url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
1.83B
node_id
stringlengths
18
32
number
int64
1
6.09k
title
stringlengths
1
290
labels
list
state
stringclasses
2 values
locked
bool
1 class
milestone
dict
comments
int64
0
54
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
closed_at
stringlengths
20
20
active_lock_reason
null
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
comments_text
sequence
https://api.github.com/repos/huggingface/datasets/issues/2486
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2486/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2486/comments
https://api.github.com/repos/huggingface/datasets/issues/2486/events
https://github.com/huggingface/datasets/pull/2486
919,174,898
MDExOlB1bGxSZXF1ZXN0NjY4NTI2Njg3
2,486
Add Rico Dataset
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
2
2021-06-11T20:17:41Z
2022-10-03T09:38:18Z
2022-10-03T09:38:18Z
null
Hi there! I'm wanting to add the Rico datasets for software engineering type data to y'alls awesome library. However, as I have started coding, I've ran into a few hiccups so I thought it best to open the PR early to get a bit of discussion on how the Rico datasets should be added to the `datasets` lib. 1) There are 7 different datasets under Rico and so I was wondering, should I make a folder for each or should I put them as different configurations of a single dataset? You can see the datasets available for Rico here: http://interactionmining.org/rico 2) As of right now, I have a semi working version of the first dataset which has pairs of screenshots and hierarchies from android applications. However, these screenshots are very large (1440, 2560, 3) and there are 66,000 of them so I am not able to perform the processing that the `datasets` lib does after downloading and extracting the dataset since I run out of memory very fast. Is there a way to have `datasets` lib not put everything into memory while it is processing the dataset? 2.1) If there is not a way, would it be better to just return the path to the screenshots instead of the actual image? 3) The hierarchies are JSON objects and looking through the documentation of `datasets`, I didn't see any feature that I could use for this type of data. So, for now I just have it being read in as a string, is this okay or should I be doing it differently? 4) One of the Rico datasets is a bunch of animations (GIFs), is there a `datasets` feature that I can put this type of data into or should I just return the path as a string? I appreciate any and all help I can get for this PR, I think the Rico datasets will be an awesome addition to the library :nerd_face: !
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 1, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2486/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2486/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2486.diff", "html_url": "https://github.com/huggingface/datasets/pull/2486", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2486.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2486" }
true
[ "Hi ! Thanks for adding this dataset :)\r\n\r\nRegarding your questions:\r\n1. We can have them as different configuration of the `rico` dataset\r\n2. Yes please use the path to the image and not open the image directly, so that we can let users open the image one at at time during training if they want to for example. In the future we'll have an Image feature type that will decode the encoded image data on the fly when accessing the examples.\r\n3. Feel free to keep the hierarchies as strings if they don't follow a fixed format\r\n4. You can just return the path\r\n\r\n", "Thanks for your contribution, @ncoop57. Are you still interested in adding this dataset?\r\n\r\nWe are removing the dataset scripts from this GitHub repo and moving them to the Hugging Face Hub: https://huggingface.co/datasets\r\n\r\nWe would suggest you create this dataset there. Please, feel free to tell us if you need some help." ]
https://api.github.com/repos/huggingface/datasets/issues/717
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/717/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/717/comments
https://api.github.com/repos/huggingface/datasets/issues/717/events
https://github.com/huggingface/datasets/pull/717
714,959,268
MDExOlB1bGxSZXF1ZXN0NDk3OTUwOTA2
717
Fixes #712 Error in the Overview.ipynb notebook
[]
closed
false
null
0
2020-10-05T15:50:41Z
2020-10-06T06:31:43Z
2020-10-05T16:25:41Z
null
Fixes #712 Error in the Overview.ipynb notebook by adding `with_details=True` parameter to `list_datasets` function in Cell 3 of **overview** notebook
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/717/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/717/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/717.diff", "html_url": "https://github.com/huggingface/datasets/pull/717", "merged_at": "2020-10-05T16:25:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/717.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/717" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1890
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1890/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1890/comments
https://api.github.com/repos/huggingface/datasets/issues/1890/events
