code
stringlengths
11
173k
docstring
stringlengths
2
593k
func_name
stringlengths
2
189
language
stringclasses
1 value
repo
stringclasses
844 values
path
stringlengths
11
294
url
stringlengths
60
339
license
stringclasses
4 values
public boolean isEmpty(F element){ if (isEmpty()) return true; Counter<S> m = maps.get(element); if (m == null) return true; else return m.isEmpty(); }
This method checks if this CounterMap has any values stored for a given first element @param element @return
CounterMap::isEmpty
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public void incrementAll(CounterMap<F, S> other) { for (Map.Entry<F, Counter<S>> entry : other.maps.entrySet()) { F key = entry.getKey(); Counter<S> innerCounter = entry.getValue(); for (Map.Entry<S, AtomicDouble> innerEntry : innerCounter.entrySet()) { S value = innerEntry.getKey(); incrementCount(key, value, innerEntry.getValue().get()); } } }
This method will increment values of this counter, by counts of other counter @param other
CounterMap::incrementAll
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public void incrementCount(F first, S second, double inc) { Counter<S> counter = maps.get(first); if (counter == null) { counter = new Counter<S>(); maps.put(first, counter); } counter.incrementCount(second, inc); }
This method will increment counts for a given first/second pair @param first @param second @param inc
CounterMap::incrementCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public double getCount(F first, S second) { Counter<S> counter = maps.get(first); if (counter == null) return 0.0; return counter.getCount(second); }
This method returns counts for a given first/second pair @param first @param second @return
CounterMap::getCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public double setCount(F first, S second, double value) { Counter<S> counter = maps.get(first); if (counter == null) { counter = new Counter<S>(); maps.put(first, counter); } return counter.setCount(second, value); }
This method allows you to set counter value for a given first/second pair @param first @param second @param value @return
CounterMap::setCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public Pair<F, S> argMax() { Double maxCount = -Double.MAX_VALUE; Pair<F, S> maxKey = null; for (Map.Entry<F, Counter<S>> entry : maps.entrySet()) { Counter<S> counter = entry.getValue(); S localMax = counter.argMax(); if (counter.getCount(localMax) > maxCount || maxKey == null) { maxKey = new Pair<F, S>(entry.getKey(), localMax); maxCount = counter.getCount(localMax); } } return maxKey; }
This method returns pair of elements with a max value @return
CounterMap::argMax
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public void clear() { maps.clear(); }
This method purges all counters
CounterMap::clear
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public void clear(F element) { Counter<S> s = maps.get(element); if (s != null) s.clear(); }
This method purges counter for a given first element @param element
CounterMap::clear
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public Set<F> keySet() { return maps.keySet(); }
This method returns Set of all first elements @return
CounterMap::keySet
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public Counter<S> getCounter(F first) { return maps.get(first); }
This method returns counter for a given first element @param first @return
CounterMap::getCounter
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public Iterator<Pair<F, S>> getIterator() { return new Iterator<Pair<F, S>>() { Iterator<F> outerIt; Iterator<S> innerIt; F curKey; { outerIt = keySet().iterator(); } private boolean hasInside() { if (innerIt == null || !innerIt.hasNext()) { if (!outerIt.hasNext()) { return false; } curKey = outerIt.next(); innerIt = getCounter(curKey).keySet().iterator(); } return true; } public boolean hasNext() { return hasInside(); } public Pair<F, S> next() { hasInside(); if (curKey == null) throw new RuntimeException("Outer element can't be null"); return Pair.makePair(curKey, innerIt.next()); } public void remove() { // } }; }
This method returns Iterator of all first/second pairs stored in this counter @return
CounterMap::getIterator
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public int size() { return maps.size(); }
This method returns number of First elements in this CounterMap @return
CounterMap::size
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public int totalSize() { int size = 0; for (F first: keySet()) { size += getCounter(first).size(); } return size; }
This method returns total number of elements in this CounterMap @return
CounterMap::totalSize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/CounterMap.java
Apache-2.0
public void incrementAll(Collection<T> elements, double inc) { for (T element: elements) { incrementCount(element, inc); } }
This method will increment all elements in collection @param elements @param inc
Counter::incrementAll
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public <T2 extends T> void incrementAll(Counter<T2> other) { for (T2 element: other.keySet()) { double cnt = other.getCount(element); incrementCount(element, cnt); } }
This method will increment counts of this counter by counts from other counter @param other
Counter::incrementAll
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public double getProbability(T element) { if (totalCount() <= 0.0) throw new IllegalStateException("Can't calculate probability with empty counter"); return getCount(element) / totalCount(); }
This method returns probability of given element @param element @return
Counter::getProbability
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public double setCount(T element, double count) { AtomicDouble t = map.get(element); if (t != null) { double val = t.getAndSet(count); dirty.set(true); return val; } else { map.put(element, new AtomicDouble(count)); totalCount.addAndGet(count); return 0; } }
This method sets new counter value for given element @param element element to be updated @param count new counter value @return previous value
Counter::setCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public Set<T> keySet() { return map.keySet(); }
This method returns Set of elements used in this counter @return
Counter::keySet
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public boolean isEmpty() { return map.size() == 0; }
This method returns TRUE if counter has no elements, FALSE otherwise @return
Counter::isEmpty
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public Set<Map.Entry<T, AtomicDouble>> entrySet() { return map.entrySet(); }
This method returns Set<Entry> of this counter @return
Counter::entrySet
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public List<T> keySetSorted() { List<T> result = new ArrayList<>(); PriorityQueue<Pair<T, Double>> pq = asPriorityQueue(); while (!pq.isEmpty()) { result.add(pq.poll().getFirst()); } return result; }
This method returns List of elements, sorted by their counts @return
Counter::keySetSorted
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public void normalize() { for (T key : keySet()) { setCount(key, getCount(key) / totalCount.get()); } rebuildTotals(); }
This method will apply normalization to counter values and totals.
