code
stringlengths 11
173k
| docstring
stringlengths 2
593k
| func_name
stringlengths 2
189
| language
stringclasses 1
value | repo
stringclasses 844
values | path
stringlengths 11
294
| url
stringlengths 60
339
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
public static boolean anyLessThan(int[] arrs, int check) {
for(int i = 0; i < arrs.length; i++) {
if(arrs[i] < check)
return true;
}
return false;
} |
@param arrs
@param check
@return
| ArrayUtil::anyLessThan | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static String[] convertToString(int[] arr) {
Preconditions.checkNotNull(arr);
String[] ret = new String[arr.length];
for(int i = 0; i < arr.length; i++) {
ret[i] = String.valueOf(arr[i]);
}
return ret;
} |
Convert a int array to a string array
@param arr the array to convert
@return the equivalent string array
| ArrayUtil::convertToString | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean listOfIntsContains(List<int[]> list,int[] target) {
for(int[] arr : list)
if(Arrays.equals(target,arr))
return true;
return false;
} |
Proper comparison contains for list of int
arrays
@param list the to search
@param target the target int array
@return whether the given target
array is contained in the list
| ArrayUtil::listOfIntsContains | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] nTimes(int n, int toReplicate) {
int[] ret = new int[n];
Arrays.fill(ret, toReplicate);
return ret;
} |
Repeat a value n times
@param n the number of times to repeat
@param toReplicate the value to repeat
@return an array of length n filled with the
given value
| ArrayUtil::nTimes | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean allUnique(int[] toTest) {
Set<Integer> set = new HashSet<>();
for (int i : toTest) {
if (!set.contains(i))
set.add(i);
else
return false;
}
return true;
} |
Returns true if all the elements in the
given int array are unique
@param toTest the array to test
@return true if all the items
are unique false otherwise
| ArrayUtil::allUnique | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] randomPermutation(int size) {
Random r = new Random();
int[] result = new int[size];
for (int j = 0; j < size; j++) {
result[j] = j + 1;
}
for (int j = size - 1; j > 0; j--) {
int k = r.nextInt(j);
int temp = result[j];
result[j] = result[k];
result[k] = temp;
}
return result;
} |
Credit to mikio braun from jblas
<p>
Create a random permutation of the numbers 0, ..., size - 1.
</p>
see Algorithm P, D.E. Knuth: The Art of Computer Programming, Vol. 2, p. 145
| ArrayUtil::randomPermutation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int offsetFor(int[] stride, int i) {
int ret = 0;
for (int j = 0; j < stride.length; j++)
ret += (i * stride[j]);
return ret;
} |
Calculate the offset for a given stride array
@param stride the stride to use
@param i the offset to calculate for
@return the offset for the given
stride
| ArrayUtil::offsetFor | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int sum(List<Integer> add) {
if (add.isEmpty())
return 0;
int ret = 0;
for (int i = 0; i < add.size(); i++)
ret += add.get(i);
return ret;
} |
Sum of an int array
@param add the elements
to calculate the sum for
@return the sum of this array
| ArrayUtil::sum | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int sum(int[] add) {
if (add.length < 1)
return 0;
int ret = 0;
for (int i = 0; i < add.length; i++)
ret += add[i];
return ret;
} |
Sum of an int array
@param add the elements
to calculate the sum for
@return the sum of this array
| ArrayUtil::sum | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int prod(List<Integer> mult) {
if (mult.isEmpty())
return 0;
int ret = 1;
for (int i = 0; i < mult.size(); i++)
ret *= mult.get(i);
return ret;
} |
Product of an int array
@param mult the elements
to calculate the sum for
@return the product of this array
| ArrayUtil::prod | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int prod(long... mult) {
if (mult.length < 1)
return 0;
int ret = 1;
for (int i = 0; i < mult.length; i++)
ret *= mult[i];
return ret;
} |
Product of an int array
@param mult the elements
to calculate the sum for
@return the product of this array
| ArrayUtil::prod | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int prod(int... mult) {
if (mult.length < 1)
return 0;
int ret = 1;
for (int i = 0; i < mult.length; i++)
ret *= mult[i];
return ret;
} |
Product of an int array
@param mult the elements
to calculate the sum for
@return the product of this array
| ArrayUtil::prod | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long prodLong(List<? extends Number> mult) {
if (mult.isEmpty())
return 0;
long ret = 1;
for (int i = 0; i < mult.size(); i++)
ret *= mult.get(i).longValue();
return ret;
} |
Product of an int array
@param mult the elements
to calculate the sum for
@return the product of this array
| ArrayUtil::prodLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long prodLong(int... mult) {
if (mult.length < 1)
return 0;
long ret = 1;
for (int i = 0; i < mult.length; i++)
ret *= mult[i];
return ret;
} |
Product of an int array
@param mult the elements
to calculate the sum for
@return the product of this array
| ArrayUtil::prodLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isZero(int[] as) {
for (int i = 0; i < as.length; i++) {
if (as[i] == 0)
return true;
}
return false;
} |
Returns true if any of the elements are zero
@param as
@return
| ArrayUtil::isZero | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int calcOffset(List<Integer> shape, List<Integer> offsets, List<Integer> strides) {
if (shape.size() != offsets.size() || shape.size() != strides.size())
throw new IllegalArgumentException("Shapes,strides, and offsets must be the same size");
int ret = 0;
for (int i = 0; i < offsets.size(); i++) {
//we should only do this in the general case, not on vectors
//the reason for this is we force everything including scalars
//to be 2d
if (shape.get(i) == 1 && offsets.size() > 2 && i > 0)
continue;
ret += offsets.get(i) * strides.get(i);
}
return ret;
} |
Compute the offset
based on teh shape strides and offsets
@param shape the shape to compute
@param offsets the offsets to compute
@param strides the strides to compute
@return the offset for the given shape,offset,and strides
| ArrayUtil::calcOffset | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int calcOffset(int[] shape, int[] offsets, int[] strides) {
if (shape.length != offsets.length || shape.length != strides.length)