https://github.com/huggingface/datasets/pull/1890
809,395,586
MDExOlB1bGxSZXF1ZXN0NTc0MjY0OTMx
1,890
Reformat dataset cards section titles
[]
closed
false
null
0
2021-02-16T15:11:47Z
2021-02-16T15:12:34Z
2021-02-16T15:12:33Z
null
Titles are formatted like [Foo](#foo) instead of just Foo
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1890/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1890/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1890.diff", "html_url": "https://github.com/huggingface/datasets/pull/1890", "merged_at": "2021-02-16T15:12:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/1890.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1890" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4672
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4672/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4672/comments
https://api.github.com/repos/huggingface/datasets/issues/4672/events
https://github.com/huggingface/datasets/pull/4672
1,300,911,467
PR_kwDODunzps47NEfV
4,672
Support extract 7-zip compressed data files
[]
closed
false
null
2
2022-07-11T15:56:51Z
2022-07-15T13:14:27Z
2022-07-15T13:02:07Z
null
Fix partially #3541, fix #4670.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4672/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4672/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4672.diff", "html_url": "https://github.com/huggingface/datasets/pull/4672", "merged_at": "2022-07-15T13:02:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/4672.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4672" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Cool! Can you please remove `Fix #3541` from the description as this PR doesn't add support for streaming/`iter_archive`, so it only partially addresses the issue?\r\n\r\nSide note:\r\nI think we can use `libarchive` (`libarchive-c` is a Python package with the bindings) for streaming 7z archives. The only issue with this lib is that it's tricky to install on Windows/Mac." ]
https://api.github.com/repos/huggingface/datasets/issues/3257
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3257/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3257/comments
https://api.github.com/repos/huggingface/datasets/issues/3257/events
https://github.com/huggingface/datasets/issues/3257
1,052,118,365
I_kwDODunzps4-tg1d
3,257
Use f-strings for string formatting
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
5
2021-11-12T16:02:15Z
2021-11-17T16:18:38Z
2021-11-17T16:18:38Z
null
f-strings offer better readability/performance than `str.format` and `%`, so we should use them in all places in our codebase unless there is good reason to keep the older syntax. > **NOTE FOR CONTRIBUTORS**: To avoid large PRs and possible merge conflicts, do 1-3 modules per PR. Also, feel free to ignore the files located under `datasets/*`.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3257/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3257/timeline
null
completed
null
null
false
[ "Hi, I would be glad to help with this. Is there anyone else working on it?", "Hi, I would be glad to work on this too.", "#self-assign", "Hi @Carlosbogo,\r\n\r\nwould you be interested in replacing the `.format` and `%` syntax with f-strings in the modules in the `datasets` directory since @Mehdi2402 has opened a PR that does that for all the other directories?", "Oh I see. I will be glad to help with the `datasets` directory then." ]
https://api.github.com/repos/huggingface/datasets/issues/469
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/469/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/469/comments
https://api.github.com/repos/huggingface/datasets/issues/469/events
https://github.com/huggingface/datasets/issues/469
671,876,963
MDU6SXNzdWU2NzE4NzY5NjM=
469
invalid data type 'str' at _convert_outputs in arrow_dataset.py
[]
closed
false
null
9
2020-08-03T07:48:29Z
2023-07-20T15:54:17Z
2023-07-20T15:54:17Z
null
I trying to build multi label text classifier model using Transformers lib. I'm using Transformers NLP to load the data set, while calling trainer.train() method. It throws the following error File "C:\***\arrow_dataset.py", line 343, in _convert_outputs v = command(v) TypeError: new(): invalid data type 'str' I'm using pyarrow 1.0.0. And I have simple custom data set with Text and Integer Label. Ex: Data Text , Label #Column Header I'm facing an Network issue, 1 I forgot my password, 2 Error StackTrace: File "C:\**\transformers\trainer.py", line 492, in train for step, inputs in enumerate(epoch_iterator): File "C:\**\tqdm\std.py", line 1104, in __iter__ for obj in iterable: File "C:\**\torch\utils\data\dataloader.py", line 345, in __next__ data = self._next_data() File "C:\**\torch\utils\data\dataloader.py", line 385, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "C:\**\torch\utils\data\_utils\fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\**\torch\utils\data\_utils\fetch.py", line 44, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\**\nlp\arrow_dataset.py", line 414, in __getitem__ output_all_columns=self._output_all_columns, File "C:\**\nlp\arrow_dataset.py", line 403, in _getitem outputs, format_type=format_type, format_columns=format_columns, output_all_columns=output_all_columns File "C:\**\nlp\arrow_dataset.py", line 343, in _convert_outputs v = command(v) TypeError: new(): invalid data type 'str'