Counter::normalize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public double totalCount() { if (dirty.get()) rebuildTotals(); return totalCount.get(); }
This method returns total sum of counter values @return
Counter::totalCount
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public double removeKey(T element) { AtomicDouble v = map.remove(element); dirty.set(true); if (v != null) return v.get(); else return 0.0; }
This method removes given key from counter @param element @return counter value
Counter::removeKey
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public T argMax() { double maxCount = -Double.MAX_VALUE; T maxKey = null; for (Map.Entry<T, AtomicDouble> entry : map.entrySet()) { if (entry.getValue().get() > maxCount || maxKey == null) { maxKey = entry.getKey(); maxCount = entry.getValue().get(); } } return maxKey; }
This method returns element with highest counter value @return
Counter::argMax
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public void dropElementsBelowThreshold(double threshold) { Iterator<T> iterator = keySet().iterator(); while (iterator.hasNext()) { T element = iterator.next(); double val = map.get(element).get(); if (val < threshold) { iterator.remove(); dirty.set(true); } } }
This method will remove all elements with counts below given threshold from counter @param threshold
Counter::dropElementsBelowThreshold
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public boolean containsElement(T element) { return map.containsKey(element); }
This method checks, if element exist in this counter @param element @return
Counter::containsElement
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public void clear() { map.clear(); totalCount.set(0.0); dirty.set(false); }
This method effectively resets counter to empty state
Counter::clear
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public int size() { return map.size(); }
Returns total number of tracked elements @return
Counter::size
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public void keepTopNElements(int N){ PriorityQueue<Pair<T, Double>> queue = asPriorityQueue(); clear(); for (int e = 0; e < N; e++) { Pair<T, Double> pair = queue.poll(); if (pair != null) incrementCount(pair.getFirst(), pair.getSecond()); } }
This method removes all elements except of top N by counter values @param N
Counter::keepTopNElements
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Counter.java
Apache-2.0
public void set(T value) { try { lock.writeLock().lock(); this.value = value; } finally { lock.writeLock().unlock(); } }
This method assigns new value @param value
Atomic::set
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
Apache-2.0
public T get() { try { lock.readLock().lock(); return this.value; } finally { lock.readLock().unlock(); } }
This method returns current value @return
Atomic::get
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
Apache-2.0
public boolean cas(T expected, T newValue) { try { lock.writeLock().lock(); if (Objects.equals(value, expected)) { this.value = newValue; return true; } else return false; } finally { lock.writeLock().unlock(); } }
This method implements compare-and-swap @param expected @param newValue @return true if value was swapped, false otherwise
Atomic::cas
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/Atomic.java
Apache-2.0
public final T get() { try { lock.readLock().lock(); return value; } finally { lock.readLock().unlock(); } }
This method returns stored value via read lock @return
SynchronizedObject::get
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/SynchronizedObject.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/SynchronizedObject.java
Apache-2.0
public final void set(T value) { try { lock.writeLock().lock(); this.value = value; } finally { lock.writeLock().unlock(); } }
This method updates stored value via write lock @param value
SynchronizedObject::set
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/SynchronizedObject.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/primitives/SynchronizedObject.java
Apache-2.0
public static void unzipFileTo(String file, String dest) throws IOException { unzipFileTo(file, dest, true); }
Extracts all files from the archive to the specified destination.<br> Note: Logs the path of all extracted files by default. Use {@link #unzipFileTo(String, String, boolean)} if logging is not desired.<br> Can handle .zip, .jar, .tar.gz, .tgz, .tar, and .gz formats. Format is interpreted from the filename @param file the file to extract the files from @param dest the destination directory. Will be created if it does not exist @throws IOException If an error occurs accessing the files or extracting
ArchiveUtils::unzipFileTo
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static void unzipFileTo(String file, String dest, boolean logFiles) throws IOException { File target = new File(file); if (!target.exists()) throw new IllegalArgumentException("Archive doesnt exist"); if (!new File(dest).exists()) new File(dest).mkdirs(); FileInputStream fin = new FileInputStream(target); int BUFFER = 2048; byte data[] = new byte[BUFFER]; if (file.endsWith(".zip") || file.endsWith(".jar")) { try(ZipInputStream zis = new ZipInputStream(fin)) { //get the zipped file list entry ZipEntry ze = zis.getNextEntry(); while (ze != null) { String fileName = ze.getName(); String canonicalDestinationDirPath = new File(dest).getCanonicalPath(); File newFile = new File(dest + File.separator + fileName); String canonicalDestinationFile = newFile.getCanonicalPath(); if (!canonicalDestinationFile.startsWith(canonicalDestinationDirPath + File.separator)) { log.debug("Attempt to unzip entry is outside of the target dir"); throw new IOException("Entry is outside of the target dir: "); } if (ze.isDirectory()) { newFile.mkdirs(); zis.closeEntry(); ze = zis.getNextEntry(); continue; } FileOutputStream fos = new FileOutputStream(newFile); int len; while ((len = zis.read(data)) > 0) { fos.write(data, 0, len); } fos.close(); ze = zis.getNextEntry(); if(logFiles) { log.info("File extracted: " + newFile.getAbsoluteFile()); } } zis.closeEntry(); } } else if (file.endsWith(".tar.gz") || file.endsWith(".tgz") || file.endsWith(".tar")) { BufferedInputStream in = new BufferedInputStream(fin); TarArchiveInputStream tarIn; if(file.endsWith(".tar")){ //Not compressed tarIn = new TarArchiveInputStream(in); } else { GzipCompressorInputStream gzIn = new GzipCompressorInputStream(in); tarIn = new TarArchiveInputStream(gzIn); } TarArchiveEntry entry; /* Read the tar entries using the getNextEntry method **/ while ((entry = (TarArchiveEntry) tarIn.getNextEntry()) != null) { if(logFiles) { log.info("Extracting: " + entry.getName()); } /* If the entry is a directory, create the directory. */ if (entry.isDirectory()) { File f = new File(dest + File.separator + entry.getName()); f.mkdirs(); } /* * If the entry is a file,write the decompressed file to the disk * and close destination stream. */ else { int count; try(FileOutputStream fos = new FileOutputStream(dest + File.separator + entry.getName()); BufferedOutputStream destStream = new BufferedOutputStream(fos, BUFFER);) { while ((count = tarIn.read(data, 0, BUFFER)) != -1) { destStream.write(data, 0, count); } destStream.flush(); IOUtils.closeQuietly(destStream); } } } // Close the input stream tarIn.close(); } else if (file.endsWith(".gz")) { File extracted = new File(target.getParent(), target.getName().replace(".gz", "")); if (extracted.exists()) extracted.delete(); extracted.createNewFile(); try (GZIPInputStream is2 = new GZIPInputStream(fin); OutputStream fos = FileUtils.openOutputStream(extracted)) { IOUtils.copyLarge(is2, fos); fos.flush(); } } else { throw new IllegalStateException("Unable to infer file type (compression format) from source file name: " + file); } target.delete(); }
Extracts all files from the archive to the specified destination, optionally logging the extracted file path.<br> Can handle .zip, .jar, .tar.gz, .tgz, .tar, and .gz formats. Format is interpreted from the filename @param file the file to extract the files from @param dest the destination directory. Will be created if it does not exist @param logFiles If true: log the path of every extracted file; if false do not log @throws IOException If an error occurs accessing the files or extracting
ArchiveUtils::unzipFileTo
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static List<String> tarListFiles(File tarFile) throws IOException { Preconditions.checkState(!tarFile.getPath().endsWith(".tar.gz"), ".tar.gz files should not use this method - use tarGzListFiles instead"); return tarGzListFiles(tarFile, false); }
List all of the files and directories in the specified tar.gz file @param tarFile A .tar file @return List of files and directories
ArchiveUtils::tarListFiles
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static List<String> tarGzListFiles(File tarGzFile) throws IOException { return tarGzListFiles(tarGzFile, true); }
List all of the files and directories in the specified tar.gz file @param tarGzFile A tar.gz file @return List of files and directories
ArchiveUtils::tarGzListFiles
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static List<String> zipListFiles(File zipFile) throws IOException { List<String> out = new ArrayList<>(); try (ZipFile zf = new ZipFile(zipFile)) { Enumeration entries = zf.entries(); while (entries.hasMoreElements()) { ZipEntry ze = (ZipEntry) entries.nextElement(); out.add(ze.getName()); } } return out; }
List all of the files and directories in the specified .zip file @param zipFile Zip file @return List of files and directories
ArchiveUtils::zipListFiles
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static void zipExtractSingleFile(File zipFile, File destination, String pathInZip) throws IOException { try (ZipFile zf = new ZipFile(zipFile); InputStream is = new BufferedInputStream(zf.getInputStream(zf.getEntry(pathInZip))); OutputStream os = new BufferedOutputStream(new FileOutputStream(destination))) { IOUtils.copy(is, os); } }
Extract a single file from a .zip file. Does not support directories @param zipFile Zip file to extract from @param destination Destination file @param pathInZip Path in the zip to extract @throws IOException If exception occurs while reading/writing
ArchiveUtils::zipExtractSingleFile
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static void tarGzExtractSingleFile(File tarGz, File destination, String pathInTarGz) throws IOException { try(TarArchiveInputStream tin = new TarArchiveInputStream(new GZIPInputStream(new BufferedInputStream(new FileInputStream(tarGz))))) { ArchiveEntry entry; boolean extracted = false; while((entry = tin.getNextTarEntry()) != null){ String name = entry.getName(); if(pathInTarGz.equals(name)){ try(OutputStream os = new BufferedOutputStream(new FileOutputStream(destination))){ IOUtils.copy(tin, os); } extracted = true; } } Preconditions.checkState(extracted, "No file was extracted. File not found? %s", pathInTarGz); } }
