url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
1.83B
node_id
stringlengths
18
32
number
int64
1
6.09k
title
stringlengths
1
290
labels
list
state
stringclasses
2 values
locked
bool
1 class
milestone
dict
comments
int64
0
54
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
closed_at
stringlengths
20
20
active_lock_reason
null
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
comments_text
sequence
https://api.github.com/repos/huggingface/datasets/issues/6057
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6057/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6057/comments
https://api.github.com/repos/huggingface/datasets/issues/6057/events
https://github.com/huggingface/datasets/issues/6057
1,815,100,151
I_kwDODunzps5sMDr3
6,057
Why is the speed difference of gen example so big?
[]
open
false
null
1
2023-07-21T03:34:49Z
2023-07-21T16:41:09Z
null
null
```python def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir): with open(metadata_path, 'r') as file: metadata = json.load(file) for idx, item in enumerate(metadata): image_path = item.get('image_path') text_content = item.get('text_content') image_data = open(image_path, "rb").read() yield idx, { "text": text_content, "image": { "path": image_path, "bytes": image_data, }, "conditioning_image": { "path": image_path, "bytes": image_data, }, } ``` Hello, I use the above function to deal with my local data set, but I am very surprised that the speed at which I generate example is very different. When I start a training task, **sometimes 1000examples/s, sometimes only 10examples/s.** ![image](https://github.com/huggingface/datasets/assets/46072190/cdc17661-8267-4fd8-b30c-b74d505efd9b) I'm not saying that speed is changing all the time. I mean, the reading speed is different in different training, which will cause me to start training over and over again until the speed of this generation of examples is normal.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6057/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6057/timeline
null
null
null
null
false
[ "Hi!\r\n\r\nIt's hard to explain this behavior without more information. Can you profile the slower version with the following code\r\n```python\r\nimport cProfile, pstats\r\nfrom datasets import load_dataset\r\n\r\nwith cProfile.Profile() as profiler:\r\n ds = load_dataset(...)\r\n\r\nstats = pstats.Stats(profiler).sort_stats(\"cumtime\")\r\nstats.print_stats()\r\n```\r\nand share the output?" ]
https://api.github.com/repos/huggingface/datasets/issues/209
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/209/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/209/comments
https://api.github.com/repos/huggingface/datasets/issues/209/events
https://github.com/huggingface/datasets/pull/209
626,405,849
MDExOlB1bGxSZXF1ZXN0NDI0NDAwOTc4
209
Add a Google Drive exception for small files
[]
closed
false
null
3
2020-05-28T10:40:17Z
2020-05-28T15:15:04Z
2020-05-28T15:15:04Z
null
I tried to use the ``nlp`` library to load personnal datasets. I mainly copy-paste the code for ``multi-news`` dataset because my files are stored on Google Drive. One of my dataset is small (< 25Mo) so it can be verified by Drive without asking the authorization to the user. This makes the download starts directly. Currently the ``nlp`` raises a error: ``ConnectionError: Couldn't reach https://drive.google.com/uc?export=download&id=1DGnbUY9zwiThTdgUvVTSAvSVHoloCgun`` while the url is working. So I just add a new exception as you have already done for ``firebasestorage.googleapis.com`` : ``` elif (response.status_code == 400 and "firebasestorage.googleapis.com" in url) or (response.status_code == 405 and "drive.google.com" in url) ``` I make an example of the error that you can run on [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ae_JJ9uvUt-9GBh0uGZhjbF5aXkl-BPv?usp=sharing) I avoid the error by adding an exception but there is maybe a proper way to do it. Many thanks :hugs: Best,
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/209/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/209/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/209.diff", "html_url": "https://github.com/huggingface/datasets/pull/209", "merged_at": "2020-05-28T15:15:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/209.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/209" }
true
[ "Can you run the style formatting tools to pass the code quality test?\r\n\r\nYou can find all the details in CONTRIBUTING.md: https://github.com/huggingface/nlp/blob/master/CONTRIBUTING.md#how-to-contribute-to-nlp", "Nice ! ", "``make style`` done! Thanks for the approvals." ]
https://api.github.com/repos/huggingface/datasets/issues/4896
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4896/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4896/comments
https://api.github.com/repos/huggingface/datasets/issues/4896/events
https://github.com/huggingface/datasets/pull/4896
1,351,180,409
PR_kwDODunzps49z4fU
4,896
Fix missing tags in dataset cards
[]
closed
false
null
1
2022-08-25T16:41:43Z
2022-09-22T14:37:16Z
2022-08-26T04:41:48Z
null
Fix missing tags in dataset cards: - anli - coarse_discourse - commonsense_qa - cos_e - ilist - lc_quad - web_questions - xsum This PR partially fixes the missing tags in dataset cards. Subsequent PRs will follow to complete this task. Related to: - #4833 - #4891
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4896/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4896/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4896.diff", "html_url": "https://github.com/huggingface/datasets/pull/4896", "merged_at": "2022-08-26T04:41:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/4896.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4896" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/69
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/69/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/69/comments
https://api.github.com/repos/huggingface/datasets/issues/69/events
https://github.com/huggingface/datasets/pull/69
615,450,534
MDExOlB1bGxSZXF1ZXN0NDE1NzYyNTQ4
69
fix cache dir in builder tests
[]
closed
false
null
2
2020-05-10T18:39:21Z
2020-05-11T07:19:30Z
2020-05-11T07:19:28Z
null
minor fix
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/69/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/69/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/69.diff", "html_url": "https://github.com/huggingface/datasets/pull/69", "merged_at": "2020-05-11T07:19:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/69.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/69" }
true
[ "Nice, is that the reason one cannot rerun the tests without deleting the cache? \r\n", "Yes exactly. It was not using the temporary dir for tests." ]
https://api.github.com/repos/huggingface/datasets/issues/5435
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5435/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5435/comments
https://api.github.com/repos/huggingface/datasets/issues/5435/events
https://github.com/huggingface/datasets/issues/5435
1,536,099,300
I_kwDODunzps5bjwPk
5,435
Wrong statement in "Load a Dataset in Streaming mode" leads to data leakage
[]
closed
false
null
4
2023-01-17T10:04:16Z
2023-01-19T09:56:03Z
2023-01-19T09:56:03Z
null
### Describe the bug In the [Split your dataset with take and skip](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#split-your-dataset-with-take-and-skip), it states: > Using take (or skip) prevents future calls to shuffle from shuffling the dataset shards order, otherwise the taken examples could come from other shards. In this case it only uses the shuffle buffer. Therefore it is advised to shuffle the dataset before splitting using take or skip. See more details in the [Shuffling the dataset: shuffle](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#iterable-dataset-shuffling) section.` >> \# You can also create splits from a shuffled dataset >> train_dataset = shuffled_dataset.skip(1000) >> eval_dataset = shuffled_dataset.take(1000) Where the shuffled dataset comes from: `shuffled_dataset = dataset.shuffle(buffer_size=10_000, seed=42)` At least in Tensorflow 2.9/2.10/2.11, [docs](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle) states the `reshuffle_each_iteration` argument is `True` by default. This means the dataset would be shuffled after each epoch, and as a result **the validation data would leak into training test**. ### Steps to reproduce the bug N/A ### Expected behavior The `reshuffle_each_iteration` argument should be set to `False`. ### Environment info Tensorflow 2.9/2.10/2.11
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5435/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5435/timeline
null
completed
null
null
false
[ "Just for your information, Tensorflow confirmed this issue [here.](https://github.com/tensorflow/tensorflow/issues/59279)", "Thanks for reporting, @HaoyuYang59.\r\n\r\nPlease note that these are different \"dataset\" objects: our docs refer to Hugging Face `datasets.Dataset` and not to TensorFlow `tf.data.Dataset`.\r\n\r\nOur `datasets.Dataset.shuffle` method does not have a `reshuffle_each_iteration` argument. Therefore, I would say the statement in our docs is True because they refer to `datasets.Dataset.shuffle`, `datasets.Dataset.skip` and `datasets.Dataset.take`.\r\n\r\nI think this issue is restricted to TensorFlow dataset, and this would be addressed by them in the issue you opened in their repo: https://github.com/tensorflow/tensorflow/issues/59279", "Also note that you are referring to an outdated documentation page: datasets 1.10.2 version\r\n\r\nCurrent datasets version is 2.8.0 and the corresponding documentation page is: https://huggingface.co/docs/datasets/stream#split-dataset", "Hi @albertvillanova thanks for your reply and your explaination here. \r\n\r\nSorry for the confusion as I'm not actually a user of your repo and I just happen to find the thread by Google (and didn't read carefully).\r\n\r\nGreat to know that and you made everything very clear now.\r\n\r\nThanks for your time and sorry for the consusion.\r\n\r\nWishing you a wonderful time. \r\n\r\nRegards" ]
https://api.github.com/repos/huggingface/datasets/issues/4398
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4398/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4398/comments
https://api.github.com/repos/huggingface/datasets/issues/4398/events
https://github.com/huggingface/datasets/issues/4398
1,246,666,749
I_kwDODunzps5KTp_9
4,398
Calling `cast_column`/`remove_columns` and a sequence of `map` operations ends up making `faiss` fail with `ValueError`
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
4
2022-05-24T14:41:34Z
2022-06-14T16:01:56Z
2022-06-14T16:01:56Z
null
First of all, sorry in advance for the unclear title, but this bug is weird to explain (at least for me), so I tried my best to summarize all the information in this issue. ## Describe the bug Calling a certain combination of operations over a 🤗 `Dataset` and then trying to calculate the `faiss` index with `.add_faiss_index` ends up throwing an exception while trying to set the format back of a previously removed column. But this just happens over certain conditions... I'll present some scenarios below! ## Steps to reproduce the bug Assuming the following dataset named `sample.csv` with some IMDb data: ```csv id,title,summary 1877830,"The Batman","When a sadistic serial killer begins murdering key political figures in Gotham, Batman is forced to investigate the city's hidden corruption and question his family's involvement." 9419884,"Doctor Strange in the Multiverse of Madness","Doctor Strange teams up with a mysterious teenage girl from his dreams who can travel across multiverses, to battle multiple threats, including other-universe versions of himself, which threaten to wipe out millions across the multiverse. They seek help from Wanda the Scarlet Witch, Wong and others." 11138512,"The Northman","From visionary director Robert Eggers comes The Northman, an action-filled epic that follows a young Viking prince on his quest to avenge his father's murder." 1745960,"Top Gun: Maverick","After more than thirty years of service as one of the Navy's top aviators, Pete Mitchell is where he belongs, pushing the envelope as a courageous test pilot and dodging the advancement in rank that would ground him." ``` We'll be able to reproduce the bug using the following piece of code: ```python # Sample code to reproduce the bug from transformers import DPRContextEncoder, DPRContextEncoderTokenizer import torch torch.set_grad_enabled(False) ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") from datasets import load_dataset, Value ds = load_dataset("csv", data_files=["sample.csv"], split="train") ds = ds.cast_column("id", Value("int32")) # from `int64` to `int32` ds = ds.map(lambda x: {"inputs": f"{ctx_tokenizer.sep_token}".join(["title", "summary"])}) ds = ds.remove_columns(["title", "summary"]) def generate_embeddings(x): return {"embeddings": ctx_encoder(**ctx_tokenizer(x["inputs"], return_tensors="pt"))[0][0].numpy()} ds = ds.map(generate_embeddings) ds = ds.remove_columns("inputs") ds.add_faiss_index(column="embeddings") # It fails here! ``` The code above is an adaptation of https://huggingface.co/docs/datasets/faiss_es, for the sake of presenting the bug with a simple example. ## Expected results Ideally, the `faiss` index should be calculated over the 🤗 `Dataset` and no exception should be triggered. ## Actual results But what happens instead is that a `ValueError: Columns ['inputs'] not in the dataset. Current columns in the dataset: ['id', 'embeddings']`, which makes no sense as that column has been previously dropped. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.2.2 - Platform: Linux-5.4.0-1074-azure-x86_64-with-glibc2.31 - Python version: 3.9.5 - PyArrow version: 8.0.0 - Pandas version: 1.4.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4398/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4398/timeline
null
completed
null
null
false
[ "It works if we either remove the `ds = ds.cast_column(\"id\", Value(\"int32\"))` line from the code above, or if instead calling `ds.remove_columns()` we remove the columns inside each mapping as `ds.map(..., remove_columns=[...])` instead of right after the mapping.\r\n\r\nBoth of those solutions seem to fix the issue, so the root cause of it may be around that. Sorry I cannot provide you more insights, in case I get to fix it I'll submit a PR, in the meanwhile the code that I'm using as a workaround is the following:\r\n\r\n```python\r\nfrom transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\nimport torch\r\n\r\ntorch.set_grad_enabled(False)\r\nctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\nctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n\r\nfrom datasets import load_dataset, Value\r\n\r\nds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\nds = ds.cast_column(\"id\", Value(\"int32\"))\r\nds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])}, remove_columns=[\"title\", \"summary\"])\r\n\r\ndef generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n\r\nds = ds.map(generate_embeddings, remove_columns=[\"inputs\"])\r\nds.add_faiss_index(column=\"embeddings\")\r\n```", "FYI the main reason I want to use `dataset.remove_columns` rather than the function inside `dataset.map` is because according to the 🤗 Datasets documentation, it's faster.\r\n\r\n\"🤗 Datasets also has a [Dataset.remove_columns()](https://huggingface.co/docs/datasets/v2.2.1/en/package_reference/main_classes#datasets.Dataset.remove_columns) method that is functionally identical, but faster, because it doesn’t copy the data of the remaining columns.\"\r\n\r\nMore information at https://huggingface.co/docs/datasets/process#map", "Here I'm presenting all the scenarios so that you can further investigate the issue:\r\n\r\n- ✅ `cast_column` -> `map` with `remove_columns` -> `map` with `remove_columns` -> `add_faiss_index`\r\n\r\n ```python\r\n from transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\n import torch\r\n \r\n torch.set_grad_enabled(False)\r\n ctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n \r\n from datasets import load_dataset, Value\r\n \r\n ds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\n ds = ds.cast_column(\"id\", Value(\"int32\"))\r\n ds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])}, remove_columns=[\"title\", \"summary\"])\r\n \r\n def generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n \r\n ds = ds.map(generate_embeddings, remove_columns=[\"inputs\"])\r\n ds.add_faiss_index(column=\"embeddings\")\r\n ```\r\n\r\n- ❌ `cast_column` -> `map` -> `remove_columns` -> `map` -> `remove_columns` -> `add_faiss_index`\r\n\r\n ```python\r\n from transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\n import torch\r\n \r\n torch.set_grad_enabled(False)\r\n ctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n \r\n from datasets import load_dataset, Value\r\n \r\n ds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\n ds = ds.cast_column(\"id\", Value(\"int32\"))\r\n ds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])})\r\n ds = ds.remove_columns([\"title\", \"summary\"])\r\n \r\n def generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n \r\n ds = ds.map(generate_embeddings)\r\n ds = ds.remove_columns([\"inputs\"])\r\n ds.add_faiss_index(column=\"embeddings\")\r\n ```\r\n\r\n- ❌ `cast_column` -> `map` with `remove_columns` -> `map` -> `remove_columns` -> `add_faiss_index`\r\n\r\n\r\n ```python\r\n from transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\n import torch\r\n \r\n torch.set_grad_enabled(False)\r\n ctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n \r\n from datasets import load_dataset, Value\r\n \r\n ds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\n ds = ds.cast_column(\"id\", Value(\"int32\"))\r\n ds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])}, remove_columns=[\"title\", \"summary\"])\r\n \r\n def generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n \r\n ds = ds.map(generate_embeddings)\r\n ds = ds.remove_columns([\"inputs\"])\r\n ds.add_faiss_index(column=\"embeddings\")\r\n ```\r\n\r\n- ✅ `cast_column` -> `map` -> `remove_columns` -> `map` with `remove_columns` -> `add_faiss_index`\r\n\r\n\r\n ```python\r\n from transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\n import torch\r\n \r\n torch.set_grad_enabled(False)\r\n ctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n \r\n from datasets import load_dataset, Value\r\n \r\n ds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\n ds = ds.cast_column(\"id\", Value(\"int32\"))\r\n ds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])})\r\n ds = ds.remove_columns([\"title\", \"summary\"])\r\n \r\n def generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n \r\n ds = ds.map(generate_embeddings, remove_columns=[\"inputs\"])\r\n ds.add_faiss_index(column=\"embeddings\")\r\n ```\r\n\r\n- ✅ `map` -> `remove_columns` -> `map` -> `remove_columns` -> `add_faiss_index`\r\n\r\n\r\n ```python\r\n from transformers import DPRContextEncoder, DPRContextEncoderTokenizer\r\n import torch\r\n \r\n torch.set_grad_enabled(False)\r\n ctx_encoder = DPRContextEncoder.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained(\"facebook/dpr-ctx_encoder-single-nq-base\")\r\n \r\n from datasets import load_dataset, Value\r\n \r\n ds = load_dataset(\"csv\", data_files=[\"sample.csv\"], split=\"train\")\r\n ds = ds.map(lambda x: {\"inputs\": f\"{ctx_tokenizer.sep_token}\".join([\"title\", \"summary\"])})\r\n ds = ds.remove_columns([\"title\", \"summary\"])\r\n \r\n def generate_embeddings(x):\r\n return {\"embeddings\": ctx_encoder(**ctx_tokenizer(x[\"inputs\"], return_tensors=\"pt\"))[0][0].numpy()}\r\n \r\n ds = ds.map(generate_embeddings)\r\n ds = ds.remove_columns([\"inputs\"])\r\n ds.add_faiss_index(column=\"embeddings\")\r\n ```", "So on, I've created #4411 so as to fix the bug with `remove_columns` under certain conditions before `add_faiss_index`, which means that the scenarios not working above are already working fine." ]
https://api.github.com/repos/huggingface/datasets/issues/3571
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3571/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3571/comments
https://api.github.com/repos/huggingface/datasets/issues/3571/events
https://github.com/huggingface/datasets/pull/3571
1,100,519,604
PR_kwDODunzps4w3fVQ
3,571
Add missing tasks to MuchoCine dataset
[]
closed
false
null
0
2022-01-12T16:07:32Z
2022-01-20T16:51:08Z
2022-01-20T16:51:07Z
null
Addresses the 2nd bullet point in #2520. I'm also removing the licensing information, because I couldn't verify that it is correct.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3571/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3571/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3571.diff", "html_url": "https://github.com/huggingface/datasets/pull/3571", "merged_at": "2022-01-20T16:51:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/3571.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3571" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/268
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/268/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/268/comments
https://api.github.com/repos/huggingface/datasets/issues/268/events
https://github.com/huggingface/datasets/pull/268
637,848,056
MDExOlB1bGxSZXF1ZXN0NDMzNzU5NzQ1
268
add Rotten Tomatoes Movie Review sentences sentiment dataset
[]
closed
false
null
1
2020-06-12T15:53:59Z
2020-06-18T07:46:24Z
2020-06-18T07:46:23Z
null
Sentence-level movie reviews v1.0 from here: http://www.cs.cornell.edu/people/pabo/movie-review-data/
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/268/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/268/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/268.diff", "html_url": "https://github.com/huggingface/datasets/pull/268", "merged_at": "2020-06-18T07:46:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/268.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/268" }
true
[ "@jplu @thomwolf @patrickvonplaten @lhoestq -- How do I request reviewers? Thanks." ]
https://api.github.com/repos/huggingface/datasets/issues/4203
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4203/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4203/comments
https://api.github.com/repos/huggingface/datasets/issues/4203/events
https://github.com/huggingface/datasets/pull/4203
1,212,431,067
PR_kwDODunzps42oNrS
4,203
Add Precision Metric Card
[]
closed
false
null
1
2022-04-22T14:23:48Z
2022-05-03T14:23:40Z
2022-05-03T14:16:46Z
null
What this PR mainly does: - add metric card for precision metric - update docs in precision python file Note: I've also included a .json file with all of the metric card information. I've started compiling the relevant information in this type of .json files, and then using a script I wrote to generate the formatted metric card, as well as the docs to go in the .py file. I figured I'd upload the .json because it could be useful, especially if I also make a PR with the script I'm using (let me know if that's something you think would be beneficial!)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4203/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4203/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4203.diff", "html_url": "https://github.com/huggingface/datasets/pull/4203", "merged_at": "2022-05-03T14:16:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/4203.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4203" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1104
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1104/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1104/comments
https://api.github.com/repos/huggingface/datasets/issues/1104/events
https://github.com/huggingface/datasets/pull/1104
757,020,934
MDExOlB1bGxSZXF1ZXN0NTMyNDY1NzA4
1,104
add TLC
[]
closed
false
null
0
2020-12-04T11:14:58Z
2020-12-04T14:29:23Z
2020-12-04T14:29:23Z
null
Added TLC dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1104/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1104/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1104.diff", "html_url": "https://github.com/huggingface/datasets/pull/1104", "merged_at": "2020-12-04T14:29:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/1104.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1104" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4400/comments
https://api.github.com/repos/huggingface/datasets/issues/4400/events
https://github.com/huggingface/datasets/issues/4400
1,247,404,237
I_kwDODunzps5KWeDN
4,400
load dataset wikitext-2-raw-v1 failed. Could not reach wikitext-2-raw-v1.py.
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-05-25T03:10:44Z
2022-10-24T06:10:27Z
2022-05-25T03:26:36Z
null
## Describe the bug Could not reach wikitext-2-raw-v1.py ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("wikitext-2-raw-v1") ``` ## Expected results Download `wikitext-2-raw-v1` dataset successfully. ## Actual results ``` File "load_datasets.py", line 13, in <module> load_dataset("wikitext-2-raw-v1") File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 1715, in load_dataset **config_kwargs, File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 1536, in load_dataset_builder data_files=data_files, File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 1282, in dataset_module_factory raise e1 from None File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 1224, in dataset_module_factory dynamic_modules_path=dynamic_modules_path, File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 559, in get_module local_path = self.download_loading_script(revision) File "/root/miniconda3/lib/python3.6/site-packages/datasets/load.py", line 539, in download_loading_script return cached_path(file_path, download_config=download_config) File "/root/miniconda3/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 246, in cached_path download_desc=download_config.download_desc, File "/root/miniconda3/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 582, in get_from_cache raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.2.2/datasets/wikitext-2-raw-v1/wikitext-2-raw-v1.py (ReadTimeout(ReadTimeoutError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Read timed out. (read timeout=100)",),)) ``` I tried to download wikitext-2-raw-v1.py by chrome and got: ![image](https://user-images.githubusercontent.com/20658907/170171595-0ca9f1da-c05a-4b57-861e-9530bfa3bdb9.png) ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.2.2 - Platform: CentOS 7 - Python version: 3.6 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4400/timeline
null
completed
null
null
false
[ "I tried in this way.\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset(path=\"wikitext\", name=\"wikitext-103-v1\", split=\"train\")\r\n```" ]
https://api.github.com/repos/huggingface/datasets/issues/4256
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4256/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4256/comments
https://api.github.com/repos/huggingface/datasets/issues/4256/events
https://github.com/huggingface/datasets/pull/4256
1,221,379,625
PR_kwDODunzps43F9Zw
4,256
Create metric card for MSE
[]
closed
false
null
1
2022-04-29T18:21:22Z
2022-05-02T14:55:42Z
2022-05-02T14:48:47Z
null
Proposing a metric card for Mean Squared Error
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4256/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4256/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4256.diff", "html_url": "https://github.com/huggingface/datasets/pull/4256", "merged_at": "2022-05-02T14:48:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/4256.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4256" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1239
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1239/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1239/comments
https://api.github.com/repos/huggingface/datasets/issues/1239/events
https://github.com/huggingface/datasets/pull/1239
758,339,593
MDExOlB1bGxSZXF1ZXN0NTMzNTI4NTU5
1,239
add yelp_review_full dataset
[]
closed
false
null
1
2020-12-07T09:35:36Z
2020-12-08T15:43:24Z
2020-12-08T15:00:50Z
null
This corresponds to the Yelp-5 requested in https://github.com/huggingface/datasets/issues/353
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1239/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1239/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1239.diff", "html_url": "https://github.com/huggingface/datasets/pull/1239", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1239.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1239" }
true
[ "Moved to https://github.com/huggingface/datasets/pull/1315" ]
https://api.github.com/repos/huggingface/datasets/issues/2710
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2710/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2710/comments
https://api.github.com/repos/huggingface/datasets/issues/2710/events
https://github.com/huggingface/datasets/pull/2710
951,723,326
MDExOlB1bGxSZXF1ZXN0Njk2MDYyNjAy
2,710
Update WikiANN data URL
[]
closed
false
null
1
2021-07-23T16:29:21Z
2021-07-26T09:34:23Z
2021-07-26T09:34:23Z
null
WikiANN data source URL is no longer accessible: 404 error from Dropbox. We have decided to host it at Hugging Face. This PR updates the data source URL, the metadata JSON file and the dataset card. Close #2691.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2710/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2710/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2710.diff", "html_url": "https://github.com/huggingface/datasets/pull/2710", "merged_at": "2021-07-26T09:34:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/2710.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2710" }
true
[ "We have to update the URL in the XTREME benchmark as well:\r\n\r\nhttps://github.com/huggingface/datasets/blob/0dfc639cec450ed8762a997789a2ed63e63cdcf2/datasets/xtreme/xtreme.py#L411-L411\r\n\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/2353
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2353/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2353/comments
https://api.github.com/repos/huggingface/datasets/issues/2353/events
https://github.com/huggingface/datasets/pull/2353
890,296,262
MDExOlB1bGxSZXF1ZXN0NjQzMzM4MDcz
2,353
Update README vallidation rules
[]
closed
false
null
0
2021-05-12T16:57:26Z
2021-05-14T08:56:06Z
2021-05-14T08:56:06Z
null
This PR allows unexpected subsections under third-level headings. All except `Contributions`. @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2353/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2353/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2353.diff", "html_url": "https://github.com/huggingface/datasets/pull/2353", "merged_at": "2021-05-14T08:56:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/2353.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2353" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3577
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3577/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3577/comments
https://api.github.com/repos/huggingface/datasets/issues/3577/events
https://github.com/huggingface/datasets/issues/3577
1,102,598,241
I_kwDODunzps5BuFBh
3,577
Add The Mexican Emotional Speech Database (MESD)
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "d93f0b", "default": false, "description": "", "id": 2725241052, "name": "speech", "node_id": "MDU6TGFiZWwyNzI1MjQxMDUy", "url": "https://api.github.com/repos/huggingface/datasets/labels/speech" } ]
open
false
null
0
2022-01-13T23:49:36Z
2022-01-27T14:14:38Z
null
null
## Adding a Dataset - **Name:** *The Mexican Emotional Speech Database (MESD)* - **Description:** *Contains 864 voice recordings with six different prosodies: anger, disgust, fear, happiness, neutral, and sadness. Furthermore, three voice categories are included: female adult, male adult, and child. * - **Paper:** *[Paper](https://ieeexplore.ieee.org/abstract/document/9629934/authors#authors)* - **Data:** *[link to the Github repository or current dataset location](https://data.mendeley.com/datasets/cy34mh68j9/3)* - **Motivation:** *Would add Spanish speech data to the HF datasets :) * Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3577/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3577/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/1525
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1525/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1525/comments
https://api.github.com/repos/huggingface/datasets/issues/1525/events
https://github.com/huggingface/datasets/pull/1525
764,530,582
MDExOlB1bGxSZXF1ZXN0NTM4NTUwMzI2
1,525
Adding a second branch for Atomic to fix git errors
[]
closed
false
null
0
2020-12-12T22:54:50Z
2020-12-28T15:51:11Z
2020-12-28T15:51:11Z
null
Adding the Atomic common sense dataset. See https://homes.cs.washington.edu/~msap/atomic/
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1525/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1525/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1525.diff", "html_url": "https://github.com/huggingface/datasets/pull/1525", "merged_at": "2020-12-28T15:51:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/1525.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1525" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4036
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4036/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4036/comments
https://api.github.com/repos/huggingface/datasets/issues/4036/events
https://github.com/huggingface/datasets/pull/4036
1,183,126,893
PR_kwDODunzps41I854
4,036
Fix building of documentation
[]
closed
false
null
2
2022-03-28T09:09:12Z
2022-03-28T11:18:31Z
2022-03-28T11:13:22Z
null
Documentation building is failing: - https://github.com/huggingface/datasets/runs/5716300989?check_suite_focus=true ``` ValueError: There was an error when converting ../datasets/docs/source/package_reference/main_classes.mdx to the MDX format. Unable to find datasets.filesystems.S3FileSystem in datasets. Make sure the path to that object is correct. ``` Fix #4037.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4036/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4036/timeline
null
null
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/4036.diff", "html_url": "https://github.com/huggingface/datasets/pull/4036", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4036.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4036" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Superseded by huggingface/doc-builder@31fe6c8bc7225810e281c2f6c6cd32f38828c504" ]
https://api.github.com/repos/huggingface/datasets/issues/650
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/650/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/650/comments
https://api.github.com/repos/huggingface/datasets/issues/650/events
https://github.com/huggingface/datasets/issues/650
704,861,844
MDU6SXNzdWU3MDQ4NjE4NDQ=
650
dummy data testing can't test datasets using `dl_manager.extract` in `_split_generators`
[]
closed
false
null
4
2020-09-19T11:07:03Z
2020-09-22T11:54:10Z
2020-09-22T11:54:09Z
null
Hi, I recently want to add a dataset whose source data is like this ``` openwebtext.tar.xz |__ openwebtext |__subset000.xz | |__ ....txt | |__ ....txt | ... |__ subset001.xz | .... ``` So I wrote `openwebtext.py` like this ``` def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) owt_dir = os.path.join(dl_dir, 'openwebtext') subset_xzs = [ os.path.join(owt_dir, file_name) for file_name in os.listdir(owt_dir) if file_name.endswith('xz') # filter out ...xz.lock ] ex_dirs = dl_manager.extract(subset_xzs, num_proc=round(os.cpu_count()*0.75)) nested_txt_files = [ [ os.path.join(ex_dir,txt_file_name) for txt_file_name in os.listdir(ex_dir) if txt_file_name.endswith('txt') ] for ex_dir in ex_dirs ] txt_files = chain(*nested_txt_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"txt_files": txt_files} ), ] ``` All went good, I can load and use real openwebtext, except when I try to test with dummy data. The problem is `MockDownloadManager.extract` do nothing, so `ex_dirs = dl_manager.extract(subset_xzs)` won't decompress `subset_xxx.xz`s for me. How should I do ? Or you can modify `MockDownloadManager` to make it like a real `DownloadManager` ?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/650/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/650/timeline
null
completed
null
null
false
[ "Hi :) \r\nIn your dummy data zip file you can just have `subset000.xz` as directories instead of compressed files.\r\nLet me know if it helps", "Thanks for your comment @lhoestq ,\r\nJust for confirmation, changing dummy data like this won't make dummy test test the functionality to extract `subsetxxx.xz` but actually kind of circumvent it. But since we will test the real data so it is ok ?", "Yes it's fine for now. We plan to add a job for slow tests.\r\nAnd at one point we'll also do another pass on the dummy data handling and consider extracting files.", "Thanks for the confirmation.\r\nAlso the suggestion works. Thank you." ]
https://api.github.com/repos/huggingface/datasets/issues/2002
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2002/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2002/comments
https://api.github.com/repos/huggingface/datasets/issues/2002/events
https://github.com/huggingface/datasets/pull/2002
823,955,744
MDExOlB1bGxSZXF1ZXN0NTg2MjgwNzE3
2,002
MOROCO
[]
closed
false
null
1
2021-03-07T16:22:17Z
2021-03-19T09:52:06Z
2021-03-19T09:52:06Z
null
Add MOROCO to huggingface datasets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2002/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2002/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2002.diff", "html_url": "https://github.com/huggingface/datasets/pull/2002", "merged_at": "2021-03-19T09:52:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/2002.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2002" }
true
[ "@lhoestq Thank you for all the feedback. I've added the suggested changes in my last commit." ]
https://api.github.com/repos/huggingface/datasets/issues/2484
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2484/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2484/comments
https://api.github.com/repos/huggingface/datasets/issues/2484/events
https://github.com/huggingface/datasets/issues/2484
919,092,635
MDU6SXNzdWU5MTkwOTI2MzU=
2,484
Implement loading a dataset builder
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
1
2021-06-11T18:47:22Z
2021-07-05T10:45:57Z
2021-07-05T10:45:57Z
null
As discussed with @stas00 and @lhoestq, this would allow things like: ```python from datasets import load_dataset_builder dataset_name = "openwebtext" builder = load_dataset_builder(dataset_name) print(builder.cache_dir) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2484/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2484/timeline
null
completed
null
null
false
[ "#self-assign" ]
https://api.github.com/repos/huggingface/datasets/issues/5570
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5570/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5570/comments
https://api.github.com/repos/huggingface/datasets/issues/5570/events
https://github.com/huggingface/datasets/issues/5570
1,597,190,926
I_kwDODunzps5fMzMO
5,570
load_dataset gives FileNotFoundError on imagenet-1k if license is not accepted on the hub
[]
closed
false
null
2
2023-02-23T16:44:32Z
2023-07-24T15:18:50Z
2023-07-24T15:18:50Z
null
### Describe the bug When calling ```load_dataset('imagenet-1k')``` FileNotFoundError is raised, if not logged in and if logged in with huggingface-cli but not having accepted the licence on the hub. There is no error once accepting. ### Steps to reproduce the bug ``` from datasets import load_dataset imagenet = load_dataset("imagenet-1k", split="train", streaming=True) FileNotFoundError: Couldn't find a dataset script at /content/imagenet-1k/imagenet-1k.py or any data file in the same directory. Couldn't find 'imagenet-1k' on the Hugging Face Hub either: FileNotFoundError: Dataset 'imagenet-1k' doesn't exist on the Hub ``` tested on a colab notebook. ### Expected behavior I would expect a specific error indicating that I have to login then accept the dataset licence. I find this bug very relevant as this code is on a guide on the [Huggingface documentation for Datasets](https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable) ### Environment info google colab cpu-only instance
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5570/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5570/timeline
null
completed
null
null
false
[ "Hi, thanks for the feedback! Would it help to add a tip or note saying the dataset is gated and you need to accept the license before downloading it?", "The error is now more informative:\r\n```\r\nFileNotFoundError: Couldn't find a dataset script at /content/imagenet-1k/imagenet-1k.py or any data file in the same directory. Couldn't find 'imagenet-1k' on the Hugging Face Hub either: FileNotFoundError: Dataset 'imagenet-1k' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```\r\n\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/1865
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1865/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1865/comments
https://api.github.com/repos/huggingface/datasets/issues/1865/events
https://github.com/huggingface/datasets/pull/1865
806,388,290
MDExOlB1bGxSZXF1ZXN0NTcxODE2ODI2
1,865
Updated OPUS Open Subtitles Dataset with metadata information
[]
closed
false
null
2
2021-02-11T13:26:26Z
2021-02-19T12:38:09Z
2021-02-12T16:59:44Z
null
Close #1844 Problems: - I ran `python datasets-cli test datasets/open_subtitles --save_infos --all_configs`, hence the change in `dataset_infos.json`, but it appears that the metadata features have not been added for all pairs. Any idea why that might be? - Possibly related to the above, I tried doing `pip uninstall datasets && pip install -e ".[dev]"` after the changes, and loading the dataset via `load_dataset("open_subtitles", lang1='hi', lang2='it')` to check if the update worked, but the loaded dataset did not contain the metadata fields (neither in the features nor doing `next(iter(dataset['train']))`). What step(s) did I miss? Questions: - Is it ok to have a `classmethod` in there? I have not seen any in the few other datasets I have checked. I could make it a local method of the `_generate_examples` method, but I'd rather not duplicate the logic...