throw new IllegalArgumentException("Shapes,strides, and offsets must be the same size");
int ret = 0;
for (int i = 0; i < offsets.length; i++) {
if (shape[i] == 1)
continue;
ret += offsets[i] * strides[i];
}
return ret;
} |
Compute the offset
based on teh shape strides and offsets
@param shape the shape to compute
@param offsets the offsets to compute
@param strides the strides to compute
@return the offset for the given shape,offset,and strides
| ArrayUtil::calcOffset | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long calcOffset(long[] shape, long[] offsets, long[] strides) {
if (shape.length != offsets.length || shape.length != strides.length)
throw new IllegalArgumentException("Shapes,strides, and offsets must be the same size");
long ret = 0;
for (int i = 0; i < offsets.length; i++) {
if (shape[i] == 1)
continue;
ret += offsets[i] * strides[i];
}
return ret;
} |
Compute the offset
based on teh shape strides and offsets
@param shape the shape to compute
@param offsets the offsets to compute
@param strides the strides to compute
@return the offset for the given shape,offset,and strides
| ArrayUtil::calcOffset | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long calcOffsetLong(List<Integer> shape, List<Integer> offsets, List<Integer> strides) {
if (shape.size() != offsets.size() || shape.size() != strides.size())
throw new IllegalArgumentException("Shapes,strides, and offsets must be the same size");
long ret = 0;
for (int i = 0; i < offsets.size(); i++) {
//we should only do this in the general case, not on vectors
//the reason for this is we force everything including scalars
//to be 2d
if (shape.get(i) == 1 && offsets.size() > 2 && i > 0)
continue;
ret += (long) offsets.get(i) * strides.get(i);
}
return ret;
} |
Compute the offset
based on teh shape strides and offsets
@param shape the shape to compute
@param offsets the offsets to compute
@param strides the strides to compute
@return the offset for the given shape,offset,and strides
| ArrayUtil::calcOffsetLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long calcOffsetLong(int[] shape, int[] offsets, int[] strides) {
if (shape.length != offsets.length || shape.length != strides.length)
throw new IllegalArgumentException("Shapes,strides, and offsets must be the same size");
long ret = 0;
for (int i = 0; i < offsets.length; i++) {
if (shape[i] == 1)
continue;
ret += (long) offsets[i] * strides[i];
}
return ret;
} |
Compute the offset
based on teh shape strides and offsets
@param shape the shape to compute
@param offsets the offsets to compute
@param strides the strides to compute
@return the offset for the given shape,offset,and strides
| ArrayUtil::calcOffsetLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int dotProduct(List<Integer> xs, List<Integer> ys) {
int result = 0;
int n = xs.size();
if (ys.size() != n)
throw new IllegalArgumentException("Different array sizes");
for (int i = 0; i < n; i++) {
result += xs.get(i) * ys.get(i);
}
return result;
} |
@param xs
@param ys
@return
| ArrayUtil::dotProduct | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int dotProduct(int[] xs, int[] ys) {
int result = 0;
int n = xs.length;
if (ys.length != n)
throw new IllegalArgumentException("Different array sizes");
for (int i = 0; i < n; i++) {
result += xs[i] * ys[i];
}
return result;
} |
@param xs
@param ys
@return
| ArrayUtil::dotProduct | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long dotProductLong(List<Integer> xs, List<Integer> ys) {
long result = 0;
int n = xs.size();
if (ys.size() != n)
throw new IllegalArgumentException("Different array sizes");
for (int i = 0; i < n; i++) {
result += (long) xs.get(i) * ys.get(i);
}
return result;
} |
@param xs
@param ys
@return
| ArrayUtil::dotProductLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long dotProductLong2(List<Long> xs, List<Long> ys) {
long result = 0;
int n = xs.size();
if (ys.size() != n)
throw new IllegalArgumentException("Different array sizes");
for (int i = 0; i < n; i++) {
result += (long) xs.get(i) * ys.get(i);
}
return result;
} |
@param xs
@param ys
@return
| ArrayUtil::dotProductLong2 | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long dotProductLong(int[] xs, int[] ys) {
long result = 0;
int n = xs.length;
if (ys.length != n)
throw new IllegalArgumentException("Different array sizes");
for (int i = 0; i < n; i++) {
result += (long) xs[i] * ys[i];
}
return result;
} |
@param xs
@param ys
@return
| ArrayUtil::dotProductLong | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] range(double[] data, int to) {
return range(data, to, 1);
} |
Returns a subset of an array from 0 to "to" (exclusive)
@param data the data to getFromOrigin a subset of
@param to the end point of the data
@return the subset of the data specified
| ArrayUtil::range | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] range(double[] data, int to, int stride) {
return range(data, to, stride, 1);
} |
Returns a subset of an array from 0 to "to" (exclusive) using the specified stride
@param data the data to getFromOrigin a subset of
@param to the end point of the data
@param stride the stride to go through the array
@return the subset of the data specified
| ArrayUtil::range | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] range(double[] data, int to, int stride, int numElementsEachStride) {
double[] ret = new double[to / stride];
if (ret.length < 1)
ret = new double[1];
int count = 0;
for (int i = 0; i < data.length; i += stride) {
for (int j = 0; j < numElementsEachStride; j++) {
if (i + j >= data.length || count >= ret.length)
break;
ret[count++] = data[i + j];
}
}
return ret;
} |
Returns a subset of an array from 0 to "to"
using the specified stride
@param data the data to getFromOrigin a subset of
@param to the end point of the data
@param stride the stride to go through the array
@param numElementsEachStride the number of elements to collect at each stride
@return the subset of the data specified
| ArrayUtil::range | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] range(int from, int to, int increment) {
int diff = Math.abs(from - to);
int[] ret = new int[diff / increment];
if (ret.length < 1)
ret = new int[1];
if (from < to) {
int count = 0;
for (int i = from; i < to; i += increment) {
if (count >= ret.length)
break;
ret[count++] = i;
}
} else if (from > to) {
int count = 0;
for (int i = from - 1; i >= to; i -= increment) {
if (count >= ret.length)
break;
ret[count++] = i;
}
}
return ret;
} |
Generate an int array ranging from "from" to "to".