Extract a single file from a tar.gz file. Does not support directories. NOTE: This should not be used for batch extraction of files, due to the need to iterate over the entries until the specified entry is found. Use {@link #unzipFileTo(String, String)} for batch extraction instead @param tarGz A tar.gz file @param destination The destination file to extract to @param pathInTarGz The path in the tar.gz file to extract
ArchiveUtils::tarGzExtractSingleFile
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ArchiveUtils.java
Apache-2.0
public static void copyAtStride(int n, BufferType bufferType, ByteBuffer from, int fromOffset, int fromStride, ByteBuffer to, int toOffset, int toStride) { // TODO: implement shape copy for cases where stride == 1 ByteBuffer fromView = from; ByteBuffer toView = to; fromView.order(ByteOrder.nativeOrder()); toView.order(ByteOrder.nativeOrder()); switch (bufferType) { case INT: IntBuffer fromInt = fromView.asIntBuffer(); IntBuffer toInt = toView.asIntBuffer(); for (int i = 0; i < n; i++) { int put = fromInt.get(fromOffset + i * fromStride); toInt.put(toOffset + i * toStride, put); } break; case FLOAT: FloatBuffer fromFloat = fromView.asFloatBuffer(); FloatBuffer toFloat = toView.asFloatBuffer(); for (int i = 0; i < n; i++) { float put = fromFloat.get(fromOffset + i * fromStride); toFloat.put(toOffset + i * toStride, put); } break; case DOUBLE: DoubleBuffer fromDouble = fromView.asDoubleBuffer(); DoubleBuffer toDouble = toView.asDoubleBuffer(); for (int i = 0; i < n; i++) { toDouble.put(toOffset + i * toStride, fromDouble.get(fromOffset + i * fromStride)); } break; default: throw new IllegalArgumentException("Only floats and double supported"); } }
Copy from the given from buffer to the to buffer at the specified offsets and strides @param n @param bufferType @param from the origin buffer @param fromOffset the starting offset @param fromStride the stride at which to copy from the origin @param to the destination buffer @param toOffset the starting point @param toStride the to stride
BufferType::copyAtStride
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/NioUtil.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/NioUtil.java
Apache-2.0
public static byte[] toByteArray(Serializable toSave) { try { ByteArrayOutputStream bos = new ByteArrayOutputStream(); ObjectOutputStream os = new ObjectOutputStream(bos); os.writeObject(toSave); byte[] ret = bos.toByteArray(); os.close(); return ret; } catch (Exception e) { throw new RuntimeException(e); } }
Converts the given object to a byte array @param toSave the object to save
SerializationUtils::toByteArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static <T> T fromByteArray(byte[] bytes) { return readObject(new ByteArrayInputStream(bytes)); }
Deserializes object from byte array @param bytes @param <T> @return
SerializationUtils::fromByteArray
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static <T> T deserialize(byte[] bytes) { return fromByteArray(bytes); }
Deserializes object from byte array @param bytes @param <T> @return
SerializationUtils::deserialize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static <T> T deserialize(InputStream is) { return readObject(is); }
Deserializes object from InputStream @param bytes @param <T> @return
SerializationUtils::deserialize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static void writeObject(Serializable toSave, OutputStream writeTo) { try { ObjectOutputStream os = new ObjectOutputStream(writeTo); os.writeObject(toSave); } catch (Exception e) { throw new RuntimeException(e); } }
Writes the object to the output stream THIS DOES NOT FLUSH THE STREAM @param toSave the object to save @param writeTo the output stream to write to
SerializationUtils::writeObject
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static void serialize(Serializable object, OutputStream os) { writeObject(object, os); }
Writes the object to the output stream THIS DOES NOT FLUSH THE STREAM @param toSave the object to save @param writeTo the output stream to write to
SerializationUtils::serialize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/SerializationUtils.java
Apache-2.0
public static File createTempFile(String prefix, String suffix) { String p = System.getProperty(ND4JSystemProperties.ND4J_TEMP_DIR_PROPERTY); try { if (p == null || p.isEmpty()) { return File.createTempFile(prefix, suffix); } else { return File.createTempFile(prefix, suffix, new File(p)); } } catch (IOException e){ throw new RuntimeException("Error creating temporary file", e); } }
Create a temporary file in the location specified by {@link ND4JSystemProperties#ND4J_TEMP_DIR_PROPERTY} if set, or the default temporary directory (usually specified by java.io.tmpdir system property) @param prefix Prefix for generating file's name; must be at least 3 characeters @param suffix Suffix for generating file's name; may be null (".tmp" will be used if null) @return A temporary file
ND4JFileUtils::createTempFile
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ND4JFileUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ND4JFileUtils.java
Apache-2.0
public static File getTempDir(){ String p = System.getProperty(ND4JSystemProperties.ND4J_TEMP_DIR_PROPERTY); if(p == null || p.isEmpty()){ return new File(System.getProperty("java.io.tmpdir")); } else { return new File(p); } }
Get the temporary directory. This is the location specified by {@link ND4JSystemProperties#ND4J_TEMP_DIR_PROPERTY} if set, or the default temporary directory (usually specified by java.io.tmpdir system property) @return Temporary directory
ND4JFileUtils::getTempDir