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1865/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1865/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1865.diff", "html_url": "https://github.com/huggingface/datasets/pull/1865", "merged_at": "2021-02-12T16:59:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/1865.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1865" }
true
[ "Hi !\r\nAbout the problems you mentioned:\r\n- Saving the infos is only done for the configurations inside the BUILDER_CONFIGS. Otherwise you would need to run the scripts on ALL language pairs, which is not what we want.\r\n- Moreover when you're on your branch, please specify the path to your local version of the dataset script, like \"./datasets/open_subtitles\". Otherwise the dataset is loaded from the master branch on github.\r\nHope that clarifies things a bit\r\n\r\nAnd of course feel free to add methods or classmethods to your builder.\r\n", "Great! Thank you :)\r\nI'll close the issue as well." ]
https://api.github.com/repos/huggingface/datasets/issues/5066
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5066/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5066/comments
https://api.github.com/repos/huggingface/datasets/issues/5066/events
https://github.com/huggingface/datasets/pull/5066
1,396,086,745
PR_kwDODunzps5AIDWj
5,066
Support streaming gzip.open
[]
closed
false
null
1
2022-10-04T11:20:05Z
2022-10-06T15:13:51Z
2022-10-06T15:11:29Z
null
This PR implements support for streaming out-of-the-box dataset scripts containing `gzip.open`. This has been a recurring issue. See, e.g.: - #5060 - #3191
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5066/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5066/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5066.diff", "html_url": "https://github.com/huggingface/datasets/pull/5066", "merged_at": "2022-10-06T15:11:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5066.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5066" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/6057
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6057/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6057/comments
https://api.github.com/repos/huggingface/datasets/issues/6057/events
https://github.com/huggingface/datasets/issues/6057
1,815,100,151
I_kwDODunzps5sMDr3
6,057
Why is the speed difference of gen example so big?
[]
open
false
null
1
2023-07-21T03:34:49Z
2023-07-21T16:41:09Z
null
null
```python def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir): with open(metadata_path, 'r') as file: metadata = json.load(file) for idx, item in enumerate(metadata): image_path = item.get('image_path') text_content = item.get('text_content') image_data = open(image_path, "rb").read() yield idx, { "text": text_content, "image": { "path": image_path, "bytes": image_data, }, "conditioning_image": { "path": image_path, "bytes": image_data, }, } ``` Hello, I use the above function to deal with my local data set, but I am very surprised that the speed at which I generate example is very different. When I start a training task, **sometimes 1000examples/s, sometimes only 10examples/s.** ![image](https://github.com/huggingface/datasets/assets/46072190/cdc17661-8267-4fd8-b30c-b74d505efd9b) I'm not saying that speed is changing all the time. I mean, the reading speed is different in different training, which will cause me to start training over and over again until the speed of this generation of examples is normal.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6057/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6057/timeline
null
null
null
null
false
[ "Hi!\r\n\r\nIt's hard to explain this behavior without more information. Can you profile the slower version with the following code\r\n```python\r\nimport cProfile, pstats\r\nfrom datasets import load_dataset\r\n\r\nwith cProfile.Profile() as profiler:\r\n ds = load_dataset(...)\r\n\r\nstats = pstats.Stats(profiler).sort_stats(\"cumtime\")\r\nstats.print_stats()\r\n```\r\nand share the output?" ]
https://api.github.com/repos/huggingface/datasets/issues/5525
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5525/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5525/comments
https://api.github.com/repos/huggingface/datasets/issues/5525/events
https://github.com/huggingface/datasets/issues/5525
1,580,342,729
I_kwDODunzps5eMh3J
5,525
TypeError: Couldn't cast array of type string to null
[]
closed
false
null
6
2023-02-10T21:12:36Z
2023-02-14T17:41:08Z
2023-02-14T09:35:49Z
null
### Describe the bug Processing a dataset I alredy uploaded to the Hub (https://huggingface.co/datasets/tj-solergibert/Europarl-ST) I found that for some splits and some languages (test split, source_lang = "nl") after applying a map function I get the mentioned error. I alredy tried reseting the shorter strings (reset_cortas function). It only happends with NL, PL, RO and PT. It does not make sense since when processing the other languages I also use the corpus of those that fail and it does not cause any errors. I suspect that the error may be in this direction: We use cast_array_to_feature to support casting to custom types like Audio and Image # Also, when trying type "string", we don't want to convert integers or floats to "string". # We only do it if trying_type is False - since this is what the user asks for. ### Steps to reproduce the bug Here I link a colab notebook to reproduce the error: https://colab.research.google.com/drive/1JCrS7FlGfu_kFqChMrwKZ_bpabnIMqbP?authuser=1#scrollTo=FBAvlhMxIzpA ### Expected behavior Data processing does not fail. A correct example can be seen here: https://huggingface.co/datasets/tj-solergibert/Europarl-ST-processed-mt-en ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.10.147+-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 9.0.0 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5525/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5525/timeline
null
completed
null
null
false
[ "Thanks for reporting, @TJ-Solergibert.\r\n\r\nWe cannot access your Colab notebook: `There was an error loading this notebook. Ensure that the file is accessible and try again.`\r\nCould you please make it publicly accessible?\r\n", "I swear it's public, I've checked the settings and I've been able to open it in incognito mode.\r\n\r\nNotebook: https://colab.research.google.com/drive/1JCrS7FlGfu_kFqChMrwKZ_bpabnIMqbP?usp=sharing\r\n\r\nAnyway, this is the code to reproduce the error:\r\n\r\n```python3\r\nfrom datasets import ClassLabel\r\nfrom datasets import load_dataset\r\n\r\neuroparl_ds = load_dataset(\"tj-solergibert/Europarl-ST\")\r\n\r\nsource_lang = \"nl\"\r\nlanguages = list(europarl_ds[\"train\"][0][\"transcriptions\"].keys())\r\nClassLabels = ClassLabel(num_classes = len(languages), names = languages)\r\n\r\ndef map_label2id(example):\r\n example['dest_lang'] = ClassLabels.str2int(example['dest_lang'])\r\n return example\r\n\r\ndef unfold_transcriptions(example):\r\n for lang in languages:\r\n example[lang] = example[\"transcriptions\"][lang]\r\n return example\r\n\r\ndef unroll(batch, src_lang, dest_langs):\r\n source_t, dest_t, dest_l = [], [], []\r\n for lang in dest_langs: \r\n source_t += batch[src_lang]\r\n dest_t += batch[lang]\r\n dest_l += [lang]\r\n return_dict = {\"source_text\": source_t, \"dest_text\": dest_t, \"dest_lang\": dest_l}\r\n return return_dict\r\n\r\ndef preprocess_split(ds_split, src_lang):\r\n dest_langs = [x for x in languages if x != src_lang]\r\n\r\n ds_split = ds_split.map(unroll, fn_kwargs= {\"src_lang\": src_lang, \"dest_langs\": dest_langs}, batched = True, batch_size = 1, remove_columns= list(languages))\r\n ds_split = ds_split.filter(lambda x: x[\"source_text\"] != None and x[\"dest_text\"] != None) # Remove incomplete translations\r\n ds_split = ds_split.filter(lambda x: x[\"source_text\"] != \"None\" and x[\"dest_text\"] != \"None\")\r\n ds_split = ds_split.map(map_label2id) \r\n ds_split = ds_split.cast_column(\"dest_lang\", ClassLabels)\r\n return ds_split\r\n\r\ndef reset_cortas(example):\r\n for lang in languages:\r\n if isinstance(example[lang], str):\r\n if example[lang].isnumeric () or len(example[lang]) <= 5:\r\n example[lang] = \"None\"\r\n return example\r\n\r\ndef clean_dataset(dataset):\r\n # Remove columns\r\n dataset = dataset.remove_columns([\"original_speech\", \"original_language\", \"audio_path\", \"segment_start\", \"segment_end\"])\r\n # Unfold\r\n dataset = dataset.map(unfold_transcriptions, remove_columns = [\"transcriptions\"])\r\n dataset = dataset.map(reset_cortas)\r\n return dataset\r\n\r\nprocessed_europarl = clean_dataset(europarl_ds[\"test\"])\r\nnew_train_ds = preprocess_split(processed_europarl, 'nl')\r\n```", "Thanks, @TJ-Solergibert. I can access your notebook now. Maybe it was just a temporary issue.\r\n\r\nAt first sight, it seems something related to your data: maybe some of the examples do not have all the transcriptions for all the languages. Then, some of them are null when unrolled. And when trying to concatenate with the other rows containing strings, the cast issue is raised (the arrays to be concatenated have different types).\r\n\r\nDo you think this could be the case?", "See, in this example, \"nl\" and \"ro\" transcripts are null:\r\n```python\r\n>>> europarl_ds[\"test\"][:1]\r\n{'original_speech': ['− Señor Presidente, en primer lugar, quisiera felicitar al señor Seeber por el trabajo realizado, porque en su informe se recogen muchas de las preocupaciones manifestadas en esta'],\r\n 'original_language': ['es'],\r\n 'audio_path': ['es/audios/en.20081008.24.3-238.m4a'],\r\n 'segment_start': [0.6200000047683716],\r\n 'segment_end': [11.319999694824219],\r\n 'transcriptions': [{'de': '− Herr Präsident! Zunächst möchte ich Richard Seeber zu der von ihm geleisteten Arbeit gratulieren, denn sein Bericht greift viele der in diesem Haus zum Ausdruck gebrachten Anliegen',\r\n 'en': '− Mr President, firstly I would like to congratulate Mr Seeber on the work he has done, because his report picks up many of the concerns expressed in this',\r\n 'es': '− Señor Presidente, en primer lugar, quisiera felicitar al señor Seeber por el trabajo realizado, porque en su informe se recogen muchas de las preocupaciones manifestadas en esta',\r\n 'fr': '− Monsieur le Président, je voudrais tout d ’ abord féliciter M. Seeber pour le travail qu ’ il a effectué, parce que son rapport reprend beaucoup des inquiétudes exprimées au sein de cette',\r\n 'it': \"− Signor Presidente, mi congratulo innanzi tutto con l'onorevole Seeber per il lavoro svolto, perché la sua relazione accoglie molti dei timori espressi da quest'Aula\",\r\n 'nl': None,\r\n 'pl': '− Panie przewodniczący! Po pierwsze chciałabym pogratulować panu posłowi Seeberowi wykonanej pracy, ponieważ jego sprawozdanie podejmuje szereg podnoszonych w tej Izbie',\r\n 'pt': '− Senhor Presidente, começo por felicitar o senhor deputado Seeber pelo trabalho que desenvolveu em torno deste relatório, que retoma muitas das preocupações expressas nesta',\r\n 'ro': None}]}\r\n```\r\n```python\r\n>>> processed_europarl[0]\r\n{'de': '− Herr Präsident! Zunächst möchte ich Richard Seeber zu der von ihm geleisteten Arbeit gratulieren, denn sein Bericht greift viele der in diesem Haus zum Ausdruck gebrachten Anliegen',\r\n 'en': '− Mr President, firstly I would like to congratulate Mr Seeber on the work he has done, because his report picks up many of the concerns expressed in this',\r\n 'es': '− Señor Presidente, en primer lugar, quisiera felicitar al señor Seeber por el trabajo realizado, porque en su informe se recogen muchas de las preocupaciones manifestadas en esta',\r\n 'fr': '− Monsieur le Président, je voudrais tout d ’ abord féliciter M. Seeber pour le travail qu ’ il a effectué, parce que son rapport reprend beaucoup des inquiétudes exprimées au sein de cette',\r\n 'it': \"− Signor Presidente, mi congratulo innanzi tutto con l'onorevole Seeber per il lavoro svolto, perché la sua relazione accoglie molti dei timori espressi da quest'Aula\",\r\n 'nl': None,\r\n 'pl': '− Panie przewodniczący! Po pierwsze chciałabym pogratulować panu posłowi Seeberowi wykonanej pracy, ponieważ jego sprawozdanie podejmuje szereg podnoszonych w tej Izbie',\r\n 'pt': '− Senhor Presidente, começo por felicitar o senhor deputado Seeber pelo trabalho que desenvolveu em torno deste relatório, que retoma muitas das preocupações expressas nesta',\r\n 'ro': None}\r\n```", "You can fix this issue by forcing the cast of None to str by hand:\r\n- If you replace this line:\r\n```python\r\nsource_t += batch[src_lang]\r\n```\r\n- With this line (because the batch size is 1):\r\n```python\r\nsource_t += [str(batch[src_lang][0])]\r\n```\r\n- Or with this line (if the batch size were larger than 1):\r\n```python\r\nsource_t += [str(text) for text in batch[src_lang]]\r\n```", "Problem solved! Thanks @albertvillanova, now I have even increased the batch size and it's crazy fast :rocket: !" ]
https://api.github.com/repos/huggingface/datasets/issues/395
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/395/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/395/comments
https://api.github.com/repos/huggingface/datasets/issues/395/events
https://github.com/huggingface/datasets/issues/395
657,454,983
MDU6SXNzdWU2NTc0NTQ5ODM=
395
Memory issue when doing select
[]
closed
false
null
1
2020-07-15T15:43:38Z
2020-07-16T08:07:31Z
2020-07-16T08:07:31Z
null
As noticed in #389, the following code loads the entire wikipedia in memory. ```python import nlp w = nlp.load_dataset("wikipedia", "20200501.en", split="train") w.select([0]) ``` This is caused by [this line](https://github.com/huggingface/nlp/blob/master/src/nlp/arrow_dataset.py#L626) for some reason, that tries to serialize the function with all the wikipedia data with it. It's not the case with `.map` or `.filter`. However functions that are based on `.select` like `.shuffle`, `.shard`, `.train_test_split`, `.sort` are affected.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/395/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/395/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/3401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3401/comments
https://api.github.com/repos/huggingface/datasets/issues/3401/events
https://github.com/huggingface/datasets/issues/3401
1,073,603,508
I_kwDODunzps4__eO0
3,401
Add Wikimedia pre-processed datasets
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
0
2021-12-07T17:33:19Z
2021-12-07T17:43:37Z
null
null
## Adding a Dataset - **Name:** Add pre-processed data to: - *wikimedia/wikipedia*: https://huggingface.co/datasets/wikimedia/wikipedia - *wikimedia/wikisource*: https://huggingface.co/datasets/wikimedia/wikisource - **Description:** Add pre-processed data to the Hub for all languages - **Paper:** *link to the dataset paper if available* - **Data:** *link to the Github repository or current dataset location* - **Motivation:** This will be very useful for the NLP community, as the pre-processing has a high cost for lot of researchers (both in computation and in knowledge) Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). CC: @geohci, @yjernite
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3401/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3401/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/6040
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6040/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6040/comments
https://api.github.com/repos/huggingface/datasets/issues/6040/events
https://github.com/huggingface/datasets/pull/6040
1,807,410,238
PR_kwDODunzps5VptVf
6,040
Fix legacy_dataset_infos
[]
closed
false
null
3
2023-07-17T09:56:21Z
2023-07-17T10:24:34Z
2023-07-17T10:16:03Z
null
was causing transformers CI to fail https://circleci.com/gh/huggingface/transformers/855105
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6040/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6040/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6040.diff", "html_url": "https://github.com/huggingface/datasets/pull/6040", "merged_at": "2023-07-17T10:16:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/6040.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6040" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006087 / 0.011353 (-0.005265) | 0.003567 / 0.011008 (-0.007442) | 0.079668 / 0.038508 (0.041160) | 0.063647 / 0.023109 (0.040538) | 0.323082 / 0.275898 (0.047184) | 0.348679 / 0.323480 (0.025199) | 0.004726 / 0.007986 (-0.003259) | 0.002955 / 0.004328 (-0.001373) | 0.062724 / 0.004250 (0.058473) | 0.050194 / 0.037052 (0.013142) | 0.321407 / 0.258489 (0.062918) | 0.355053 / 0.293841 (0.061212) | 0.026992 / 0.128546 (-0.101554) | 0.007994 / 0.075646 (-0.067653) | 0.260562 / 0.419271 (-0.158710) | 0.050933 / 0.043533 (0.007400) | 0.316644 / 0.255139 (0.061505) | 0.336759 / 0.283200 (0.053560) | 0.022581 / 0.141683 (-0.119101) | 1.481259 / 1.452155 (0.029104) | 1.535191 / 1.492716 (0.042475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194111 / 0.018006 (0.176104) | 0.448146 / 0.000490 (0.447656) | 0.000321 / 0.000200 (0.000121) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023908 / 0.037411 (-0.013503) | 0.073316 / 0.014526 (0.058790) | 0.085588 / 0.176557 (-0.090968) | 0.145377 / 0.737135 (-0.591759) | 0.084788 / 0.296338 (-0.211550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439327 / 0.215209 (0.224118) | 4.384833 / 2.077655 (2.307179) | 2.322943 / 1.504120 (0.818823) | 2.147737 / 1.541195 (0.606542) | 2.226725 / 1.468490 (0.758235) | 0.502957 / 4.584777 (-4.081820) | 3.098106 / 3.745712 (-0.647606) | 4.194642 / 5.269862 (-1.075220) | 2.598820 / 4.565676 (-1.966856) | 0.057942 / 0.424275 (-0.366333) | 0.006857 / 0.007607 (-0.000750) | 0.511517 / 0.226044 (0.285472) | 5.121797 / 2.268929 (2.852868) | 2.756506 / 55.444624 (-52.688118) | 2.424602 / 6.876477 (-4.451875) | 2.608342 / 2.142072 (0.466270) | 0.589498 / 4.805227 (-4.215729) | 0.126065 / 6.500664 (-6.374600) | 0.061456 / 0.075469 (-0.014013) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239928 / 1.841788 (-0.601860) | 18.423532 / 8.074308 (10.349224) | 13.935148 / 10.191392 (3.743756) | 0.129913 / 0.680424 (-0.550511) | 0.016744 / 0.534201 (-0.517457) | 0.333468 / 0.579283 (-0.245815) | 0.359615 / 0.434364 (-0.074749) | 0.383678 / 0.540337 (-0.156659) | 0.533007 / 1.386936 (-0.853929) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005980 / 0.011353 (-0.005373) | 0.003640 / 0.011008 (-0.007368) | 0.062500 / 0.038508 (0.023992) | 0.059843 / 0.023109 (0.036733) | 0.360993 / 0.275898 (0.085095) | 0.401981 / 0.323480 (0.078501) | 0.005495 / 0.007986 (-0.002490) | 0.002862 / 0.004328 (-0.001467) | 0.062491 / 0.004250 (0.058240) | 0.050778 / 0.037052 (0.013726) | 0.371007 / 0.258489 (0.112518) | 0.405154 / 0.293841 (0.111313) | 0.027390 / 0.128546 (-0.101156) | 0.008042 / 0.075646 (-0.067604) | 0.067590 / 0.419271 (-0.351681) | 0.042485 / 0.043533 (-0.001048) | 0.361305 / 0.255139 (0.106166) | 0.388669 / 0.283200 (0.105469) | 0.024143 / 0.141683 (-0.117540) | 1.451508 / 1.452155 (-0.000647) | 1.490431 / 1.492716 (-0.002285) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.175976 / 0.018006 (0.157970) | 0.428923 / 0.000490 (0.428434) | 0.002099 / 0.000200 (0.001899) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026346 / 0.037411 (-0.011065) | 0.078084 / 0.014526 (0.063558) | 0.087287 / 0.176557 (-0.089269) | 0.144179 / 0.737135 (-0.592957) | 0.088286 / 0.296338 (-0.208053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450436 / 0.215209 (0.235227) | 4.488801 / 2.077655 (2.411146) | 2.479303 / 1.504120 (0.975184) | 2.305396 / 1.541195 (0.764201) | 2.370370 / 1.468490 (0.901879) | 0.502355 / 4.584777 (-4.082422) | 3.094733 / 3.745712 (-0.650979) | 4.062367 / 5.269862 (-1.207495) | 2.587506 / 4.565676 (-1.978170) | 0.058245 / 0.424275 (-0.366030) | 0.006487 / 0.007607 (-0.001120) | 0.524147 / 0.226044 (0.298102) | 5.236876 / 2.268929 (2.967947) | 2.897134 / 55.444624 (-52.547490) | 2.574631 / 6.876477 (-4.301846) | 2.620307 / 2.142072 (0.478235) | 0.586963 / 4.805227 (-4.218265) | 0.125761 / 6.500664 (-6.374903) | 0.062264 / 0.075469 (-0.013205) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.299668 / 1.841788 (-0.542120) | 19.004441 / 8.074308 (10.930133) | 13.841867 / 10.191392 (3.650475) | 0.159674 / 0.680424 (-0.520750) | 0.016699 / 0.534201 (-0.517502) | 0.331868 / 0.579283 (-0.247415) | 0.344604 / 0.434364 (-0.089760) | 0.379391 / 0.540337 (-0.160947) | 0.514790 / 1.386936 (-0.872146) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#47a006a90e9711b33db70b0ef2d2cefaadfa2179 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005792 / 0.011353 (-0.005561) | 0.003519 / 0.011008 (-0.007489) | 0.079133 / 0.038508 (0.040625) | 0.057858 / 0.023109 (0.034749) | 0.314206 / 0.275898 (0.038308) | 0.346939 / 0.323480 (0.023459) | 0.004583 / 0.007986 (-0.003403) | 0.002824 / 0.004328 (-0.001504) | 0.061652 / 0.004250 (0.057402) | 0.048520 / 0.037052 (0.011467) | 0.318018 / 0.258489 (0.059529) | 0.350350 / 0.293841 (0.056509) | 0.026284 / 0.128546 (-0.102262) | 0.007827 / 0.075646 (-0.067819) | 0.259624 / 0.419271 (-0.159647) | 0.052318 / 0.043533 (0.008786) | 0.317400 / 0.255139 (0.062261) | 0.340530 / 0.283200 (0.057331) | 0.025181 / 0.141683 (-0.116501) | 1.459208 / 1.452155 (0.007053) | 1.529158 / 1.492716 (0.036442) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.169692 / 0.018006 (0.151686) | 0.432638 / 0.000490 (0.432148) | 0.003675 / 0.000200 (0.003475) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022956 / 0.037411 (-0.014456) | 0.071860 / 0.014526 (0.057334) | 0.082159 / 0.176557 (-0.094398) | 0.142560 / 0.737135 (-0.594576) | 0.082333 / 0.296338 (-0.214006) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397923 / 0.215209 (0.182714) | 3.958757 / 2.077655 (1.881102) | 1.925837 / 1.504120 (0.421717) | 1.758114 / 1.541195 (0.216919) | 1.808845 / 1.468490 (0.340354) | 0.501116 / 4.584777 (-4.083661) | 3.007739 / 3.745712 (-0.737973) | 3.295755 / 5.269862 (-1.974106) | 2.123843 / 4.565676 (-2.441833) | 0.057174 / 0.424275 (-0.367101) | 0.006426 / 0.007607 (-0.001182) | 0.468196 / 0.226044 (0.242152) | 4.677392 / 2.268929 (2.408464) | 2.334179 / 55.444624 (-53.110446) | 1.989283 / 6.876477 (-4.887194) | 2.140091 / 2.142072 (-0.001981) | 0.590700 / 4.805227 (-4.214527) | 0.124066 / 6.500664 (-6.376598) | 0.059931 / 0.075469 (-0.015538) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224547 / 1.841788 (-0.617240) | 17.866979 / 8.074308 (9.792671) | 13.142009 / 10.191392 (2.950617) | 0.147081 / 0.680424 (-0.533343) | 0.016777 / 0.534201 (-0.517424) | 0.327766 / 0.579283 (-0.251517) | 0.343988 / 0.434364 (-0.090376) | 0.383268 / 0.540337 (-0.157070) | 0.528109 / 1.386936 (-0.858827) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006145 / 0.011353 (-0.005208) | 0.003634 / 0.011008 (-0.007374) | 0.062887 / 0.038508 (0.024379) | 0.062659 / 0.023109 (0.039550) | 0.362962 / 0.275898 (0.087064) | 0.405149 / 0.323480 (0.081669) | 0.004821 / 0.007986 (-0.003164) | 0.002888 / 0.004328 (-0.001441) | 0.062982 / 0.004250 (0.058732) | 0.051929 / 0.037052 (0.014877) | 0.366825 / 0.258489 (0.108336) | 0.409830 / 0.293841 (0.115989) | 0.027263 / 0.128546 (-0.101283) | 0.007972 / 0.075646 (-0.067674) | 0.067413 / 0.419271 (-0.351858) | 0.044233 / 0.043533 (0.000700) | 0.365087 / 0.255139 (0.109948) | 0.393845 / 0.283200 (0.110646) | 0.027740 / 0.141683 (-0.113943) | 1.497896 / 1.452155 (0.045741) | 1.549419 / 1.492716 (0.056703) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225510 / 0.018006 (0.207503) | 0.417054 / 0.000490 (0.416564) | 0.002184 / 0.000200 (0.001984) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025503 / 0.037411 (-0.011908) | 0.076164 / 0.014526 (0.061638) | 0.086110 / 0.176557 (-0.090446) | 0.140387 / 0.737135 (-0.596748) | 0.086956 / 0.296338 (-0.209382) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469667 / 0.215209 (0.254458) | 4.689915 / 2.077655 (2.612261) | 2.685000 / 1.504120 (1.180880) | 2.516160 / 1.541195 (0.974965) | 2.531733 / 1.468490 (1.063243) | 0.501675 / 4.584777 (-4.083102) | 3.000579 / 3.745712 (-0.745133) | 2.853376 / 5.269862 (-2.416486) | 1.810677 / 4.565676 (-2.754999) | 0.057632 / 0.424275 (-0.366643) | 0.006390 / 0.007607 (-0.001217) | 0.543986 / 0.226044 (0.317941) | 5.432837 / 2.268929 (3.163908) | 3.138797 / 55.444624 (-52.305827) | 2.813141 / 6.876477 (-4.063336) | 2.803681 / 2.142072 (0.661609) | 0.588736 / 4.805227 (-4.216491) | 0.125696 / 6.500664 (-6.374968) | 0.062492 / 0.075469 (-0.012977) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.337163 / 1.841788 (-0.504624) | 18.611715 / 8.074308 (10.537407) | 13.953016 / 10.191392 (3.761624) | 0.154670 / 0.680424 (-0.525754) | 0.016523 / 0.534201 (-0.517678) | 0.333898 / 0.579283 (-0.245385) | 0.336520 / 0.434364 (-0.097844) | 0.389032 / 0.540337 (-0.151305) | 0.529202 / 1.386936 (-0.857734) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01d4b3330f2cc243a3f3b0cd61ec5558466c40fd \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/5727
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5727/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5727/comments
https://api.github.com/repos/huggingface/datasets/issues/5727/events
https://github.com/huggingface/datasets/issues/5727
1,661,536,363
I_kwDODunzps5jCQhr
5,727
load_dataset fails with FileNotFound error on Windows
[]
closed
false
null
4
2023-04-10T23:21:12Z
2023-07-21T14:08:20Z
2023-07-21T14:08:19Z
null
### Describe the bug Although I can import and run the datasets library in a Colab environment, I cannot successfully load any data on my own machine (Windows 10) despite following the install steps: (1) create conda environment (2) activate environment (3) install with: ``conda` install -c huggingface -c conda-forge datasets` Then ``` from datasets import load_dataset # this or any other example from the website fails with the FileNotFoundError glue = load_dataset("glue", "ax") ``` **Below I have pasted the error omitting the full path**: ``` raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at C:\Users\...\glue\glue.py or any data file in the same directory. Couldn't find 'glue' on the Hugging Face Hub either: FileNotFoundError: [WinError 3] The system cannot find the path specified: 'C:\\Users\\...\\.cache\\huggingface' ``` ### Steps to reproduce the bug On Windows 10 1) create a minimal conda environment (with just Python) (2) activate environment (3) install datasets with: ``conda` install -c huggingface -c conda-forge datasets` (4) import load_dataset and follow example usage from any dataset card. ### Expected behavior The expected behavior is to load the file into the Python session running on my machine without error. ### Environment info ``` # Name Version Build Channel aiohttp 3.8.4 py311ha68e1ae_0 conda-forge aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge arrow-cpp 11.0.0 h57928b3_13_cpu conda-forge async-timeout 4.0.2 pyhd8ed1ab_0 conda-forge attrs 22.2.0 pyh71513ae_0 conda-forge aws-c-auth 0.6.26 h1262f0c_1 conda-forge aws-c-cal 0.5.21 h7cda486_2 conda-forge aws-c-common 0.8.14 hcfcfb64_0 conda-forge aws-c-compression 0.2.16 h8a79959_5 conda-forge aws-c-event-stream 0.2.20 h5f78564_4 conda-forge aws-c-http 0.7.6 h2545be9_0 conda-forge aws-c-io 0.13.19 h0d2781e_3 conda-forge aws-c-mqtt 0.8.6 hd211e0c_12 conda-forge aws-c-s3 0.2.7 h8113e7b_1 conda-forge aws-c-sdkutils 0.1.8 h8a79959_0 conda-forge aws-checksums 0.1.14 h8a79959_5 conda-forge aws-crt-cpp 0.19.8 he6d3b81_12 conda-forge aws-sdk-cpp 1.10.57 h64004b3_8 conda-forge brotlipy 0.7.0 py311ha68e1ae_1005 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge c-ares 1.19.0 h2bbff1b_0 ca-certificates 2023.01.10 haa95532_0 certifi 2022.12.7 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311h7d9ee11_3 conda-forge charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge colorama 0.4.6 pyhd8ed1ab_0 conda-forge cryptography 40.0.1 py311h28e9c30_0 conda-forge dataclasses 0.8 pyhc8e2a94_3 conda-forge datasets 2.11.0 py_0 huggingface dill 0.3.6 pyhd8ed1ab_1 conda-forge filelock 3.11.0 pyhd8ed1ab_0 conda-forge frozenlist 1.3.3 py311ha68e1ae_0 conda-forge fsspec 2023.4.0 pyh1a96a4e_0 conda-forge gflags 2.2.2 ha925a31_1004 conda-forge glog 0.6.0 h4797de2_0 conda-forge huggingface_hub 0.13.4 py_0 huggingface idna 3.4 pyhd8ed1ab_0 conda-forge importlib-metadata 6.3.0 pyha770c72_0 conda-forge importlib_metadata 6.3.0 hd8ed1ab_0 conda-forge intel-openmp 2023.0.0 h57928b3_25922 conda-forge krb5 1.20.1 heb0366b_0 conda-forge libabseil 20230125.0 cxx17_h63175ca_1 conda-forge libarrow 11.0.0 h04c43f8_13_cpu conda-forge libblas 3.9.0 16_win64_mkl conda-forge libbrotlicommon 1.0.9 hcfcfb64_8 conda-forge libbrotlidec 1.0.9 hcfcfb64_8 conda-forge libbrotlienc 1.0.9 hcfcfb64_8 conda-forge libcblas 3.9.0 16_win64_mkl conda-forge libcrc32c 1.1.2 h0e60522_0 conda-forge libcurl 7.88.1 h68f0423_1 conda-forge libexpat 2.5.0 h63175ca_1 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libgoogle-cloud 2.8.0 hf2ff781_1 conda-forge libgrpc 1.52.1 h32da247_1 conda-forge libhwloc 2.9.0 h51c2c0f_0 conda-forge libiconv 1.17 h8ffe710_0 conda-forge liblapack 3.9.0 16_win64_mkl conda-forge libprotobuf 3.21.12 h12be248_0 conda-forge libsqlite 3.40.0 hcfcfb64_0 conda-forge libssh2 1.10.0 h9a1e1f7_3 conda-forge libthrift 0.18.1 h9ce19ad_0 conda-forge libutf8proc 2.8.0 h82a8f57_0 conda-forge libxml2 2.10.3 hc3477c8_6 conda-forge libzlib 1.2.13 hcfcfb64_4 conda-forge lz4-c 1.9.4 hcfcfb64_0 conda-forge mkl 2022.1.0 h6a75c08_874 conda-forge multidict 6.0.4 py311ha68e1ae_0 conda-forge multiprocess 0.70.14 py311ha68e1ae_3 conda-forge numpy 1.24.2 py311h0b4df5a_0 conda-forge openssl 3.1.0 hcfcfb64_0 conda-forge orc 1.8.3 hada7b9e_0 conda-forge packaging 23.0 pyhd8ed1ab_0 conda-forge pandas 2.0.0 py311hf63dbb6_0 conda-forge parquet-cpp 1.5.1 2 conda-forge pip 23.0.1 pyhd8ed1ab_0 conda-forge pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge pyarrow 11.0.0 py311h6a6099b_13_cpu conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyh0701188_6 conda-forge python 3.11.3 h2628c8c_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-tzdata 2023.3 pyhd8ed1ab_0 conda-forge python-xxhash 3.2.0 py311ha68e1ae_0 conda-forge python_abi 3.11 3_cp311 conda-forge pytz 2023.3 pyhd8ed1ab_0 conda-forge pyyaml 6.0 py311ha68e1ae_5 conda-forge re2 2023.02.02 h63175ca_0 conda-forge requests 2.28.2 pyhd8ed1ab_1 conda-forge setuptools 67.6.1 pyhd8ed1ab_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snappy 1.1.10 hfb803bf_0 conda-forge tbb 2021.8.0 h91493d7_0 conda-forge tk 8.6.12 h8ffe710_0 conda-forge tqdm 4.65.0 pyhd8ed1ab_1 conda-forge typing-extensions 4.5.0 hd8ed1ab_0 conda-forge typing_extensions 4.5.0 pyha770c72_0 conda-forge tzdata 2023c h71feb2d_0 conda-forge ucrt 10.0.22621.0 h57928b3_0 conda-forge urllib3 1.26.15 pyhd8ed1ab_0 conda-forge vc 14.3 hb6edc58_10 conda-forge vs2015_runtime 14.34.31931 h4c5c07a_10 conda-forge wheel 0.40.0 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge xxhash 0.8.1 hcfcfb64_0 conda-forge xz 5.2.10 h8cc25b3_1 yaml 0.2.5 h8ffe710_2 conda-forge yarl 1.8.2 py311ha68e1ae_0 conda-forge zipp 3.15.0 pyhd8ed1ab_0 conda-forge zlib 1.2.13 hcfcfb64_4 conda-forge zstd 1.5.4 hd43e919_0 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5727/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5727/timeline
null
completed
null
null
false
[ "Hi! Can you please paste the entire error stack trace, not only the last few lines?", "`----> 1 dataset = datasets.load_dataset(\"glue\", \"ax\")\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1767, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1762 verification_mode = VerificationMode(\r\n 1763 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS\r\n 1764 )\r\n 1766 # Create a dataset builder\r\n-> 1767 builder_instance = load_dataset_builder(\r\n 1768 path=path,\r\n 1769 name=name,\r\n 1770 data_dir=data_dir,\r\n 1771 data_files=data_files,\r\n 1772 cache_dir=cache_dir,\r\n 1773 features=features,\r\n 1774 download_config=download_config,\r\n 1775 download_mode=download_mode,\r\n 1776 revision=revision,\r\n 1777 use_auth_token=use_auth_token,\r\n 1778 storage_options=storage_options,\r\n 1779 **config_kwargs,\r\n 1780 )\r\n 1782 # Return iterable dataset in case of streaming\r\n 1783 if streaming:\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1498, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\r\n 1496 download_config = download_config.copy() if download_config else DownloadConfig()\r\n 1497 download_config.use_auth_token = use_auth_token\r\n-> 1498 dataset_module = dataset_module_factory(\r\n 1499 path,\r\n 1500 revision=revision,\r\n 1501 download_config=download_config,\r\n 1502 download_mode=download_mode,\r\n 1503 data_dir=data_dir,\r\n 1504 data_files=data_files,\r\n 1505 )\r\n 1507 # Get dataset builder class from the processing script\r\n 1508 builder_cls = import_main_class(dataset_module.module_path)\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1211, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\r\n 1209 raise e1 from None\r\n 1210 if isinstance(e1, FileNotFoundError):\r\n-> 1211 raise FileNotFoundError(\r\n 1212 f\"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. \"\r\n 1213 f\"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}\"\r\n 1214 ) from None\r\n 1215 raise e1 from None\r\n 1216 else:`", "Okay, this is the issue:\r\n```\r\nFileNotFoundError: [WinError 3] The system cannot find the path specified: \r\n'C:\\\\Users\\\\...\\\\.cache\\\\huggingface'\r\n``` \r\n\r\nI don't remember seeing this error before.\r\n\r\nI guess it could happen in a multi-process environment if one of the processes deletes the `datasets` cache as the other one is loading a dataset (with `load_dataset`), so make sure that's not the case. Also, you can disable the Windows max path length limit (if enabled), but this is most likely not the problem.", "Closing due to inactivity." ]
https://api.github.com/repos/huggingface/datasets/issues/370
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/370/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/370/comments
https://api.github.com/repos/huggingface/datasets/issues/370/events
https://github.com/huggingface/datasets/pull/370
654,304,193
MDExOlB1bGxSZXF1ZXN0NDQ3MDU3NTIw
370
Allow indexing Dataset via np.ndarray
[]
closed
false
null
1
2020-07-09T19:43:15Z
2020-07-10T14:05:44Z
2020-07-10T14:05:43Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/370/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/370/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/370.diff", "html_url": "https://github.com/huggingface/datasets/pull/370", "merged_at": "2020-07-10T14:05:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/370.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/370" }
true
[ "Looks like a flaky CI, failed download from S3." ]
https://api.github.com/repos/huggingface/datasets/issues/1287
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1287/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1287/comments
https://api.github.com/repos/huggingface/datasets/issues/1287/events
https://github.com/huggingface/datasets/issues/1287
759,300,992
MDU6SXNzdWU3NTkzMDA5OTI=
1,287
'iwslt2017-ro-nl', cannot be downloaded
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
null
4
2020-12-08T09:56:55Z
2022-06-13T10:41:33Z
2022-06-13T10:41:33Z
null
Hi I am trying `>>> datasets.load_dataset("iwslt2017", 'iwslt2017-ro-nl', split="train")` getting this error thank you for your help ``` cahce dir /idiap/temp/rkarimi/cache_home_1/datasets cahce dir /idiap/temp/rkarimi/cache_home_1/datasets Downloading and preparing dataset iwsl_t217/iwslt2017-ro-nl (download: 314.07 MiB, generated: 39.92 MiB, post-processed: Unknown size, total: 354.00 MiB) to /idiap/temp/rkarimi/cache_home_1/datasets/iwsl_t217/iwslt2017-ro-nl/1.0.0/cca6935a0851a8ceac1202a62c958738bdfa23c57a51bc52ac1c5ebd2aa172cd... cahce dir /idiap/temp/rkarimi/cache_home_1/datasets cahce dir /idiap/temp/rkarimi/cache_home_1/datasets/downloads Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/builder.py", line 476, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/builder.py", line 531, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File " /idiap/home/rkarimi/.cache/huggingface/modules/datasets_modules/datasets/iwslt2017/cca6935a0851a8ceac1202a62c958738bdfa23c57a51bc52ac1c5ebd2aa172cd/iwslt2017.py", line 118, in _split_generators dl_dir = dl_manager.download_and_extract(MULTI_URL) File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/utils/download_manager.py", line 254, in download_and_extract return self.extract(self.download(url_or_urls)) File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/utils/download_manager.py", line 179, in download num_proc=download_config.num_proc, File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/utils/py_utils.py", line 216, in map_nested return function(data_struct) File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 308, in cached_path use_etag=download_config.use_etag, File "/idiap/user/rkarimi/libs/anaconda3/envs/internship/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 477, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach https://wit3.fbk.eu/archive/2017-01-trnmted//texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.tgz ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1287/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1287/timeline
null
completed
null
null
false
[ "the same issue with datasets.load_dataset(\"iwslt2017\", 'iwslt2017-en-nl', split=split), ..... ", "even with setting master like the following command, still remains \r\n\r\ndatasets.load_dataset(\"iwslt2017\", 'iwslt2017-en-nl', split=\"train\", script_version=\"master\")\r\n", "Looks like the data has been moved from its original location to google drive\r\n\r\nNew url: https://drive.google.com/u/0/uc?id=12ycYSzLIG253AFN35Y6qoyf9wtkOjakp&export=download", "Fixed by #4481 " ]
https://api.github.com/repos/huggingface/datasets/issues/6088
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6088/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6088/comments
https://api.github.com/repos/huggingface/datasets/issues/6088/events
https://github.com/huggingface/datasets/issues/6088
1,825,665,235
I_kwDODunzps5s0XDT
6,088
Loading local data files initiates web requests
[]
closed
false
null
0
2023-07-28T04:06:26Z
2023-07-28T05:02:22Z
2023-07-28T05:02:22Z
null
As documented in the [official docs](https://huggingface.co/docs/datasets/v2.14.0/en/package_reference/loading_methods#datasets.load_dataset.example-2), I tried to load datasets from local files by ```python # Load a JSON file from datasets import load_dataset ds = load_dataset('json', data_files='path/to/local/my_dataset.json') ``` But this failed on a web request because I'm executing the script on a machine without Internet access. Stacktrace shows ``` in PackagedDatasetModuleFactory.__init__(self, name, data_dir, data_files, download_config, download_mode) 940 self.download_config = download_config 941 self.download_mode = download_mode --> 942 increase_load_count(name, resource_type="dataset") ``` I've read from the source code that this can be fixed by setting environment variable to run in offline mode. I'm just wondering that is this an expected behaviour that even loading a LOCAL JSON file requires Internet access by default? And what's the point of requesting to `increase_load_count` on some server when loading just LOCAL data files?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6088/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6088/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/413/comments
https://api.github.com/repos/huggingface/datasets/issues/413/events
https://github.com/huggingface/datasets/issues/413
660,063,655
MDU6SXNzdWU2NjAwNjM2NTU=
413
Is there a way to download only NQ dev?