The total number of elements is (from-to)/increment - i.e., range(0,2,1) returns [0,1]
If from is > to this method will count backwards
@param from the from
@param to the end point of the data
@param increment the amount to increment by
@return the int array with a length equal to absoluteValue(from - to)
| ArrayUtil::range | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] range(int from, int to) {
if (from == to)
return new int[0];
return range(from, to, 1);
} |
Generate an int array ranging from "from" to "to".
The total number of elements is (from-to) - i.e., range(0,2) returns [0,1]
If from is > to this method will count backwards
@param from the from
@param to the end point of the data
@return the int array with a length equal to absoluteValue(from - to)
| ArrayUtil::range | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] replace(int[] data, int index, int newValue) {
int[] copy = copy(data);
copy[index] = newValue;
return copy;
} |
Return a copy of this array with the
given index omitted
@param data the data to copy
@param index the index of the item to remove
@param newValue the newValue to replace
@return the new array with the omitted
item
| ArrayUtil::replace | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] keep(int[] data, int... index) {
if (index.length == data.length)
return data;
int[] ret = new int[index.length];
int count = 0;
for (int i = 0; i < data.length; i++)
if (Ints.contains(index, i))
ret[count++] = data[i];
return ret;
} |
Return a copy of this array with only the
given index(es) remaining
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::keep | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] keep(long[] data, long... index) {
if (index.length == data.length)
return data;
long[] ret = new long[index.length];
int count = 0;
for (int i = 0; i < data.length; i++)
if (Longs.contains(index, i))
ret[count++] = data[i];
return ret;
} |
Return a copy of this array with only the
given index(es) remaining
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::keep | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] keep(long[] data, int... index) {
if (index.length == data.length)
return data;
long[] ret = new long[index.length];
int count = 0;
for (int i = 0; i < data.length; i++)
if (Ints.contains(index, i))
ret[count++] = data[i];
return ret;
} |
Return a copy of this array with only the
given index(es) remaining
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::keep | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] removeIndex(long[] data, long... index) {
if(data.length < 1)
return data;
if (index.length >= data.length) {
throw new IllegalStateException("Illegal remove: indexes.length > data.length (index.length="
+ index.length + ", data.length=" + data.length + ")");
}
int offset = 0;
long[] ret = new long[data.length - index.length + offset];
int count = 0;
for (int i = 0; i < data.length; i++)
if (!Longs.contains(index, i)) {
ret[count++] = data[i];
}
return ret;
} |
Return a copy of this array with the
given index omitted
PLEASE NOTE: index to be omitted must exist in source array.
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::removeIndex | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] removeIndex(int[] data, int... index) {
if (index.length >= data.length) {
throw new IllegalStateException("Illegal remove: indexes.length > data.length (index.length="
+ index.length + ", data.length=" + data.length + ")");
}
int offset = 0;
int[] ret = new int[data.length - index.length + offset];
int count = 0;
for (int i = 0; i < data.length; i++)
if (!Ints.contains(index, i)) {
ret[count++] = data[i];
}
return ret;
} |
Return a copy of this array with the
given index omitted
PLEASE NOTE: index to be omitted must exist in source array.
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::removeIndex | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[][] zip(int[] as, int[] bs) {
int[][] result = new int[as.length][2];
for (int i = 0; i < result.length; i++) {
result[i] = new int[] {as[i], bs[i]};
}
return result;
} |
Zip 2 arrays in to:
@param as
@param bs
@return
| ArrayUtil::zip | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] getTensorMmulShape(long[] aShape, long[] bShape, int[][] axes) {
int validationLength = Math.min(axes[0].length, axes[1].length);
for (int i = 0; i < validationLength; i++) {
if (aShape[axes[0][i]] != bShape[axes[1][i]])
throw new IllegalArgumentException(
"Size of the given axes a" + " t each dimension must be the same size.");
if (axes[0][i] < 0)
axes[0][i] += aShape.length;
if (axes[1][i] < 0)
axes[1][i] += bShape.length;
}
List<Integer> listA = new ArrayList<>();
for (int i = 0; i < aShape.length; i++) {
if (!Ints.contains(axes[0], i))
listA.add(i);
}
List<Integer> listB = new ArrayList<>();
for (int i = 0; i < bShape.length; i++) {
if (!Ints.contains(axes[1], i))
listB.add(i);
}
int n2 = 1;
int aLength = Math.min(aShape.length, axes[0].length);
for (int i = 0; i < aLength; i++) {
n2 *= aShape[axes[0][i]];
}
//if listA and listB are empty these do not initialize.
