("DataBuffer expansion failed: [" + em + "]"); }
This method expands buffer, and copies content to the new buffer PLEASE NOTE: if InteropDataBuffer doesn't own actual buffers - original pointers won't be released @param numElements
OpaqueDataBuffer::expand
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public OpaqueDataBuffer createView(long bytesLength) { OpaqueDataBuffer buffer = null; int ec = 0; String em = null; for (int t = 0; t < MAX_TRIES; t++) { try { buffer =Nd4j.getNativeOps().dbCreateView(this, bytesLength); if(NativeOpsHolder.getInstance().getDeviceNativeOps().isFuncTrace()) buffer.captureTrace(); // check error code ec =Nd4j.getNativeOps().lastErrorCode(); if (ec != 0) { em =Nd4j.getNativeOps().lastErrorMessage(); // if view creation failed it might be caused by casual OOM, so we'll try GC System.gc(); // sleeping to let gc kick in Thread.sleep(50); } else { // just return return buffer; } } catch (Exception e) { throw new RuntimeException(e); } } // if MAX_TRIES is over, we'll just throw an exception throw new RuntimeException("DataBuffer expansion failed: [" + em + "]"); }
This method creates a view out of this InteropDataBuffer @param bytesLength @return
OpaqueDataBuffer::createView
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public Pointer primaryBuffer() { return Nd4j.getNativeOps().dbPrimaryBuffer(this); }
This method returns pointer to linear buffer, primary one. @return
OpaqueDataBuffer::primaryBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public Pointer specialBuffer() { return Nd4j.getNativeOps(). dbSpecialBuffer(this); }
This method returns pointer to special buffer, device one, if any. @return
OpaqueDataBuffer::specialBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public int deviceId() { return Nd4j.getNativeOps().dbDeviceId(this); }
This method returns deviceId of this DataBuffer @return
OpaqueDataBuffer::deviceId
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public void setPrimaryBuffer(Pointer ptr, long numElements) { //note we call print here because dbSetSpecialBuffer can deallocate on the c++ side printAllocationTraceIfNeeded(); Nd4j.getNativeOps().dbSetPrimaryBuffer(this, ptr, numElements); }
This method allows to set external pointer as primary buffer. PLEASE NOTE: if InteropDataBuffer owns current memory buffer, it will be released @param ptr @param numElements
OpaqueDataBuffer::setPrimaryBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public void setSpecialBuffer(Pointer ptr, long numElements) { //note we call print here because dbSetSpecialBuffer can deallocate on the c++ side printAllocationTraceIfNeeded(); Nd4j.getNativeOps().dbSetSpecialBuffer(this, ptr, numElements); }
This method allows to set external pointer as primary buffer. PLEASE NOTE: if InteropDataBuffer owns current memory buffer, it will be released @param ptr @param numElements
OpaqueDataBuffer::setSpecialBuffer
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public void syncToSpecial() { Nd4j.getNativeOps().dbSyncToSpecial(this); }
This method synchronizes device memory
OpaqueDataBuffer::syncToSpecial
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0
public void syncToPrimary() { Nd4j.getNativeOps().dbSyncToPrimary(this); }
This method synchronizes host memory
OpaqueDataBuffer::syncToPrimary
java
deeplearning4j/deeplearning4j
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/nd4j/nativeblas/OpaqueDataBuffer.java
Apache-2.0