[]
closed
false
null
3
2020-07-18T10:28:23Z
2022-02-11T09:50:21Z
2022-02-11T09:50:21Z
null
Maybe I missed that in the docs, but is there a way to only download the dev set of natural questions (~1 GB)? As we want to benchmark QA models on different datasets, I would like to avoid downloading the 41GB of training data. I tried ``` dataset = nlp.load_dataset('natural_questions', split="validation", beam_runner="DirectRunner") ``` But this still triggered a big download of presumably the whole dataset. Is there any way of doing this or are splits / slicing options only available after downloading? Thanks!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/413/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/413/timeline
null
completed
null
null
false
[ "Unfortunately it's not possible to download only the dev set of NQ.\r\n\r\nI think we could add a way to download only the test set by adding a custom configuration to the processing script though.", "Ok, got it. I think this could be a valuable feature - especially for large datasets like NQ, but potentially also others. \r\nFor us, it will in this case make the difference of using the library or keeping the old downloads of the raw dev datasets. \r\nHowever, I don't know if that fits into your plans with the library and can also understand if you don't want to support this.", "I don't think we could force this behavior generally since the dataset script authors are free to organize the file download as they want (sometimes the mapping between split and files can be very much nontrivial) but we can add an additional configuration for Natural Question indeed as @lhoestq indicate." ]
https://api.github.com/repos/huggingface/datasets/issues/895
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/895/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/895/comments
https://api.github.com/repos/huggingface/datasets/issues/895/events
https://github.com/huggingface/datasets/pull/895
751,782,295
MDExOlB1bGxSZXF1ZXN0NTI4MjMyMjU3
895
Better messages regarding split naming
[]
closed
false
null
0
2020-11-26T18:55:46Z
2020-11-27T13:31:00Z
2020-11-27T13:30:59Z
null
I made explicit the error message when a bad split name is used. Also I wanted to allow the `-` symbol for split names but actually this symbol is used to name the arrow files `{dataset_name}-{dataset_split}.arrow` so we should probably keep it this way, i.e. not allowing the `-` symbol in split names. Moreover in the future we might want to use `{dataset_name}-{dataset_split}-{shard_id}_of_{n_shards}.arrow` and reuse the `-` symbol.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/895/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/895/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/895.diff", "html_url": "https://github.com/huggingface/datasets/pull/895", "merged_at": "2020-11-27T13:30:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/895.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/895" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3094
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3094/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3094/comments
https://api.github.com/repos/huggingface/datasets/issues/3094/events
https://github.com/huggingface/datasets/issues/3094
1,027,328,633
I_kwDODunzps49O8p5
3,094
Support loading a dataset from SQLite files
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues", "id": 3761482852, "name": "good second issue", "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue" } ]
closed
false
null
2
2021-10-15T10:58:41Z
2022-10-03T16:32:29Z
2022-10-03T16:32:29Z
null
As requested by @julien-c, we could eventually support loading a dataset from SQLite files, like it is the case for JSON/CSV files.
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/3094/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3094/timeline
null
completed
null
null
false
[ "for reference Kaggle has a good number of open source datasets stored in sqlite\r\n\r\nAlternatively a tutorial or tool on how to convert from sqlite to parquet would be cool too", "Hello, could we leverage [`pandas.read_sql`](https://pandas.pydata.org/docs/reference/api/pandas.read_sql.html) for this? \r\n\r\nThis would be basically the same as [`CSVBuilder`](https://github.com/huggingface/datasets/blob/7380140accf522a4363bb56c0b77a4190f49bed6/src/datasets/packaged_modules/csv/csv.py#L127)\r\n, but uses `pandas.read_sql(..., chunksize=1)` instead of `pandas.read_csv(..., iterator=True)`\r\n\r\nI'm happy to work on this :) \r\n\r\nself-assign" ]
https://api.github.com/repos/huggingface/datasets/issues/4478
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4478/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4478/comments
https://api.github.com/repos/huggingface/datasets/issues/4478/events
https://github.com/huggingface/datasets/issues/4478
1,268,358,213
I_kwDODunzps5LmZxF
4,478
Dataset slow during model training
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
5
2022-06-11T19:40:19Z
2022-06-14T12:04:31Z
null
null
## Describe the bug While migrating towards 🤗 Datasets, I encountered an odd performance degradation: training suddenly slows down dramatically. I train with an image dataset using Keras and execute a `to_tf_dataset` just before training. First, I have optimized my dataset following https://discuss.huggingface.co/t/solved-image-dataset-seems-slow-for-larger-image-size/10960/6, which actually improved the situation from what I had before but did not completely solve it. Second, I saved and loaded my dataset using `tf.data.experimental.save` and `tf.data.experimental.load` before training (for which I would have expected no performance change). However, I ended up with the performance I had before tinkering with 🤗 Datasets. Any idea what's the reason for this and how to speed-up training with 🤗 Datasets? ## Steps to reproduce the bug ```python # Sample code to reproduce the bug from datasets import load_dataset import os dataset_dir = "./dataset" prep_dataset_dir = "./prepdataset" model_dir = "./model" # Load Data dataset = load_dataset("Lehrig/Monkey-Species-Collection", "downsized") def read_image_file(example): with open(example["image"].filename, "rb") as f: example["image"] = {"bytes": f.read()} return example dataset = dataset.map(read_image_file) dataset.save_to_disk(dataset_dir) # Preprocess from datasets import ( Array3D, DatasetDict, Features, load_from_disk, Sequence, Value ) import numpy as np from transformers import ImageFeatureExtractionMixin dataset = load_from_disk(dataset_dir) num_classes = dataset["train"].features["label"].num_classes one_hot_matrix = np.eye(num_classes) feature_extractor = ImageFeatureExtractionMixin() def to_pixels(image): image = feature_extractor.resize(image, size=size) image = feature_extractor.to_numpy_array(image, channel_first=False) image = image / 255.0 return image def process(examples): examples["pixel_values"] = [ to_pixels(image) for image in examples["image"] ] examples["label"] = [ one_hot_matrix[label] for label in examples["label"] ] return examples features = Features({ "pixel_values": Array3D(dtype="float32", shape=(size, size, 3)), "label": Sequence(feature=Value(dtype="int32"), length=num_classes) }) prep_dataset = dataset.map( process, remove_columns=["image"], batched=True, batch_size=batch_size, num_proc=2, features=features, ) prep_dataset = prep_dataset.with_format("numpy") # Split train_dev_dataset = prep_dataset['test'].train_test_split( test_size=test_size, shuffle=True, seed=seed ) train_dev_test_dataset = DatasetDict({ 'train': train_dev_dataset['train'], 'dev': train_dev_dataset['test'], 'test': prep_dataset['test'], }) train_dev_test_dataset.save_to_disk(prep_dataset_dir) # Train Model import datetime import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.applications import InceptionV3 from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D, BatchNormalization from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping from transformers import DefaultDataCollator dataset = load_from_disk(prep_data_dir) data_collator = DefaultDataCollator(return_tensors="tf") train_dataset = dataset["train"].to_tf_dataset( columns=['pixel_values'], label_cols=['label'], shuffle=True, batch_size=batch_size, collate_fn=data_collator ) validation_dataset = dataset["dev"].to_tf_dataset( columns=['pixel_values'], label_cols=['label'], shuffle=False, batch_size=batch_size, collate_fn=data_collator ) print(f'{datetime.datetime.now()} - Saving Data') tf.data.experimental.save(train_dataset, model_dir+"/train") tf.data.experimental.save(validation_dataset, model_dir+"/val") print(f'{datetime.datetime.now()} - Loading Data') train_dataset = tf.data.experimental.load(model_dir+"/train") validation_dataset = tf.data.experimental.load(model_dir+"/val") shape = np.shape(dataset["train"][0]["pixel_values"]) backbone = InceptionV3( include_top=False, weights='imagenet', input_shape=shape ) for layer in backbone.layers: layer.trainable = False model = Sequential() model.add(backbone) model.add(GlobalAveragePooling2D()) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(64, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(10, activation='softmax')) model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) print(model.summary()) earlyStopping = EarlyStopping( monitor='val_loss', patience=10, verbose=0, mode='min' ) mcp_save = ModelCheckpoint( f'{model_dir}/best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min' ) reduce_lr_loss = ReduceLROnPlateau( monitor='val_loss', factor=0.1, patience=7, verbose=1, min_delta=0.0001, mode='min' ) hist = model.fit( train_dataset, epochs=epochs, validation_data=validation_dataset, callbacks=[earlyStopping, mcp_save, reduce_lr_loss] ) ``` ## Expected results Same performance when training without my "save/load hack" or a good explanation/recommendation about the issue. ## Actual results Performance slower without my "save/load hack". **Epoch Breakdown (without my "save/load hack"):** - Epoch 1/10 41s 2s/step - loss: 1.6302 - accuracy: 0.5048 - val_loss: 1.4713 - val_accuracy: 0.3273 - lr: 0.0010 - Epoch 2/10 32s 2s/step - loss: 0.5357 - accuracy: 0.8510 - val_loss: 1.0447 - val_accuracy: 0.5818 - lr: 0.0010 - Epoch 3/10 36s 3s/step - loss: 0.3547 - accuracy: 0.9231 - val_loss: 0.6245 - val_accuracy: 0.7091 - lr: 0.0010 - Epoch 4/10 36s 3s/step - loss: 0.2721 - accuracy: 0.9231 - val_loss: 0.3395 - val_accuracy: 0.9091 - lr: 0.0010 - Epoch 5/10 32s 2s/step - loss: 0.1676 - accuracy: 0.9856 - val_loss: 0.2187 - val_accuracy: 0.9636 - lr: 0.0010 - Epoch 6/10 42s 3s/step - loss: 0.2066 - accuracy: 0.9615 - val_loss: 0.1635 - val_accuracy: 0.9636 - lr: 0.0010 - Epoch 7/10 32s 2s/step - loss: 0.1814 - accuracy: 0.9423 - val_loss: 0.1418 - val_accuracy: 0.9636 - lr: 0.0010 - Epoch 8/10 32s 2s/step - loss: 0.1301 - accuracy: 0.9856 - val_loss: 0.1388 - val_accuracy: 0.9818 - lr: 0.0010 - Epoch 9/10 loss: 0.1102 - accuracy: 0.9856 - val_loss: 0.1185 - val_accuracy: 0.9818 - lr: 0.0010 - Epoch 10/10 32s 2s/step - loss: 0.1013 - accuracy: 0.9808 - val_loss: 0.0978 - val_accuracy: 0.9818 - lr: 0.0010 **Epoch Breakdown (with my "save/load hack"):** - Epoch 1/10 13s 625ms/step - loss: 3.0478 - accuracy: 0.1146 - val_loss: 2.3061 - val_accuracy: 0.0727 - lr: 0.0010 - Epoch 2/10 0s 80ms/step - loss: 2.3105 - accuracy: 0.2656 - val_loss: 2.3085 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 3/10 0s 77ms/step - loss: 1.8608 - accuracy: 0.3542 - val_loss: 2.3130 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 4/10 1s 98ms/step - loss: 1.8677 - accuracy: 0.3750 - val_loss: 2.3157 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 5/10 1s 204ms/step - loss: 1.5561 - accuracy: 0.4583 - val_loss: 2.3049 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 6/10 1s 210ms/step - loss: 1.4657 - accuracy: 0.4896 - val_loss: 2.2944 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 7/10 1s 205ms/step - loss: 1.4018 - accuracy: 0.5312 - val_loss: 2.2917 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 8/10 1s 207ms/step - loss: 1.2370 - accuracy: 0.5729 - val_loss: 2.2814 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 9/10 1s 214ms/step - loss: 1.1190 - accuracy: 0.6250 - val_loss: 2.2733 - val_accuracy: 0.0909 - lr: 0.0010 - Epoch 10/10 1s 207ms/step - loss: 1.1484 - accuracy: 0.6302 - val_loss: 2.2624 - val_accuracy: 0.0909 - lr: 0.0010 ## Environment info - `datasets` version: 2.2.2 - Platform: Linux-4.18.0-305.45.1.el8_4.ppc64le-ppc64le-with-glibc2.17 - Python version: 3.8.13 - PyArrow version: 7.0.0 - Pandas version: 1.4.2 - TensorFlow: 2.8.0 - GPU (used during training): Tesla V100-SXM2-32GB
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4478/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4478/timeline
null
null
null
null
false
[ "Hi ! cc @Rocketknight1 maybe you know better ?\r\n\r\nI'm not too familiar with `tf.data.experimental.save`. Note that `datasets` uses memory mapping, so depending on your hardware and the disk you are using you can expect performance differences with a dataset loaded in RAM", "Hi @lehrig, I suspect what's happening here is that our `to_tf_dataset()` method has some performance issues when streaming samples. This is usually not a problem, but they become apparent when streaming a vision dataset into a very small vision model, which will need a lot of sample throughput to saturate the GPU.\r\n\r\nWhen you save a `tf.data.Dataset` with `tf.data.experimental.save`, all of the samples from the dataset (which are, in this case, batches of images), are saved to disk. When you load this saved dataset, you're effectively bypassing `to_tf_dataset()` entirely, which alleviates this performance bottleneck.\r\n\r\n`to_tf_dataset()` is something we're actively working on overhauling right now - particularly for image datasets, we want to make it possible to access the underlying images with `tf.data` without going through the current layer of indirection with `Arrow`, which should massively improve simplicity and performance. \r\n\r\nHowever, if you just want this to work quickly but without needing your save/load hack, my advice would be to simply load the dataset into memory if it's small enough to fit. Since all your samples have the same dimensions, you can do this simply with:\r\n\r\n```\r\ndataset = load_from_disk(prep_data_dir)\r\ndataset = dataset.with_format(\"numpy\")\r\ndata_in_memory = dataset[:]\r\n```\r\n\r\nThen you can simply do something like:\r\n\r\n```\r\nmodel.fit(data_in_memory[\"pixel_values\"], data_in_memory[\"labels\"])\r\n```", "Thanks for the information! \r\n\r\nI have now updated the training code like so:\r\n\r\n```\r\ndataset = load_from_disk(prep_data_dir)\r\ntrain_dataset = dataset[\"train\"][:]\r\nvalidation_dataset = dataset[\"dev\"][:]\r\n\r\n...\r\n\r\nmodel.fit(\r\n train_dataset[\"pixel_values\"],\r\n train_dataset[\"label\"],\r\n epochs=epochs,\r\n validation_data=(\r\n validation_dataset[\"pixel_values\"],\r\n validation_dataset[\"label\"]\r\n ),\r\n callbacks=[earlyStopping, mcp_save, reduce_lr_loss]\r\n)\r\n```\r\n\r\n- Creating the in-memory dataset is quite quick\r\n- But: There is now a long wait (~4-5 Minutes) before the training starts (why?)\r\n- And: Training times have improved but the very first epoch leaves me wondering why it takes so long (why?)\r\n\r\n**Epoch Breakdown:**\r\n- Epoch 1/10\r\n78s 12s/step - loss: 3.1307 - accuracy: 0.0737 - val_loss: 2.2827 - val_accuracy: 0.1273 - lr: 0.0010\r\n- Epoch 2/10\r\n1s 168ms/step - loss: 2.3616 - accuracy: 0.2350 - val_loss: 2.2679 - val_accuracy: 0.2182 - lr: 0.0010\r\n- Epoch 3/10\r\n1s 189ms/step - loss: 2.0221 - accuracy: 0.3180 - val_loss: 2.2670 - val_accuracy: 0.1818 - lr: 0.0010\r\n- Epoch 4/10\r\n0s 67ms/step - loss: 1.8895 - accuracy: 0.3548 - val_loss: 2.2771 - val_accuracy: 0.1273 - lr: 0.0010\r\n- Epoch 5/10\r\n0s 67ms/step - loss: 1.7846 - accuracy: 0.3963 - val_loss: 2.2860 - val_accuracy: 0.1455 - lr: 0.0010\r\n- Epoch 6/10\r\n0s 65ms/step - loss: 1.5946 - accuracy: 0.4516 - val_loss: 2.2938 - val_accuracy: 0.1636 - lr: 0.0010\r\n- Epoch 7/10\r\n0s 63ms/step - loss: 1.4217 - accuracy: 0.5115 - val_loss: 2.2968 - val_accuracy: 0.2182 - lr: 0.0010\r\n- Epoch 8/10\r\n0s 67ms/step - loss: 1.3089 - accuracy: 0.5438 - val_loss: 2.2842 - val_accuracy: 0.2182 - lr: 0.0010\r\n- Epoch 9/10\r\n1s 184ms/step - loss: 1.2480 - accuracy: 0.5806 - val_loss: 2.2652 - val_accuracy: 0.1818 - lr: 0.0010\r\n- Epoch 10/10\r\n0s 65ms/step - loss: 1.2699 - accuracy: 0.5622 - val_loss: 2.2670 - val_accuracy: 0.2000 - lr: 0.0010\r\n\r\n", "Regarding the new long ~5 min. wait introduced by the in-memory dataset update: this might be causing it? https://datascience.stackexchange.com/questions/33364/why-model-fit-generator-in-keras-is-taking-so-much-time-even-before-picking-the\r\n\r\nFor now, my save/load hack is still more performant, even though having more boiler-plate code :/ ", "That 5 minute wait is quite surprising! I don't have a good explanation for why it's happening, but it can't be an issue with `datasets` or `tf.data` because you're just fitting directly on Numpy arrays at this point. All I can suggest is seeing if you can isolate the issue - for example, does fitting on a smaller dataset containing only 10% of the original data reduce the wait? This might indicate the delay is caused by your data being copied or converted somehow. Alternatively, you could try removing things like callbacks and seeing if you could isolate the issue there." ]
https://api.github.com/repos/huggingface/datasets/issues/2558
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2558/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2558/comments
https://api.github.com/repos/huggingface/datasets/issues/2558/events
https://github.com/huggingface/datasets/pull/2558
931,736,647
MDExOlB1bGxSZXF1ZXN0Njc5MTg0Njk1
2,558
Update: WebNLG - update checksums
[]
closed
false
null
0
2021-06-28T16:16:37Z
2021-06-28T17:23:17Z
2021-06-28T17:23:16Z
null
The master branch changed so I computed the new checksums. I also pinned a specific revision so that it doesn't happen again in the future. Fix https://github.com/huggingface/datasets/issues/2553
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2558/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2558/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2558.diff", "html_url": "https://github.com/huggingface/datasets/pull/2558", "merged_at": "2021-06-28T17:23:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/2558.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2558" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3919
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3919/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3919/comments
https://api.github.com/repos/huggingface/datasets/issues/3919/events
https://github.com/huggingface/datasets/issues/3919
1,169,497,210
I_kwDODunzps5FtRx6
3,919
AttributeError: 'DatasetDict' object has no attribute 'features'
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2022-03-15T10:46:59Z
2022-03-17T04:16:14Z
2022-03-17T04:16:14Z
null
## Describe the bug Receiving the error when trying to check for Dataset features ## Steps to reproduce the bug from datasets import Dataset dataset = Dataset.from_pandas(df[['id', 'words', 'bboxes', 'ner_tags', 'image_path']]) dataset.features ## Expected results A clear and concise description of the expected results. ## Actual results Getting the following errror AttributeError: 'DatasetDict' object has no attribute 'features' ## Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 1.18.4 - Platform: Linux-4.14.252-131.483.amzn1.x86_64-x86_64-with-glibc2.9 - Python version: 3.6.13 - PyArrow version: 6.0.1
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3919/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3919/timeline
null
completed
null
null
false
[ "You are likely trying to get the `features` from a `DatasetDict`, a dictionary containing `Datasets`. You probably first want to index into a particular split from your `DatasetDict` i.e. `dataset['train'].features`. \r\n\r\nFor example \r\n\r\n```python \r\nds = load_dataset('mnist')\r\nds.features\r\n```\r\nReturns \r\n```python\r\n---------------------------------------------------------------------------\r\n\r\nAttributeError Traceback (most recent call last)\r\n\r\n[<ipython-input-39-791c1f9df6c2>](https://localhost:8080/#) in <module>()\r\n----> 1 ds.features\r\n\r\nAttributeError: 'DatasetDict' object has no attribute 'features'\r\n```\r\n\r\nIf we look at the dataset variable, we see it is a `DatasetDict`:\r\n\r\n```python \r\nprint(ds)\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['image', 'label'],\r\n num_rows: 60000\r\n })\r\n test: Dataset({\r\n features: ['image', 'label'],\r\n num_rows: 10000\r\n })\r\n})\r\n```\r\n\r\nWe can grab the features from a split by indexing into `train`:\r\n```python\r\nds['train'].features\r\n{'image': Image(decode=True, id=None),\r\n 'label': ClassLabel(num_classes=10, names=['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], id=None)}\r\n```\r\n\r\nHope that helps ", "Yes, Thanks for that clarification," ]
https://api.github.com/repos/huggingface/datasets/issues/1671
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1671/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1671/comments
https://api.github.com/repos/huggingface/datasets/issues/1671/events
https://github.com/huggingface/datasets/issues/1671
776,652,193
MDU6SXNzdWU3NzY2NTIxOTM=
1,671
connection issue
[]
closed
false
null
2
2020-12-30T21:56:20Z
2022-10-05T12:42:12Z
2022-10-05T12:42:12Z
null
Hi I am getting this connection issue, resulting in large failure on cloud, @lhoestq I appreciate your help on this. If I want to keep the codes the same, so not using save_to_disk, load_from_disk, but save the datastes in the way load_dataset reads from and copy the files in the same folder the datasets library reads from, could you assist me how this can be done, thanks I tried to do read the data, save it to a path and then set HF_HOME, which does not work and this is still not reading from the old set path, could you assist me how to save the datasets in a path, and let dataset library read from this path to avoid connection issue. thanks ``` imdb = datasets.load_dataset("imdb") imdb.save_to_disk("/idiap/temp/rkarimi/hf_datasets/imdb") >>> os.environ["HF_HOME"]="/idiap/temp/rkarimi/hf_datasets/" >>> imdb = datasets.load_dataset("imdb") Reusing dataset imdb (/idiap/temp/rkarimi/cache_home_2/datasets/imdb/plain_text/1.0.0/90099cb476936b753383ba2ae6ab2eae419b2e87f71cd5189cb9c8e5814d12a3) ``` I tried afterwards to set HF_HOME in bash, this makes it read from it, but it cannot let dataset library load from the saved path and still downloading data. could you tell me how to fix this issue @lhoestq thanks Also this is on cloud, so I save them in a path, copy it to "another machine" to load the data ### Error stack ``` Traceback (most recent call last): File "./finetune_t5_trainer.py", line 344, in <module> main() File "./finetune_t5_trainer.py", line 232, in main for task in data_args.eval_tasks} if training_args.do_test else None File "./finetune_t5_trainer.py", line 232, in <dictcomp> for task in data_args.eval_tasks} if training_args.do_test else None File "/workdir/seq2seq/data/tasks.py", line 136, in get_dataset split = self.get_sampled_split(split, n_obs) File "/workdir/seq2seq/data/tasks.py", line 64, in get_sampled_split dataset = self.load_dataset(split) File "/workdir/seq2seq/data/tasks.py", line 454, in load_dataset split=split, script_version="master") File "/usr/local/lib/python3.6/dist-packages/datasets/load.py", line 589, in load_dataset path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True File "/usr/local/lib/python3.6/dist-packages/datasets/load.py", line 263, in prepare_module head_hf_s3(path, filename=name, dataset=dataset) File "/usr/local/lib/python3.6/dist-packages/datasets/utils/file_utils.py", line 200, in head_hf_s3 return http_head(hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset)) File "/usr/local/lib/python3.6/dist-packages/datasets/utils/file_utils.py", line 403, in http_head url, proxies=proxies, headers=headers, cookies=cookies, allow_redirects=allow_redirects, timeout=timeout File "/usr/local/lib/python3.6/dist-packages/requests/api.py", line 104, in head return request('head', url, **kwargs) File "/usr/local/lib/python3.6/dist-packages/requests/api.py", line 61, in request return session.request(method=method, url=url, **kwargs) File "/usr/local/lib/python3.6/dist-packages/requests/sessions.py", line 542, in request resp = self.send(prep, **send_kwargs) File "/usr/local/lib/python3.6/dist-packages/requests/sessions.py", line 655, in send r = adapter.send(request, **kwargs) File "/usr/local/lib/python3.6/dist-packages/requests/adapters.py", line 504, in send raise ConnectTimeout(e, request=request) requests.exceptions.ConnectTimeout: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/glue/glue.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7ff6d6c60a20>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1671/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1671/timeline
null
completed
null
null
false
[ "Also, mayjor issue for me is the format issue, even if I go through changing the whole code to use load_from_disk, then if I do \r\n\r\nd = datasets.load_from_disk(\"imdb\")\r\nd = d[\"train\"][:10] => the format of this is no more in datasets format\r\nthis is different from you call load_datasets(\"train[10]\")\r\n\r\ncould you tell me how I can make the two datastes the same format @lhoestq \r\n\r\n", "> `\r\nrequests.exceptions.ConnectTimeout: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/glue/glue.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7ff6d6c60a20>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)'))`\r\n\r\nDo you have an internet connection on the machine ? Is there a proxy that might block requests to aws ?\r\n\r\n> I tried to do read the data, save it to a path and then set HF_HOME, which does not work and this is still not reading from the old set path, could you assist me how to save the datasets in a path, and let dataset library read from this path to avoid connection issue. thanks\r\n\r\nHF_HOME is used to specify the directory for the cache files of this library.\r\nYou can use save_to_disk and load_from_disk without changing the HF_HOME:\r\n```python\r\nimdb = datasets.load_dataset(\"imdb\")\r\nimdb.save_to_disk(\"/idiap/temp/rkarimi/hf_datasets/imdb\")\r\nimdb = datasets.load_from_disk(\"/idiap/temp/rkarimi/hf_datasets/imdb\")\r\n```\r\n\r\n> could you tell me how I can make the two datastes the same format\r\n\r\nIndeed they returns different things:\r\n- `load_dataset` returns a `Dataset` object if the split is specified, or a `DatasetDict` if no split is given. Therefore `load_datasets(\"imdb\", split=\"train[10]\")` returns a `Dataset` object containing 10 elements.\r\n- doing `d[\"train\"][:10]` on a DatasetDict \"d\" gets the train split `d[\"train\"]` as a `Dataset` object and then gets the first 10 elements as a dictionary" ]
https://api.github.com/repos/huggingface/datasets/issues/2611
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2611/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2611/comments
https://api.github.com/repos/huggingface/datasets/issues/2611/events
https://github.com/huggingface/datasets/pull/2611
940,307,053
MDExOlB1bGxSZXF1ZXN0Njg2Mzk5MjU3
2,611
More consistent naming
[]
closed
false
null
0
2021-07-09T00:09:17Z
2021-07-13T17:13:19Z
2021-07-13T16:08:30Z
null
As per @stas00's suggestion in #2500, this PR inserts a space between the logo and the lib name (`🤗Datasets` -> `🤗 Datasets`) for consistency with the Transformers lib. Additionally, more consistent names are used for Datasets Hub, etc.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/2611/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2611/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2611.diff", "html_url": "https://github.com/huggingface/datasets/pull/2611", "merged_at": "2021-07-13T16:08:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/2611.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2611" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2859
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2859/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2859/comments
https://api.github.com/repos/huggingface/datasets/issues/2859/events
https://github.com/huggingface/datasets/issues/2859
984,324,500
MDU6SXNzdWU5ODQzMjQ1MDA=
2,859
Loading allenai/c4 in streaming mode does too many HEAD requests
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "fef2c0", "default": false, "description": "", "id": 3287858981, "name": "streaming", "node_id": "MDU6TGFiZWwzMjg3ODU4OTgx", "url": "https://api.github.com/repos/huggingface/datasets/labels/streaming" } ]
closed
false
null
2
2021-08-31T21:11:04Z
2021-10-12T07:35:52Z
2021-10-11T11:05:51Z
null
This does 60,000+ HEAD requests to get all the ETags of all the data files: ```python from datasets import load_dataset load_dataset("allenai/c4", streaming=True) ``` It makes loading the dataset completely impractical. The ETags are used to compute the config id (it must depend on the data files being used). Instead of using the ETags, we could simply use the commit hash of the dataset repository on the hub, as well and the glob pattern used to resolve the files (here it's `*` by default, to load all the files of the repository)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2859/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2859/timeline
null
completed
null
null
false
[ "https://github.com/huggingface/datasets/blob/6c766f9115d686182d76b1b937cb27e099c45d68/src/datasets/builder.py#L179-L186", "Thanks a lot!!!" ]
https://api.github.com/repos/huggingface/datasets/issues/757
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/757/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/757/comments
https://api.github.com/repos/huggingface/datasets/issues/757/events
https://github.com/huggingface/datasets/issues/757
728,241,494
MDU6SXNzdWU3MjgyNDE0OTQ=
757
CUDA out of memory
[]
closed
false
null
8
2020-10-23T13:57:00Z
2020-12-23T14:06:29Z
2020-12-23T14:06:29Z
null
In your dataset ,cuda run out of memory as long as the trainer begins: however, without changing any other element/parameter,just switch dataset to `LineByLineTextDataset`,everything becames OK.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/757/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/757/timeline
null
completed
null
null
false
[ "Could you provide more details ? What's the code you ran ?", "```python\r\ntokenizer = FunnelTokenizer.from_pretrained('funnel-transformer/small')\r\n\r\ndef tokenize(batch):\r\n return tokenizer(batch['text'], padding='max_length', truncation=True,max_length=512)\r\n\r\ndataset = load_dataset(\"bookcorpus\",split='train[:1000]').shuffle()\r\ndataset = dataset.map(tokenize, batched=True, batch_size=512)\r\n\r\n# dataset = LineByLineTextDataset(\r\n# tokenizer=tokenizer,\r\n# file_path=\"./wiki1000.txt\",\r\n# block_size=128\r\n# )\r\n\r\ndata_collator = DataCollatorForLanguageModeling(\r\n tokenizer=tokenizer, mlm=True, mlm_probability=0.15\r\n)\r\n\r\nconfig=FunnelConfig(\r\n return_dict=True\r\n)\r\n\r\nmodel= FunnelForMaskedLM(config=config)\r\n\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./checkpoints\",\r\n overwrite_output_dir=True,\r\n do_train=True,\r\n num_train_epochs=1,\r\n per_device_train_batch_size=16,\r\n per_device_eval_batch_size=16,\r\n save_steps=10000,\r\n logging_dir='./ptlogs'\r\n)\r\n\r\ntrainer = Trainer(\r\n model=model,\r\n args=training_args,\r\n data_collator=data_collator,\r\n train_dataset=dataset,\r\n)\r\ntrainer.train()\r\n```", "`RuntimeError: CUDA out of memory. Tried to allocate 954.00 MiB (GPU 0; 15.90 GiB total capacity; 14.35 GiB already allocated; 753.75 MiB free; 14.39 GiB reserved in total by PyTorch)\r\nException raised from malloc at /pytorch/c10/cuda/CUDACachingAllocator.cpp:272 (most recent call first):`\r\n\r\npart of error output", "from funnel model to bert model : error still happened\r\n\r\nfrom your dataset to LineByLineTextDataset : error disapeared", "notice i just loaded 1000 rows of data", "the error happens when executing loss.backward()", "Since you're using a data collator you don't need to tokenizer the dataset using `map`. Could you try not to use `map` and only the data collator instead ? The data collator is supposed to pad to the longest sequence in each batch afaik, instead of padding to 512.\r\n\r\nAlso cc @sgugger ", "Closing this one.\r\nFeel free to re-open if you have other questions about this issue" ]
https://api.github.com/repos/huggingface/datasets/issues/240
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/240/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/240/comments
https://api.github.com/repos/huggingface/datasets/issues/240/events
https://github.com/huggingface/datasets/issues/240
631,434,677
MDU6SXNzdWU2MzE0MzQ2Nzc=
240
Deterministic dataset loading
[]
closed
false
null
4
2020-06-05T09:03:26Z
2020-06-08T09:18:14Z
2020-06-08T09:18:14Z
null
When calling: ```python import nlp dataset = nlp.load_dataset("trivia_qa", split="validation[:1%]") ``` the resulting dataset is not deterministic over different google colabs. After talking to @thomwolf, I suspect the reason to be the use of `glob.glob` in line: https://github.com/huggingface/nlp/blob/2e0a8639a79b1abc848cff5c669094d40bba0f63/datasets/trivia_qa/trivia_qa.py#L180 which seems to return an ordering of files that depends on the filesystem: https://stackoverflow.com/questions/6773584/how-is-pythons-glob-glob-ordered I think we should go through all the dataset scripts and make sure to have deterministic behavior. A simple solution for `glob.glob()` would be to just replace it with `sorted(glob.glob())` to have everything sorted by name. What do you think @lhoestq?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/240/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/240/timeline
null
completed