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ND4JFileUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/ND4JFileUtils.java
Apache-2.0
public static double normalize(double val, double min, double max) { if (max < min) throw new IllegalArgumentException("Max must be greather than min"); return (val - min) / (max - min); }
Normalize a value (val - min) / (max - min) @param val value to normalize @param max max value @param min min value @return the normalized value
MathUtils::normalize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static int clamp(int value, int min, int max) { if (value < min) value = min; if (value > max) value = max; return value; }
Clamps the value to a discrete value @param value the value to clamp @param min min for the probability distribution @param max max for the probability distribution @return the discrete value
MathUtils::clamp
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static int discretize(double value, double min, double max, int binCount) { int discreteValue = (int) (binCount * normalize(value, min, max)); return clamp(discreteValue, 0, binCount - 1); }
Discretize the given value @param value the value to discretize @param min the min of the distribution @param max the max of the distribution @param binCount the number of bins @return the discretized value
MathUtils::discretize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static long nextPowOf2(long v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; }
See: <a href="https://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2">https://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2</a> @param v the number to getFromOrigin the next power of 2 for @return the next power of 2 for the passed in value
MathUtils::nextPowOf2
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static int binomial(RandomGenerator rng, int n, double p) { if ((p < 0) || (p > 1)) { return 0; } int c = 0; for (int i = 0; i < n; i++) { if (rng.nextDouble() < p) { c++; } } return c; }
Generates a binomial distributed number using the given rng @param rng @param n @param p @return
MathUtils::binomial
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double uniform(Random rng, double min, double max) { return rng.nextDouble() * (max - min) + min; }
Generate a uniform random number from the given rng @param rng the rng to use @param min the min num @param max the max num @return a number uniformly distributed between min and max
MathUtils::uniform
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double correlation(double[] residuals, double targetAttribute[]) { double[] predictedValues = new double[residuals.length]; for (int i = 0; i < predictedValues.length; i++) { predictedValues[i] = targetAttribute[i] - residuals[i]; } double ssErr = ssError(predictedValues, targetAttribute); double total = ssTotal(residuals, targetAttribute); return 1 - (ssErr / total); }//end correlation
Returns the correlation coefficient of two double vectors. @param residuals residuals @param targetAttribute target attribute vector @return the correlation coefficient or r
MathUtils::correlation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sigmoid(double x) { return 1.0 / (1.0 + Math.pow(Math.E, -x)); }
1 / 1 + exp(-x) @param x @return
MathUtils::sigmoid
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double ssReg(double[] residuals, double[] targetAttribute) { double mean = sum(targetAttribute) / targetAttribute.length; double ret = 0; for (int i = 0; i < residuals.length; i++) { ret += Math.pow(residuals[i] - mean, 2); } return ret; }
How much of the variance is explained by the regression @param residuals error @param targetAttribute data for target attribute @return the sum squares of regression
MathUtils::ssReg
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double ssError(double[] predictedValues, double[] targetAttribute) { double ret = 0; for (int i = 0; i < predictedValues.length; i++) { ret += Math.pow(targetAttribute[i] - predictedValues[i], 2); } return ret; }
How much of the variance is NOT explained by the regression @param predictedValues predicted values @param targetAttribute data for target attribute @return the sum squares of regression
MathUtils::ssError
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double stringSimilarity(String... strings) { if (strings == null) return 0; Counter<String> counter = new Counter<>(); Counter<String> counter2 = new Counter<>(); for (int i = 0; i < strings[0].length(); i++) counter.incrementCount(String.valueOf(strings[0].charAt(i)), 1.0f); for (int i = 0; i < strings[1].length(); i++) counter2.incrementCount(String.valueOf(strings[1].charAt(i)), 1.0f); Set<String> v1 = counter.keySet(); Set<String> v2 = counter2.keySet(); Set<String> both = SetUtils.intersection(v1, v2); double sclar = 0, norm1 = 0, norm2 = 0; for (String k : both) sclar += counter.getCount(k) * counter2.getCount(k); for (String k : v1) norm1 += counter.getCount(k) * counter.getCount(k); for (String k : v2) norm2 += counter2.getCount(k) * counter2.getCount(k); return sclar / Math.sqrt(norm1 * norm2); }
Calculate string similarity with tfidf weights relative to each character frequency and how many times a character appears in a given string @param strings the strings to calculate similarity for @return the cosine similarity between the strings
MathUtils::stringSimilarity
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double vectorLength(double[] vector) { double ret = 0; if (vector == null) return ret; else { for (int i = 0; i < vector.length; i++) { ret += Math.pow(vector[i], 2); } } return ret; }