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/469/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/469/timeline
null
completed
null
null
false
[ "Hi ! Did you try to set the output format to pytorch ? (or tensorflow if you're using tensorflow)\r\nIt can be done with `dataset.set_format(\"torch\", columns=columns)` (or \"tensorflow\").\r\n\r\nNote that for pytorch, string columns can't be converted to `torch.Tensor`, so you have to specify in `columns=` the list of columns you want to keep (`input_ids` for example)", "Hello . Yes, I did set the output format as below for the two columns \r\n\r\n `train_dataset.set_format('torch',columns=['Text','Label'])`\r\n ", "I think you're having this issue because you try to format strings as pytorch tensors, which is not possible.\r\nIndeed by having \"Text\" in `columns=['Text','Label']`, you try to convert the text values to pytorch tensors.\r\n\r\nInstead I recommend you to first tokenize your dataset using a tokenizer from transformers. For example\r\n\r\n```python\r\nfrom transformers import BertTokenizer\r\ntokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\")\r\n\r\ntrain_dataset.map(lambda x: tokenizer(x[\"Text\"]), batched=True)\r\ntrain_dataset.set_format(\"torch\", column=[\"input_ids\"])\r\n```\r\n\r\nAnother way to fix your issue would be to not set the format to pytorch, and leave the dataset as it is by default. In that case, the strings are returned normally when you get examples from your dataloader. It means that you would have to tokenize the examples in the training loop (or using a data collator) though.\r\n\r\nLet me know if you have other questions", "Hi, actually the thing is I am getting the same error and even after tokenizing them I am passing them through batch_encode_plus.\r\nI dont know what seems to be the problem is. I even converted it into 'pt' while passing them through batch_encode_plus but when I am evaluating my model , i am getting this error\r\n\r\n\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\n<ipython-input-145-ca218223c9fc> in <module>()\r\n----> 1 val_loss, predictions, true_val = evaluate(dataloader_validation)\r\n 2 val_f1 = f1_score_func(predictions, true_val)\r\n 3 tqdm.write(f'Validation loss: {val_loss}')\r\n 4 tqdm.write(f'F1 Score (Weighted): {val_f1}')\r\n\r\n6 frames\r\n/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataset.py in <genexpr>(.0)\r\n 160 \r\n 161 def __getitem__(self, index):\r\n--> 162 return tuple(tensor[index] for tensor in self.tensors)\r\n 163 \r\n 164 def __len__(self):\r\n\r\nTypeError: new(): invalid data type 'str' ", "> Hi, actually the thing is I am getting the same error and even after tokenizing them I am passing them through batch_encode_plus.\r\n> I dont know what seems to be the problem is. I even converted it into 'pt' while passing them through batch_encode_plus but when I am evaluating my model , i am getting this error\r\n> \r\n> TypeError Traceback (most recent call last)\r\n> in ()\r\n> ----> 1 val_loss, predictions, true_val = evaluate(dataloader_validation)\r\n> 2 val_f1 = f1_score_func(predictions, true_val)\r\n> 3 tqdm.write(f'Validation loss: {val_loss}')\r\n> 4 tqdm.write(f'F1 Score (Weighted): {val_f1}')\r\n> \r\n> 6 frames\r\n> /usr/local/lib/python3.6/dist-packages/torch/utils/data/dataset.py in (.0)\r\n> 160\r\n> 161 def **getitem**(self, index):\r\n> --> 162 return tuple(tensor[index] for tensor in self.tensors)\r\n> 163\r\n> 164 def **len**(self):\r\n> \r\n> TypeError: new(): invalid data type 'str'\r\n\r\nI got the same error and fix it .\r\nyou can check your input where there may be string contained.\r\nsuch as\r\n```\r\na = [1,2,3,4,'<unk>']\r\ntorch.tensor(a)\r\n```", "I didn't know tokenizers could return strings in the token ids. Which tokenizer are you using to get this @Doragd ?", "> I didn't know tokenizers could return strings in the token ids. Which tokenizer are you using to get this @Doragd ?\r\n\r\ni'm sorry that i met this issue in another place (not in huggingface repo). ", "@akhilkapil do you have strings in your dataset ? When you set the dataset format to \"pytorch\" you should exclude columns with strings as pytorch can't make tensors out of strings", "Closing due to inactivity." ]
https://api.github.com/repos/huggingface/datasets/issues/3656
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3656/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3656/comments
https://api.github.com/repos/huggingface/datasets/issues/3656/events
https://github.com/huggingface/datasets/issues/3656
1,120,510,823
I_kwDODunzps5CyaNn
3,656
checksum error subjqa dataset
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2022-02-01T10:53:33Z
2022-02-10T10:56:59Z
2022-02-10T10:56:38Z
null