null
null
false
[ "Yes good point !", "I think using `sorted(glob.glob())` would actually solve this problem. Can you think of other reasons why dataset loading might not be deterministic? @mariamabarham @yjernite @lhoestq @thomwolf . \r\n\r\nI can do a sweep through the dataset scripts and fix the glob.glob() if you guys are ok with it", "I'm pretty sure it would solve the problem too.\r\n\r\nThe only other dataset that is not deterministic right now is `blog_authorship_corpus` (see #215) but this is a problem related to string encodings.", "I think we should do the same also for `os.list_dir`" ]
https://api.github.com/repos/huggingface/datasets/issues/2830
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2830/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2830/comments
https://api.github.com/repos/huggingface/datasets/issues/2830/events
https://github.com/huggingface/datasets/pull/2830
977,563,947
MDExOlB1bGxSZXF1ZXN0NzE4MjkyMTM2
2,830
Add imagefolder dataset
[]
closed
false
null
15
2021-08-23T23:34:06Z
2022-03-01T16:29:44Z
2022-03-01T16:29:44Z
null
A generic imagefolder dataset inspired by `torchvision.datasets.ImageFolder`. Resolves #2508 --- Example Usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/nateraw/954fa8cba4ff806f6147a782fa9efd1a/imagefolder-official-example.ipynb)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2830/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2830/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2830.diff", "html_url": "https://github.com/huggingface/datasets/pull/2830", "merged_at": "2022-03-01T16:29:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/2830.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2830" }
true
[ "@lhoestq @albertvillanova it would be super cool if we could get the Image Classification task to work with this. I'm not sure how to have the dataset find the unique label names _after_ the dataset has been loaded. Is that even possible? \r\n\r\nMy hacky community version [here](https://huggingface.co/datasets/nateraw/image-folder) does this, but it wouldn't pass the test suite here. Any thoughts?", "Hi ! Dataset builders that require some `data_files` like `csv` or `json` are handled differently that actual dataset scripts.\r\n\r\nIn particular:\r\n- they are placed directly in the `src` folder of the lib so that you can use it without internet connection (more exactly in `src/datasets/packaged_modules/<builder_name>.py`). So feel free to move the dataset python file there. You also need to register it in `src/datasets/packaked_modules.__init__.py`\r\n- they are handled a bit differently in our test suite (see the `PackagedDatasetTest` class in `test_dataset_common.py`). To be able to test the builder with your dummy data, you just need to modify `get_packaged_dataset_dummy_data_files` in `test_dataset_common.py` to return the right `data_files` for your builder. The dummy data can stay in `datasets/image_folder/dummy`\r\n\r\nLet me know if you have questions or if I can help !", "Hey @lhoestq , I actually already did both of those things. I'm trying to get the `image-classification` task to work now. \r\n\r\nFor example...When you run `ds = load_dataset('imagefolder', data_files='my_files')`, with a directory called `./my_files` that looks like this:\r\n\r\n```\r\nmy_files\r\n----| Cat\r\n--------| image1.jpg\r\n--------| ...\r\n----| Dog\r\n--------| image1.jpg\r\n--------| ...\r\n```\r\n\r\n...We should set the dataset's `labels` feature to `datasets.features.ClassLabel(names=['cat', 'dog'])` dynamically with class names we find by getting a list of directories in `my_files` (via `data_files`). Otherwise the `datasets.tasks.ImageClassification` task will break, as the `labels` feature is not a `ClassLabel`.\r\n\r\nI couldn't figure out how to access the `data_files` in the builder's `_info` function in a way that would pass in the test suite. ", "Nice ! Then maybe you can use `self.config.data_files` in `_info()` ?\r\nWhat error are you getting in the test suite ?\r\n\r\nAlso note that `data_files` was first developed to accept paths to actual files, not directories. In particular, it fetches the metadata of all the data_files to get a unique hash for the caching mechanism. So we may need to do a few changes first.", "I'm trying to make it work by getting the label names in the _info automatically.\r\nI'll let you know tomorrow how it goes :)\r\n\r\nAlso cc @mariosasko since we're going to use #3163 \r\n\r\nRight now I'm getting the label name per file by taking the first word (from regex `\\w+`) after the common prefix of all the files per split", "Data files resolution takes too much time on my side for a dataset of a few 10,000s of examples. I'll speed it up with some multihreading tomorrow, and maybe by removing the unnecessary checksum verification", "The code is a bit ugly for my taste. I'll try to simplify it tomorrow by avoiding the `os.path.commonprefix` computation and do something similar to @nateraw's ImageFolder instead, where only the second-to-last path component is considered a label (and see if I can update the class labels lazily in `_generate_examples`).\r\n\r\nAlso, as discussed offline with @lhoestq, I reverted the automatic directory globbing change in `data_files.py` and will investigate if we can use `data_dir` for that (e.g. `load_dataset(\"imagefolder\", data_dir=\"path/to/data\")` would be equal to `load_dataset(\"imagefolder\", data_files=[\"path/to/data/**/*\", \"path/to/data/*\"])`. The only problem with `data_dir` that it's equal to `dl_manager.manual_dir`, which would break scripts with `manul_download_instructions`, so maybe we can limit this behavior only to the packaged loaders? WDYT?", "An updated example of usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1zJkAQm0Dk372EHcBq6hYgHuunsK4rR0r?usp=sharing)", "> The code is a bit ugly for my taste. I'll try to simplify it tomorrow by avoiding the os.path.commonprefix computation and do something similar to @nateraw's ImageFolder instead, where only the second-to-last path component is considered a label (and see if I can update the class labels lazily in _generate_examples).\r\n\r\nSounds good ! It's fine if we just support the same format as pytorch ImageFolder.\r\n\r\nRegarding the `data_dir` parameter, what do you think is best ?\r\n\r\n1. `dl_manager.data_dir = data_dir`\r\n2. `dl_manager.data_files = resolve(os.path.join(data_dir, \"**\"))`\r\n\r\nor something else ?\r\n\r\n> The only problem with data_dir that it's equal to dl_manager.manual_dir, which would break scripts with manul_download_instructions, so maybe we can limit this behavior only to the packaged loaders? WDYT?\r\n\r\nWe can still have `dl_manager.manual_dir = data_dir` though", "The example colab is amazing !", "@lhoestq \r\n>Regarding the `data_dir` parameter, what do you think is best ?\r\n>\r\n>1. `dl_manager.data_dir = data_dir`\r\n>2. `dl_manager.data_files = resolve(os.path.join(data_dir, \"**\"))`\r\n\r\nThe second option. Basically, I would like `data_files` to be equal to:\r\n```python\r\ndef _split_generators(self, dl_manager):\r\n data_files = self.config.data_files\r\n if data_files is None: \r\n data_files = glob.glob(\"{self.config.data_dir}/**\", recursive=True)\r\n else:\r\n raise ValueError(f\"At least one data file must be specified, but got data_files={data_files}\")\r\n```\r\nin the scripts of packaged modules. It's probably better to do the resolution in `data_files.py` tho (to handle relative file paths on the Hub, for instance)", "> The second option. Basically, I would like data_files to be equal to:\r\n> ```python\r\n> def _split_generators(self, dl_manager):\r\n> data_files = self.config.data_files\r\n> if data_files is None: \r\n> data_files = glob.glob(\"{self.config.data_dir}/**\", recursive=True)\r\n> else:\r\n> raise ValueError(f\"At least one data file must be specified, but got data_files={data_files}\")\r\n> ```\r\n> in the scripts of packaged modules. It's probably better to do the resolution in data_files.py tho (to handle relative file paths on the Hub, for instance)\r\n\r\nsounds good !", "🙌", "Hey @mariosasko are we still actually able to load an image folder?\r\n\r\nFor example...\r\n\r\n```\r\n! wget https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip\r\n! unzip kagglecatsanddogs_3367a.zip\r\n```\r\n\r\nfollowed by\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\n# Does not work\r\nds = load_dataset('imagefolder', data_files='/PetImages')\r\n\r\n# Also doesn't work\r\nds = load_dataset('imagefolder', data_dir='/PetImages')\r\n```\r\n\r\nAre we going forward with the assumption that the user always wants to download from URL and that they won't have a dataset locally already? This at least gets us part of the way, but is technically not an \"imagefolder\" as intended. \r\n\r\nEither way, was delighted to see the colab notebook work smoothly outside of the case I just described above. ❤️ thanks so much for the work here.", "> Hey @mariosasko are we still actually able to load an image folder?\r\n> \r\n> For example...\r\n> \r\n> ```\r\n> ! wget https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip\r\n> ! unzip kagglecatsanddogs_3367a.zip\r\n> ```\r\n> \r\n> followed by\r\n> \r\n> ```python\r\n> from datasets import load_dataset\r\n> \r\n> # Does not work\r\n> ds = load_dataset('imagefolder', data_files='/PetImages')\r\n\r\nI ran into this too when I was trying to out. At the moment you can still load from a local on disk directory using a glob pattern i.e. \r\n\r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"imagefolder\", data_files=\"PetImages/**/*\")\r\n```\r\n[Colab example](https://colab.research.google.com/drive/1IvAyYSAADHphzbtJMt02OXmnGwGtku3k?usp=sharing). I'm not sure if that is the intended behaviour or not. If it is, I think it would be good to document this because I also assumed the approach @nateraw used would work." ]
https://api.github.com/repos/huggingface/datasets/issues/4708
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4708/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4708/comments
https://api.github.com/repos/huggingface/datasets/issues/4708/events
https://github.com/huggingface/datasets/pull/4708
1,308,279,700
PR_kwDODunzps47lewm
4,708
Fix require torchaudio and refactor test requirements
[]
closed
false
null
1
2022-07-18T17:24:28Z
2022-07-22T06:30:56Z
2022-07-22T06:18:11Z
null
Currently there is a bug in `require_torchaudio` (indeed it is requiring `sox` instead): ```python def require_torchaudio(test_case): if find_spec("sox") is None: ... ``` The bug was introduced by: - #3685 - Commit: https://github.com/huggingface/datasets/pull/3685/commits/b5a3e7122d49c4dcc9333b1d8d18a833fc04b940 which moved ```python require_sndfile = pytest.mark.skipif( # In Windows and OS X, soundfile installs sndfile (sys.platform != "linux" and find_spec("soundfile") is None) # In Linux, soundfile throws RuntimeError if sndfile not installed with distribution package manager or (sys.platform == "linux" and find_library("sndfile") is None), reason="Test requires 'sndfile': `pip install soundfile`; " "Linux requires sndfile installed with distribution package manager, e.g.: `sudo apt-get install libsndfile1`", ) require_sox = pytest.mark.skipif( find_library("sox") is None, reason="Test requires 'sox'; only available in non-Windows, e.g.: `sudo apt-get install sox`", ) require_torchaudio = pytest.mark.skipif(find_spec("torchaudio") is None, reason="Test requires 'torchaudio'") ``` to ```python def require_sndfile(test_case): """ Decorator marking a test that requires soundfile. These tests are skipped when soundfile isn't installed. """ if (sys.platform != "linux" and find_spec("soundfile") is None) or ( sys.platform == "linux" and find_library("sndfile") is None ): test_case = unittest.skip( "test requires 'sndfile': `pip install soundfile`; " "Linux requires sndfile installed with distribution package manager, e.g.: `sudo apt-get install libsndfile1`", )(test_case) return test_case def require_sox(test_case): """ Decorator marking a test that requires sox. These tests are skipped when sox isn't installed. """ if find_library("sox") is None: return unittest.skip("test requires 'sox'; only available in non-Windows, e.g.: `sudo apt-get install sox`")( test_case ) return test_case def require_torchaudio(test_case): """ Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed. """ if find_spec("sox") is None: return unittest.skip("test requires 'torchaudio'")(test_case) return test_case ``` This PR; - fixes the bug in `require_torchaudio` - refactors the test requirements back to using `pytest` instead of `unittest` - the text in `pytest.skipif` `reason` can be used if needed in a test body: `require_torchaudio.kwargs["reason"]`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4708/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4708/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4708.diff", "html_url": "https://github.com/huggingface/datasets/pull/4708", "merged_at": "2022-07-22T06:18:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/4708.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4708" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/5820
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5820/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5820/comments
https://api.github.com/repos/huggingface/datasets/issues/5820/events
https://github.com/huggingface/datasets/issues/5820
1,695,892,811
I_kwDODunzps5lFUVL
5,820
Incomplete docstring for `BuilderConfig`
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
1
2023-05-04T12:14:34Z
2023-05-05T12:31:56Z
2023-05-05T12:31:56Z
null
Hi guys ! I stumbled upon this docstring while working on a project. Some of the attributes have missing descriptions. https://github.com/huggingface/datasets/blob/bc5fef5b6d91f009e4101684adcb374df2c170f6/src/datasets/builder.py#L104-L117
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5820/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5820/timeline
null
completed
null
null
false
[ "Thanks for reporting! You are more than welcome to improve `BuilderConfig`'s docstring.\r\n\r\nThis class serves an identical purpose as `tensorflow_datasets`'s `BuilderConfig`, and its docstring is [here](https://github.com/tensorflow/datasets/blob/a95e38b5bb018312c3d3720619c2a8ef83ebf57f/tensorflow_datasets/core/dataset_builder.py#L81), so feel free to re-use parts of it." ]
https://api.github.com/repos/huggingface/datasets/issues/4799
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4799/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4799/comments
https://api.github.com/repos/huggingface/datasets/issues/4799/events
https://github.com/huggingface/datasets/issues/4799
1,330,889,854
I_kwDODunzps5PU8R-
4,799
video dataset loader/parser
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
2
2022-08-07T01:54:12Z
2022-08-09T16:42:51Z
2022-08-09T16:42:51Z
null
you know how you can [use `load_dataset` with any arbitrary csv file](https://huggingface.co/docs/datasets/loading#csv)? and you can also [use it to load a local image dataset](https://huggingface.co/docs/datasets/image_load#local-files)? could you please add functionality to load a video dataset? it would be really cool if i could point it to a bunch of video files and use pytorch to start looping through batches of videos. like if my batch size is 16, each sample in the batch is a frame from a video. i'm competing in the [minerl challenge](https://www.aicrowd.com/challenges/neurips-2022-minerl-basalt-competition), and it would be awesome to use the HF ecosystem.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4799/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4799/timeline
null
completed
null
null
false
[ "Hi! We've just started discussing the video support in `datasets` (decoding backends, video feature type, etc.), so I believe we should have something tangible by the end of this year.\r\n\r\nAlso, if you have additional video features in mind that you would like to see, feel free to let us know", "Coool thanks @mariosasko " ]
https://api.github.com/repos/huggingface/datasets/issues/212
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/212/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/212/comments
https://api.github.com/repos/huggingface/datasets/issues/212/events
https://github.com/huggingface/datasets/pull/212
626,580,198
MDExOlB1bGxSZXF1ZXN0NDI0NTQ1NjAy
212
have 'add' and 'add_batch' for metrics
[]
closed
false
null
0
2020-05-28T14:56:47Z
2020-05-29T10:41:05Z
2020-05-29T10:41:04Z
null
This should fix #116 Previously the `.add` method of metrics expected a batch of examples. Now `.add` expects one prediction/reference and `.add_batch` expects a batch. I think it is more coherent with the way the ArrowWriter works.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/212/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/212/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/212.diff", "html_url": "https://github.com/huggingface/datasets/pull/212", "merged_at": "2020-05-29T10:41:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/212.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/212" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5559
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5559/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5559/comments
https://api.github.com/repos/huggingface/datasets/issues/5559/events
https://github.com/huggingface/datasets/pull/5559
1,593,676,489
PR_kwDODunzps5KcKSb
5,559
Fix map suffix_template
[]
closed
false
null
4
2023-02-21T15:26:26Z
2023-02-21T17:21:37Z
2023-02-21T17:14:29Z
null
#5455 introduced a small bug that lead `map` to ignore the `suffix_template` argument and not put suffixes to cached files in multiprocessing. I fixed this and also improved a few things: - regarding logging: "Loading cached processed dataset" is now logged only once even in multiprocessing (it used to be logged `num_proc` times) - regarding new_fingerprint: I made sure that the returned dataset satisfies `ds._fingerprint==new_fingerprint` if `new_fingerprint` is passed to `map`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5559/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5559/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5559.diff", "html_url": "https://github.com/huggingface/datasets/pull/5559", "merged_at": "2023-02-21T17:14:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5559.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5559" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011596 / 0.011353 (0.000244) | 0.005845 / 0.011008 (-0.005164) | 0.121302 / 0.038508 (0.082794) | 0.034306 / 0.023109 (0.011196) | 0.355973 / 0.275898 (0.080075) | 0.419903 / 0.323480 (0.096423) | 0.009049 / 0.007986 (0.001064) | 0.004245 / 0.004328 (-0.000084) | 0.092004 / 0.004250 (0.087753) | 0.042782 / 0.037052 (0.005730) | 0.355805 / 0.258489 (0.097316) | 0.407298 / 0.293841 (0.113457) | 0.052481 / 0.128546 (-0.076066) | 0.020880 / 0.075646 (-0.054766) | 0.379948 / 0.419271 (-0.039324) | 0.061337 / 0.043533 (0.017804) | 0.359829 / 0.255139 (0.104690) | 0.379244 / 0.283200 (0.096044) | 0.116692 / 0.141683 (-0.024990) | 1.733717 / 1.452155 (0.281562) | 1.700246 / 1.492716 (0.207530) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.014622 / 0.018006 (-0.003384) | 0.518777 / 0.000490 (0.518288) | 0.004086 / 0.000200 (0.003886) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031208 / 0.037411 (-0.006204) | 0.143003 / 0.014526 (0.128477) | 0.132625 / 0.176557 (-0.043932) | 0.187681 / 0.737135 (-0.549455) | 0.136576 / 0.296338 (-0.159763) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626516 / 0.215209 (0.411307) | 6.282558 / 2.077655 (4.204904) | 2.702686 / 1.504120 (1.198566) | 2.287445 / 1.541195 (0.746250) | 2.333014 / 1.468490 (0.864524) | 1.227815 / 4.584777 (-3.356962) | 5.545640 / 3.745712 (1.799928) | 4.953226 / 5.269862 (-0.316635) | 2.774549 / 4.565676 (-1.791128) | 0.145257 / 0.424275 (-0.279018) | 0.014887 / 0.007607 (0.007280) | 0.812226 / 0.226044 (0.586182) | 8.002727 / 2.268929 (5.733798) | 3.314852 / 55.444624 (-52.129773) | 2.602348 / 6.876477 (-4.274128) | 2.593511 / 2.142072 (0.451438) | 1.440498 / 4.805227 (-3.364730) | 0.254849 / 6.500664 (-6.245815) | 0.077020 / 0.075469 (0.001551) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.487633 / 1.841788 (-0.354155) | 17.385773 / 8.074308 (9.311465) | 21.775511 / 10.191392 (11.584118) | 0.273514 / 0.680424 (-0.406910) | 0.059644 / 0.534201 (-0.474557) | 0.578710 / 0.579283 (-0.000573) | 0.630221 / 0.434364 (0.195857) | 0.632089 / 0.540337 (0.091752) | 0.762367 / 1.386936 (-0.624569) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009513 / 0.011353 (-0.001840) | 0.006009 / 0.011008 (-0.004999) | 0.087589 / 0.038508 (0.049081) | 0.037487 / 0.023109 (0.014378) | 0.397660 / 0.275898 (0.121762) | 0.474438 / 0.323480 (0.150958) | 0.007373 / 0.007986 (-0.000613) | 0.005839 / 0.004328 (0.001511) | 0.092759 / 0.004250 (0.088509) | 0.052128 / 0.037052 (0.015075) | 0.382378 / 0.258489 (0.123889) | 0.458244 / 0.293841 (0.164403) | 0.057232 / 0.128546 (-0.071314) | 0.020662 / 0.075646 (-0.054984) | 0.110314 / 0.419271 (-0.308957) | 0.063014 / 0.043533 (0.019481) | 0.386020 / 0.255139 (0.130881) | 0.476169 / 0.283200 (0.192970) | 0.118081 / 0.141683 (-0.023602) | 1.724158 / 1.452155 (0.272003) | 1.862257 / 1.492716 (0.369541) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224288 / 0.018006 (0.206281) | 0.523631 / 0.000490 (0.523141) | 0.004420 / 0.000200 (0.004220) | 0.000127 / 0.000054 (0.000073) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032359 / 0.037411 (-0.005052) | 0.140045 / 0.014526 (0.125519) | 0.138164 / 0.176557 (-0.038393) | 0.181068 / 0.737135 (-0.556067) | 0.143965 / 0.296338 (-0.152374) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573809 / 0.215209 (0.358600) | 6.083247 / 2.077655 (4.005592) | 2.671258 / 1.504120 (1.167138) | 2.277062 / 1.541195 (0.735868) | 2.299544 / 1.468490 (0.831054) | 1.267351 / 4.584777 (-3.317425) | 5.494461 / 3.745712 (1.748749) | 5.083169 / 5.269862 (-0.186692) | 2.531738 / 4.565676 (-2.033938) | 0.151834 / 0.424275 (-0.272441) | 0.014123 / 0.007607 (0.006516) | 0.800222 / 0.226044 (0.574177) | 7.637624 / 2.268929 (5.368695) | 3.325574 / 55.444624 (-52.119050) | 2.563008 / 6.876477 (-4.313468) | 2.596259 / 2.142072 (0.454187) | 1.459206 / 4.805227 (-3.346021) | 0.237771 / 6.500664 (-6.262893) | 0.071854 / 0.075469 (-0.003615) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.605504 / 1.841788 (-0.236284) | 17.593594 / 8.074308 (9.519285) | 20.618005 / 10.191392 (10.426612) | 0.270938 / 0.680424 (-0.409486) | 0.026205 / 0.534201 (-0.507996) | 0.562223 / 0.579283 (-0.017060) | 0.617571 / 0.434364 (0.183207) | 0.616398 / 0.540337 (0.076060) | 0.715293 / 1.386936 (-0.671643) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#673dc0dd7d063b2313f7adcc9e0be53d4718f5cf \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.013213 / 0.011353 (0.001860) | 0.006253 / 0.011008 (-0.004756) | 0.125175 / 0.038508 (0.086667) | 0.037491 / 0.023109 (0.014382) | 0.401379 / 0.275898 (0.125481) | 0.395826 / 0.323480 (0.072346) | 0.009224 / 0.007986 (0.001238) | 0.005163 / 0.004328 (0.000835) | 0.096490 / 0.004250 (0.092239) | 0.042473 / 0.037052 (0.005420) | 0.383713 / 0.258489 (0.125224) | 0.429234 / 0.293841 (0.135393) | 0.063261 / 0.128546 (-0.065285) | 0.020114 / 0.075646 (-0.055532) | 0.401687 / 0.419271 (-0.017585) | 0.062831 / 0.043533 (0.019298) | 0.405211 / 0.255139 (0.150072) | 0.380810 / 0.283200 (0.097610) | 0.109166 / 0.141683 (-0.032517) | 1.869580 / 1.452155 (0.417426) | 1.949947 / 1.492716 (0.457231) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207481 / 0.018006 (0.189475) | 0.504161 / 0.000490 (0.503671) | 0.008429 / 0.000200 (0.008229) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029182 / 0.037411 (-0.008229) | 0.126284 / 0.014526 (0.111758) | 0.140381 / 0.176557 (-0.036175) | 0.175878 / 0.737135 (-0.561257) | 0.138824 / 0.296338 (-0.157514) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643658 / 0.215209 (0.428449) | 6.396224 / 2.077655 (4.318569) | 2.600702 / 1.504120 (1.096582) | 2.176721 / 1.541195 (0.635526) | 2.216116 / 1.468490 (0.747626) | 1.235069 / 4.584777 (-3.349708) | 5.457228 / 3.745712 (1.711516) | 3.060455 / 5.269862 (-2.209407) | 2.028123 / 4.565676 (-2.537554) | 0.141617 / 0.424275 (-0.282658) | 0.016596 / 0.007607 (0.008989) | 0.804915 / 0.226044 (0.578870) | 7.968821 / 2.268929 (5.699893) | 3.340650 / 55.444624 (-52.103974) | 2.533620 / 6.876477 (-4.342856) | 2.457388 / 2.142072 (0.315315) | 1.486527 / 4.805227 (-3.318700) | 0.253767 / 6.500664 (-6.246897) | 0.082192 / 0.075469 (0.006723) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.470896 / 1.841788 (-0.370892) | 17.566637 / 8.074308 (9.492329) | 23.144148 / 10.191392 (12.952756) | 0.235510 / 0.680424 (-0.444913) | 0.046051 / 0.534201 (-0.488150) | 0.559954 / 0.579283 (-0.019329) | 0.645390 / 0.434364 (0.211026) | 0.690983 / 0.540337 (0.150646) | 0.776252 / 1.386936 (-0.610684) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010564 / 0.011353 (-0.000789) | 0.006150 / 0.011008 (-0.004858) | 0.100030 / 0.038508 (0.061522) | 0.036873 / 0.023109 (0.013764) | 0.448508 / 0.275898 (0.172610) | 0.492593 / 0.323480 (0.169113) | 0.007337 / 0.007986 (-0.000648) | 0.004804 / 0.004328 (0.000475) | 0.099218 / 0.004250 (0.094967) | 0.055513 / 0.037052 (0.018461) | 0.462147 / 0.258489 (0.203658) | 0.510229 / 0.293841 (0.216388) | 0.055307 / 0.128546 (-0.073239) | 0.021989 / 0.075646 (-0.053657) | 0.118487 / 0.419271 (-0.300785) | 0.071752 / 0.043533 (0.028219) | 0.456572 / 0.255139 (0.201433) | 0.475160 / 0.283200 (0.191961) | 0.117472 / 0.141683 (-0.024211) | 1.813212 / 1.452155 (0.361058) | 1.908413 / 1.492716 (0.415696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.352929 / 0.018006 (0.334923) | 0.543874 / 0.000490 (0.543384) | 0.078529 / 0.000200 (0.078329) | 0.000669 / 0.000054 (0.000614) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033157 / 0.037411 (-0.004254) | 0.162503 / 0.014526 (0.147977) | 0.146424 / 0.176557 (-0.030132) | 0.201781 / 0.737135 (-0.535354) | 0.168110 / 0.296338 (-0.128229) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644205 / 0.215209 (0.428996) | 6.327519 / 2.077655 (4.249865) | 2.728102 / 1.504120 (1.223982) | 2.306426 / 1.541195 (0.765232) | 2.373125 / 1.468490 (0.904635) | 1.350649 / 4.584777 (-3.234128) | 5.652714 / 3.745712 (1.907002) | 3.175335 / 5.269862 (-2.094526) | 2.222902 / 4.565676 (-2.342775) | 0.160609 / 0.424275 (-0.263666) | 0.015596 / 0.007607 (0.007989) | 0.790357 / 0.226044 (0.564313) | 8.289758 / 2.268929 (6.020830) | 3.479215 / 55.444624 (-51.965410) | 2.860063 / 6.876477 (-4.016413) | 2.806720 / 2.142072 (0.664648) | 1.639046 / 4.805227 (-3.166181) | 0.267017 / 6.500664 (-6.233648) | 0.083990 / 0.075469 (0.008521) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632262 / 1.841788 (-0.209525) | 17.794357 / 8.074308 (9.720049) | 21.203547 / 10.191392 (11.012155) | 0.250899 / 0.680424 (-0.429525) | 0.024502 / 0.534201 (-0.509699) | 0.519960 / 0.579283 (-0.059323) | 0.615412 / 0.434364 (0.181048) | 0.641914 / 0.540337 (0.101577) | 0.772355 / 1.386936 (-0.614581) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#32cc4d10243b0feb69650f007d010971fd861dc1 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009501 / 0.011353 (-0.001852) | 0.005262 / 0.011008 (-0.005747) | 0.100809 / 0.038508 (0.062301) | 0.036601 / 0.023109 (0.013492) | 0.299612 / 0.275898 (0.023714) | 0.366970 / 0.323480 (0.043490) | 0.007879 / 0.007986 (-0.000107) | 0.004216 / 0.004328 (-0.000113) | 0.076749 / 0.004250 (0.072498) | 0.042081 / 0.037052 (0.005029) | 0.299572 / 0.258489 (0.041083) | 0.339687 / 0.293841 (0.045846) | 0.038706 / 0.128546 (-0.089840) | 0.012295 / 0.075646 (-0.063352) | 0.336172 / 0.419271 (-0.083100) | 0.047524 / 0.043533 (0.003992) | 0.296800 / 0.255139 (0.041661) | 0.331592 / 0.283200 (0.048393) | 0.101191 / 0.141683 (-0.040491) | 1.486200 / 1.452155 (0.034046) | 1.509955 / 1.492716 (0.017239) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204735 / 0.018006 (0.186728) | 0.446381 / 0.000490 (0.445891) | 0.005177 / 0.000200 (0.004977) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028655 / 0.037411 (-0.008756) | 0.116559 / 0.014526 (0.102033) | 0.122551 / 0.176557 (-0.054006) | 0.189764 / 0.737135 (-0.547372) | 0.126446 / 0.296338 (-0.169892) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400104 / 0.215209 (0.184895) | 4.001524 / 2.077655 (1.923869) | 1.779267 / 1.504120 (0.275147) | 1.580168 / 1.541195 (0.038974) | 1.684100 / 1.468490 (0.215610) | 0.703354 / 4.584777 (-3.881423) | 3.828131 / 3.745712 (0.082419) | 2.098500 / 5.269862 (-3.171362) | 1.331161 / 4.565676 (-3.234516) | 0.085417 / 0.424275 (-0.338858) | 0.012380 / 0.007607 (0.004772) | 0.504189 / 0.226044 (0.278144) | 5.094672 / 2.268929 (2.825743) | 2.264352 / 55.444624 (-53.180272) | 1.909573 / 6.876477 (-4.966904) | 2.005425 / 2.142072 (-0.136648) | 0.840893 / 4.805227 (-3.964335) | 0.164689 / 6.500664 (-6.335975) | 0.062754 / 0.075469 (-0.012715) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250001 / 1.841788 (-0.591786) | 14.993313 / 8.074308 (6.919005) | 14.880601 / 10.191392 (4.689209) | 0.175141 / 0.680424 (-0.505283) | 0.028952 / 0.534201 (-0.505249) | 0.447073 / 0.579283 (-0.132210) | 0.445993 / 0.434364 (0.011629) | 0.525527 / 0.540337 (-0.014811) | 0.613156 / 1.386936 (-0.773780) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007796 / 0.011353 (-0.003557) | 0.005399 / 0.011008 (-0.005609) | 0.078240 / 0.038508 (0.039732) | 0.035303 / 0.023109 (0.012193) | 0.364603 / 0.275898 (0.088705) | 0.400794 / 0.323480 (0.077314) | 0.006152 / 0.007986 (-0.001834) | 0.004324 / 0.004328 (-0.000004) | 0.074949 / 0.004250 (0.070698) | 0.051939 / 0.037052 (0.014887) | 0.377079 / 0.258489 (0.118590) | 0.413630 / 0.293841 (0.119789) | 0.037567 / 0.128546 (-0.090979) | 0.012793 / 0.075646 (-0.062854) | 0.089013 / 0.419271 (-0.330258) | 0.050748 / 0.043533 (0.007215) | 0.370100 / 0.255139 (0.114961) | 0.384838 / 0.283200 (0.101638) | 0.105840 / 0.141683 (-0.035843) | 1.476490 / 1.452155 (0.024335) | 1.544688 / 1.492716 (0.051972) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220987 / 0.018006 (0.202981) | 0.443801 / 0.000490 (0.443311) | 0.005747 / 0.000200 (0.005547) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030187 / 0.037411 (-0.007225) | 0.118230 / 0.014526 (0.103704) | 0.126810 / 0.176557 (-0.049746) | 0.200482 / 0.737135 (-0.536654) | 0.130831 / 0.296338 (-0.165507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423231 / 0.215209 (0.208022) | 4.196576 / 2.077655 (2.118921) | 1.992919 / 1.504120 (0.488799) | 1.809172 / 1.541195 (0.267977) | 1.932706 / 1.468490 (0.464216) | 0.727319 / 4.584777 (-3.857458) | 3.833295 / 3.745712 (0.087583) | 3.527005 / 5.269862 (-1.742857) | 1.937348 / 4.565676 (-2.628329) | 0.088713 / 0.424275 (-0.335562) | 0.012711 / 0.007607 (0.005104) | 0.531385 / 0.226044 (0.305341) | 5.308051 / 2.268929 (3.039123) | 2.493494 / 55.444624 (-52.951131) | 2.168359 / 6.876477 (-4.708118) | 2.258160 / 2.142072 (0.116088) | 0.865629 / 4.805227 (-3.939598) | 0.171281 / 6.500664 (-6.329383) | 0.065746 / 0.075469 (-0.009723) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290378 / 1.841788 (-0.551409) | 15.900804 / 8.074308 (7.826496) | 14.809614 / 10.191392 (4.618222) | 0.177287 / 0.680424 (-0.503137) | 0.017875 / 0.534201 (-0.516326) | 0.429646 / 0.579283 (-0.149637) | 0.451646 / 0.434364 (0.017282) | 0.545669 / 0.540337 (0.005332) | 0.633215 / 1.386936 (-0.753721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2c67b5f4bc9cea088e977a135644d38da8c144ff \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/1633
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1633/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1633/comments
https://api.github.com/repos/huggingface/datasets/issues/1633/events
https://github.com/huggingface/datasets/issues/1633
774,422,603
MDU6SXNzdWU3NzQ0MjI2MDM=
1,633
social_i_qa wrong format of labels
[]
closed
false
null
2
2020-12-24T13:11:54Z
2020-12-30T17:18:49Z
2020-12-30T17:18:49Z
null
Hi, there is extra "\n" in labels of social_i_qa datasets, no big deal, but I was wondering if you could remove it to make it consistent. so label is 'label': '1\n', not '1' thanks ``` >>> import datasets >>> from datasets import load_dataset >>> dataset = load_dataset( ... 'social_i_qa') cahce dir /julia/cache/datasets Downloading: 4.72kB [00:00, 3.52MB/s] cahce dir /julia/cache/datasets Downloading: 2.19kB [00:00, 1.81MB/s] Using custom data configuration default Reusing dataset social_i_qa (/julia/datasets/social_i_qa/default/0.1.0/4a4190cc2d2482d43416c2167c0c5dccdd769d4482e84893614bd069e5c3ba06) >>> dataset['train'][0] {'answerA': 'like attending', 'answerB': 'like staying home', 'answerC': 'a good friend to have', 'context': 'Cameron decided to have a barbecue and gathered her friends together.', 'label': '1\n', 'question': 'How would Others feel as a result?'} ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1633/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1633/timeline
null
completed
null
null
false
[ "@lhoestq, should I raise a PR for this? Just a minor change while reading labels text file", "Sure feel free to open a PR thanks !" ]
https://api.github.com/repos/huggingface/datasets/issues/2030
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2030/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2030/comments
https://api.github.com/repos/huggingface/datasets/issues/2030/events
https://github.com/huggingface/datasets/pull/2030
829,110,803
MDExOlB1bGxSZXF1ZXN0NTkwODI4NzQ4
2,030
Implement Dataset from text
[]
closed
false
null
1
2021-03-11T12:34:50Z
2021-03-18T13:29:29Z
2021-03-18T13:29:29Z
null
Implement `Dataset.from_text`. Analogue to #1943, #1946.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2030/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2030/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2030.diff", "html_url": "https://github.com/huggingface/datasets/pull/2030", "merged_at": "2021-03-18T13:29:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/2030.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2030" }