Returns the vector length (sqrt(sum(x_i)) @param vector the vector to return the vector length for @return the vector length of the passed in array
MathUtils::vectorLength
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double idf(double totalDocs, double numTimesWordAppearedInADocument) { return totalDocs > 0 ? Math.log10(totalDocs / numTimesWordAppearedInADocument) : 0; }
Inverse document frequency: the total docs divided by the number of times the word appeared in a document @param totalDocs the total documents for the data applyTransformToDestination @param numTimesWordAppearedInADocument the number of times the word occurred in a document @return log(10) (totalDocs/numTImesWordAppearedInADocument)
MathUtils::idf
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double tf(int count) { return count > 0 ? 1 + Math.log10(count) : 0; }
Term frequency: 1+ log10(count) @param count the count of a word or character in a given string or document @return 1+ log(10) count
MathUtils::tf
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double tfidf(double td, double idf) { return td * idf; }
Return td * idf @param td the term frequency (assumed calculated) @param idf inverse document frequency (assumed calculated) @return td * idf
MathUtils::tfidf
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double ssTotal(double[] residuals, double[] targetAttribute) { return ssReg(residuals, targetAttribute) + ssError(residuals, targetAttribute); }
Total variance in target attribute @param residuals error @param targetAttribute data for target attribute @return Total variance in target attribute
MathUtils::ssTotal
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sum(double[] nums) { double ret = 0; for (double d : nums) ret += d; return ret; }//end sum
This returns the sum of the given array. @param nums the array of numbers to sum @return the sum of the given array
MathUtils::sum
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] mergeCoords(double[] x, double[] y) { if (x.length != y.length) throw new IllegalArgumentException( "Sample sizes must be the same for each data applyTransformToDestination."); double[] ret = new double[x.length + y.length]; for (int i = 0; i < x.length; i++) { ret[i] = x[i]; ret[i + 1] = y[i]; } return ret; }//end mergeCoords
This will merge the coordinates of the given coordinate system. @param x the x coordinates @param y the y coordinates @return a vector such that each (x,y) pair is at ret[i],ret[i+1]
MathUtils::mergeCoords
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static List<Double> mergeCoords(List<Double> x, List<Double> y) { if (x.size() != y.size()) throw new IllegalArgumentException( "Sample sizes must be the same for each data applyTransformToDestination."); List<Double> ret = new ArrayList<Double>(); for (int i = 0; i < x.size(); i++) { ret.add(x.get(i)); ret.add(y.get(i)); } return ret; }//end mergeCoords
This will merge the coordinates of the given coordinate system. @param x the x coordinates @param y the y coordinates @return a vector such that each (x,y) pair is at ret[i],ret[i+1]
MathUtils::mergeCoords
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] weightsFor(List<Double> vector) { /* split coordinate system */ List<double[]> coords = coordSplit(vector); /* x vals */ double[] x = coords.get(0); /* y vals */ double[] y = coords.get(1); double meanX = sum(x) / x.length; double meanY = sum(y) / y.length; double sumOfMeanDifferences = sumOfMeanDifferences(x, y); double xDifferenceOfMean = sumOfMeanDifferencesOnePoint(x); double w_1 = sumOfMeanDifferences / xDifferenceOfMean; double w_0 = meanY - (w_1) * meanX; //double w_1=(n*sumOfProducts(x,y) - sum(x) * sum(y))/(n*sumOfSquares(x) - Math.pow(sum(x),2)); // double w_0=(sum(y) - (w_1 * sum(x)))/n; double[] ret = new double[vector.size()]; ret[0] = w_0; ret[1] = w_1; return ret; }//end weightsFor
This returns the minimized loss values for a given vector. It is assumed that the x, y pairs are at vector[i], vector[i+1] @param vector the vector of numbers to getFromOrigin the weights for @return a double array with w_0 and w_1 are the associated indices.
MathUtils::weightsFor
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double squaredLoss(double[] x, double[] y, double w_0, double w_1) { double sum = 0; for (int j = 0; j < x.length; j++) { sum += Math.pow((y[j] - (w_1 * x[j] + w_0)), 2); } return sum; }//end squaredLoss
This will return the squared loss of the given points @param x the x coordinates to use @param y the y coordinates to use @param w_0 the first weight @param w_1 the second weight @return the squared loss of the given points
MathUtils::squaredLoss
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] weightsFor(double[] vector) { /* split coordinate system */ List<double[]> coords = coordSplit(vector); /* x vals */ double[] x = coords.get(0); /* y vals */ double[] y = coords.get(1); double meanX = sum(x) / x.length; double meanY = sum(y) / y.length; double sumOfMeanDifferences = sumOfMeanDifferences(x, y); double xDifferenceOfMean = sumOfMeanDifferencesOnePoint(x); double w_1 = sumOfMeanDifferences / xDifferenceOfMean; double w_0 = meanY - (w_1) * meanX; double[] ret = new double[vector.length]; ret[0] = w_0; ret[1] = w_1; return ret; }//end weightsFor
This returns the minimized loss values for a given vector. It is assumed that the x, y pairs are at vector[i], vector[i+1] @param vector the vector of numbers to getFromOrigin the weights for @return a double array with w_0 and w_1 are the associated indices.