//so initializing with {1} which will then get overridden if not empty
long[] oldShapeA;
if (listA.size() == 0) {
oldShapeA = new long[] {1};
} else {
oldShapeA = Longs.toArray(listA);
for (int i = 0; i < oldShapeA.length; i++)
oldShapeA[i] = aShape[(int) oldShapeA[i]];
}
int n3 = 1;
int bNax = Math.min(bShape.length, axes[1].length);
for (int i = 0; i < bNax; i++) {
n3 *= bShape[axes[1][i]];
}
long[] oldShapeB;
if (listB.isEmpty()) {
oldShapeB = new long[] {1};
} else {
oldShapeB = Longs.toArray(listB);
for (int i = 0; i < oldShapeB.length; i++)
oldShapeB[i] = bShape[(int) oldShapeB[i]];
}
long[] aPlusB = Longs.concat(oldShapeA, oldShapeB);
return aPlusB;
} |
Get the tensor matrix multiply shape
@param aShape the shape of the first array
@param bShape the shape of the second array
@param axes the axes to do the multiply
@return the shape for tensor matrix multiply
| ArrayUtil::getTensorMmulShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] permute(int[] shape, int[] dimensions) {
int[] ret = new int[shape.length];
for (int i = 0; i < shape.length; i++) {
ret[i] = shape[dimensions[i]];
}
return ret;
} |
Permute the given input
switching the dimensions of the input shape
array with in the order of the specified
dimensions
@param shape the shape to permute
@param dimensions the dimensions
@return
| ArrayUtil::permute | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] argsort(int[] a) {
return argsort(a, true);
} |
Original credit: https://github.com/alberts/array4j/blob/master/src/main/java/net/lunglet/util/ArrayUtils.java
@param a
@return
| ArrayUtil::argsort | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] argsort(final int[] a, final boolean ascending) {
Integer[] indexes = new Integer[a.length];
for (int i = 0; i < indexes.length; i++) {
indexes[i] = i;
}
Arrays.sort(indexes, new Comparator<Integer>() {
@Override
public int compare(final Integer i1, final Integer i2) {
return (ascending ? 1 : -1) * Ints.compare(a[i1], a[i2]);
}
});
int[] ret = new int[indexes.length];
for (int i = 0; i < ret.length; i++)
ret[i] = indexes[i];
return ret;
} |
@param a
@param ascending
@return
| ArrayUtil::argsort | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] convertNegativeIndices(int range, int[] axes) {
int[] axesRet = ArrayUtil.range(0, range);
int[] newAxes = ArrayUtil.copy(axes);
for (int i = 0; i < axes.length; i++) {
newAxes[i] = axes[axesRet[i]];
}
return newAxes;
} |
Convert all dimensions in the specified
axes array to be positive
based on the specified range of values
@param range
@param axes
@return
| ArrayUtil::convertNegativeIndices | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] copyOfRangeFrom(int length, int from, int to) {
return Arrays.copyOfRange(ArrayUtil.range(0, length), from, to);
} |
Generate an array from 0 to length
and generate take a subset
@param length the length to generate to
@param from the begin of the interval to take
@param to the end of the interval to take
@return the generated array
| ArrayUtil::copyOfRangeFrom | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static byte[] toByteArray(double[] doubleArray) {
int times = Double.SIZE / Byte.SIZE;
byte[] bytes = new byte[doubleArray.length * times];
for (int i = 0; i < doubleArray.length; i++) {
ByteBuffer.wrap(bytes, i * times, times).putDouble(doubleArray[i]);
}
return bytes;
} |
@param doubleArray
@return
| ArrayUtil::toByteArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static byte[] toByteArraySimple(long[] longArray) {
byte[] bytes = new byte[longArray.length];
for (int i = 0; i < longArray.length; i++) {
bytes[i] = (byte) longArray[i];
}
return bytes;
} |
Note this byte array conversion is a simple cast and not a true
cast. Use {@link #toByteArraySimple(long[])} for a true cast.
@param longArray
@return
| ArrayUtil::toByteArraySimple | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static byte[] toByteArray(long[] longArray) {
int times = Long.SIZE / Byte.SIZE;
byte[] bytes = new byte[longArray.length * times];
for (int i = 0; i < longArray.length; i++) {
ByteBuffer.wrap(bytes, i * times, times).putLong(longArray[i]);
}
return bytes;
} |
@param longArray
@return
| ArrayUtil::toByteArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] toDoubleArraySimple(byte[] byteArray) {
double[] doubles = new double[byteArray.length];
for (int i = 0; i < doubles.length; i++) {
doubles[i] = (double) byteArray[i];
}
return doubles;
} |
@param byteArray
@return
| ArrayUtil::toDoubleArraySimple | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] toDoubleArray(byte[] byteArray) {
int times = Double.SIZE / Byte.SIZE;
double[] doubles = new double[byteArray.length / times];
for (int i = 0; i < doubles.length; i++) {
doubles[i] = ByteBuffer.wrap(byteArray, i * times, times).getDouble();
}
return doubles;
} |
@param byteArray
@return
| ArrayUtil::toDoubleArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static byte[] toByteArray(float[] doubleArray) {
int times = Float.SIZE / Byte.SIZE;
byte[] bytes = new byte[doubleArray.length * times];
for (int i = 0; i < doubleArray.length; i++) {
ByteBuffer.wrap(bytes, i * times, times).putFloat(doubleArray[i]);
}
return bytes;
} |
@param doubleArray
@return
| ArrayUtil::toByteArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] toFloatArray(byte[] byteArray) {
int times = Float.SIZE / Byte.SIZE;
float[] doubles = new float[byteArray.length / times];
for (int i = 0; i < doubles.length; i++) {
doubles[i] = ByteBuffer.wrap(byteArray, i * times, times).getFloat();
}
return doubles;
} |
@param byteArray
@return
| ArrayUtil::toFloatArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] toFloatArraySimple(byte[] byteArray) {
float[] doubles = new float[byteArray.length];
for (int i = 0; i < doubles.length; i++) {
doubles[i] = byteArray[i];
}
return doubles;
} |
@param byteArray
@return
| ArrayUtil::toFloatArraySimple | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static byte[] toByteArray(int[] intArray) {
int times = Integer.SIZE / Byte.SIZE;
byte[] bytes = new byte[intArray.length * times];
for (int i = 0; i < intArray.length; i++) {
ByteBuffer.wrap(bytes, i * times, times).putInt(intArray[i]);
}
return bytes;
} |
@param intArray