true
[ "I am wondering why only one test of \"keep_in_memory=True\" fails, when there are many other tests that test the same and it happens only in pyarrow_1..." ]
https://api.github.com/repos/huggingface/datasets/issues/640
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/640/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/640/comments
https://api.github.com/repos/huggingface/datasets/issues/640/events
https://github.com/huggingface/datasets/pull/640
704,311,758
MDExOlB1bGxSZXF1ZXN0NDg5MjYwNTc1
640
Make shuffle compatible with temp_seed
[]
closed
false
null
0
2020-09-18T11:38:58Z
2020-09-18T11:47:51Z
2020-09-18T11:47:50Z
null
This code used to return different dataset at each run ```python import dataset as ds dataset = ... with ds.temp_seed(42): shuffled = dataset.shuffle() ``` Now it returns the same one since the seed is set
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/640/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/640/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/640.diff", "html_url": "https://github.com/huggingface/datasets/pull/640", "merged_at": "2020-09-18T11:47:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/640.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/640" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/911
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/911/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/911/comments
https://api.github.com/repos/huggingface/datasets/issues/911/events
https://github.com/huggingface/datasets/issues/911
752,806,215
MDU6SXNzdWU3NTI4MDYyMTU=
911
datasets module not found
[]
closed
false
null
1
2020-11-29T01:24:15Z
2020-11-29T14:33:09Z
2020-11-29T14:33:09Z
null
Currently, running `from datasets import load_dataset` will throw a `ModuleNotFoundError: No module named 'datasets'` error.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/911/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/911/timeline
null
completed
null
null
false
[ "nvm, I'd made an assumption that the library gets installed with transformers. " ]
https://api.github.com/repos/huggingface/datasets/issues/3378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3378/comments
https://api.github.com/repos/huggingface/datasets/issues/3378/events
https://github.com/huggingface/datasets/pull/3378
1,070,580,126
PR_kwDODunzps4vXF1D
3,378
Add The Pile subsets
[]
closed
false
null
0
2021-12-03T13:14:54Z
2021-12-09T18:11:25Z
2021-12-09T18:11:23Z
null
Add The Pile subsets: - pubmed - ubuntu_irc - europarl - hacker_news - nih_exporter Close bigscience-workshop/data_tooling#301. CC: @StellaAthena
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3378/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3378.diff", "html_url": "https://github.com/huggingface/datasets/pull/3378", "merged_at": "2021-12-09T18:11:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/3378.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3378" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2875
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2875/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2875/comments
https://api.github.com/repos/huggingface/datasets/issues/2875/events
https://github.com/huggingface/datasets/issues/2875
989,919,398
MDU6SXNzdWU5ODk5MTkzOTg=
2,875
Add Congolese Swahili speech datasets
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "d93f0b", "default": false, "description": "", "id": 2725241052, "name": "speech", "node_id": "MDU6TGFiZWwyNzI1MjQxMDUy", "url": "https://api.github.com/repos/huggingface/datasets/labels/speech" } ]
open
false
null
0
2021-09-07T12:13:50Z
2021-09-07T12:13:50Z
null
null
## Adding a Dataset - **Name:** Congolese Swahili speech corpora - **Data:** https://gamayun.translatorswb.org/data/ Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Also related: https://mobile.twitter.com/OktemAlp/status/1435196393631764482
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2875/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2875/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/2743
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2743/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2743/comments
https://api.github.com/repos/huggingface/datasets/issues/2743/events
https://github.com/huggingface/datasets/issues/2743
958,119,251
MDU6SXNzdWU5NTgxMTkyNTE=
2,743
Dataset JSON is incorrect
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2021-08-02T13:01:26Z
2021-08-03T10:06:57Z
2021-08-03T09:25:33Z
null
## Describe the bug The JSON file generated for https://github.com/huggingface/datasets/blob/573f3d35081cee239d1b962878206e9abe6cde91/datasets/journalists_questions/journalists_questions.py is https://github.com/huggingface/datasets/blob/573f3d35081cee239d1b962878206e9abe6cde91/datasets/journalists_questions/dataset_infos.json. The only config should be `plain_text`, but the first key in the JSON is `journalists_questions` (the dataset id) instead. ```json { "journalists_questions": { "description": "The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic\ntweets manually labeled for question identification over Arabic tweets posted by journalists.\n", ... ``` ## Steps to reproduce the bug Look at the files. ## Expected results The first key should be `plain_text`: ```json { "plain_text": { "description": "The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic\ntweets manually labeled for question identification over Arabic tweets posted by journalists.\n", ... ``` ## Actual results ```json { "journalists_questions": { "description": "The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic\ntweets manually labeled for question identification over Arabic tweets posted by journalists.\n", ... ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2743/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2743/timeline
null
completed
null
null
false
[ "As discussed, the metadata JSON files must be regenerated because the keys were nor properly generated and they will not be read by the builder:\r\n> Indeed there is some problem/bug while reading the datasets_info.json file: there is a mismatch with the config.name keys in the file...\r\nIn the meanwhile, in order to be able to use the datasets_info.json file content, you can create the builder without passing the name :\r\n```\r\nIn [25]: builder = datasets.load_dataset_builder(\"journalists_questions\")\r\nIn [26]: builder.info.splits\r\nOut[26]: {'train': SplitInfo(name='train', num_bytes=342296, num_examples=10077, dataset_name='journalists_questions')}\r\n```\r\n\r\nAfter regenerating the metadata JSON file for this dataset, I get the right key:\r\n```\r\n{\"plain_text\": {\"description\": \"The journalists_questions corpus (\r\n```", "Thanks!" ]
https://api.github.com/repos/huggingface/datasets/issues/2550
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2550/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2550/comments
https://api.github.com/repos/huggingface/datasets/issues/2550/events
https://github.com/huggingface/datasets/issues/2550
930,951,287
MDU6SXNzdWU5MzA5NTEyODc=
2,550
Allow for incremental cumulative metric updates in a distributed setup
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
0
2021-06-27T15:00:58Z
2021-09-26T13:42:39Z
2021-09-26T13:42:39Z
null
Currently, using a metric allows for one of the following: - Per example/batch metrics - Cumulative metrics over the whole data What I'd like is to have an efficient way to get cumulative metrics over the examples/batches added so far, in order to display it as part of the progress bar during training/evaluation. Since most metrics are just an average of per-example metrics (which aren't?), an efficient calculation can be done as follows: `((score_cumulative * n_cumulative) + (score_new * n_new)) / (n_cumulative+ n_new)` where `n` and `score` refer to number of examples and metric score, `cumulative` refers to the cumulative metric and `new` refers to the addition of new examples. If you don't want to add this capability in the library, a simple solution exists so users can do it themselves: It is easy to implement for a single process setup, but in a distributed one there is no way to get the correct `n_new`. The solution for this is to return the number of examples that was used to compute the metrics in `.compute()` by adding the following line here: https://github.com/huggingface/datasets/blob/5a3221785311d0ce86c2785b765e86bd6997d516/src/datasets/metric.py#L402-L403 ``` output["number_of_examples"] = len(predictions) ``` and also remove the log message here so it won't spam: https://github.com/huggingface/datasets/blob/3db67f5ff6cbf807b129d2b4d1107af27623b608/src/datasets/metric.py#L411 If this change is ok with you, I'll open a pull request.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2550/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2550/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/164
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/164/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/164/comments
https://api.github.com/repos/huggingface/datasets/issues/164/events
https://github.com/huggingface/datasets/issues/164
620,540,250
MDU6SXNzdWU2MjA1NDAyNTA=
164
Add Spanish POR and NER Datasets
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
2
2020-05-18T22:18:21Z
2020-05-25T16:28:45Z
2020-05-25T16:28:45Z
null
Hi guys, In order to cover multilingual support a little step could be adding standard Datasets used for Spanish NER and POS tasks. I can provide it in raw and preprocessed formats.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/164/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/164/timeline
null
completed
null
null
false
[ "Hello @mrm8488, are these datasets official datasets published in an NLP/CL/ML venue?", "What about this one: https://github.com/ccasimiro88/TranslateAlignRetrieve?" ]
https://api.github.com/repos/huggingface/datasets/issues/892
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/892/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/892/comments
https://api.github.com/repos/huggingface/datasets/issues/892/events
https://github.com/huggingface/datasets/pull/892
751,658,262
MDExOlB1bGxSZXF1ZXN0NTI4MTMxNTE1
892
Add a few datasets of reference in the documentation
[]
closed
false
null
3
2020-11-26T15:02:39Z
2020-11-27T18:08:45Z
2020-11-27T18:08:44Z
null
I started making a small list of various datasets of reference in the documentation. Since many datasets share a lot in common I think it's good to have a list of datasets scripts to get some inspiration from. Let me know what you think, and if you have ideas of other datasets that we may add to this list, please let me know.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/892/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/892/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/892.diff", "html_url": "https://github.com/huggingface/datasets/pull/892", "merged_at": "2020-11-27T18:08:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/892.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/892" }
true
[ "Looks good to me. Do we also support TSV in this helper (explain if it should be text or CSV) and in the dummy-data creator?", "snli is basically based on tsv files (but named as .txt) and it is in the list of datasets of reference.\r\nThe dummy data creator supports tsv", "merging this one.\r\nIf you think of other datasets of reference to add we can still add them later" ]
https://api.github.com/repos/huggingface/datasets/issues/5579
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5579/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5579/comments
https://api.github.com/repos/huggingface/datasets/issues/5579/events
https://github.com/huggingface/datasets/pull/5579
1,599,732,211
PR_kwDODunzps5Kwgo4
5,579
Add instructions to create `DataLoader` from augmented dataset in object detection guide
[]
closed
false
null
3
2023-02-25T14:53:17Z
2023-03-23T19:24:59Z
2023-03-23T19:24:50Z
null
The following adds instructions on how to create a `DataLoader` from the guide on how to use object detection with augmentations (#4710). I am open to hearing any suggestions for improvement !
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5579/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5579/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5579.diff", "html_url": "https://github.com/huggingface/datasets/pull/5579", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5579.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5579" }
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5579). All of your documentation changes will be reflected on that endpoint.", "I'm not sure we need this part as we provide a link to the notebook that shows how to train an object detection model, and this notebook instantiates a `DataLoader` before training the model. I'd like to hear what @stevhliu thinks.\r\n\r\nPS: Your `collate_fn` calls `torch.stack` on the `bbox` tensors, which don't have the same shape, so this will fail.", "I agree with @mariosasko; we also have a [Use with PyTorch](https://huggingface.co/docs/datasets/use_with_pytorch) guide that shows how you can create a `DataLoader`. " ]
https://api.github.com/repos/huggingface/datasets/issues/769
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/769/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/769/comments
https://api.github.com/repos/huggingface/datasets/issues/769/events
https://github.com/huggingface/datasets/issues/769
731,257,104
MDU6SXNzdWU3MzEyNTcxMDQ=
769
How to choose proper download_mode in function load_dataset?
[]
closed
false
null
5
2020-10-28T09:16:19Z
2022-02-22T12:22:52Z
2022-02-22T12:22:52Z
null
Hi, I am a beginner to datasets and I try to use datasets to load my csv file. my csv file looks like this ``` text,label "Effective but too-tepid biopic",3 "If you sometimes like to go to the movies to have fun , Wasabi is a good place to start .",4 "Emerges as something rare , an issue movie that 's so honest and keenly observed that it does n't feel like one .",5 ``` First I try to use this command to load my csv file . ``` python dataset=load_dataset('csv', data_files=['sst_test.csv']) ``` It seems good, but when i try to overwrite the convert_options to convert 'label' columns from int64 to float32 like this. ``` python import pyarrow as pa from pyarrow import csv read_options = csv.ReadOptions(block_size=1024*1024) parse_options = csv.ParseOptions() convert_options = csv.ConvertOptions(column_types={'text': pa.string(), 'label': pa.float32()}) dataset = load_dataset('csv', data_files=['sst_test.csv'], read_options=read_options, parse_options=parse_options, convert_options=convert_options) ``` It keeps the same: ```shell Dataset(features: {'text': Value(dtype='string', id=None), 'label': Value(dtype='int64', id=None)}, num_rows: 2210) ``` I think this issue is caused by the parameter "download_mode" Default to REUSE_DATASET_IF_EXISTS because after I delete the cache_dir, it seems right. Is it a bug? How to choose proper download_mode to avoid this issue?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/769/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/769/timeline
null
completed
null
null
false
[ "`download_mode=datasets.GenerateMode.FORCE_REDOWNLOAD` should work.\r\nThis makes me think we we should rename this to DownloadMode.FORCE_REDOWNLOAD. Currently that's confusing", "Can we just use `features=...` in `load_dataset` for this @lhoestq?", "Indeed you should use `features` in this case. \r\n```python\r\nfeatures = Features({'text': Value('string'), 'label': Value('float32')})\r\ndataset = load_dataset('csv', data_files=['sst_test.csv'], features=features)\r\n```\r\nNote that because of an issue with the caching when you change the features (see #750 ) you still need to specify the `FORCE_REDOWNLOAD ` flag. I'm working on a fix for this one", "https://github.com/huggingface/datasets/issues/769#issuecomment-717837832\r\n> This makes me think we we should rename this to DownloadMode.FORCE_REDOWNLOAD. Currently that's confusing\r\n\r\n@lhoestq do you still think we should rename it?\r\n", "It's no big deal, but since it can be confusing to users I think it's worth renaming it, and deprecate `GenerateMode` until `datasets` 2.0 at least. IMO it's confusing to have `download_mode=GenerateMode.something`" ]
https://api.github.com/repos/huggingface/datasets/issues/4439
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4439/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4439/comments
https://api.github.com/repos/huggingface/datasets/issues/4439/events
https://github.com/huggingface/datasets/issues/4439
1,258,434,111
I_kwDODunzps5LAi4_
4,439
TIMIT won't load after manual download: Errors about files that don't exist
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
3
2022-06-02T16:35:56Z
2022-06-03T08:44:17Z
2022-06-03T08:44:16Z
null
## Describe the bug I get the message from HuggingFace that it must be downloaded manually. From the URL provided in the message, I got to UPenn page for manual download. (UPenn apparently want $250? for the dataset??) ...So, ok, I obtained a copy from a friend and also a smaller version from Kaggle. But in both cases the HF dataloader fails; it is looking for files that don't exist anywhere in the dataset: it is looking for files with lower-case letters like "**test*" (all the filenames in both my copies are uppercase) and certain file extensions that exclude the .DOC which is provided in TIMIT: ## Steps to reproduce the bug ```python data = load_dataset('timit_asr', 'clean')['train'] ``` ## Expected results The dataset should load with no errors. ## Actual results This error message: ``` File "/home/ubuntu/envs/data2vec/lib/python3.9/site-packages/datasets/data_files.py", line 201, in resolve_patterns_locally_or_by_urls raise FileNotFoundError(error_msg) FileNotFoundError: Unable to resolve any data file that matches '['**test*', '**eval*']' at /home/ubuntu/datasets/timit with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'zip'] ``` But this is a strange sort of error: why is it looking for lower-case file names when all the TIMIT dataset filenames are uppercase? Why does it exclude .DOC files when the only parts of the TIMIT data set with "TEST" in them have ".DOC" extensions? ...I wonder, how was anyone able to get this to work in the first place? The files in the dataset look like the following: ``` ³ PHONCODE.DOC ³ PROMPTS.TXT ³ SPKRINFO.TXT ³ SPKRSENT.TXT ³ TESTSET.DOC ``` ...so why are these being excluded by the dataset loader? ## Environment info - `datasets` version: 2.2.2 - Platform: Linux-5.4.0-1060-aws-x86_64-with-glibc2.27 - Python version: 3.9.9 - PyArrow version: 8.0.0 - Pandas version: 1.4.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4439/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4439/timeline
null
completed
null
null
false
[ "To have some context, please see:\r\n- #4145\r\n\r\nPlease, also note that we have recently made some fixes to the script, which are in our GitHub master branch but not yet released:\r\n- #4422\r\n- #4425 \r\n- #4436", "Thanks Albert! I'll try pulling `datasets` from the git repo instead of PyPI, and/or just wait for the next release.\r\n", "I'm closing this issue then. Please, feel free to reopen it again if the problem persists." ]
https://api.github.com/repos/huggingface/datasets/issues/1940
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1940/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1940/comments
https://api.github.com/repos/huggingface/datasets/issues/1940/events
https://github.com/huggingface/datasets/issues/1940
815,770,012
MDU6SXNzdWU4MTU3NzAwMTI=
1,940
Side effect when filtering data due to `does_function_return_dict` call in `Dataset.map()`
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
2
2021-02-24T19:18:56Z
2021-03-23T15:26:49Z
2021-03-23T15:26:49Z
null
Hi there! In my codebase I have a function to filter rows in a dataset, selecting only a certain number of examples per class. The function passes a extra argument to maintain a counter of the number of dataset rows/examples already selected per each class, which are the ones I want to keep in the end: ```python def fill_train_examples_per_class(example, per_class_limit: int, counter: collections.Counter): label = int(example['label']) current_counter = counter.get(label, 0) if current_counter < per_class_limit: counter[label] = current_counter + 1 return True return False ``` At some point I invoke it through the `Dataset.filter()` method in the `arrow_dataset.py` module like this: ```python ... kwargs = {"per_class_limit": train_examples_per_class_limit, "counter": Counter()} datasets['train'] = datasets['train'].filter(fill_train_examples_per_class, num_proc=1, fn_kwargs=kwargs) ... ``` The problem is that, passing a stateful container (the counter,) provokes a side effect in the new filtered dataset obtained. This is due to the fact that at some point in `filter()`, the `map()`'s function `does_function_return_dict` is invoked in line [1290](https://github.com/huggingface/datasets/blob/96578adface7e4bc1f3e8bafbac920d72ca1ca60/src/datasets/arrow_dataset.py#L1290). When this occurs, the state of the counter is initially modified by the effects of the function call on the 1 or 2 rows selected in lines 1288 and 1289 of the same file (which are marked as `test_inputs` & `test_indices` respectively in lines 1288 and 1289. This happens out of the control of the user (which for example can't reset the state of the counter before continuing the execution,) provoking in the end an undesired side effect in the results obtained. In my case, the resulting dataset -despite of the counter results are ok- lacks an instance of the classes 0 and 1 (which happen to be the classes of the first two examples of my dataset.) The rest of the classes I have in my dataset, contain the right number of examples as they were not affected by the effects of `does_function_return_dict` call. I've debugged my code extensively and made a workaround myself hardcoding the necessary stuff (basically putting `update_data=True` in line 1290,) and then I obtain the results I expected without the side effect. Is there a way to avoid that call to `does_function_return_dict` in map()'s line 1290 ? (e.g. extracting the required information that `does_function_return_dict` returns without making the testing calls to the user function on dataset rows 0 & 1) Thanks in advance, Francisco Perez-Sorrosal
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1940/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1940/timeline
null
completed
null
null
false
[ "Thanks for the report !\r\n\r\nCurrently we don't have a way to let the user easily disable this behavior.\r\nHowever I agree that we should support stateful processing functions, ideally by removing `does_function_return_dict`.\r\n\r\nWe needed this function in order to know whether the `map` functions needs to write data or not. if `does_function_return_dict` returns False then we don't write anything.\r\n\r\nInstead of checking the output of the processing function outside of the for loop that iterates through the dataset to process it, we can check the output of the first processed example and at that point decide if we need to write data or not.\r\n\r\nTherefore it's definitely possible to fix this unwanted behavior, any contribution going into this direction is welcome :)", "Thanks @mariosasko for the PR!" ]
https://api.github.com/repos/huggingface/datasets/issues/617
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/617/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/617/comments
https://api.github.com/repos/huggingface/datasets/issues/617/events
https://github.com/huggingface/datasets/issues/617
699,472,596
MDU6SXNzdWU2OTk0NzI1OTY=
617
Compare different Rouge implementations
[]
closed
false
null
7
2020-09-11T15:49:32Z
2023-03-22T12:08:44Z
2020-10-02T09:52:18Z
null
I used RougeL implementation provided in `datasets` [here](https://github.com/huggingface/datasets/blob/master/metrics/rouge/rouge.py) and it gives numbers that match those reported in the pegasus paper but very different from those reported in other papers, [this](https://arxiv.org/pdf/1909.03186.pdf) for example. Can you make sure the google-research implementation you are using matches the official perl implementation? There are a couple of python wrappers around the perl implementation, [this](https://pypi.org/project/pyrouge/) has been commonly used, and [this](https://github.com/pltrdy/files2rouge) is used in fairseq). There's also a python reimplementation [here](https://github.com/pltrdy/rouge) but its RougeL numbers are way off.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/617/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/617/timeline
null
completed
null
null
false
[ "Updates - the differences between the following three\r\n(1) https://github.com/bheinzerling/pyrouge (previously popular. The one I trust the most)\r\n(2) https://github.com/google-research/google-research/tree/master/rouge\r\n(3) https://github.com/pltrdy/files2rouge (used in fairseq)\r\ncan be explained by two things, stemming and handling multiple sentences.\r\n\r\nStemming: \r\n(1), (2): default is no stemming. (3): default is with stemming ==> No stemming is the correct default as you did [here](https://github.com/huggingface/datasets/blob/master/metrics/rouge/rouge.py#L84)\r\n\r\nMultiple sentences:\r\n(1) `rougeL` splits text using `\\n`\r\n(2) `rougeL` ignores `\\n`. \r\n(2) `rougeLsum` splits text using `\\n`\r\n(3) `rougeL` splits text using `.`\r\n\r\nFor (2), `rougeL` and `rougeLsum` are identical if the sequence doesn't contain `\\n`. With `\\n`, it is `rougeLsum` that matches (1) not `rougeL`. \r\n\r\nOverall, and as far as I understand, for your implementation here https://github.com/huggingface/datasets/blob/master/metrics/rouge/rouge.py#L65 to match the default, you only need to change `rougeL` [here](https://github.com/huggingface/datasets/blob/master/metrics/rouge/rouge.py#L86) to `rougeLsum` to correctly compute metrics for text with newlines.\r\n\r\nTagging @sshleifer who might be interested.", "Thanks for the clarification !\r\nWe're adding Rouge Lsum in #701 ", "This is a real issue, sorry for missing the mention @ibeltagy\r\n\r\nWe implemented a more involved [solution](https://github.com/huggingface/transformers/blob/99cb924bfb6c4092bed9232bea3c242e27c6911f/examples/seq2seq/utils.py#L481) that enforces that sentences are split with `\\n` so that rougeLsum scores match papers even if models don't generate newlines. \r\n\r\nUnfortunately, the best/laziest way I found to do this introduced an `nltk` dependency (For sentence splitting, all sentences don't end in `.`!!!), but this might be avoidable with some effort.\r\n\r\n#### Sidebar: Wouldn't Deterministic Be Better?\r\n\r\n`rouge_scorer.scoring.BootstrapAggregator` is well named but is not deterministic which I would like to change for my mental health, unless there is some really good reason to sample 500 observations before computing f-scores.\r\n\r\nI have a fix on a branch, but I wanted to get some context before introducting a 4th way to compute rouge. Scores are generally within .03 Rouge2 of boostrap after multiplying by 100, e.g 22.05 vs 22.08 Rouge2.\r\n\r\n", "> This is a real issue, sorry for missing the mention @ibeltagy\r\n> \r\n> We implemented a more involved [solution](https://github.com/huggingface/transformers/blob/99cb924bfb6c4092bed9232bea3c242e27c6911f/examples/seq2seq/utils.py#L481) that enforces that sentences are split with `\\n` so that rougeLsum scores match papers even if models don't generate newlines.\r\n> \r\n> Unfortunately, the best/laziest way I found to do this introduced an `nltk` dependency (For sentence splitting, all sentences don't end in `.`!!!), but this might be avoidable with some effort.\r\n\r\nThanks for the details, I didn't know about that. Maybe we should consider adding this processing step or at least mention it somewhere in the library or the documentation\r\n\r\n> #### Sidebar: Wouldn't Deterministic Be Better?\r\n> `rouge_scorer.scoring.BootstrapAggregator` is well named but is not deterministic which I would like to change for my mental health, unless there is some really good reason to sample 500 observations before computing f-scores.\r\n> \r\n> I have a fix on a branch, but I wanted to get some context before introducting a 4th way to compute rouge. Scores are generally within .03 Rouge2 of boostrap after multiplying by 100, e.g 22.05 vs 22.08 Rouge2.\r\n\r\nI think the default `n_samples` of the aggregator is 1000. We could increase it or at least allow users to change it if they want more precise results.", "Hi, thanks for the solution. \r\n\r\nI am not sure if this is a bug, but on line [510](https://github.com/huggingface/transformers/blob/99cb924bfb6c4092bed9232bea3c242e27c6911f/examples/seq2seq/utils.py#L510), are pred, tgt supposed to be swapped?", "This looks like a bug in an old version of the examples in `transformers`", "Hi, so I took this example from the HF implementation. What I can see is that the precision of `Hello there` being summarized to `general kenobi` is 1. I don't understand how this calculation is correct.\r\nIs the comparison just counting the words?\r\nand if Yes, then how does this translates to summarization evaluation?\r\n```\r\n >>> rouge = datasets.load_metric('rouge')\r\n >>> predictions = [\"hello there\", \"general kenobi\"]\r\n >>> references = [\"hello there\", \"general kenobi\"]\r\n >>> results = rouge.compute(predictions=predictions, references=references)\r\n >>> print(list(results.keys()))\r\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\r\n >>> print(results[\"rouge1\"])\r\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\r\n >>> print(results[\"rouge1\"].mid.fmeasure)\r\n 1.0\r\n\"\"\", stored examples: 0)\r\n```\r\n\r\n\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/688
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/688/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/688/comments
https://api.github.com/repos/huggingface/datasets/issues/688/events
https://github.com/huggingface/datasets/pull/688
711,804,828
MDExOlB1bGxSZXF1ZXN0NDk1MzkwMTc1
688
Disable tokenizers parallelism in multiprocessed map
[]
closed
false
null
0
2020-09-30T09:53:34Z
2020-10-01T08:45:46Z
2020-10-01T08:45:45Z
null
It was reported in #620 that using multiprocessing with a tokenizers shows this message: ``` The current process just got forked. Disabling parallelism to avoid deadlocks... To disable this warning, please explicitly set TOKENIZERS_PARALLELISM=(true | false) ``` This message is shown when TOKENIZERS_PARALLELISM is unset. Moreover if it is set to `true`, then the program just hangs. To hide the message (if TOKENIZERS_PARALLELISM is unset) and avoid hanging (if TOKENIZERS_PARALLELISM is `true`), then I set TOKENIZERS_PARALLELISM to `false` when forking the process. After forking is gets back to its original value. Also I added a warning if TOKENIZERS_PARALLELISM was `true` and is set to `false`: ``` Setting TOKENIZERS_PARALLELISM=false for forked processes. ``` cc @n1t0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/688/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/688/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/688.diff", "html_url": "https://github.com/huggingface/datasets/pull/688", "merged_at": "2020-10-01T08:45:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/688.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/688" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5427/comments
https://api.github.com/repos/huggingface/datasets/issues/5427/events
https://github.com/huggingface/datasets/issues/5427
1,535,162,889
I_kwDODunzps5bgLoJ
5,427
Unable to download dataset id_clickbait
[]
closed
false
null
1
2023-01-16T16:05:36Z
2023-01-18T09:51:28Z
2023-01-18T09:25:19Z
null
### Describe the bug I tried to download dataset `id_clickbait`, but receive this error message. ``` FileNotFoundError: Couldn't find file at https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/k42j7x2kpn-1.zip ``` When i open the link using browser, i got this XML data. ```xml <?xml version="1.0" encoding="UTF-8"?> <Error><Code>NoSuchBucket</Code><Message>The specified bucket does not exist</Message><BucketName>md-datasets-cache-zipfiles-prod</BucketName><RequestId>NVRM6VEEQD69SD00</RequestId><HostId>W/SPDxLGvlCGi0OD6d7mSDvfOAUqLAfvs9nTX50BkJrjMny+X9Jnqp/Li2lG9eTUuT4MUkAA2jjTfCrCiUmu7A==</HostId></Error> ``` ### Steps to reproduce the bug Code snippet: ``` from datasets import load_dataset load_dataset('id_clickbait', 'annotated') load_dataset('id_clickbait', 'raw') ``` Link to Kaggle notebook: https://www.kaggle.com/code/ilosvigil/bug-check-on-id-clickbait-dataset ### Expected behavior Successfully download and load `id_newspaper` dataset. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5427/timeline
null
completed
null
null
false
[ "Thanks for reporting, @ilos-vigil.\r\n\r\nWe have transferred this issue to the corresponding dataset on the Hugging Face Hub: https://huggingface.co/datasets/id_clickbait/discussions/1 " ]
https://api.github.com/repos/huggingface/datasets/issues/2959
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2959/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2959/comments
https://api.github.com/repos/huggingface/datasets/issues/2959/events
https://github.com/huggingface/datasets/pull/2959
1,005,547,632
PR_kwDODunzps4sMihl
2,959
Added computer vision tasks
[]
closed
false
null
5
2021-09-23T15:07:27Z
2022-03-01T17:41:51Z
2022-03-01T17:41:51Z
null
Added various image processing/computer vision tasks.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2959/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2959/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2959.diff", "html_url": "https://github.com/huggingface/datasets/pull/2959", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2959.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2959" }