MathUtils::weightsFor
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sumOfMeanDifferences(double[] vector, double[] vector2) { double mean = sum(vector) / vector.length; double mean2 = sum(vector2) / vector2.length; double ret = 0; for (int i = 0; i < vector.length; i++) { double vec1Diff = vector[i] - mean; double vec2Diff = vector2[i] - mean2; ret += vec1Diff * vec2Diff; } return ret; }//end sumOfMeanDifferences
Used for calculating top part of simple regression for beta 1 @param vector the x coordinates @param vector2 the y coordinates @return the sum of mean differences for the input vectors
MathUtils::sumOfMeanDifferences
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sumOfMeanDifferencesOnePoint(double[] vector) { double mean = sum(vector) / vector.length; double ret = 0; for (int i = 0; i < vector.length; i++) { double vec1Diff = Math.pow(vector[i] - mean, 2); ret += vec1Diff; } return ret; }//end sumOfMeanDifferences
Used for calculating top part of simple regression for beta 1 @param vector the x coordinates @return the sum of mean differences for the input vectors
MathUtils::sumOfMeanDifferencesOnePoint
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double times(double[] nums) { if (nums == null || nums.length == 0) return 0; double ret = 1; for (int i = 0; i < nums.length; i++) ret *= nums[i]; return ret; }//end times
This returns the product of all numbers in the given array. @param nums the numbers to multiply over @return the product of all numbers in the array, or 0 if the length is or or nums i null
MathUtils::times
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sumOfProducts(double[]... nums) { if (nums == null || nums.length < 1) return 0; double sum = 0; for (int i = 0; i < nums.length; i++) { /* The ith column for all of the rows */ double[] column = column(i, nums); sum += times(column); } return sum; }//end sumOfProducts
This returns the sum of products for the given numbers. @param nums the sum of products for the give numbers @return the sum of products for the given numbers
MathUtils::sumOfProducts
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
private static double[] column(int column, double[]... nums) throws IllegalArgumentException { double[] ret = new double[nums.length]; for (int i = 0; i < nums.length; i++) { double[] curr = nums[i]; ret[i] = curr[column]; } return ret; }//end column
This returns the given column over an n arrays @param column the column to getFromOrigin values for @param nums the arrays to extract values from @return a double array containing all of the numbers in that column for all of the arrays. @throws IllegalArgumentException if the index is < 0
MathUtils::column
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static List<double[]> coordSplit(double[] vector) { if (vector == null) return null; List<double[]> ret = new ArrayList<double[]>(); /* x coordinates */ double[] xVals = new double[vector.length / 2]; /* y coordinates */ double[] yVals = new double[vector.length / 2]; /* current points */ int xTracker = 0; int yTracker = 0; for (int i = 0; i < vector.length; i++) { //even value, x coordinate if (i % 2 == 0) xVals[xTracker++] = vector[i]; //y coordinate else yVals[yTracker++] = vector[i]; } ret.add(xVals); ret.add(yVals); return ret; }//end coordSplit
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values @param vector the vector to split with x and y values/ @return a coordinate split for the given vector of values. if null, is passed in null is returned
MathUtils::coordSplit
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static List<List<Double>> partitionVariable(List<Double> arr, int chunk) { int count = 0; List<List<Double>> ret = new ArrayList<List<Double>>(); while (count < arr.size()) { List<Double> sublist = arr.subList(count, count + chunk); count += chunk; ret.add(sublist); } //All data sets must be same size for (List<Double> lists : ret) { if (lists.size() < chunk) ret.remove(lists); } return ret; }//end partitionVariable
This will partition the given whole variable data applyTransformToDestination in to the specified chunk number. @param arr the data applyTransformToDestination to pass in @param chunk the number to separate by @return a partition data applyTransformToDestination relative to the passed in chunk number
MathUtils::partitionVariable
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static List<double[]> coordSplit(List<Double> vector) { if (vector == null) return null; List<double[]> ret = new ArrayList<double[]>(); /* x coordinates */ double[] xVals = new double[vector.size() / 2]; /* y coordinates */ double[] yVals = new double[vector.size() / 2]; /* current points */ int xTracker = 0; int yTracker = 0; for (int i = 0; i < vector.size(); i++) { //even value, x coordinate if (i % 2 == 0) xVals[xTracker++] = vector.get(i); //y coordinate else yVals[yTracker++] = vector.get(i); } ret.add(xVals); ret.add(yVals); return ret; }//end coordSplit
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values @param vector the vector to split with x and y values Note that the list will be more stable due to the size operator. The array version will have extraneous values if not monitored properly. @return a coordinate split for the given vector of values. if null, is passed in null is returned
MathUtils::coordSplit
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] xVals(double[] vector) { if (vector == null) return null; double[] x = new double[vector.length / 2]; int count = 0; for (int i = 0; i < vector.length; i++) { if (i % 2 != 0) x[count++] = vector[i]; } return x; }//end xVals
This returns the x values of the given vector. These are assumed to be the even values of the vector. @param vector the vector to getFromOrigin the values for @return the x values of the given vector
MathUtils::xVals
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] yVals(double[] vector) { double[] y = new double[vector.length / 2]; int count = 0; for (int i = 0; i < vector.length; i++) { if (i % 2 == 0) y[count++] = vector[i]; } return y; }//end yVals
This returns the odd indexed values for the given vector @param vector the odd indexed values of rht egiven vector @return the y values of the given vector
MathUtils::yVals
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double sumOfSquares(double[] vector) { double ret = 0; for (double d : vector) ret += Math.pow(d, 2); return ret; }
This returns the sum of squares for the given vector. @param vector the vector to obtain the sum of squares for @return the sum of squares for this vector
MathUtils::sumOfSquares
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double determinationCoefficient(double[] y1, double[] y2, int n) { return Math.pow(correlation(y1, y2), 2); }
This returns the determination coefficient of two vectors given a length @param y1 the first vector @param y2 the second vector @param n the length of both vectors @return the determination coefficient or r^2
MathUtils::determinationCoefficient