@return
| ArrayUtil::toByteArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] toIntArraySimple(byte[] byteArray) {
int[] ints = new int[byteArray.length];
for (int i = 0; i < ints.length; i++) {
ints[i] = byteArray[i];
}
return ints;
} |
@param byteArray
@return
| ArrayUtil::toIntArraySimple | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] toIntArray(byte[] byteArray) {
int times = Integer.SIZE / Byte.SIZE;
int[] ints = new int[byteArray.length / times];
for (int i = 0; i < ints.length; i++) {
ints[i] = ByteBuffer.wrap(byteArray, i * times, times).getInt();
}
return ints;
} |
@param byteArray
@return
| ArrayUtil::toIntArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] removeIndex(int[] data, int index) {
if (data == null)
return null;
if (index >= data.length)
throw new IllegalArgumentException("Unable to remove index " + index + " was >= data.length");
if (data.length < 1)
return data;
if (index < 0)
return data;
int len = data.length;
int[] result = new int[len - 1];
System.arraycopy(data, 0, result, 0, index);
System.arraycopy(data, index + 1, result, index, len - index - 1);
return result;
} |
Return a copy of this array with the
given index omitted
@param data the data to copy
@param index the index of the item to remove
@return the new array with the omitted
item
| ArrayUtil::removeIndex | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] valueStartingAt(int valueStarting, int[] copy, int idxFrom, int idxAt, int length) {
int[] ret = new int[length];
Arrays.fill(ret, valueStarting);
for (int i = 0; i < length; i++) {
if (i + idxFrom >= copy.length || i + idxAt >= ret.length)
break;
ret[i + idxAt] = copy[i + idxFrom];
}
return ret;
} |
Create a copy of the given array
starting at the given index with the given length.
The intent here is for striding.
For example in slicing, you want the major stride to be first.
You achieve this by taking the last index
of the matrix's stride and putting
this as the first stride of the new ndarray
for slicing.
All of the elements except the copied elements are
initialized as the given value
@param valueStarting the starting value
@param copy the array to copy
@param idxFrom the index to start at in the from array
@param idxAt the index to start at in the return array
@param length the length of the array to create
@return the given array
| ArrayUtil::valueStartingAt | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static Integer[] removeIndex(Integer[] data, int index) {
if (data == null)
return null;
if (data.length < 1)
return data;
int len = data.length;
Integer[] result = new Integer[len - 1];
System.arraycopy(data, 0, result, 0, index);
System.arraycopy(data, index + 1, result, index, len - index - 1);
return result;
} |
Returns the array with the item in index
removed, if the array is empty it will return the array itself
@param data the data to remove data from
@param index the index of the item to remove
@return a copy of the array with the removed item,
or the array itself if empty
| ArrayUtil::removeIndex | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStridesFortran(int[] shape, int startNum) {
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
int[] ret = new int[2];
Arrays.fill(ret, startNum);
return ret;
}
int dimensions = shape.length;
int[] stride = new int[dimensions];
int st = startNum;
for (int j = 0; j < stride.length; j++) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startNum the start number for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStridesFortran | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] calcStridesFortran(long[] shape, int startNum) {
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
long[] ret = new long[2];
Arrays.fill(ret, startNum);
return ret;
}
int dimensions = shape.length;
long[] stride = new long[dimensions];
int st = startNum;
for (int j = 0; j < stride.length; j++) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startNum the start number for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStridesFortran | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStridesFortran(int[] shape) {
return calcStridesFortran(shape, 1);
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStridesFortran | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStrides(int[] shape, int startValue) {
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
int[] ret = new int[2];
Arrays.fill(ret, startValue);
return ret;
}
int dimensions = shape.length;
int[] stride = new int[dimensions];
int st = startValue;
for (int j = dimensions - 1; j >= 0; j--) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startValue the startValue for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStrides | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] calcStrides(long[] shape, int startValue) {
if(shape == null)
return null;
if (shape.length == 2 && (shape[0] == 1 || shape[1] == 1)) {
long[] ret = new long[2];
Arrays.fill(ret, startValue);
return ret;
}
int dimensions = shape.length;
long[] stride = new long[dimensions];
int st = startValue;
for (int j = dimensions - 1; j >= 0; j--) {
stride[j] = st;
st *= shape[j];
}
return stride;
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@param startValue the startValue for the strides
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStrides | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isInverse(int[] first, int[] second) {
int backWardCount = second.length - 1;
for (int i = 0; i < first.length; i++) {
if (first[i] != second[backWardCount--])
return false;
}
return true;
} |
Returns true if the given
two arrays are reverse copies of each other
@param first
@param second
@return
| ArrayUtil::isInverse | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int nonOneStride(int[] arr) {
for (int i = 0; i < arr.length; i++)
if (arr[i] != 1)
return arr[i];
return 1;
} |
For use with row vectors to ensure consistent strides
with varying offsets
@param arr the array to get the stride for
@return the stride
| ArrayUtil::nonOneStride | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] calcStrides(int[] shape) {
return calcStrides(shape, 1);
} |
Computes the standard packed array strides for a given shape.