true
[ "Looks great, thanks ! If the 3d ones are really rare we can remove them for now.\r\n\r\nAnd I can see that `object-detection` and `semantic-segmentation` are both task categories (top-level) and task ids (bottom-level). Maybe there's a way to group them and have less granularity for the task categories. For example `speech-processing` is a high level task category. What do you think ?\r\n\r\nWe can still update the list of tasks later if needed when we have more vision datasets\r\n", "@lhoestq @osanseviero I used the categories (there were main ones and subcategories) in the paperswithcode, I got rid of some of them that could be too granular. I can put it there if you'd like (I'll wait for your reply before committing it again)", "We can ignore the ones that are too granular IMO. What we did for audio tasks is to have them all under \"audio-processing\". Maybe we can do the same here for now until we have more comprehensive tasks/applications ?", "Following the discussion in (private) https://github.com/huggingface/moon-landing/issues/2020, what do you think of aligning the top level tasks list with the model tasks taxonomy ?\r\n\r\n* Image Classification\r\n* Object Detection\r\n* Image Segmentation\r\n* Text-to-Image\r\n* Image-to-Text\r\n", "I moved it to [a branch](https://github.com/huggingface/datasets/pull/3800) for ease." ]
https://api.github.com/repos/huggingface/datasets/issues/2569
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2569/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2569/comments
https://api.github.com/repos/huggingface/datasets/issues/2569/events
https://github.com/huggingface/datasets/issues/2569
933,015,797
MDU6SXNzdWU5MzMwMTU3OTc=
2,569
Weights of model checkpoint not initialized for RobertaModel for Bertscore
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2021-06-29T18:55:23Z
2021-07-01T07:08:59Z
2021-06-30T07:35:49Z
null
When applying bertscore out of the box, ```Some weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.decoder.weight', 'lm_head.bias', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.weight']``` Following the typical usage from https://huggingface.co/docs/datasets/loading_metrics.html ``` from datasets import load_metric metric = load_metric('bertscore') # Example of typical usage for batch in dataset: inputs, references = batch predictions = model(inputs) metric.add_batch(predictions=predictions, references=references) score = metric.compute(lang="en") #score = metric.compute(model_type="roberta-large") # gives the same error ``` I am concerned about this because my usage shouldn't require any further fine-tuning and most people would expect to use BertScore out of the box? I realised the huggingface code is a wrapper around https://github.com/Tiiiger/bert_score, but I think this repo is anyway relying on the model code and weights from huggingface repo.... ## Environment info - `datasets` version: 1.7.0 - Platform: Linux-5.4.0-1041-aws-x86_64-with-glibc2.27 - Python version: 3.9.5 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2569/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2569/timeline
null
completed
null
null
false
[ "Hi @suzyahyah, thanks for reporting.\r\n\r\nThe message you get is indeed not an error message, but a warning coming from Hugging Face `transformers`. The complete warning message is:\r\n```\r\nSome weights of the model checkpoint at roberta-large were not used when initializing RobertaModel: ['lm_head.decoder.weight', 'lm_head.dense.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.bias', 'lm_head.bias', 'lm_head.layer_norm.weight']\r\n- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\r\n- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\r\n```\r\n\r\nIn this case, this behavior IS expected and you can safely ignore the warning message.\r\n\r\nThe reason is that you are just using RoBERTa to get the contextual embeddings of the input sentences/tokens, thus leaving away its head layer, whose weights are ignored.\r\n\r\nFeel free to reopen this issue if you need further explanations.", "Hi @suzyahyah, I have created a Pull Request to filter out that warning message in this specific case, since the behavior is as expected and the warning message can only cause confusion for users (as in your case)." ]
https://api.github.com/repos/huggingface/datasets/issues/4713
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4713/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4713/comments
https://api.github.com/repos/huggingface/datasets/issues/4713/events
https://github.com/huggingface/datasets/pull/4713
1,309,184,756
PR_kwDODunzps47ojC1
4,713
Document installation of sox OS dependency for audio
[]
closed
false
null
1
2022-07-19T08:42:35Z
2022-07-21T08:16:59Z
2022-07-21T08:04:15Z
null
The `sox` OS package needs being installed manually using the distribution package manager. This PR adds this explanation to the docs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4713/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4713/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4713.diff", "html_url": "https://github.com/huggingface/datasets/pull/4713", "merged_at": "2022-07-21T08:04:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/4713.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4713" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/2594
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2594/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2594/comments
https://api.github.com/repos/huggingface/datasets/issues/2594/events
https://github.com/huggingface/datasets/pull/2594
937,294,772
MDExOlB1bGxSZXF1ZXN0NjgzODc0NjIz
2,594
Fix BibTeX entry
[]
closed
false
null
0
2021-07-05T18:24:10Z
2021-07-06T04:59:38Z
2021-07-06T04:59:38Z
null
Fix BibTeX entry.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2594/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2594/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2594.diff", "html_url": "https://github.com/huggingface/datasets/pull/2594", "merged_at": "2021-07-06T04:59:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/2594.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2594" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1188
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1188/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1188/comments
https://api.github.com/repos/huggingface/datasets/issues/1188/events
https://github.com/huggingface/datasets/pull/1188
757,827,407
MDExOlB1bGxSZXF1ZXN0NTMzMTI2MTcw
1,188
adding hind_encorp dataset
[]
closed
false
null
13
2020-12-06T02:18:45Z
2020-12-11T17:40:41Z
2020-12-11T17:40:41Z
null
adding Hindi_Encorp05 dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1188/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1188/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1188.diff", "html_url": "https://github.com/huggingface/datasets/pull/1188", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1188.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1188" }
true
[ "help needed in dummy data", "extension of the file is .plaintext so dummy data generation is failing\r\n", "you can add the `--match_text_file \"*.plaintext\"` flag when generating the dummy data\r\n\r\nalso it looks like the PR is empty, is this expected ?", "yes it is expected because I made all my changes in PR #1186 then I again run code and open PR #1188 to see if this time test passes or not only so there is no code change from #1186 to #1188 \r\ni tried --match_text_file \"*.plaintext\" this time it is also not generating dummy data don't know why", "well this PR includes no code change at all, can you make sure you added your changes in this one ?", "feel free to ping me when you have added the files so I can take a look and help you with the dummy data", "how to do that i dont know did i have to open new PR\r\n", " actually all my changes are visible in #1186 but don't know how to show same changes here", "these are a the which i did in #1186 and same in #1188 \r\n![1](https://user-images.githubusercontent.com/56379013/101646577-b4864500-3a5d-11eb-8a5a-91b1b441040a.png)\r\n![2](https://user-images.githubusercontent.com/56379013/101646965-32e2e700-3a5e-11eb-94d9-276e602c6ded.png)\r\n![4](https://user-images.githubusercontent.com/56379013/101646989-38d8c800-3a5e-11eb-92bb-d9c4cb2c3595.png)\r\n![5](https://user-images.githubusercontent.com/56379013/101647017-41c99980-3a5e-11eb-87cf-5268e79df19d.png)\r\n![6](https://user-images.githubusercontent.com/56379013/101647038-48581100-3a5e-11eb-8d05-f67834fcaa7b.png)\r\n\r\n![8](https://user-images.githubusercontent.com/56379013/101647080-55750000-3a5e-11eb-8455-8936a35b35c2.png)\r\n![9](https://user-images.githubusercontent.com/56379013/101647084-55750000-3a5e-11eb-988e-ae87f0b252a0.png)\r\n![10](https://user-images.githubusercontent.com/56379013/101647182-6f164780-3a5e-11eb-8af3-f0b0186483c9.png)\r\n![11](https://user-images.githubusercontent.com/56379013/101647230-7c333680-3a5e-11eb-9aeb-2b4ce65965e0.png)\r\n![13](https://user-images.githubusercontent.com/56379013/101647257-848b7180-3a5e-11eb-871c-2fd77b047320.png)\r\n![14](https://user-images.githubusercontent.com/56379013/101647268-89502580-3a5e-11eb-9e2a-b9f7ff1fc95e.png)\r\nthese same codes are in both #1186 and #1188 so because it is already present from PR #1186 because of that it is showing zeor code change in #1188 because it is already present from #1186 how i can show or highlight those changes\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n", "well for me https://github.com/huggingface/datasets/pull/1188/files is blank", "This PR tries to merge the master branch of you fork into this repo, however I can't find changes with your files inside your master branch.\r\n\r\nMaybe you can fork again the repo and try to create another PR ?", "@lhoestq i opened a new pr #1438 but this time it fails many circl ci tests", "Closing this one since a new PR was created" ]
https://api.github.com/repos/huggingface/datasets/issues/4372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4372/comments
https://api.github.com/repos/huggingface/datasets/issues/4372/events
https://github.com/huggingface/datasets/pull/4372
1,241,703,826
PR_kwDODunzps44HeYC
4,372
Check if dataset features match before push in `DatasetDict.push_to_hub`
[]
closed
false
null
1
2022-05-19T12:32:30Z
2022-05-20T15:23:36Z
2022-05-20T15:15:30Z
null
Fix #4211
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4372/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4372/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4372.diff", "html_url": "https://github.com/huggingface/datasets/pull/4372", "merged_at": "2022-05-20T15:15:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/4372.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4372" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/524
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/524/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/524/comments
https://api.github.com/repos/huggingface/datasets/issues/524/events
https://github.com/huggingface/datasets/issues/524
683,686,359
MDU6SXNzdWU2ODM2ODYzNTk=
524
Some docs are missing parameter names
[]
closed
false
null
1
2020-08-21T16:47:34Z
2020-08-25T09:04:03Z
2020-08-25T09:04:03Z
null
See https://huggingface.co/nlp/master/package_reference/main_classes.html#nlp.Dataset.map. I believe this is because the parameter names are enclosed in backticks in the docstrings, maybe it's an old docstring format that doesn't work with the current Sphinx version.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/524/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/524/timeline
null
completed
null
null
false
[ "Indeed, good catch!" ]
https://api.github.com/repos/huggingface/datasets/issues/2616
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2616/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2616/comments
https://api.github.com/repos/huggingface/datasets/issues/2616/events
https://github.com/huggingface/datasets/pull/2616
940,799,038
MDExOlB1bGxSZXF1ZXN0Njg2ODE3NjYz
2,616
Support remote data files
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
2
2021-07-09T14:07:38Z
2021-07-09T16:13:41Z
2021-07-09T16:13:41Z
null
Add support for (streaming) remote data files: ```python data_files = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{relative_file_path}" ds = load_dataset("json", split="train", data_files=data_files, streaming=True) ``` cc: @thomwolf
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2616/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2616/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2616.diff", "html_url": "https://github.com/huggingface/datasets/pull/2616", "merged_at": "2021-07-09T16:13:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/2616.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2616" }
true
[ "@lhoestq maybe we could also use (if available) the ETag of the remote file in `create_config_id`?", "> @lhoestq maybe we could also use (if available) the ETag of the remote file in `create_config_id`?\r\n\r\nSure ! We can get the ETag with\r\n```python\r\nheaders = get_authentication_headers_for_url(url, use_auth_token=use_auth_token) # auth for private repos\r\netag = http_head(url, headers=headers).headers.get(\"ETag\")\r\n```\r\n\r\nSince the computation of the `config_id` is done in the `DatasetBuilder.__init__`, then this means that we need to add a new parameter `use_auth_token` in `DatasetBuilder.__init__`\r\n\r\nDoes that sound good ? We can add this in a following PR" ]
https://api.github.com/repos/huggingface/datasets/issues/1844
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1844/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1844/comments
https://api.github.com/repos/huggingface/datasets/issues/1844/events
https://github.com/huggingface/datasets/issues/1844
803,588,125
MDU6SXNzdWU4MDM1ODgxMjU=
1,844
Update Open Subtitles corpus with original sentence IDs
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
6
2021-02-08T13:55:13Z
2021-02-12T17:38:58Z
2021-02-12T17:38:58Z
null
Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1844/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1844/timeline
null
completed
null
null
false
[ "Hi ! You're right this can can useful.\r\nThis should be easy to add, so feel free to give it a try if you want to contribute :)\r\nI think we just need to add it to the _generate_examples method of the OpenSubtitles dataset builder [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L103)", "Hey @lhoestq , absolutely yes! Just one question before I start implementing. The ids found in the zip file have this format: \r\n(the following is line `22497315` of the `ids` file of the `de-en` dump)\r\n\r\n\r\n`de/2017/7006210/7063319.xml.gz en/2017/7006210/7050201.xml.gz 335 339 340` (every space is actually a tab, aside from the space between `339` and `340`)\r\n\r\n\r\nWhere filenames encode the information like this: `lang/year/imdb_id/opensubtitles_id.xml.gz` whereas the numbers correspond to the sentence ids which are linked together (i.e. sentence `335` of the German subtitle corresponds to lines `339` and `340` of the English file)\r\n\r\nThat being said, do you think I should stick to the raw sentence id (and replace the current sequential id) or should I include more detailed metadata (or both things maybe)?\r\n\r\nGoing with raw ID is surely simpler, but including `year`, `imdbId` and `subtitleId` should save space as they're just integers; besides, any operation (like filtering or grouping) will be much easier if users don't have to manually parse the ids every time.\r\nAs for the language-specific sentenceIds, what could be the best option? A list of integers or a comma-separated string?\r\n\r\n**Note:** I did not find any official information about this encoding, but it appears to check out:\r\nhttps://www.imdb.com/title/tt7006210/, https://www.opensubtitles.org/en/subtitles/7063319 and https://www.opensubtitles.org/en/subtitles/7050201 all link to the same episode, so I guess (I hope!) it's correct.\r\n\r\n", "I like the idea of having `year`, `imdbId` and `subtitleId` as columns for filtering for example.\r\nAnd for the `sentenceIds` a list of integers is fine.", "Thanks for improving it @Valahaar :) ", "Something like this? (adapted from [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L114))\r\n\r\n```python\r\nresult = (\r\n sentence_counter,\r\n {\r\n \"id\": str(sentence_counter),\r\n \"meta\": {\r\n \"year\": year,\r\n \"imdbId\": imdb_id,\r\n \"subtitleId\": {l1: l1_sub_id, l2: l2_sub_id},\r\n \"sentenceIds\": {l1: [... source_sids ...], l2: [... target_sids ...]},\r\n # or maybe src/tgt? I'd go with the first one for consistency with 'translation'\r\n \"subtitleId\": {\"src\": l1_sub_id, \"tgt\": l2_sub_id},\r\n \"sentenceIds\": {\"src\": [... source_sids ...], \"tgt\": [... target_sids ...]},\r\n },\r\n \"translation\": {l1: x, l2: y},\r\n },\r\n )\r\n```\r\nOr at top level, avoiding nesting into 'meta'?", "Merged in #1865, closing. Thanks :)" ]
https://api.github.com/repos/huggingface/datasets/issues/29
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/29/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/29/comments
https://api.github.com/repos/huggingface/datasets/issues/29/events
https://github.com/huggingface/datasets/pull/29
610,243,997
MDExOlB1bGxSZXF1ZXN0NDExNzIwODMx
29
Hf_api small changes
[]
closed
false
null
1
2020-04-30T17:06:43Z
2020-04-30T19:51:45Z
2020-04-30T19:51:44Z
null
From Patrick: ```python from nlp import hf_api api = hf_api.HfApi() api.dataset_list() ``` works :-)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/29/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/29/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/29.diff", "html_url": "https://github.com/huggingface/datasets/pull/29", "merged_at": "2020-04-30T19:51:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/29.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/29" }
true
[ "Ok merging! I think it's good now" ]
https://api.github.com/repos/huggingface/datasets/issues/3330
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3330/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3330/comments
https://api.github.com/repos/huggingface/datasets/issues/3330/events
https://github.com/huggingface/datasets/pull/3330
1,065,176,619
PR_kwDODunzps4vFtF7
3,330
Change TriviaQA license (#3313)
[]
closed
false
null
0
2021-11-28T03:26:45Z
2021-11-29T11:24:21Z
2021-11-29T11:24:21Z
null
Fixes (#3313)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3330/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3330/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3330.diff", "html_url": "https://github.com/huggingface/datasets/pull/3330", "merged_at": "2021-11-29T11:24:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/3330.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3330" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3741/comments
https://api.github.com/repos/huggingface/datasets/issues/3741/events
https://github.com/huggingface/datasets/pull/3741
1,141,132,649
PR_kwDODunzps4y-syt
3,741
Rm sphinx doc
[]
closed
false
null
0
2022-02-17T10:11:37Z
2022-02-17T10:15:17Z
2022-02-17T10:15:12Z
null
Checklist - [x] Update circle ci yaml - [x] Delete sphinx static & python files in docs dir - [x] Update readme in docs dir - [ ] Update docs config in setup.py
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3741/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3741/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3741.diff", "html_url": "https://github.com/huggingface/datasets/pull/3741", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3741.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3741" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2434
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2434/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2434/comments
https://api.github.com/repos/huggingface/datasets/issues/2434/events
https://github.com/huggingface/datasets/issues/2434
907,503,557
MDU6SXNzdWU5MDc1MDM1NTc=
2,434
Extend QuestionAnsweringExtractive template to handle nested columns
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
2
2021-05-31T14:06:51Z
2022-10-05T17:06:28Z
2022-10-05T17:06:28Z
null
Currently the `QuestionAnsweringExtractive` task template and `preprare_for_task` only support "flat" features. We should extend the functionality to cover QA datasets like: * `iapp_wiki_qa_squad` * `parsinlu_reading_comprehension` where the nested features differ with those from `squad` and trigger an `ArrowNotImplementedError`: ``` --------------------------------------------------------------------------- ArrowNotImplementedError Traceback (most recent call last) <ipython-input-12-50e5b8f69c20> in <module> ----> 1 ds.prepare_for_task("question-answering-extractive")[0] ~/git/datasets/src/datasets/arrow_dataset.py in prepare_for_task(self, task) 1436 # We found a template so now flush `DatasetInfo` to skip the template update in `DatasetInfo.__post_init__` 1437 dataset.info.task_templates = None -> 1438 dataset = dataset.cast(features=template.features) 1439 return dataset 1440 ~/git/datasets/src/datasets/arrow_dataset.py in cast(self, features, batch_size, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, num_proc) 977 format = self.format 978 dataset = self.with_format("arrow") --> 979 dataset = dataset.map( 980 lambda t: t.cast(schema), 981 batched=True, ~/git/datasets/src/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 1600 1601 if num_proc is None or num_proc == 1: -> 1602 return self._map_single( 1603 function=function, 1604 with_indices=with_indices, ~/git/datasets/src/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 176 } 177 # apply actual function --> 178 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 179 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 180 # re-apply format to the output ~/git/datasets/src/datasets/fingerprint.py in wrapper(*args, **kwargs) 395 # Call actual function 396 --> 397 out = func(self, *args, **kwargs) 398 399 # Update fingerprint of in-place transforms + update in-place history of transforms ~/git/datasets/src/datasets/arrow_dataset.py in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, desc) 1940 ) # Something simpler? 1941 try: -> 1942 batch = apply_function_on_filtered_inputs( 1943 batch, 1944 indices, ~/git/datasets/src/datasets/arrow_dataset.py in apply_function_on_filtered_inputs(inputs, indices, check_same_num_examples, offset) 1836 effective_indices = [i + offset for i in indices] if isinstance(indices, list) else indices + offset 1837 processed_inputs = ( -> 1838 function(*fn_args, effective_indices, **fn_kwargs) if with_indices else function(*fn_args, **fn_kwargs) 1839 ) 1840 if update_data is None: ~/git/datasets/src/datasets/arrow_dataset.py in <lambda>(t) 978 dataset = self.with_format("arrow") 979 dataset = dataset.map( --> 980 lambda t: t.cast(schema), 981 batched=True, 982 batch_size=batch_size, ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/table.pxi in pyarrow.lib.Table.cast() ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/table.pxi in pyarrow.lib.ChunkedArray.cast() ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/compute.py in cast(arr, target_type, safe) 241 else: 242 options = CastOptions.unsafe(target_type) --> 243 return call_function("cast", [arr], options) 244 245 ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/_compute.pyx in pyarrow._compute.call_function() ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/_compute.pyx in pyarrow._compute.Function.call() ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() ~/miniconda3/envs/datasets/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowNotImplementedError: Unsupported cast from struct<answer_end: list<item: int32>, answer_start: list<item: int32>, text: list<item: string>> to struct using function cast_struct ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2434/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2434/timeline
null
completed
null
null
false
[ "this is also the case for the following datasets and configurations:\r\n\r\n* `mlqa` with config `mlqa-translate-train.ar`\r\n\r\n", "The current task API is somewhat deprecated (we plan to align it with `train eval index` at some point), so I think we can close this issue." ]
https://api.github.com/repos/huggingface/datasets/issues/3944
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3944/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3944/comments
https://api.github.com/repos/huggingface/datasets/issues/3944/events
https://github.com/huggingface/datasets/pull/3944
1,171,209,510
PR_kwDODunzps40iu4n
3,944
Create README.md
[]
closed
false
null
1
2022-03-16T15:46:26Z
2022-03-17T17:50:54Z
2022-03-17T17:47:05Z
null
Proposing COMET metric card
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3944/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3944/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3944.diff", "html_url": "https://github.com/huggingface/datasets/pull/3944", "merged_at": "2022-03-17T17:47:05Z", "patch_url": "https://github.com/huggingface/datasets/pull/3944.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3944" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/2721
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2721/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2721/comments
https://api.github.com/repos/huggingface/datasets/issues/2721/events
https://github.com/huggingface/datasets/pull/2721
954,238,230
MDExOlB1bGxSZXF1ZXN0Njk4MTY0Njg3
2,721
Deal with the bad check in test_load.py
[]
closed
false
null
1
2021-07-27T20:23:23Z
2021-07-28T09:58:34Z
2021-07-28T08:53:18Z
null
This PR removes a check that's been added in #2684. My intention with this check was to capture an URL in the error message, but instead, it captures a substring of the previous regex match in the test function. Another option would be to replace this check with: ```python m_paths = re.findall(r"\S*_dummy/_dummy.py\b", str(exc_info.value)) # on Linux this will match an URL as well as a local_path due to different os.sep, so take the last element (an URL always comes last in the list) assert len(m_paths) > 0 and is_remote_url(m_paths[-1]) # is_remote_url comes from datasets.utils.file_utils ``` @lhoestq Let me know which one of these two approaches (delete or replace) do you prefer?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2721/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2721/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2721.diff", "html_url": "https://github.com/huggingface/datasets/pull/2721", "merged_at": "2021-07-28T08:53:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/2721.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2721" }
true
[ "Hi ! I did a change for this test already in #2662 :\r\n\r\nhttps://github.com/huggingface/datasets/blob/00686c46b7aaf6bfcd4102cec300a3c031284a5a/tests/test_load.py#L312-L316\r\n\r\n(though I have to change the variable name `m_combined_path` to `m_url` or something)\r\n\r\nI guess it's ok to remove this check for now :)" ]
https://api.github.com/repos/huggingface/datasets/issues/4516
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4516/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4516/comments
https://api.github.com/repos/huggingface/datasets/issues/4516/events
https://github.com/huggingface/datasets/pull/4516
1,273,825,640
PR_kwDODunzps45ykYX
4,516
Fix hashing for python 3.9
[]
closed
false
null
2
2022-06-16T16:42:31Z
2022-06-28T13:33:46Z
2022-06-28T13:23:06Z
null
In python 3.9, pickle hashes the `glob_ids` dictionary in addition to the `globs` of a function. Therefore the test at `tests/test_fingerprint.py::RecurseDumpTest::test_recurse_dump_for_function_with_shuffled_globals` is currently failing for python 3.9 To make hashing deterministic when the globals are not in the same order, we also need to make the order of `glob_ids` deterministic. Right now we don't have a CI to test python 3.9 but we should definitely have one. For this PR in particular I ran the tests locally using python 3.9 and they're passing now. Fix https://github.com/huggingface/datasets/issues/4506
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 4, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/4516/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4516/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4516.diff", "html_url": "https://github.com/huggingface/datasets/pull/4516", "merged_at": "2022-06-28T13:23:05Z", "patch_url": "https://github.com/huggingface/datasets/pull/4516.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4516" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "What do you think @albertvillanova ?" ]
https://api.github.com/repos/huggingface/datasets/issues/1134
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1134/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1134/comments
https://api.github.com/repos/huggingface/datasets/issues/1134/events
https://github.com/huggingface/datasets/pull/1134
757,317,651
MDExOlB1bGxSZXF1ZXN0NTMyNzE0MjQ2
1,134
adding xquad-r dataset
[]
closed
false
null
0
2020-12-04T18:39:13Z
2020-12-05T16:50:47Z
2020-12-05T16:50:47Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1134/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1134/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1134.diff", "html_url": "https://github.com/huggingface/datasets/pull/1134", "merged_at": "2020-12-05T16:50:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/1134.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1134" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2493/comments
https://api.github.com/repos/huggingface/datasets/issues/2493/events
https://github.com/huggingface/datasets/pull/2493
919,833,281
MDExOlB1bGxSZXF1ZXN0NjY5MDc4OTcw
2,493
add tensorflow-macos support
[]
closed
false
null
1
2021-06-13T16:20:08Z
2021-06-15T08:53:06Z
2021-06-15T08:53:06Z
null
ref - https://github.com/huggingface/datasets/issues/2068
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2493/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2493/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2493.diff", "html_url": "https://github.com/huggingface/datasets/pull/2493", "merged_at": "2021-06-15T08:53:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/2493.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2493" }
true
[ "@albertvillanova done!" ]
https://api.github.com/repos/huggingface/datasets/issues/1501
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1501/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1501/comments
https://api.github.com/repos/huggingface/datasets/issues/1501/events
https://github.com/huggingface/datasets/pull/1501
763,517,647
MDExOlB1bGxSZXF1ZXN0NTM3OTYzMDU5
1,501
Adds XED dataset
[]
closed
false
null
1
2020-12-12T09:47:00Z
2020-12-14T21:20:59Z
2020-12-14T21:20:59Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1501/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1501/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1501.diff", "html_url": "https://github.com/huggingface/datasets/pull/1501", "merged_at": "2020-12-14T21:20:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/1501.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1501" }
true
[ "Hi @lhoestq @yjernite, requesting you to review this for any changes needed. Thanks! :)" ]
https://api.github.com/repos/huggingface/datasets/issues/387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/387/comments
https://api.github.com/repos/huggingface/datasets/issues/387/events
https://github.com/huggingface/datasets/issues/387
656,361,357
MDU6SXNzdWU2NTYzNjEzNTc=
387
Conversion through to_pandas output numpy arrays for lists instead of python objects
[]
closed
false
null
1
2020-07-14T06:24:01Z
2020-07-17T11:37:00Z
2020-07-17T11:37:00Z
null
In a related question, the conversion through to_pandas output numpy arrays for the lists instead of python objects. Here is an example: ```python >>> dataset._data.slice(key, 1).to_pandas().to_dict("list") {'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [array([ 101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292, 1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938, 4267, 12223, 21811, 1117, 2554, 119, 102])], 'token_type_ids': [array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])], 'attention_mask': [array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])]} >>> type(dataset._data.slice(key, 1).to_pandas().to_dict("list")['input_ids'][0]) <class 'numpy.ndarray'> >>> dataset._data.slice(key, 1).to_pydict() {'sentence1': ['Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .'], 'sentence2': ['Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .'], 'label': [1], 'idx': [0], 'input_ids': [[101, 7277, 2180, 5303, 4806, 1117, 1711, 117, 2292, 1119, 1270, 107, 1103, 7737, 107, 117, 1104, 9938, 4267, 12223, 21811, 1117, 2554, 119, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/387/timeline
null
completed
null
null
false
[ "To convert from arrow type we have three options: to_numpy, to_pandas and to_pydict/to_pylist.\r\n\r\n- to_numpy and to_pandas return numpy arrays instead of lists but are very fast.\r\n- to_pydict/to_pylist can be 100x slower and become the bottleneck for reading data, but at least they return lists.\r\n\r\nMaybe we can have to_pydict/to_pylist as the default and use to_numpy or to_pandas when the format (set by `set_format`) is 'numpy' or 'pandas'" ]
https://api.github.com/repos/huggingface/datasets/issues/1959
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1959/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1959/comments
https://api.github.com/repos/huggingface/datasets/issues/1959/events
https://github.com/huggingface/datasets/issues/1959
818,055,644
MDU6SXNzdWU4MTgwNTU2NDQ=
1,959
Bug in skip_rows argument of load_dataset function ?