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double log2(double a) { if (a == 0) return 0.0; return Math.log(a) / log2; }
Returns the logarithm of a for base 2. @param a a double @return the logarithm for base 2
MathUtils::log2
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double rootMeansSquaredError(double[] real, double[] predicted) { double ret = 1 / real.length; for (int i = 0; i < real.length; i++) { ret += Math.pow((real[i] - predicted[i]), 2); } return Math.sqrt(ret); }//end rootMeansSquaredError
This returns the root mean squared error of two data sets @param real the realComponent values @param predicted the predicted values @return the root means squared error for two data sets
MathUtils::rootMeansSquaredError
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double entropy(double[] vector) { if (vector == null || vector.length == 0) return 0; else { double ret = 0; for (double d : vector) ret += d * Math.log(d); return -ret; } }//end entropy
This returns the entropy (information gain, or uncertainty of a random variable): -sum(x*log(x)) @param vector the vector of values to getFromOrigin the entropy for @return the entropy of the given vector
MathUtils::entropy
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static int kroneckerDelta(double i, double j) { return (i == j) ? 1 : 0; }
This returns the kronecker delta of two doubles. @param i the first number to compare @param j the second number to compare @return 1 if they are equal, 0 otherwise
MathUtils::kroneckerDelta
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double adjustedrSquared(double rSquared, int numRegressors, int numDataPoints) { double divide = (numDataPoints - 1) / (numDataPoints - numRegressors - 1); double rSquaredDiff = 1 - rSquared; return 1 - (rSquaredDiff * divide); }
This calculates the adjusted r^2 including degrees of freedom. Also known as calculating "strength" of a regression @param rSquared the r squared value to calculate @param numRegressors number of variables @param numDataPoints size of the data applyTransformToDestination @return an adjusted r^2 for degrees of freedom
MathUtils::adjustedrSquared
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static void normalize(double[] doubles, double sum) { if (Double.isNaN(sum)) { throw new IllegalArgumentException("Can't normalize array. Sum is NaN."); } if (sum == 0) { // Maybe this should just be a return. throw new IllegalArgumentException("Can't normalize array. Sum is zero."); } for (int i = 0; i < doubles.length; i++) { doubles[i] /= sum; } }//end normalize
Normalizes the doubles in the array using the given value. @param doubles the array of double @param sum the value by which the doubles are to be normalized @throws IllegalArgumentException if sum is zero or NaN
MathUtils::normalize
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double[] logs2probs(double[] a) { double max = a[maxIndex(a)]; double sum = 0.0; double[] result = new double[a.length]; for (int i = 0; i < a.length; i++) { result[i] = Math.exp(a[i] - max); sum += result[i]; } normalize(result, sum); return result; }//end logs2probs
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities. The probabilities are assumed to sum to one. @param a an array holding the natural logarithms of the probabilities @return the converted array
MathUtils::logs2probs
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double information(double[] probabilities) { double total = 0.0; for (double d : probabilities) { total += (-1.0 * log2(d) * d); } return total; }//end information
This returns the entropy for a given vector of probabilities. @param probabilities the probabilities to getFromOrigin the entropy for @return the entropy of the given probabilities.
MathUtils::information
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static /*@pure@*/ int maxIndex(double[] doubles) { double maximum = 0; int maxIndex = 0; for (int i = 0; i < doubles.length; i++) { if ((i == 0) || (doubles[i] > maximum)) { maxIndex = i; maximum = doubles[i]; } } return maxIndex; }//end maxIndex
Returns index of maximum element in a given array of doubles. First maximum is returned. @param doubles the array of doubles @return the index of the maximum element
MathUtils::maxIndex
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double factorial(double n) { if (n == 1 || n == 0) return 1; for (double i = n; i > 0; i--, n *= (i > 0 ? i : 1)) { } return n; }//end factorial
This will return the factorial of the given number n. @param n the number to getFromOrigin the factorial for @return the factorial for this number
MathUtils::factorial
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static /*@pure@*/ double probToLogOdds(double prob) { if (gr(prob, 1) || (sm(prob, 0))) { throw new IllegalArgumentException("probToLogOdds: probability must " + "be in [0,1] " + prob); } double p = SMALL + (1.0 - 2 * SMALL) * prob; return Math.log(p / (1 - p)); }
Returns the log-odds for a given probability. @param prob the probability @return the log-odds after the probability has been mapped to [Utils.SMALL, 1-Utils.SMALL]
MathUtils::probToLogOdds
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static /*@pure@*/ int round(double value) { int roundedValue = value > 0 ? (int) (value + 0.5) : -(int) (Math.abs(value) + 0.5); return roundedValue; }//end round
Rounds a double to the next nearest integer value. The JDK version of it doesn't work properly. @param value the double value @return the resulting integer value
MathUtils::round
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double permutation(double n, double r) { double nFac = MathUtils.factorial(n); double nMinusRFac = MathUtils.factorial((n - r)); return nFac / nMinusRFac; }//end permutation
This returns the permutation of n choose r. @param n the n to choose @param r the number of elements to choose @return the permutation of these numbers
MathUtils::permutation
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double combination(double n, double r) { double nFac = MathUtils.factorial(n); double rFac = MathUtils.factorial(r); double nMinusRFac = MathUtils.factorial((n - r)); return nFac / (rFac * nMinusRFac); }//end combination
This returns the combination of n choose r @param n the number of elements overall @param r the number of elements to choose @return the amount of possible combinations for this applyTransformToDestination of elements
MathUtils::combination
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0
public static double hypotenuse(double a, double b) { double r; if (Math.abs(a) > Math.abs(b)) { r = b / a; r = Math.abs(a) * Math.sqrt(1 + r * r); } else if (b != 0) { r = a / b; r = Math.abs(b) * Math.sqrt(1 + r * r); } else { r = 0.0; } return r; }//end hypotenuse
sqrt(a^2 + b^2) without under/overflow.
MathUtils::hypotenuse
java
deeplearning4j/deeplearning4j
nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
https://github.com/deeplearning4j/deeplearning4j/blob/master/nd4j/nd4j-common/src/main/java/org/nd4j/common/util/MathUtils.java
Apache-2.0