@param shape the shape of a matrix:
@return the strides for a matrix of n dimensions
| ArrayUtil::calcStrides | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] reverseCopy(int[] e) {
if (e.length < 1)
return e;
int[] copy = new int[e.length];
for (int i = 0; i <= e.length / 2; i++) {
int temp = e[i];
copy[i] = e[e.length - i - 1];
copy[e.length - i - 1] = temp;
}
return copy;
} |
Create a backwards copy of the given array
@param e the array to createComplex a reverse clone of
@return the reversed copy
| ArrayUtil::reverseCopy | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static void multiplyBy(int[] arr, int mult) {
for (int i = 0; i < arr.length; i++)
arr[i] *= mult;
} |
Multiply the given array
by the given scalar
@param arr the array to multily
@param mult the scalar to multiply by
| ArrayUtil::multiplyBy | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static void reverse(int[] e) {
for (int i = 0; i <= e.length / 2; i++) {
int temp = e[i];
e[i] = e[e.length - i - 1];
e[e.length - i - 1] = temp;
}
} |
Reverse the passed in array in place
@param e the array to reverse
| ArrayUtil::reverse | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] flatten(double[][] arr) {
if(arr.length == 0 || arr[0].length == 0 )
return new double[0];
double[] ret = new double[arr.length * arr[0].length];
int count = 0;
for (int i = 0; i < arr.length; i++) {
System.arraycopy(arr[i], 0, ret, count, arr[i].length);
count += arr[i].length;
}
return ret;
} |
Convert a 2darray in to a flat
array (row wise)
@param arr the array to flatten
@return a flattened representation of the array
| ArrayUtil::flatten | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] flattenF(double[][] arr) {
double[] ret = new double[arr.length * arr[0].length];
int count = 0;
for (int j = 0; j < arr[0].length; j++)
for (int i = 0; i < arr.length; i++)
ret[count++] = arr[i][j];
return ret;
} |
Convert a 2darray in to a flat
array (row wise)
@param arr the array to flatten
@return a flattened representation of the array
| ArrayUtil::flattenF | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[][] toDouble(int[][] arr) {
double[][] ret = new double[arr.length][arr[0].length];
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < arr[i].length; j++)
ret[i][j] = arr[i][j];
}
return ret;
} |
Cast an int array to a double array
@param arr the array to cast
@return the elements of this
array cast as an int
| ArrayUtil::toDouble | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] combineFloat(List<float[]> nums) {
int length = 0;
for (int i = 0; i < nums.size(); i++)
length += nums.get(i).length;
float[] ret = new float[length];
int count = 0;
for (float[] i : nums) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a applyTransformToDestination of int arrays in to one flat int array
@param nums the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combineFloat | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] combine(List<float[]> nums) {
int length = 0;
for (int i = 0; i < nums.size(); i++)
length += nums.get(i).length;
float[] ret = new float[length];
int count = 0;
for (float[] i : nums) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param nums the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] combineDouble(List<double[]> nums) {
int length = 0;
for (int i = 0; i < nums.size(); i++)
length += nums.get(i).length;
double[] ret = new double[length];
int count = 0;
for (double[] i : nums) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param nums the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combineDouble | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] combine(float[]... ints) {
int length = 0;
for (int i = 0; i < ints.length; i++)
length += ints[i].length;
double[] ret = new double[length];
int count = 0;
for (float[] i : ints) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param ints the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] combine(int[]... ints) {
int length = 0;
for (int i = 0; i < ints.length; i++)
length += ints[i].length;
int[] ret = new int[length];
int count = 0;
for (int[] i : ints) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of int arrays in to one flat int array
@param ints the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] combine(long[]... ints) {
int length = 0;
for (int i = 0; i < ints.length; i++)
length += ints[i].length;
long[] ret = new long[length];
int count = 0;
for (long[] i : ints) {
for (int j = 0; j < i.length; j++) {
ret[count++] = i[j];
}
}
return ret;
} |
Combines a apply of long arrays in to one flat long array
@param ints the int arrays to combineDouble
@return one combined int array
| ArrayUtil::combine | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static double[] flattenDoubleArray(Object doubleArray) {
if (doubleArray instanceof double[])
return (double[]) doubleArray;
LinkedList<Object> stack = new LinkedList<>();
stack.push(doubleArray);
int[] shape = arrayShape(doubleArray);
int length = ArrayUtil.prod(shape);
double[] flat = new double[length];
int count = 0;
while (!stack.isEmpty()) {
Object current = stack.pop();
if (current instanceof double[]) {
double[] arr = (double[]) current;
for (int i = 0; i < arr.length; i++)
flat[count++] = arr[i];
} else if (current instanceof Object[]) {
Object[] o = (Object[]) current;
for (int i = o.length - 1; i >= 0; i--)
stack.push(o[i]);
} else
throw new IllegalArgumentException("Base array is not double[]");
}
if (count != flat.length)
throw new IllegalArgumentException("Fewer elements than expected. Array is ragged?");
return flat;
} | Convert an arbitrary-dimensional rectangular double array to flat vector.<br>
Can pass double[], double[][], double[][][], etc.
| ArrayUtil::flattenDoubleArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static float[] flattenFloatArray(Object floatArray) {
if (floatArray instanceof float[])
return (float[]) floatArray;
LinkedList<Object> stack = new LinkedList<>();
stack.push(floatArray);
int[] shape = arrayShape(floatArray);
int length = ArrayUtil.prod(shape);
float[] flat = new float[length];
int count = 0;
while (!stack.isEmpty()) {
Object current = stack.pop();
if (current instanceof float[]) {
float[] arr = (float[]) current;
for (int i = 0; i < arr.length; i++)
flat[count++] = arr[i];
} else if (current instanceof Object[]) {
Object[] o = (Object[]) current;
for (int i = o.length - 1; i >= 0; i--)
stack.push(o[i]);
} else
throw new IllegalArgumentException("Base array is not float[]");
}
if (count != flat.length)
throw new IllegalArgumentException("Fewer elements than expected. Array is ragged?");
return flat;
} | Convert an arbitrary-dimensional rectangular float array to flat vector.<br>
Can pass float[], float[][], float[][][], etc.