[]
closed
false
null
1
2021-02-27T23:32:54Z
2021-03-09T10:21:32Z
2021-03-09T10:21:32Z
null
Hello everyone, I'm quite new to Git so sorry in advance if I'm breaking some ground rules of issues posting... :/ I tried to use the load_dataset function, from Huggingface datasets library, on a csv file using the skip_rows argument described on Huggingface page to skip the first row containing column names `test_dataset = load_dataset('csv', data_files=['test_wLabel.tsv'], delimiter='\t', column_names=["id", "sentence", "label"], skip_rows=1)` But I got the following error message `__init__() got an unexpected keyword argument 'skip_rows'` Have I used the wrong argument ? Am I missing something or is this a bug ? Thank you very much for your time, Best regards, Arthur
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1959/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1959/timeline
null
completed
null
null
false
[ "Hi,\r\n\r\ntry `skiprows` instead. This part is not properly documented in the docs it seems.\r\n\r\n@lhoestq I'll fix this as part of a bigger PR that fixes typos in the docs." ]
https://api.github.com/repos/huggingface/datasets/issues/6044
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6044/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6044/comments
https://api.github.com/repos/huggingface/datasets/issues/6044/events
https://github.com/huggingface/datasets/pull/6044
1,808,057,906
PR_kwDODunzps5Vr7jr
6,044
Rename "pattern" to "path" in YAML data_files configs
[]
closed
false
null
10
2023-07-17T15:41:16Z
2023-07-19T16:59:55Z
2023-07-19T16:48:06Z
null
To make it easier to understand for users. They can use "path" to specify a single path, <s>or "paths" to use a list of paths.</s> Glob patterns are still supported though
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6044/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6044/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6044.diff", "html_url": "https://github.com/huggingface/datasets/pull/6044", "merged_at": "2023-07-19T16:48:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/6044.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6044" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006543 / 0.011353 (-0.004809) | 0.004085 / 0.011008 (-0.006924) | 0.083989 / 0.038508 (0.045481) | 0.074733 / 0.023109 (0.051623) | 0.310839 / 0.275898 (0.034941) | 0.333540 / 0.323480 (0.010060) | 0.005566 / 0.007986 (-0.002419) | 0.003461 / 0.004328 (-0.000868) | 0.065194 / 0.004250 (0.060943) | 0.057007 / 0.037052 (0.019954) | 0.325633 / 0.258489 (0.067144) | 0.351665 / 0.293841 (0.057824) | 0.030561 / 0.128546 (-0.097985) | 0.008579 / 0.075646 (-0.067068) | 0.287457 / 0.419271 (-0.131815) | 0.063554 / 0.043533 (0.020021) | 0.309182 / 0.255139 (0.054043) | 0.327809 / 0.283200 (0.044609) | 0.034470 / 0.141683 (-0.107213) | 1.452098 / 1.452155 (-0.000057) | 1.527130 / 1.492716 (0.034414) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241736 / 0.018006 (0.223729) | 0.552432 / 0.000490 (0.551943) | 0.004085 / 0.000200 (0.003885) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027290 / 0.037411 (-0.010121) | 0.081250 / 0.014526 (0.066724) | 0.094739 / 0.176557 (-0.081818) | 0.150424 / 0.737135 (-0.586711) | 0.095488 / 0.296338 (-0.200851) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.377245 / 0.215209 (0.162036) | 3.781021 / 2.077655 (1.703366) | 1.820092 / 1.504120 (0.315972) | 1.654420 / 1.541195 (0.113225) | 1.751256 / 1.468490 (0.282766) | 0.475161 / 4.584777 (-4.109616) | 3.603462 / 3.745712 (-0.142251) | 5.437837 / 5.269862 (0.167975) | 3.305598 / 4.565676 (-1.260079) | 0.055856 / 0.424275 (-0.368419) | 0.007259 / 0.007607 (-0.000348) | 0.454205 / 0.226044 (0.228161) | 4.544157 / 2.268929 (2.275229) | 2.296776 / 55.444624 (-53.147848) | 1.951017 / 6.876477 (-4.925459) | 2.128759 / 2.142072 (-0.013313) | 0.590354 / 4.805227 (-4.214873) | 0.129974 / 6.500664 (-6.370690) | 0.059506 / 0.075469 (-0.015963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285866 / 1.841788 (-0.555921) | 19.419446 / 8.074308 (11.345138) | 13.985108 / 10.191392 (3.793716) | 0.146803 / 0.680424 (-0.533620) | 0.018176 / 0.534201 (-0.516025) | 0.392345 / 0.579283 (-0.186938) | 0.405394 / 0.434364 (-0.028970) | 0.454649 / 0.540337 (-0.085688) | 0.633075 / 1.386936 (-0.753861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006497 / 0.011353 (-0.004855) | 0.004092 / 0.011008 (-0.006916) | 0.064908 / 0.038508 (0.026400) | 0.073494 / 0.023109 (0.050385) | 0.382227 / 0.275898 (0.106329) | 0.407320 / 0.323480 (0.083840) | 0.005653 / 0.007986 (-0.002332) | 0.003500 / 0.004328 (-0.000829) | 0.064570 / 0.004250 (0.060320) | 0.058733 / 0.037052 (0.021681) | 0.385702 / 0.258489 (0.127213) | 0.426463 / 0.293841 (0.132622) | 0.031073 / 0.128546 (-0.097473) | 0.008710 / 0.075646 (-0.066936) | 0.071378 / 0.419271 (-0.347893) | 0.050141 / 0.043533 (0.006608) | 0.377769 / 0.255139 (0.122630) | 0.395016 / 0.283200 (0.111816) | 0.025158 / 0.141683 (-0.116525) | 1.470503 / 1.452155 (0.018348) | 1.532742 / 1.492716 (0.040026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214249 / 0.018006 (0.196243) | 0.583580 / 0.000490 (0.583090) | 0.004027 / 0.000200 (0.003828) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030186 / 0.037411 (-0.007226) | 0.086927 / 0.014526 (0.072401) | 0.102060 / 0.176557 (-0.074497) | 0.156281 / 0.737135 (-0.580855) | 0.100825 / 0.296338 (-0.195514) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419942 / 0.215209 (0.204733) | 4.183797 / 2.077655 (2.106142) | 2.205079 / 1.504120 (0.700959) | 2.071219 / 1.541195 (0.530024) | 2.194047 / 1.468490 (0.725557) | 0.478768 / 4.584777 (-4.106009) | 3.584864 / 3.745712 (-0.160848) | 3.371635 / 5.269862 (-1.898227) | 2.022134 / 4.565676 (-2.543542) | 0.056553 / 0.424275 (-0.367722) | 0.007231 / 0.007607 (-0.000376) | 0.493158 / 0.226044 (0.267113) | 4.934370 / 2.268929 (2.665441) | 2.699593 / 55.444624 (-52.745031) | 2.396371 / 6.876477 (-4.480105) | 2.438052 / 2.142072 (0.295979) | 0.589578 / 4.805227 (-4.215649) | 0.147234 / 6.500664 (-6.353430) | 0.062049 / 0.075469 (-0.013420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318246 / 1.841788 (-0.523542) | 19.829025 / 8.074308 (11.754717) | 14.314825 / 10.191392 (4.123433) | 0.168309 / 0.680424 (-0.512115) | 0.018596 / 0.534201 (-0.515605) | 0.397540 / 0.579283 (-0.181743) | 0.421280 / 0.434364 (-0.013084) | 0.479917 / 0.540337 (-0.060421) | 0.643494 / 1.386936 (-0.743442) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5be59becaa65f1fa08129091b8c778823e4a50ac \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008349 / 0.011353 (-0.003004) | 0.005362 / 0.011008 (-0.005646) | 0.100777 / 0.038508 (0.062269) | 0.078719 / 0.023109 (0.055609) | 0.398105 / 0.275898 (0.122207) | 0.444189 / 0.323480 (0.120709) | 0.006834 / 0.007986 (-0.001152) | 0.004642 / 0.004328 (0.000314) | 0.076284 / 0.004250 (0.072034) | 0.062738 / 0.037052 (0.025685) | 0.409532 / 0.258489 (0.151043) | 0.447218 / 0.293841 (0.153377) | 0.052996 / 0.128546 (-0.075550) | 0.012977 / 0.075646 (-0.062669) | 0.347687 / 0.419271 (-0.071585) | 0.068076 / 0.043533 (0.024543) | 0.394526 / 0.255139 (0.139387) | 0.434110 / 0.283200 (0.150910) | 0.041719 / 0.141683 (-0.099963) | 1.759109 / 1.452155 (0.306955) | 1.866049 / 1.492716 (0.373333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287633 / 0.018006 (0.269627) | 0.611540 / 0.000490 (0.611051) | 0.005388 / 0.000200 (0.005188) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027394 / 0.037411 (-0.010017) | 0.089796 / 0.014526 (0.075270) | 0.106931 / 0.176557 (-0.069625) | 0.173560 / 0.737135 (-0.563575) | 0.106948 / 0.296338 (-0.189391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575156 / 0.215209 (0.359947) | 5.674170 / 2.077655 (3.596516) | 2.463090 / 1.504120 (0.958971) | 2.128245 / 1.541195 (0.587050) | 2.118982 / 1.468490 (0.650492) | 0.876976 / 4.584777 (-3.707801) | 5.238229 / 3.745712 (1.492517) | 4.548788 / 5.269862 (-0.721074) | 2.905243 / 4.565676 (-1.660433) | 0.090750 / 0.424275 (-0.333525) | 0.008266 / 0.007607 (0.000659) | 0.693305 / 0.226044 (0.467260) | 7.126970 / 2.268929 (4.858041) | 3.152131 / 55.444624 (-52.292494) | 2.532118 / 6.876477 (-4.344359) | 2.678442 / 2.142072 (0.536369) | 0.932745 / 4.805227 (-3.872483) | 0.196290 / 6.500664 (-6.304374) | 0.074082 / 0.075469 (-0.001387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599636 / 1.841788 (-0.242152) | 23.271435 / 8.074308 (15.197127) | 19.696709 / 10.191392 (9.505317) | 0.222668 / 0.680424 (-0.457756) | 0.029088 / 0.534201 (-0.505113) | 0.492477 / 0.579283 (-0.086806) | 0.580578 / 0.434364 (0.146214) | 0.558852 / 0.540337 (0.018514) | 0.762083 / 1.386936 (-0.624853) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009021 / 0.011353 (-0.002332) | 0.005011 / 0.011008 (-0.005997) | 0.076504 / 0.038508 (0.037996) | 0.077303 / 0.023109 (0.054193) | 0.480660 / 0.275898 (0.204762) | 0.493944 / 0.323480 (0.170464) | 0.006339 / 0.007986 (-0.001646) | 0.004302 / 0.004328 (-0.000026) | 0.076228 / 0.004250 (0.071978) | 0.060805 / 0.037052 (0.023753) | 0.477539 / 0.258489 (0.219050) | 0.496799 / 0.293841 (0.202958) | 0.049495 / 0.128546 (-0.079052) | 0.013333 / 0.075646 (-0.062313) | 0.087217 / 0.419271 (-0.332055) | 0.061451 / 0.043533 (0.017918) | 0.485169 / 0.255139 (0.230030) | 0.487348 / 0.283200 (0.204149) | 0.035874 / 0.141683 (-0.105809) | 1.829137 / 1.452155 (0.376982) | 1.906151 / 1.492716 (0.413435) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304526 / 0.018006 (0.286520) | 0.627499 / 0.000490 (0.627009) | 0.003786 / 0.000200 (0.003586) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035512 / 0.037411 (-0.001899) | 0.096684 / 0.014526 (0.082158) | 0.111879 / 0.176557 (-0.064678) | 0.171489 / 0.737135 (-0.565647) | 0.112175 / 0.296338 (-0.184164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604791 / 0.215209 (0.389582) | 6.089137 / 2.077655 (4.011482) | 2.883237 / 1.504120 (1.379117) | 2.561109 / 1.541195 (1.019914) | 2.542400 / 1.468490 (1.073910) | 0.852828 / 4.584777 (-3.731949) | 5.236812 / 3.745712 (1.491100) | 4.756429 / 5.269862 (-0.513432) | 2.885660 / 4.565676 (-1.680016) | 0.095643 / 0.424275 (-0.328632) | 0.008403 / 0.007607 (0.000796) | 0.727707 / 0.226044 (0.501663) | 7.428002 / 2.268929 (5.159074) | 3.816051 / 55.444624 (-51.628573) | 2.971057 / 6.876477 (-3.905420) | 2.915965 / 2.142072 (0.773893) | 1.006553 / 4.805227 (-3.798674) | 0.201840 / 6.500664 (-6.298824) | 0.080795 / 0.075469 (0.005326) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.794951 / 1.841788 (-0.046837) | 23.624556 / 8.074308 (15.550248) | 21.856195 / 10.191392 (11.664802) | 0.253043 / 0.680424 (-0.427381) | 0.031201 / 0.534201 (-0.503000) | 0.461641 / 0.579283 (-0.117642) | 0.577789 / 0.434364 (0.143425) | 0.569197 / 0.540337 (0.028860) | 0.780111 / 1.386936 (-0.606825) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4904f14459c862f0ab525ec034a636177be5dee4 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007646 / 0.011353 (-0.003707) | 0.004750 / 0.011008 (-0.006258) | 0.097981 / 0.038508 (0.059473) | 0.088989 / 0.023109 (0.065880) | 0.377732 / 0.275898 (0.101834) | 0.406805 / 0.323480 (0.083325) | 0.006389 / 0.007986 (-0.001597) | 0.003854 / 0.004328 (-0.000474) | 0.073977 / 0.004250 (0.069727) | 0.066497 / 0.037052 (0.029444) | 0.371498 / 0.258489 (0.113009) | 0.417352 / 0.293841 (0.123511) | 0.036326 / 0.128546 (-0.092220) | 0.009876 / 0.075646 (-0.065770) | 0.330142 / 0.419271 (-0.089130) | 0.062423 / 0.043533 (0.018890) | 0.369375 / 0.255139 (0.114236) | 0.406048 / 0.283200 (0.122848) | 0.026564 / 0.141683 (-0.115119) | 1.713295 / 1.452155 (0.261140) | 1.797493 / 1.492716 (0.304777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231889 / 0.018006 (0.213882) | 0.512497 / 0.000490 (0.512007) | 0.000390 / 0.000200 (0.000190) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033978 / 0.037411 (-0.003433) | 0.100117 / 0.014526 (0.085592) | 0.112460 / 0.176557 (-0.064097) | 0.179936 / 0.737135 (-0.557200) | 0.114277 / 0.296338 (-0.182061) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461320 / 0.215209 (0.246111) | 4.563180 / 2.077655 (2.485526) | 2.249474 / 1.504120 (0.745354) | 2.100450 / 1.541195 (0.559255) | 2.231080 / 1.468490 (0.762590) | 0.567907 / 4.584777 (-4.016870) | 4.117233 / 3.745712 (0.371521) | 4.943159 / 5.269862 (-0.326703) | 3.112299 / 4.565676 (-1.453377) | 0.065500 / 0.424275 (-0.358775) | 0.008407 / 0.007607 (0.000800) | 0.545928 / 0.226044 (0.319883) | 5.508058 / 2.268929 (3.239129) | 2.834645 / 55.444624 (-52.609980) | 2.440328 / 6.876477 (-4.436148) | 2.680483 / 2.142072 (0.538410) | 0.697191 / 4.805227 (-4.108036) | 0.176646 / 6.500664 (-6.324018) | 0.073608 / 0.075469 (-0.001861) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.451865 / 1.841788 (-0.389922) | 22.752595 / 8.074308 (14.678287) | 15.543338 / 10.191392 (5.351946) | 0.214644 / 0.680424 (-0.465780) | 0.022050 / 0.534201 (-0.512151) | 0.463898 / 0.579283 (-0.115385) | 0.481691 / 0.434364 (0.047327) | 0.549715 / 0.540337 (0.009378) | 0.773595 / 1.386936 (-0.613341) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007541 / 0.011353 (-0.003812) | 0.004715 / 0.011008 (-0.006293) | 0.076782 / 0.038508 (0.038274) | 0.086242 / 0.023109 (0.063133) | 0.458053 / 0.275898 (0.182155) | 0.503097 / 0.323480 (0.179617) | 0.006262 / 0.007986 (-0.001724) | 0.003882 / 0.004328 (-0.000447) | 0.075669 / 0.004250 (0.071419) | 0.066004 / 0.037052 (0.028952) | 0.469439 / 0.258489 (0.210950) | 0.529744 / 0.293841 (0.235903) | 0.037228 / 0.128546 (-0.091319) | 0.009794 / 0.075646 (-0.065852) | 0.082464 / 0.419271 (-0.336808) | 0.058797 / 0.043533 (0.015264) | 0.452069 / 0.255139 (0.196930) | 0.488246 / 0.283200 (0.205046) | 0.029324 / 0.141683 (-0.112359) | 1.742237 / 1.452155 (0.290082) | 1.839676 / 1.492716 (0.346959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228106 / 0.018006 (0.210100) | 0.491632 / 0.000490 (0.491142) | 0.004993 / 0.000200 (0.004793) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035413 / 0.037411 (-0.001999) | 0.104617 / 0.014526 (0.090091) | 0.121948 / 0.176557 (-0.054609) | 0.186233 / 0.737135 (-0.550902) | 0.121574 / 0.296338 (-0.174764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473849 / 0.215209 (0.258640) | 4.788312 / 2.077655 (2.710657) | 2.470535 / 1.504120 (0.966415) | 2.270393 / 1.541195 (0.729198) | 2.361096 / 1.468490 (0.892606) | 0.556184 / 4.584777 (-4.028593) | 4.216852 / 3.745712 (0.471140) | 3.901718 / 5.269862 (-1.368143) | 2.355209 / 4.565676 (-2.210467) | 0.066708 / 0.424275 (-0.357567) | 0.008709 / 0.007607 (0.001102) | 0.571714 / 0.226044 (0.345669) | 5.663150 / 2.268929 (3.394221) | 3.025769 / 55.444624 (-52.418855) | 2.652554 / 6.876477 (-4.223923) | 2.750555 / 2.142072 (0.608483) | 0.681536 / 4.805227 (-4.123691) | 0.157187 / 6.500664 (-6.343477) | 0.073533 / 0.075469 (-0.001936) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.604630 / 1.841788 (-0.237158) | 22.735629 / 8.074308 (14.661321) | 16.762347 / 10.191392 (6.570955) | 0.175514 / 0.680424 (-0.504910) | 0.021497 / 0.534201 (-0.512704) | 0.461438 / 0.579283 (-0.117845) | 0.476184 / 0.434364 (0.041820) | 0.571048 / 0.540337 (0.030710) | 0.747086 / 1.386936 (-0.639850) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6ea38fc40ee2b10d3b5c6df09b09ad05e02a2cff \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006889 / 0.011353 (-0.004464) | 0.004241 / 0.011008 (-0.006767) | 0.084542 / 0.038508 (0.046034) | 0.080484 / 0.023109 (0.057374) | 0.309356 / 0.275898 (0.033458) | 0.338548 / 0.323480 (0.015068) | 0.004904 / 0.007986 (-0.003082) | 0.005220 / 0.004328 (0.000892) | 0.065501 / 0.004250 (0.061251) | 0.062095 / 0.037052 (0.025043) | 0.317332 / 0.258489 (0.058843) | 0.364797 / 0.293841 (0.070956) | 0.030492 / 0.128546 (-0.098054) | 0.008991 / 0.075646 (-0.066656) | 0.288274 / 0.419271 (-0.130998) | 0.052582 / 0.043533 (0.009049) | 0.310838 / 0.255139 (0.055699) | 0.346304 / 0.283200 (0.063104) | 0.027968 / 0.141683 (-0.113715) | 1.509727 / 1.452155 (0.057573) | 1.577410 / 1.492716 (0.084694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269725 / 0.018006 (0.251719) | 0.627685 / 0.000490 (0.627195) | 0.000419 / 0.000200 (0.000219) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031022 / 0.037411 (-0.006389) | 0.081858 / 0.014526 (0.067332) | 0.099477 / 0.176557 (-0.077080) | 0.162981 / 0.737135 (-0.574154) | 0.101987 / 0.296338 (-0.194351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386297 / 0.215209 (0.171088) | 3.845321 / 2.077655 (1.767666) | 1.834446 / 1.504120 (0.330326) | 1.699730 / 1.541195 (0.158536) | 1.764342 / 1.468490 (0.295852) | 0.486423 / 4.584777 (-4.098354) | 3.527595 / 3.745712 (-0.218117) | 4.137034 / 5.269862 (-1.132827) | 2.590457 / 4.565676 (-1.975219) | 0.057598 / 0.424275 (-0.366677) | 0.007318 / 0.007607 (-0.000289) | 0.460775 / 0.226044 (0.234730) | 4.627576 / 2.268929 (2.358647) | 2.402566 / 55.444624 (-53.042059) | 2.011392 / 6.876477 (-4.865085) | 2.223915 / 2.142072 (0.081842) | 0.623217 / 4.805227 (-4.182011) | 0.148875 / 6.500664 (-6.351789) | 0.059799 / 0.075469 (-0.015671) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290768 / 1.841788 (-0.551020) | 20.455083 / 8.074308 (12.380775) | 13.469846 / 10.191392 (3.278454) | 0.170329 / 0.680424 (-0.510095) | 0.018409 / 0.534201 (-0.515792) | 0.394356 / 0.579283 (-0.184927) | 0.422685 / 0.434364 (-0.011679) | 0.476241 / 0.540337 (-0.064096) | 0.662682 / 1.386936 (-0.724254) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006724 / 0.011353 (-0.004629) | 0.004508 / 0.011008 (-0.006500) | 0.065304 / 0.038508 (0.026796) | 0.080243 / 0.023109 (0.057133) | 0.384545 / 0.275898 (0.108647) | 0.415234 / 0.323480 (0.091754) | 0.006361 / 0.007986 (-0.001624) | 0.004193 / 0.004328 (-0.000135) | 0.065940 / 0.004250 (0.061689) | 0.063633 / 0.037052 (0.026581) | 0.392799 / 0.258489 (0.134310) | 0.443618 / 0.293841 (0.149777) | 0.031134 / 0.128546 (-0.097412) | 0.009058 / 0.075646 (-0.066588) | 0.071051 / 0.419271 (-0.348221) | 0.049096 / 0.043533 (0.005563) | 0.379526 / 0.255139 (0.124387) | 0.403370 / 0.283200 (0.120171) | 0.026378 / 0.141683 (-0.115305) | 1.457879 / 1.452155 (0.005724) | 1.562890 / 1.492716 (0.070174) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304416 / 0.018006 (0.286410) | 0.626046 / 0.000490 (0.625557) | 0.000469 / 0.000200 (0.000269) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032979 / 0.037411 (-0.004433) | 0.086769 / 0.014526 (0.072243) | 0.108188 / 0.176557 (-0.068369) | 0.163077 / 0.737135 (-0.574058) | 0.106276 / 0.296338 (-0.190062) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406922 / 0.215209 (0.191713) | 4.052828 / 2.077655 (1.975174) | 2.084802 / 1.504120 (0.580682) | 1.927263 / 1.541195 (0.386069) | 1.956078 / 1.468490 (0.487587) | 0.480110 / 4.584777 (-4.104667) | 3.553022 / 3.745712 (-0.192691) | 3.554450 / 5.269862 (-1.715411) | 2.082681 / 4.565676 (-2.482995) | 0.056711 / 0.424275 (-0.367564) | 0.007374 / 0.007607 (-0.000234) | 0.480555 / 0.226044 (0.254510) | 4.795851 / 2.268929 (2.526923) | 2.606675 / 55.444624 (-52.837949) | 2.249964 / 6.876477 (-4.626512) | 2.274234 / 2.142072 (0.132162) | 0.571767 / 4.805227 (-4.233461) | 0.133312 / 6.500664 (-6.367352) | 0.061703 / 0.075469 (-0.013766) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354308 / 1.841788 (-0.487479) | 20.959352 / 8.074308 (12.885044) | 14.158420 / 10.191392 (3.967028) | 0.197959 / 0.680424 (-0.482465) | 0.018412 / 0.534201 (-0.515789) | 0.394307 / 0.579283 (-0.184976) | 0.402455 / 0.434364 (-0.031909) | 0.463314 / 0.540337 (-0.077024) | 0.621050 / 1.386936 (-0.765886) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d7298d4d1b169442a8d0bc8c1667298bb89ca501 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007179 / 0.011353 (-0.004174) | 0.004318 / 0.011008 (-0.006690) | 0.085209 / 0.038508 (0.046701) | 0.089989 / 0.023109 (0.066880) | 0.328188 / 0.275898 (0.052290) | 0.346027 / 0.323480 (0.022547) | 0.005711 / 0.007986 (-0.002275) | 0.003703 / 0.004328 (-0.000625) | 0.065419 / 0.004250 (0.061169) | 0.065354 / 0.037052 (0.028301) | 0.314531 / 0.258489 (0.056042) | 0.354357 / 0.293841 (0.060516) | 0.030918 / 0.128546 (-0.097628) | 0.008632 / 0.075646 (-0.067015) | 0.286817 / 0.419271 (-0.132455) | 0.065267 / 0.043533 (0.021735) | 0.310918 / 0.255139 (0.055779) | 0.330497 / 0.283200 (0.047298) | 0.035695 / 0.141683 (-0.105988) | 1.471101 / 1.452155 (0.018947) | 1.538658 / 1.492716 (0.045942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254314 / 0.018006 (0.236308) | 0.591413 / 0.000490 (0.590923) | 0.006082 / 0.000200 (0.005882) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031843 / 0.037411 (-0.005568) | 0.089968 / 0.014526 (0.075442) | 0.101838 / 0.176557 (-0.074718) | 0.164401 / 0.737135 (-0.572734) | 0.103785 / 0.296338 (-0.192554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.380486 / 0.215209 (0.165277) | 3.798868 / 2.077655 (1.721213) | 1.824645 / 1.504120 (0.320525) | 1.660804 / 1.541195 (0.119610) | 1.784793 / 1.468490 (0.316303) | 0.487222 / 4.584777 (-4.097555) | 3.560580 / 3.745712 (-0.185132) | 5.392662 / 5.269862 (0.122800) | 3.295327 / 4.565676 (-1.270350) | 0.057699 / 0.424275 (-0.366576) | 0.007559 / 0.007607 (-0.000048) | 0.459655 / 0.226044 (0.233611) | 4.587583 / 2.268929 (2.318654) | 2.304845 / 55.444624 (-53.139779) | 1.966433 / 6.876477 (-4.910044) | 2.254591 / 2.142072 (0.112519) | 0.582978 / 4.805227 (-4.222250) | 0.133455 / 6.500664 (-6.367210) | 0.061924 / 0.075469 (-0.013546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275685 / 1.841788 (-0.566103) | 20.814545 / 8.074308 (12.740237) | 13.753567 / 10.191392 (3.562175) | 0.164076 / 0.680424 (-0.516348) | 0.018768 / 0.534201 (-0.515433) | 0.390991 / 0.579283 (-0.188293) | 0.404417 / 0.434364 (-0.029947) | 0.457522 / 0.540337 (-0.082815) | 0.624654 / 1.386936 (-0.762282) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007435 / 0.011353 (-0.003918) | 0.004255 / 0.011008 (-0.006754) | 0.066134 / 0.038508 (0.027626) | 0.086035 / 0.023109 (0.062925) | 0.364688 / 0.275898 (0.088790) | 0.403895 / 0.323480 (0.080415) | 0.005868 / 0.007986 (-0.002117) | 0.003634 / 0.004328 (-0.000694) | 0.065803 / 0.004250 (0.061553) | 0.065113 / 0.037052 (0.028061) | 0.370057 / 0.258489 (0.111568) | 0.412634 / 0.293841 (0.118793) | 0.031660 / 0.128546 (-0.096886) | 0.008699 / 0.075646 (-0.066947) | 0.070618 / 0.419271 (-0.348654) | 0.050814 / 0.043533 (0.007281) | 0.362320 / 0.255139 (0.107181) | 0.383863 / 0.283200 (0.100663) | 0.027980 / 0.141683 (-0.113703) | 1.486389 / 1.452155 (0.034234) | 1.595534 / 1.492716 (0.102817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300991 / 0.018006 (0.282985) | 0.565265 / 0.000490 (0.564775) | 0.000400 / 0.000200 (0.000200) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034942 / 0.037411 (-0.002470) | 0.092498 / 0.014526 (0.077972) | 0.106737 / 0.176557 (-0.069819) | 0.165400 / 0.737135 (-0.571735) | 0.107809 / 0.296338 (-0.188529) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412156 / 0.215209 (0.196947) | 4.116747 / 2.077655 (2.039092) | 2.199612 / 1.504120 (0.695492) | 2.049310 / 1.541195 (0.508115) | 2.174342 / 1.468490 (0.705852) | 0.482794 / 4.584777 (-4.101983) | 3.561344 / 3.745712 (-0.184368) | 3.465935 / 5.269862 (-1.803926) | 2.076595 / 4.565676 (-2.489081) | 0.056242 / 0.424275 (-0.368033) | 0.007371 / 0.007607 (-0.000236) | 0.489135 / 0.226044 (0.263091) | 4.895691 / 2.268929 (2.626763) | 2.626936 / 55.444624 (-52.817688) | 2.306658 / 6.876477 (-4.569818) | 2.421705 / 2.142072 (0.279633) | 0.599547 / 4.805227 (-4.205680) | 0.133627 / 6.500664 (-6.367037) | 0.063830 / 0.075469 (-0.011639) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.383039 / 1.841788 (-0.458748) | 21.005346 / 8.074308 (12.931038) | 14.911083 / 10.191392 (4.719691) | 0.190995 / 0.680424 (-0.489429) | 0.018510 / 0.534201 (-0.515691) | 0.396346 / 0.579283 (-0.182937) | 0.411496 / 0.434364 (-0.022868) | 0.470972 / 0.540337 (-0.069366) | 0.615670 / 1.386936 (-0.771266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d6d2ba47759d8acbf3d750b1cc4d89b195b1f9c9 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007249 / 0.011353 (-0.004104) | 0.004261 / 0.011008 (-0.006747) | 0.100645 / 0.038508 (0.062137) | 0.078522 / 0.023109 (0.055413) | 0.423526 / 0.275898 (0.147628) | 0.439541 / 0.323480 (0.116061) | 0.005812 / 0.007986 (-0.002173) | 0.003615 / 0.004328 (-0.000713) | 0.075908 / 0.004250 (0.071658) | 0.062490 / 0.037052 (0.025437) | 0.414941 / 0.258489 (0.156452) | 0.447267 / 0.293841 (0.153426) | 0.035127 / 0.128546 (-0.093419) | 0.009642 / 0.075646 (-0.066004) | 0.354093 / 0.419271 (-0.065179) | 0.060970 / 0.043533 (0.017437) | 0.418579 / 0.255139 (0.163440) | 0.427972 / 0.283200 (0.144772) | 0.025838 / 0.141683 (-0.115845) | 1.778349 / 1.452155 (0.326194) | 1.845965 / 1.492716 (0.353249) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227304 / 0.018006 (0.209298) | 0.571833 / 0.000490 (0.571343) | 0.001328 / 0.000200 (0.001128) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031343 / 0.037411 (-0.006068) | 0.096400 / 0.014526 (0.081875) | 0.106881 / 0.176557 (-0.069676) | 0.175449 / 0.737135 (-0.561686) | 0.108751 / 0.296338 (-0.187588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480204 / 0.215209 (0.264995) | 4.622063 / 2.077655 (2.544408) | 2.211505 / 1.504120 (0.707385) | 2.065154 / 1.541195 (0.523959) | 2.159446 / 1.468490 (0.690956) | 0.584571 / 4.584777 (-4.000206) | 4.392449 / 3.745712 (0.646737) | 4.790166 / 5.269862 (-0.479695) | 2.840615 / 4.565676 (-1.725062) | 0.070845 / 0.424275 (-0.353430) | 0.009112 / 0.007607 (0.001505) | 0.580251 / 0.226044 (0.354207) | 5.660311 / 2.268929 (3.391382) | 2.836136 / 55.444624 (-52.608489) | 2.412859 / 6.876477 (-4.463618) | 2.556710 / 2.142072 (0.414637) | 0.691946 / 4.805227 (-4.113282) | 0.160123 / 6.500664 (-6.340541) | 0.072593 / 0.075469 (-0.002876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547339 / 1.841788 (-0.294448) | 21.724793 / 8.074308 (13.650485) | 16.315304 / 10.191392 (6.123912) | 0.188733 / 0.680424 (-0.491690) | 0.022109 / 0.534201 (-0.512092) | 0.481623 / 0.579283 (-0.097660) | 0.464316 / 0.434364 (0.029952) | 0.557953 / 0.540337 (0.017615) | 0.756023 / 1.386936 (-0.630913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008637 / 0.011353 (-0.002716) | 0.005286 / 0.011008 (-0.005723) | 0.091387 / 0.038508 (0.052879) | 0.114092 / 0.023109 (0.090983) | 0.457547 / 0.275898 (0.181649) | 0.506878 / 0.323480 (0.183398) | 0.006849 / 0.007986 (-0.001137) | 0.004255 / 0.004328 (-0.000073) | 0.079556 / 0.004250 (0.075306) | 0.077729 / 0.037052 (0.040677) | 0.454094 / 0.258489 (0.195605) | 0.515812 / 0.293841 (0.221971) | 0.038271 / 0.128546 (-0.090275) | 0.010110 / 0.075646 (-0.065536) | 0.094254 / 0.419271 (-0.325017) | 0.065392 / 0.043533 (0.021860) | 0.459749 / 0.255139 (0.204610) | 0.489829 / 0.283200 (0.206629) | 0.040393 / 0.141683 (-0.101290) | 1.810414 / 1.452155 (0.358259) | 1.913212 / 1.492716 (0.420496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236898 / 0.018006 (0.218891) | 0.513118 / 0.000490 (0.512628) | 0.004432 / 0.000200 (0.004232) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035074 / 0.037411 (-0.002337) | 0.102384 / 0.014526 (0.087858) | 0.117326 / 0.176557 (-0.059231) | 0.182596 / 0.737135 (-0.554539) | 0.116384 / 0.296338 (-0.179955) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.514544 / 0.215209 (0.299335) | 5.152930 / 2.077655 (3.075275) | 2.624477 / 1.504120 (1.120357) | 2.363209 / 1.541195 (0.822014) | 2.436060 / 1.468490 (0.967570) | 0.592523 / 4.584777 (-3.992254) | 4.209668 / 3.745712 (0.463956) | 6.284372 / 5.269862 (1.014511) | 3.667303 / 4.565676 (-0.898374) | 0.067017 / 0.424275 (-0.357259) | 0.008607 / 0.007607 (0.001000) | 0.600840 / 0.226044 (0.374796) | 5.992630 / 2.268929 (3.723701) | 3.114532 / 55.444624 (-52.330093) | 2.693242 / 6.876477 (-4.183235) | 2.767187 / 2.142072 (0.625115) | 0.687591 / 4.805227 (-4.117636) | 0.158477 / 6.500664 (-6.342187) | 0.075504 / 0.075469 (0.000034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.605039 / 1.841788 (-0.236749) | 21.524730 / 8.074308 (13.450422) | 17.014643 / 10.191392 (6.823251) | 0.201580 / 0.680424 (-0.478843) | 0.023028 / 0.534201 (-0.511173) | 0.483801 / 0.579283 (-0.095482) | 0.490221 / 0.434364 (0.055857) | 0.589292 / 0.540337 (0.048955) | 0.758532 / 1.386936 (-0.628404) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c9c24d1d90f0c2db043ae2bc39f7c292454a58c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008080 / 0.011353 (-0.003273) | 0.004859 / 0.011008 (-0.006149) | 0.101895 / 0.038508 (0.063387) | 0.091168 / 0.023109 (0.068059) | 0.378914 / 0.275898 (0.103016) | 0.417172 / 0.323480 (0.093692) | 0.006314 / 0.007986 (-0.001672) | 0.004069 / 0.004328 (-0.000259) | 0.076566 / 0.004250 (0.072315) | 0.070986 / 0.037052 (0.033934) | 0.380935 / 0.258489 (0.122446) | 0.417131 / 0.293841 (0.123290) | 0.036343 / 0.128546 (-0.092203) | 0.009996 / 0.075646 (-0.065650) | 0.346386 / 0.419271 (-0.072886) | 0.063162 / 0.043533 (0.019630) | 0.372620 / 0.255139 (0.117481) | 0.404902 / 0.283200 (0.121702) | 0.028217 / 0.141683 (-0.113466) | 1.793875 / 1.452155 (0.341721) | 1.836284 / 1.492716 (0.343568) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223830 / 0.018006 (0.205823) | 0.503643 / 0.000490 (0.503153) | 0.004957 / 0.000200 (0.004757) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035455 / 0.037411 (-0.001957) | 0.108015 / 0.014526 (0.093489) | 0.116887 / 0.176557 (-0.059669) | 0.188174 / 0.737135 (-0.548961) | 0.117217 / 0.296338 (-0.179121) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471681 / 0.215209 (0.256472) | 4.694509 / 2.077655 (2.616855) | 2.369539 / 1.504120 (0.865419) | 2.176839 / 1.541195 (0.635644) | 2.300536 / 1.468490 (0.832045) | 0.575689 / 4.584777 (-4.009088) | 4.232765 / 3.745712 (0.487053) | 4.766775 / 5.269862 (-0.503087) | 2.864667 / 4.565676 (-1.701010) | 0.069390 / 0.424275 (-0.354885) | 0.008822 / 0.007607 (0.001214) | 0.559620 / 0.226044 (0.333576) | 5.580401 / 2.268929 (3.311472) | 2.920293 / 55.444624 (-52.524331) | 2.552166 / 6.876477 (-4.324311) | 2.795890 / 2.142072 (0.653818) | 0.687863 / 4.805227 (-4.117364) | 0.159129 / 6.500664 (-6.341535) | 0.073475 / 0.075469 (-0.001994) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.505892 / 1.841788 (-0.335896) | 24.127650 / 8.074308 (16.053342) | 16.758238 / 10.191392 (6.566846) | 0.200555 / 0.680424 (-0.479869) | 0.021596 / 0.534201 (-0.512605) | 0.480668 / 0.579283 (-0.098615) | 0.483528 / 0.434364 (0.049164) | 0.571241 / 0.540337 (0.030903) | 0.790547 / 1.386936 (-0.596390) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007997 / 0.011353 (-0.003356) | 0.004842 / 0.011008 (-0.006166) | 0.077190 / 0.038508 (0.038681) | 0.092765 / 0.023109 (0.069656) | 0.457475 / 0.275898 (0.181577) | 0.523914 / 0.323480 (0.200434) | 0.006349 / 0.007986 (-0.001637) | 0.003902 / 0.004328 (-0.000427) | 0.075860 / 0.004250 (0.071609) | 0.069708 / 0.037052 (0.032656) | 0.459612 / 0.258489 (0.201123) | 0.555028 / 0.293841 (0.261187) | 0.036854 / 0.128546 (-0.091692) | 0.010078 / 0.075646 (-0.065568) | 0.083871 / 0.419271 (-0.335400) | 0.061221 / 0.043533 (0.017689) | 0.435737 / 0.255139 (0.180598) | 0.509700 / 0.283200 (0.226500) | 0.038091 / 0.141683 (-0.103592) | 1.777161 / 1.452155 (0.325006) | 1.859603 / 1.492716 (0.366886) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250020 / 0.018006 (0.232014) | 0.486198 / 0.000490 (0.485708) | 0.007080 / 0.000200 (0.006880) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038163 / 0.037411 (0.000751) | 0.110812 / 0.014526 (0.096286) | 0.122489 / 0.176557 (-0.054068) | 0.188215 / 0.737135 (-0.548920) | 0.122375 / 0.296338 (-0.173963) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.484534 / 0.215209 (0.269325) | 4.828654 / 2.077655 (2.751000) | 2.545102 / 1.504120 (1.040982) | 2.368867 / 1.541195 (0.827672) | 2.458042 / 1.468490 (0.989552) | 0.576372 / 4.584777 (-4.008404) | 4.814033 / 3.745712 (1.068321) | 6.175972 / 5.269862 (0.906110) | 4.033422 / 4.565676 (-0.532254) | 0.068544 / 0.424275 (-0.355731) | 0.008906 / 0.007607 (0.001299) | 0.581767 / 0.226044 (0.355723) | 5.808623 / 2.268929 (3.539695) | 3.120312 / 55.444624 (-52.324313) | 2.774834 / 6.876477 (-4.101642) | 2.770413 / 2.142072 (0.628340) | 0.692715 / 4.805227 (-4.112512) | 0.158883 / 6.500664 (-6.341782) | 0.075894 / 0.075469 (0.000425) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.631250 / 1.841788 (-0.210538) | 24.693250 / 8.074308 (16.618942) | 17.434790 / 10.191392 (7.243398) | 0.196456 / 0.680424 (-0.483968) | 0.022505 / 0.534201 (-0.511696) | 0.474788 / 0.579283 (-0.104495) | 0.500947 / 0.434364 (0.066583) | 0.553596 / 0.540337 (0.013259) | 0.737767 / 1.386936 (-0.649169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f87d6e6394bf4b390ccc82235eb7667f874e5d43 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006629 / 0.011353 (-0.004724) | 0.004115 / 0.011008 (-0.006894) | 0.083934 / 0.038508 (0.045426) | 0.074952 / 0.023109 (0.051843) | 0.313069 / 0.275898 (0.037171) | 0.345878 / 0.323480 (0.022398) | 0.006034 / 0.007986 (-0.001952) | 0.003413 / 0.004328 (-0.000916) | 0.065130 / 0.004250 (0.060880) | 0.057363 / 0.037052 (0.020310) | 0.314483 / 0.258489 (0.055994) | 0.352626 / 0.293841 (0.058785) | 0.031325 / 0.128546 (-0.097221) | 0.008577 / 0.075646 (-0.067069) | 0.288137 / 0.419271 (-0.131135) | 0.053651 / 0.043533 (0.010118) | 0.313006 / 0.255139 (0.057867) | 0.338668 / 0.283200 (0.055468) | 0.023709 / 0.141683 (-0.117974) | 1.481209 / 1.452155 (0.029054) | 1.559801 / 1.492716 (0.067085) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211543 / 0.018006 (0.193537) | 0.452185 / 0.000490 (0.451696) | 0.003177 / 0.000200 (0.002977) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028821 / 0.037411 (-0.008591) | 0.083290 / 0.014526 (0.068765) | 0.097478 / 0.176557 (-0.079079) | 0.153506 / 0.737135 (-0.583629) | 0.097054 / 0.296338 (-0.199284) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385847 / 0.215209 (0.170638) | 3.835629 / 2.077655 (1.757974) | 1.880938 / 1.504120 (0.376819) | 1.711848 / 1.541195 (0.170653) | 1.785099 / 1.468490 (0.316609) | 0.486256 / 4.584777 (-4.098521) | 3.629026 / 3.745712 (-0.116686) | 3.321578 / 5.269862 (-1.948283) | 2.024314 / 4.565676 (-2.541363) | 0.058097 / 0.424275 (-0.366179) | 0.007724 / 0.007607 (0.000117) | 0.458293 / 0.226044 (0.232249) | 4.581314 / 2.268929 (2.312386) | 2.314379 / 55.444624 (-53.130246) | 1.966089 / 6.876477 (-4.910387) | 2.203824 / 2.142072 (0.061752) | 0.611581 / 4.805227 (-4.193647) | 0.149166 / 6.500664 (-6.351498) | 0.059825 / 0.075469 (-0.015644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235546 / 1.841788 (-0.606242) | 19.747439 / 8.074308 (11.673131) | 14.628383 / 10.191392 (4.436991) | 0.193074 / 0.680424 (-0.487350) | 0.020327 / 0.534201 (-0.513874) | 0.397051 / 0.579283 (-0.182232) | 0.418491 / 0.434364 (-0.015873) | 0.462055 / 0.540337 (-0.078282) | 0.637524 / 1.386936 (-0.749412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007069 / 0.011353 (-0.004284) | 0.004106 / 0.011008 (-0.006902) | 0.065818 / 0.038508 (0.027310) | 0.077101 / 0.023109 (0.053991) | 0.363323 / 0.275898 (0.087425) | 0.399463 / 0.323480 (0.075983) | 0.005540 / 0.007986 (-0.002446) | 0.003480 / 0.004328 (-0.000849) | 0.065176 / 0.004250 (0.060926) | 0.060867 / 0.037052 (0.023815) | 0.365763 / 0.258489 (0.107273) | 0.407789 / 0.293841 (0.113949) | 0.032018 / 0.128546 (-0.096528) | 0.008550 / 0.075646 (-0.067096) | 0.071750 / 0.419271 (-0.347521) | 0.050625 / 0.043533 (0.007092) | 0.361434 / 0.255139 (0.106295) | 0.384799 / 0.283200 (0.101599) | 0.026104 / 0.141683 (-0.115579) | 1.496093 / 1.452155 (0.043938) | 1.592909 / 1.492716 (0.100193) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185794 / 0.018006 (0.167787) | 0.453379 / 0.000490 (0.452890) | 0.004365 / 0.000200 (0.004165) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031666 / 0.037411 (-0.005746) | 0.088323 / 0.014526 (0.073798) | 0.104602 / 0.176557 (-0.071954) | 0.159827 / 0.737135 (-0.577308) | 0.103725 / 0.296338 (-0.192614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413509 / 0.215209 (0.198300) | 4.126071 / 2.077655 (2.048416) | 2.137088 / 1.504120 (0.632968) | 1.981034 / 1.541195 (0.439839) | 2.063660 / 1.468490 (0.595170) | 0.478798 / 4.584777 (-4.105979) | 3.642801 / 3.745712 (-0.102911) | 3.428994 / 5.269862 (-1.840867) | 2.031902 / 4.565676 (-2.533774) | 0.056244 / 0.424275 (-0.368032) | 0.007365 / 0.007607 (-0.000242) | 0.484371 / 0.226044 (0.258327) | 4.838537 / 2.268929 (2.569608) | 2.559497 / 55.444624 (-52.885127) | 2.251863 / 6.876477 (-4.624614) | 2.339227 / 2.142072 (0.197155) | 0.607228 / 4.805227 (-4.198000) | 0.133877 / 6.500664 (-6.366787) | 0.062049 / 0.075469 (-0.013420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350389 / 1.841788 (-0.491399) | 20.060359 / 8.074308 (11.986051) | 14.305675 / 10.191392 (4.114283) | 0.165642 / 0.680424 (-0.514782) | 0.018206 / 0.534201 (-0.515994) | 0.396907 / 0.579283 (-0.182376) | 0.431896 / 0.434364 (-0.002468) | 0.475778 / 0.540337 (-0.064559) | 0.644688 / 1.386936 (-0.742248) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f6fa96ae5de873a49ef28739e8f64edf8b18cae \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009048 / 0.011353 (-0.002305) | 0.005787 / 0.011008 (-0.005221) | 0.111617 / 0.038508 (0.073109) | 0.087603 / 0.023109 (0.064494) | 0.446481 / 0.275898 (0.170583) | 0.491726 / 0.323480 (0.168247) | 0.007052 / 0.007986 (-0.000934) | 0.004481 / 0.004328 (0.000152) | 0.084331 / 0.004250 (0.080081) | 0.072006 / 0.037052 (0.034953) | 0.454238 / 0.258489 (0.195749) | 0.496749 / 0.293841 (0.202908) | 0.049027 / 0.128546 (-0.079520) | 0.014005 / 0.075646 (-0.061641) | 0.372550 / 0.419271 (-0.046722) | 0.071414 / 0.043533 (0.027881) | 0.459432 / 0.255139 (0.204293) | 0.467332 / 0.283200 (0.184133) | 0.037539 / 0.141683 (-0.104144) | 1.869179 / 1.452155 (0.417024) | 1.983641 / 1.492716 (0.490925) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265426 / 0.018006 (0.247419) | 0.672527 / 0.000490 (0.672037) | 0.001152 / 0.000200 (0.000953) | 0.000181 / 0.000054 (0.000127) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032967 / 0.037411 (-0.004445) | 0.103023 / 0.014526 (0.088497) | 0.115978 / 0.176557 (-0.060578) | 0.191698 / 0.737135 (-0.545438) | 0.117867 / 0.296338 (-0.178471) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602208 / 0.215209 (0.386999) | 6.147784 / 2.077655 (4.070129) | 2.768933 / 1.504120 (1.264813) | 2.415619 / 1.541195 (0.874424) | 2.456159 / 1.468490 (0.987669) | 0.836270 / 4.584777 (-3.748507) | 5.447754 / 3.745712 (1.702042) | 7.751825 / 5.269862 (2.481963) | 4.591892 / 4.565676 (0.026215) | 0.108269 / 0.424275 (-0.316006) | 0.009626 / 0.007607 (0.002019) | 0.719260 / 0.226044 (0.493216) | 7.313442 / 2.268929 (5.044514) | 3.490739 / 55.444624 (-51.953885) | 2.743543 / 6.876477 (-4.132934) | 3.035071 / 2.142072 (0.892999) | 1.042791 / 4.805227 (-3.762436) | 0.217080 / 6.500664 (-6.283584) | 0.084286 / 0.075469 (0.008817) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655427 / 1.841788 (-0.186361) | 25.386536 / 8.074308 (17.312228) | 21.740666 / 10.191392 (11.549274) | 0.246388 / 0.680424 (-0.434036) | 0.029723 / 0.534201 (-0.504478) | 0.491537 / 0.579283 (-0.087746) | 0.603495 / 0.434364 (0.169131) | 0.573938 / 0.540337 (0.033600) | 0.981875 / 1.386936 (-0.405061) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009664 / 0.011353 (-0.001689) | 0.006446 / 0.011008 (-0.004562) | 0.085113 / 0.038508 (0.046605) | 0.094533 / 0.023109 (0.071424) | 0.498388 / 0.275898 (0.222490) | 0.540127 / 0.323480 (0.216647) | 0.007316 / 0.007986 (-0.000670) | 0.004252 / 0.004328 (-0.000077) | 0.086292 / 0.004250 (0.082041) | 0.067956 / 0.037052 (0.030903) | 0.507664 / 0.258489 (0.249175) | 0.554324 / 0.293841 (0.260483) | 0.050107 / 0.128546 (-0.078439) | 0.014277 / 0.075646 (-0.061370) | 0.098838 / 0.419271 (-0.320433) | 0.066053 / 0.043533 (0.022521) | 0.491090 / 0.255139 (0.235951) | 0.537432 / 0.283200 (0.254232) | 0.035937 / 0.141683 (-0.105746) | 1.820715 / 1.452155 (0.368561) | 1.996268 / 1.492716 (0.503552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300859 / 0.018006 (0.282852) | 0.610958 / 0.000490 (0.610468) | 0.000474 / 0.000200 (0.000274) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036372 / 0.037411 (-0.001039) | 0.109115 / 0.014526 (0.094589) | 0.122802 / 0.176557 (-0.053755) | 0.187092 / 0.737135 (-0.550044) | 0.123432 / 0.296338 (-0.172906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646979 / 0.215209 (0.431770) | 6.577713 / 2.077655 (4.500058) | 3.004606 / 1.504120 (1.500486) | 2.661183 / 1.541195 (1.119989) | 2.726717 / 1.468490 (1.258227) | 0.889497 / 4.584777 (-3.695280) | 5.485055 / 3.745712 (1.739343) | 4.852043 / 5.269862 (-0.417819) | 3.177392 / 4.565676 (-1.388285) | 0.099796 / 0.424275 (-0.324479) | 0.009868 / 0.007607 (0.002261) | 0.819919 / 0.226044 (0.593874) | 7.911255 / 2.268929 (5.642326) | 3.839877 / 55.444624 (-51.604747) | 3.088663 / 6.876477 (-3.787813) | 3.371184 / 2.142072 (1.229112) | 1.072762 / 4.805227 (-3.732466) | 0.224536 / 6.500664 (-6.276128) | 0.083415 / 0.075469 (0.007946) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.754426 / 1.841788 (-0.087361) | 25.546690 / 8.074308 (17.472382) | 22.998252 / 10.191392 (12.806860) | 0.258019 / 0.680424 (-0.422405) | 0.030104 / 0.534201 (-0.504097) | 0.518406 / 0.579283 (-0.060877) | 0.605753 / 0.434364 (0.171389) | 0.599630 / 0.540337 (0.059292) | 0.819042 / 1.386936 (-0.567894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#350f4fd6caabbdfacb5fbf9193ab255c3d0daa4c \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/885
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/885/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/885/comments
https://api.github.com/repos/huggingface/datasets/issues/885/events
https://github.com/huggingface/datasets/issues/885
750,789,052
MDU6SXNzdWU3NTA3ODkwNTI=
885
Very slow cold-start
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
3
2020-11-25T12:47:58Z
2021-01-13T11:31:25Z
2021-01-13T11:31:25Z
null
Hi, I expect when importing `datasets` that nothing major happens in the background, and so the import should be insignificant. When I load a metric, or a dataset, its fine that it takes time. The following ranges from 3 to 9 seconds: ``` python -m timeit -n 1 -r 1 'from datasets import load_dataset' ``` edit: sorry for the mis-tag, not sure how I added it.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/885/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/885/timeline
null
completed
null
null
false
[ "Good point!", "Yes indeed. We can probably improve that by using lazy imports", "#1690 added fast start-up of the library " ]
https://api.github.com/repos/huggingface/datasets/issues/3931
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3931/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3931/comments
https://api.github.com/repos/huggingface/datasets/issues/3931/events
https://github.com/huggingface/datasets/pull/3931
1,170,097,208
PR_kwDODunzps40fBjx
3,931
Add align_labels_with_mapping docs
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
null
1
2022-03-15T19:24:57Z
2022-03-18T16:28:31Z
2022-03-18T16:24:33Z
null
This PR documents the `align_labels_with_mapping` function to ensure predicted labels are aligned with the dataset, or to assign a different mapping of labels to ids (requested by @mariosasko 🎉 ). For this specific code sample, the current dataset has a `mixed` label that the original [dataset](https://huggingface.co/datasets/poem_sentiment#data-fields) didn't. Is there a way to remove this label so it is completely aligned with the original dataset mappings? Otherwise, I'll just leave it as it is.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3931/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3931/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3931.diff", "html_url": "https://github.com/huggingface/datasets/pull/3931", "merged_at": "2022-03-18T16:24:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/3931.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3931" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4540
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4540/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4540/comments
https://api.github.com/repos/huggingface/datasets/issues/4540/events
https://github.com/huggingface/datasets/issues/4540
1,280,142,942
I_kwDODunzps5MTW5e
4,540
Avoid splitting by` .py` for the file.
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
4
2022-06-22T13:26:55Z
2022-07-07T13:17:44Z
2022-07-07T13:17:44Z
null
https://github.com/huggingface/datasets/blob/90b3a98065556fc66380cafd780af9b1814b9426/src/datasets/load.py#L272 Hello, Thanks you for this library . I was using it and I had one edge case. my home folder name ends with `.py` it is `/home/espoir.py` so anytime I am running the code to load a local module this code here it is failing because after splitting it is trying to save the code to my home directory. Step to reproduce. - If you have a home folder which ends with `.py` - load a module with a local folder `qa_dataset = load_dataset("src/data/build_qa_dataset.py")` it is failed A possible workaround would be to use pathlib at the mentioned line ` meta_path = Path(importable_local_file).parent.joinpath("metadata.json")` this can alivate the issue . Let me what are your thought on this and I can try to fix it by A PR.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4540/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4540/timeline
null
completed
null
null
false
[ "Hi @espoirMur, thanks for reporting.\r\n\r\nYou are right: that code line could be improved and made more generically valid.\r\n\r\nOn the other hand, I would suggest using `os.path.splitext` instead.\r\n\r\nAre you willing to open a PR? :)", "I will have a look.. \r\n\r\nThis weekend .. ", "@albertvillanova , Can you have a look at #4590. \r\n\r\nThanks ", "#self-assign" ]
https://api.github.com/repos/huggingface/datasets/issues/2837
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2837/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2837/comments
https://api.github.com/repos/huggingface/datasets/issues/2837/events
https://github.com/huggingface/datasets/issues/2837
979,298,297
MDU6SXNzdWU5NzkyOTgyOTc=
2,837
prepare_module issue when loading from read-only fs
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2021-08-25T15:21:26Z
2021-10-05T17:58:22Z
2021-10-05T17:58:22Z
null
## Describe the bug When we use prepare_module from a readonly file system, we create a FileLock using the `local_path`. This path is not necessarily writable. `lock_path = local_path + ".lock"` ## Steps to reproduce the bug Run `load_dataset` on a readonly python loader file. ```python ds = load_dataset( python_loader, data_files={"train": train_path, "test": test_path} ) ``` where `python_loader` is a path to a file located in a readonly folder. ## Expected results This should work I think? ## Actual results ```python return load_dataset( File "/usr/local/lib/python3.8/dist-packages/datasets/load.py", line 711, in load_dataset module_path, hash, resolved_file_path = prepare_module( File "/usr/local/lib/python3.8/dist-packages/datasets/load.py", line 465, in prepare_module with FileLock(lock_path): File "/usr/local/lib/python3.8/dist-packages/datasets/utils/filelock.py", line 314, in __enter__ self.acquire() File "/usr/local/lib/python3.8/dist-packages/datasets/utils/filelock.py", line 263, in acquire self._acquire() File "/usr/local/lib/python3.8/dist-packages/datasets/utils/filelock.py", line 378, in _acquire fd = os.open(self._lock_file, open_mode) OSError: [Errno 30] Read-only file system: 'YOUR_FILE.py.lock' ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.7.0 - Platform: macOS-10.15.7-x86_64-i386-64bit - Python version: 3.8.8 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2837/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2837/timeline
null
completed
null
null
false
[ "Hello, I opened #2887 to fix this." ]
https://api.github.com/repos/huggingface/datasets/issues/5523
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5523/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5523/comments
https://api.github.com/repos/huggingface/datasets/issues/5523/events
https://github.com/huggingface/datasets/issues/5523
1,580,193,015
I_kwDODunzps5eL9T3
5,523
Checking that split name is correct happens only after the data is downloaded
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
0
2023-02-10T19:13:03Z
2023-02-10T19:14:50Z
null
null
### Describe the bug Verification of split names (=indexing data by split) happens after downloading the data. So when the split name is incorrect, users learn about that only after the data is fully downloaded, for large datasets it might take a lot of time. ### Steps to reproduce the bug Load any dataset with random split name, for example: ```python from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_11_0", "en", split="blabla") ``` and the download will start smoothly, despite there is no split named "blabla". ### Expected behavior Raise error when split name is incorrect. ### Environment info `datasets==2.9.1.dev0`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5523/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5523/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/5084
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5084/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5084/comments
https://api.github.com/repos/huggingface/datasets/issues/5084/events
https://github.com/huggingface/datasets/pull/5084
1,400,016,229
PR_kwDODunzps5AVXwm
5,084
IterableDataset formatting in numpy/torch/tf/jax
[]
closed
false
null
3
2022-10-06T16:53:38Z
2022-12-20T17:19:52Z
2022-12-20T17:19:52Z
null
This code now returns a numpy array: ```python from datasets import load_dataset ds = load_dataset("imagenet-1k", split="train", streaming=True).with_format("np") print(next(iter(ds))["image"]) ``` It also works with "arrow", "pandas", "torch", "tf" and "jax" ### Implementation details: I'm using the existing code to format an Arrow Table to the right output format for simplicity. Therefore it's probbaly not the most optimized approach. For example to output PyTorch tensors it does this for every example: python data -> arrow table -> numpy extracted data -> pytorch formatted data ### Releasing this feature Even though I consider this as a bug/inconsistency, this change is a breaking change. And I'm sure some users were relying on the torch iterable dataset to return PIL Image and used data collators to convert to pytorch. So I guess this is `datasets` 3.0 ? ### TODO - [x] merge https://github.com/huggingface/datasets/pull/5072 - [ ] docs - [ ] tests Close https://github.com/huggingface/datasets/issues/5083
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5084/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5084/timeline
null
null
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/5084.diff", "html_url": "https://github.com/huggingface/datasets/pull/5084", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5084.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5084" }
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5084). All of your documentation changes will be reflected on that endpoint.", "Actually I'm not happy with this implementation. It always require the iterable dataset to have definite `features`, which removes a lot of flexibility. So I think we need an actual formatting from python objects, not from arrow data.", "Closing this one since it has too many conflicts and still require some work - it will be easier to open a new PR" ]
https://api.github.com/repos/huggingface/datasets/issues/4242
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4242/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4242/comments
https://api.github.com/repos/huggingface/datasets/issues/4242/events
https://github.com/huggingface/datasets/pull/4242
1,217,665,960
PR_kwDODunzps425BYf
4,242
Update auth when mirroring datasets on the hub
[]
closed
false
null
1
2022-04-27T17:22:31Z
2022-04-27T17:37:04Z
2022-04-27T17:30:42Z
null
We don't need to use extraHeaders anymore for rate limits anymore. Anyway extraHeaders was not working with git LFS because it was passing the wrong auth to S3.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4242/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4242/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4242.diff", "html_url": "https://github.com/huggingface/datasets/pull/4242", "merged_at": "2022-04-27T17:30:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/4242.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4242" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/4753
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4753/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4753/comments
https://api.github.com/repos/huggingface/datasets/issues/4753/events
https://github.com/huggingface/datasets/pull/4753
1,319,571,745
PR_kwDODunzps48Ll8G
4,753
Add `language_bcp47` tag
[]
closed
false
null
1
2022-07-27T13:31:16Z
2022-07-27T14:50:03Z
2022-07-27T14:37:56Z
null
Following (internal) https://github.com/huggingface/moon-landing/pull/3509, we need to move the bcp47 tags to `language_bcp47` and keep the `language` tag for iso 639 1-2-3 codes. In particular I made sure that all the tags in `languages` are not longer than 3 characters. I moved the rest to `language_bcp47` and fixed some of them. After this PR is merged I think we can simplify the language validation from the DatasetMetadata class (and keep it bare-bone just for the tagging app) PS: the CI is failing because of missing content in dataset cards that are unrelated to this PR
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4753/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4753/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4753.diff", "html_url": "https://github.com/huggingface/datasets/pull/4753", "merged_at": "2022-07-27T14:37:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/4753.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4753" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/6015
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6015/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6015/comments
https://api.github.com/repos/huggingface/datasets/issues/6015/events
https://github.com/huggingface/datasets/pull/6015
1,798,807,893
PR_kwDODunzps5VMhgB
6,015
Add metadata ui screenshot in docs
[]
closed
false
null
3
2023-07-11T12:16:29Z
2023-07-11T16:07:28Z
2023-07-11T15:56:46Z
null
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6015/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6015/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6015.diff", "html_url": "https://github.com/huggingface/datasets/pull/6015", "merged_at": "2023-07-11T15:56:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/6015.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6015" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007633 / 0.011353 (-0.003720) | 0.004666 / 0.011008 (-0.006343) | 0.097768 / 0.038508 (0.059260) | 0.085153 / 0.023109 (0.062044) | 0.400315 / 0.275898 (0.124417) | 0.452903 / 0.323480 (0.129423) | 0.006227 / 0.007986 (-0.001759) | 0.003814 / 0.004328 (-0.000515) | 0.074586 / 0.004250 (0.070336) | 0.064295 / 0.037052 (0.027242) | 0.408082 / 0.258489 (0.149593) | 0.446921 / 0.293841 (0.153080) | 0.034593 / 0.128546 (-0.093953) | 0.009191 / 0.075646 (-0.066456) | 0.337099 / 0.419271 (-0.082173) | 0.075320 / 0.043533 (0.031787) | 0.403488 / 0.255139 (0.148349) | 0.435309 / 0.283200 (0.152109) | 0.035675 / 0.141683 (-0.106008) | 1.732642 / 1.452155 (0.280487) | 1.770238 / 1.492716 (0.277522) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235879 / 0.018006 (0.217873) | 0.500330 / 0.000490 (0.499841) | 0.005221 / 0.000200 (0.005021) | 0.000150 / 0.000054 (0.000096) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032479 / 0.037411 (-0.004933) | 0.095873 / 0.014526 (0.081348) | 0.107118 / 0.176557 (-0.069438) | 0.173809 / 0.737135 (-0.563326) | 0.109832 / 0.296338 (-0.186507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444342 / 0.215209 (0.229133) | 4.459010 / 2.077655 (2.381355) | 2.209687 / 1.504120 (0.705567) | 2.007556 / 1.541195 (0.466362) | 2.113683 / 1.468490 (0.645193) | 0.544281 / 4.584777 (-4.040496) | 4.037151 / 3.745712 (0.291439) | 4.852644 / 5.269862 (-0.417217) | 3.134126 / 4.565676 (-1.431550) | 0.066815 / 0.424275 (-0.357460) | 0.008836 / 0.007607 (0.001229) | 0.560904 / 0.226044 (0.334859) | 5.302760 / 2.268929 (3.033832) | 2.750182 / 55.444624 (-52.694442) | 2.322595 / 6.876477 (-4.553882) | 2.547486 / 2.142072 (0.405414) | 0.665766 / 4.805227 (-4.139461) | 0.151613 / 6.500664 (-6.349051) | 0.071155 / 0.075469 (-0.004314) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473717 / 1.841788 (-0.368071) | 22.584179 / 8.074308 (14.509871) | 15.888001 / 10.191392 (5.696609) | 0.181073 / 0.680424 (-0.499351) | 0.021395 / 0.534201 (-0.512806) | 0.452693 / 0.579283 (-0.126590) | 0.447709 / 0.434364 (0.013345) | 0.529599 / 0.540337 (-0.010738) | 0.699241 / 1.386936 (-0.687695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007917 / 0.011353 (-0.003436) | 0.004544 / 0.011008 (-0.006464) | 0.074566 / 0.038508 (0.036058) | 0.087530 / 0.023109 (0.064421) | 0.419753 / 0.275898 (0.143854) | 0.452352 / 0.323480 (0.128872) | 0.005882 / 0.007986 (-0.002104) | 0.003904 / 0.004328 (-0.000425) | 0.073539 / 0.004250 (0.069289) | 0.071320 / 0.037052 (0.034267) | 0.432899 / 0.258489 (0.174409) | 0.470365 / 0.293841 (0.176524) | 0.036198 / 0.128546 (-0.092348) | 0.009342 / 0.075646 (-0.066304) | 0.080970 / 0.419271 (-0.338301) | 0.058769 / 0.043533 (0.015236) | 0.413397 / 0.255139 (0.158258) | 0.448362 / 0.283200 (0.165162) | 0.034177 / 0.141683 (-0.107506) | 1.706217 / 1.452155 (0.254063) | 1.776743 / 1.492716 (0.284026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198779 / 0.018006 (0.180773) | 0.499862 / 0.000490 (0.499372) | 0.003891 / 0.000200 (0.003692) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034671 / 0.037411 (-0.002740) | 0.103165 / 0.014526 (0.088639) | 0.115813 / 0.176557 (-0.060744) | 0.177407 / 0.737135 (-0.559728) | 0.117733 / 0.296338 (-0.178606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.476859 / 0.215209 (0.261650) | 4.823063 / 2.077655 (2.745409) | 2.524133 / 1.504120 (1.020013) | 2.374482 / 1.541195 (0.833288) | 2.518047 / 1.468490 (1.049557) | 0.559131 / 4.584777 (-4.025646) | 4.126213 / 3.745712 (0.380501) | 6.488570 / 5.269862 (1.218708) | 3.816540 / 4.565676 (-0.749137) | 0.064742 / 0.424275 (-0.359533) | 0.008476 / 0.007607 (0.000869) | 0.576432 / 0.226044 (0.350387) | 5.835133 / 2.268929 (3.566205) | 3.237833 / 55.444624 (-52.206791) | 2.726596 / 6.876477 (-4.149880) | 2.799212 / 2.142072 (0.657139) | 0.661628 / 4.805227 (-4.143599) | 0.153997 / 6.500664 (-6.346667) | 0.070621 / 0.075469 (-0.004848) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.648505 / 1.841788 (-0.193282) | 22.454019 / 8.074308 (14.379711) | 16.077098 / 10.191392 (5.885706) | 0.217875 / 0.680424 (-0.462549) | 0.021285 / 0.534201 (-0.512916) | 0.459837 / 0.579283 (-0.119446) | 0.476211 / 0.434364 (0.041847) | 0.525903 / 0.540337 (-0.014435) | 0.717224 / 1.386936 (-0.669712) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b767e9c3ef30f9da30d47cfcaccf9a7ac2500c43 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008929 / 0.011353 (-0.002424) | 0.004188 / 0.011008 (-0.006820) | 0.097030 / 0.038508 (0.058522) | 0.071363 / 0.023109 (0.048254) | 0.333116 / 0.275898 (0.057218) | 0.371272 / 0.323480 (0.047792) | 0.006430 / 0.007986 (-0.001555) | 0.003689 / 0.004328 (-0.000639) | 0.068666 / 0.004250 (0.064416) | 0.057562 / 0.037052 (0.020510) | 0.347208 / 0.258489 (0.088719) | 0.390514 / 0.293841 (0.096673) | 0.050560 / 0.128546 (-0.077987) | 0.013372 / 0.075646 (-0.062275) | 0.311345 / 0.419271 (-0.107927) | 0.068990 / 0.043533 (0.025457) | 0.363026 / 0.255139 (0.107887) | 0.379793 / 0.283200 (0.096593) | 0.036891 / 0.141683 (-0.104792) | 1.583481 / 1.452155 (0.131327) | 1.688727 / 1.492716 (0.196011) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209777 / 0.018006 (0.191771) | 0.507267 / 0.000490 (0.506777) | 0.003637 / 0.000200 (0.003438) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029309 / 0.037411 (-0.008102) | 0.088386 / 0.014526 (0.073861) | 0.104974 / 0.176557 (-0.071582) | 0.171999 / 0.737135 (-0.565137) | 0.110797 / 0.296338 (-0.185542) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.543465 / 0.215209 (0.328256) | 5.361491 / 2.077655 (3.283836) | 2.348712 / 1.504120 (0.844592) | 2.012527 / 1.541195 (0.471332) | 2.069776 / 1.468490 (0.601286) | 0.874262 / 4.584777 (-3.710515) | 4.877317 / 3.745712 (1.131605) | 5.327459 / 5.269862 (0.057597) | 3.336823 / 4.565676 (-1.228854) | 0.100456 / 0.424275 (-0.323819) | 0.008503 / 0.007607 (0.000895) | 0.692009 / 0.226044 (0.465965) | 6.912731 / 2.268929 (4.643802) | 3.110548 / 55.444624 (-52.334076) | 2.443665 / 6.876477 (-4.432811) | 2.528713 / 2.142072 (0.386641) | 1.076358 / 4.805227 (-3.728869) | 0.220352 / 6.500664 (-6.280312) | 0.080293 / 0.075469 (0.004824) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.538444 / 1.841788 (-0.303344) | 21.121221 / 8.074308 (13.046913) | 19.810609 / 10.191392 (9.619216) | 0.225406 / 0.680424 (-0.455018) | 0.026652 / 0.534201 (-0.507549) | 0.430372 / 0.579283 (-0.148911) | 0.510722 / 0.434364 (0.076358) | 0.514347 / 0.540337 (-0.025991) | 0.686050 / 1.386936 (-0.700886) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003678) | 0.004542 / 0.011008 (-0.006466) | 0.069655 / 0.038508 (0.031147) | 0.069338 / 0.023109 (0.046229) | 0.436505 / 0.275898 (0.160607) | 0.481806 / 0.323480 (0.158326) | 0.005315 / 0.007986 (-0.002670) | 0.004455 / 0.004328 (0.000127) | 0.072674 / 0.004250 (0.068424) | 0.058088 / 0.037052 (0.021035) | 0.445825 / 0.258489 (0.187336) | 0.501706 / 0.293841 (0.207865) | 0.047123 / 0.128546 (-0.081424) | 0.012943 / 0.075646 (-0.062703) | 0.093491 / 0.419271 (-0.325780) | 0.060169 / 0.043533 (0.016637) | 0.436530 / 0.255139 (0.181391) | 0.466873 / 0.283200 (0.183674) | 0.040453 / 0.141683 (-0.101230) | 1.586438 / 1.452155 (0.134283) | 1.671081 / 1.492716 (0.178365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180607 / 0.018006 (0.162601) | 0.520145 / 0.000490 (0.519655) | 0.004824 / 0.000200 (0.004624) | 0.000116 / 0.000054 (0.000061) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029308 / 0.037411 (-0.008103) | 0.093652 / 0.014526 (0.079126) | 0.102332 / 0.176557 (-0.074224) | 0.162414 / 0.737135 (-0.574721) | 0.098017 / 0.296338 (-0.198321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583949 / 0.215209 (0.368740) | 6.035191 / 2.077655 (3.957536) | 2.801274 / 1.504120 (1.297155) | 2.566150 / 1.541195 (1.024955) | 2.437122 / 1.468490 (0.968632) | 0.865038 / 4.584777 (-3.719739) | 4.841727 / 3.745712 (1.096015) | 4.683919 / 5.269862 (-0.585943) | 2.941240 / 4.565676 (-1.624437) | 0.104888 / 0.424275 (-0.319387) | 0.007747 / 0.007607 (0.000140) | 0.780041 / 0.226044 (0.553997) | 7.771314 / 2.268929 (5.502385) | 3.680814 / 55.444624 (-51.763811) | 2.938472 / 6.876477 (-3.938004) | 2.981740 / 2.142072 (0.839668) | 1.065411 / 4.805227 (-3.739816) | 0.222265 / 6.500664 (-6.278399) | 0.082428 / 0.075469 (0.006959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.626774 / 1.841788 (-0.215014) | 21.618284 / 8.074308 (13.543976) | 20.596743 / 10.191392 (10.405351) | 0.240969 / 0.680424 (-0.439454) | 0.025630 / 0.534201 (-0.508570) | 0.481981 / 0.579283 (-0.097302) | 0.547914 / 0.434364 (0.113550) | 0.522296 / 0.540337 (-0.018041) | 0.729174 / 1.386936 (-0.657762) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b8067c0262073891180869f700ebef5ac3dc5cce \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/2263
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2263/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2263/comments
https://api.github.com/repos/huggingface/datasets/issues/2263/events
https://github.com/huggingface/datasets/pull/2263
867,420,912
MDExOlB1bGxSZXF1ZXN0NjIzMDk0NTcy
2,263
test data added, dataset_infos updated
[]
closed
false
null
0
2021-04-26T08:27:18Z
2021-04-29T09:30:21Z
2021-04-29T09:30:20Z
null
Fixes #2262. Thanks for pointing out issue with dataset @jinmang2!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2263/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2263/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2263.diff", "html_url": "https://github.com/huggingface/datasets/pull/2263", "merged_at": "2021-04-29T09:30:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/2263.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2263" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/971
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/971/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/971/comments
https://api.github.com/repos/huggingface/datasets/issues/971/events
https://github.com/huggingface/datasets/pull/971
754,784,041
MDExOlB1bGxSZXF1ZXN0NTMwNjIxOTQz
971
add piqa
[]
closed
false
null
0
2020-12-01T22:47:04Z
2020-12-02T09:58:02Z
2020-12-02T09:58:01Z
null
Physical Interaction: Question Answering (commonsense) https://yonatanbisk.com/piqa/
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/971/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/971/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/971.diff", "html_url": "https://github.com/huggingface/datasets/pull/971", "merged_at": "2020-12-02T09:58:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/971.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/971" }
true
[]