| ArrayUtil::flattenFloatArray | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] arrayShape(Object array) {
return arrayShape(array, false);
} | Calculate the shape of an arbitrary multi-dimensional array. Assumes:<br>
(a) array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
(b) First elements have > 0 length. So array[0].length > 0, array[0][0].length > 0, etc.<br>
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
| ArrayUtil::arrayShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
| ArrayUtil::arrayShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int max(int[] in) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] > max)
max = in[i];
return max;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
}
/** Returns the maximum value in the array | ArrayUtil::max | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int min(int[] in) {
int min = Integer.MAX_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] < min)
min = in[i];
return min;
} | Calculate the shape of an arbitrary multi-dimensional array.<br>
Note that the method assumes the array is rectangular (not ragged) and first elements (i.e., array[0][0][0]...) are non-null <br>
Note also that if allowSize0Dims is true, any elements are length 0, all subsequent dimensions will be reported as 0.
i.e., a double[3][0][2] would be reported as shape [3,0,0]. If allowSize0Dims is false, an exception will be thrown for this case instead.
Can pass any Java array opType: double[], Object[][][], float[][], etc.<br>
Length of returned array is number of dimensions; returned[i] is size of ith dimension.
public static int[] arrayShape(Object array, boolean allowSize0Dims) {
int nDimensions = 0;
Class<?> c = array.getClass().getComponentType();
while (c != null) {
nDimensions++;
c = c.getComponentType();
}
int[] shape = new int[nDimensions];
Object current = array;
for (int i = 0; i < shape.length - 1; i++) {
shape[i] = ((Object[]) current).length;
if(shape[i] == 0){
if(allowSize0Dims){
return shape;
}
throw new IllegalStateException("Cannot calculate array shape: Array has size 0 for dimension " + i );
}
current = ((Object[]) current)[0];
}
if (current instanceof Object[]) {
shape[shape.length - 1] = ((Object[]) current).length;
} else if (current instanceof double[]) {
shape[shape.length - 1] = ((double[]) current).length;
} else if (current instanceof float[]) {
shape[shape.length - 1] = ((float[]) current).length;
} else if (current instanceof long[]) {
shape[shape.length - 1] = ((long[]) current).length;
} else if (current instanceof int[]) {
shape[shape.length - 1] = ((int[]) current).length;
} else if (current instanceof byte[]) {
shape[shape.length - 1] = ((byte[]) current).length;
} else if (current instanceof char[]) {
shape[shape.length - 1] = ((char[]) current).length;
} else if (current instanceof boolean[]) {
shape[shape.length - 1] = ((boolean[]) current).length;
} else if (current instanceof short[]) {
shape[shape.length - 1] = ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type"); //Should never happen
return shape;
}
/** Returns the maximum value in the array
public static int max(int[] in) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < in.length; i++)
if (in[i] > max)
max = in[i];
return max;
}
/** Returns the minimum value in the array | ArrayUtil::min | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMax(int[] in) {
int maxIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] > in[maxIdx])
maxIdx = i;
return maxIdx;
} | Returns the index of the maximum value in the array.
* If two entries have same maximum value, index of the first one is returned. | ArrayUtil::argMax | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMin(int[] in) {
int minIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] < in[minIdx])
minIdx = i;
return minIdx;
} | Returns the index of the minimum value in the array.
* If two entries have same minimum value, index of the first one is returned. | ArrayUtil::argMin | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMax(long[] in) {
int maxIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] > in[maxIdx])
maxIdx = i;
return maxIdx;
} | Returns the index of the maximum value in the array.
* If two entries have same maximum value, index of the first one is returned. | ArrayUtil::argMax | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int argMin(long[] in) {
int minIdx = 0;
for (int i = 1; i < in.length; i++)
if (in[i] < in[minIdx])
minIdx = i;
return minIdx;
} | Returns the index of the minimum value in the array.
* If two entries have same minimum value, index of the first one is returned. | ArrayUtil::argMin | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] buildHalfVector(Random rng, int length) {
int[] result = new int[length];
List<Integer> indexes = new ArrayList<>();
// we add indexes from second half only
for (int i = result.length - 1; i >= result.length / 2; i--) {
indexes.add(i);
}
Collections.shuffle(indexes, rng);
for (int i = 0; i < result.length; i++) {
if (i < result.length / 2) {
result[i] = indexes.get(0);
indexes.remove(0);
} else
result[i] = -1;
}
return result;
} |
@return
| ArrayUtil::buildHalfVector | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int fromBoolean(boolean bool) {
return bool ? 1 : 0;
} |
Convert an int
@param bool
@return
| ArrayUtil::fromBoolean | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static <T> void assertNotRagged(T[] array){
Class<?> c = array.getClass().getComponentType();
int[] arrayShape = ArrayUtil.arrayShape(array, true);
int rank = arrayShape.length;
if(rank == 1){
//Rank 1 cannot be ragged
return;
}
if(rank >= 2){
for( int i = 1; i < arrayShape[0]; i++) {
Object subArray = array[i];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[1] == len, "Ragged array detected: array[0].length=%s does not match array[%s].length=%s", arrayShape[1], i, len);
}
if(rank == 2)
return;
}
if(rank >= 3){
for( int i = 0; i < arrayShape[0]; i++) {
for( int j = 0; j < arrayShape[1]; j++) {
Object subArray = ((Object[][])array)[i][j];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[2] == len, "Ragged array detected: array[0][0].length=%s does not match array[%s][%s].length=%s", arrayShape[2], i, j, len);
}
}
if(rank == 3)
return;
}
if(rank >= 4){
for( int i = 0; i < arrayShape[0]; i++) {
for( int j = 0; j<arrayShape[1]; j++) {
for( int k = 0; k < arrayShape[2]; k++) {
Object subArray = ((Object[][][])array)[i][j][k];
int len = arrayLength(subArray);
Preconditions.checkState(arrayShape[3] == len, "Ragged array detected: array[0][0][0].length=%s does not match array[%s][%s][%s].length=%s",
arrayShape[3], i, j, k, len);
}
}
}
}
} |
Assert that the specified array is not ragged (i.e., is rectangular).<br>
Can be used to check Object arrays with any number of dimensions (up to rank 4), or primitive arrays with rank 2 or higher<br>
An IllegalStateException is thrown if the array is ragged
@param array Array to check
| ArrayUtil::assertNotRagged | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int arrayLength(Object current){
if (current instanceof Object[]) {
return ((Object[]) current).length;
} else if (current instanceof double[]) {
return ((double[]) current).length;
} else if (current instanceof float[]) {
return ((float[]) current).length;
} else if (current instanceof long[]) {
return ((long[]) current).length;
} else if (current instanceof int[]) {
return ((int[]) current).length;
} else if (current instanceof byte[]) {
return ((byte[]) current).length;
} else if (current instanceof char[]) {
return ((char[]) current).length;
} else if (current instanceof boolean[]) {
return ((boolean[]) current).length;
} else if (current instanceof short[]) {
return ((short[]) current).length;
} else
throw new IllegalStateException("Unknown array type (or not an array): " + current.getClass()); //Should never happen
} |
Calculate the length of the object or primitive array. If
@param current
@return
| ArrayUtil::arrayLength | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static int[] invertPermutation(int... input){
int[] target = new int[input.length];
for(int i = 0 ; i < input.length ; i++){
target[input[i]] = i;
}
return target;
} |
Compute the inverse permutation indices for a permutation operation<br>
Example: if input is [2, 0, 1] then output is [1, 2, 0]<br>
The idea is that x.permute(input).permute(invertPermutation(input)) == x
@param input 1D indices for permutation
@return 1D inverted permutation
| ArrayUtil::invertPermutation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static long[] invertPermutation(long... input){
long[] target = new long[input.length];
for(int i = 0 ; i < input.length ; i++){
target[(int) input[i]] = i;
}
return target;
} |
@see #invertPermutation(int...)
@param input 1D indices for permutation
@return 1D inverted permutation
| ArrayUtil::invertPermutation | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isEmptyShape(long[] shape){
for( long l : shape){
if(l == 0)
return true;
}
return false;
} |
Is this shape an empty shape?
Shape is considered to be an empty shape if it contains any zeros.
Note: a length 0 shape is NOT considered empty (it's rank 0 scalar)
@param shape Shape to check
@return True if shape contains zeros
| ArrayUtil::isEmptyShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public static boolean isEmptyShape(int[] shape){
for( int i : shape){
if(i == 0)
return true;
}
return false;
} |
Is this shape an empty shape?
Shape is considered to be an empty shape if it contains any zeros.
Note: a length 0 shape is NOT considered empty (it's rank 0 scalar)
@param shape Shape to check
@return True if shape contains zeros
| ArrayUtil::isEmptyShape | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArrayUtil.java | Apache-2.0 |
public Factorial() {
if (a.isEmpty()) {
a.add(BigInteger.ONE);
a.add(BigInteger.ONE);
}
} |
ctor().
Initialize the vector of the factorials with 0!=1 and 1!=1.
| Factorial::Factorial | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | Apache-2.0 |
public BigInteger at(int n) {
while (a.size() <= n) {
final int lastn = a.size() - 1;
final BigInteger nextn = BigInteger.valueOf(lastn + 1);
a.add(a.get(lastn).multiply(nextn));
}
return a.get(n);
} |
Compute the factorial of the non-negative integer.
@param n the argument to the factorial, non-negative.
@return the factorial of n.
| Factorial::at | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Factorial.java | Apache-2.0 |
public static boolean nameExistsInPath(String name) {
String path = System.getenv(PATH_ENV_VARIABLE);
String[] dirs = path.split(File.pathSeparator);
for (String dir : dirs) {
File dirFile = new File(dir);
if (!dirFile.exists())
continue;
if (dirFile.isFile() && dirFile.getName().equals(name))
return true;
else {
Iterator<File> files = FileUtils.iterateFiles(dirFile, null, false);
while (files.hasNext()) {
File curr = files.next();
if (curr.getName().equals(name))
return true;
}
}
}
return false;
} |
Check if a file exists in the path
@param name the name of the file
@return true if the name exists
false otherwise
| Paths::nameExistsInPath | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Paths.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Paths.java | Apache-2.0 |
protected void set(final int n, final Rational value) {
final int nindx = n / 2;
if (nindx < a.size()) {
a.set(nindx, value);
} else {
while (a.size() < nindx) {
a.add(Rational.ZERO);
}
a.add(value);
}
} |
Set a coefficient in the internal table.
@param n the zero-based index of the coefficient. n=0 for the constant term.
@param value the new value of the coefficient.
| Bernoulli::set | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | Apache-2.0 |
public Rational at(int n) {
if (n == 1) {
return (new Rational(-1, 2));
} else if (n % 2 != 0) {
return Rational.ZERO;
} else {
final int nindx = n / 2;
if (a.size() <= nindx) {
for (int i = 2 * a.size(); i <= n; i += 2) {
set(i, doubleSum(i));
}
}
return a.get(nindx);
}
} |
The Bernoulli number at the index provided.
@param n the index, non-negative.
@return the B_0=1 for n=0, B_1=-1/2 for n=1, B_2=1/6 for n=2 etc
| Bernoulli::at | java | deeplearning4j/deeplearning4j | nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/Bernoulli.java | Apache-2.0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.