## Describe the bug I get a checksum error when loading the `subjqa` dataset (used in the transformers book). ## Steps to reproduce the bug ```python from datasets import load_dataset subjqa = load_dataset("subjqa","electronics") ``` ## Expected results Loading the dataset ## Actual results ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-2-d2857d460155> in <module>() 2 from datasets import load_dataset 3 ----> 4 subjqa = load_dataset("subjqa","electronics") 3 frames /usr/local/lib/python3.7/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 38 if len(bad_urls) > 0: 39 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 41 logger.info("All the checksums matched successfully" + for_verification_name) 42 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://github.com/lewtun/SubjQA/archive/refs/heads/master.zip'] ``` ## Environment info Google colab - `datasets` version: 1.18.2 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.12 - PyArrow version: 3.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3656/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3656/timeline
null
completed
null
null
false
[ "Hi @RensDimmendaal, \r\n\r\nI'm sorry but I can't reproduce your bug:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: ds = load_dataset(\"subjqa\", \"electronics\")\r\nDownloading builder script: 9.15kB [00:00, 4.10MB/s] \r\nDownloading metadata: 17.7kB [00:00, 8.51MB/s] \r\nDownloading and preparing dataset subjqa/electronics (download: 10.86 MiB, generated: 3.01 MiB, post-processed: Unknown size, total: 13.86 MiB) to .../.cache/huggingface/datasets/subjqa/electronics/1.1.0/e5588f9298ff2d70686a00cc377e4bdccf4e32287459e3c6baf2dc5ab57fe7fd...\r\nDownloading data: 11.4MB [00:03, 3.50MB/s]\r\nDataset subjqa downloaded and prepared to .../.cache/huggingface/datasets/subjqa/electronics/1.1.0/e5588f9298ff2d70686a00cc377e4bdccf4e32287459e3c6baf2dc5ab57fe7fd. Subsequent calls will reuse this data.\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 605.09it/s]\r\n\r\nIn [2]: ds\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['domain', 'nn_mod', 'nn_asp', 'query_mod', 'query_asp', 'q_reviews_id', 'question_subj_level', 'ques_subj_score', 'is_ques_subjective', 'review_id', 'id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 1295\r\n })\r\n test: Dataset({\r\n features: ['domain', 'nn_mod', 'nn_asp', 'query_mod', 'query_asp', 'q_reviews_id', 'question_subj_level', 'ques_subj_score', 'is_ques_subjective', 'review_id', 'id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 358\r\n })\r\n validation: Dataset({\r\n features: ['domain', 'nn_mod', 'nn_asp', 'query_mod', 'query_asp', 'q_reviews_id', 'question_subj_level', 'ques_subj_score', 'is_ques_subjective', 'review_id', 'id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 255\r\n })\r\n})\r\n```\r\n\r\nCould you please try again and see if the problem persists?\r\n\r\nIf that is the case, you can circumvent the issue by passing `ignore_verifications`:\r\n```python\r\nds = load_dataset(\"subjqa\", \"electronics\", ignore_verifications=True)", "Thanks checking!\r\n\r\nYou're totally right. I don't know what's changed, but I'm glad it's working now!\r\n\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/5618
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5618/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5618/comments
https://api.github.com/repos/huggingface/datasets/issues/5618/events
https://github.com/huggingface/datasets/issues/5618
1,612,977,934
I_kwDODunzps5gJBcO
5,618
Unpin fsspec < 2023.3.0 once issue fixed
[]
closed
false
null
0
2023-03-07T08:41:51Z
2023-03-07T13:39:03Z
2023-03-07T13:39:03Z
null
Unpin `fsspec` upper version once root cause of our CI break is fixed. See: - #5614
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5618/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5618/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/2472
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2472/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2472/comments
https://api.github.com/repos/huggingface/datasets/issues/2472/events
https://github.com/huggingface/datasets/issues/2472
917,463,821
MDU6SXNzdWU5MTc0NjM4MjE=
2,472
Fix automatic generation of Zenodo DOI
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "closed_at": "2021-07-09T05:50:07Z", "closed_issues": 12, "created_at": "2021-05-31T16:13:06Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-07-08T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/5", "id": 6808903, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/5/labels", "node_id": "MDk6TWlsZXN0b25lNjgwODkwMw==", "number": 5, "open_issues": 0, "state": "closed", "title": "1.9", "updated_at": "2021-07-12T14:12:00Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/5" }
4
2021-06-10T15:15:46Z
2021-06-14T16:49:42Z
2021-06-14T16:49:42Z
null
After the last release of Datasets (1.8.0), the automatic generation of the Zenodo DOI failed: it appears in yellow as "Received", instead of in green as "Published". I have contacted Zenodo support to fix this issue. TODO: - [x] Check with Zenodo to fix the issue - [x] Check BibTeX entry is right
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2472/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2472/timeline
null
completed
null
null
false
[ "I have received a reply from Zenodo support:\r\n> We are currently investigating and fixing this issue related to GitHub releases. As soon as we have solved it we will reach back to you.", "Other repo maintainers had the same problem with Zenodo. \r\n\r\nThere is an open issue on their GitHub repo: zenodo/zenodo#2181", "I have received the following request from Zenodo support:\r\n> Could you send us the link to the repository as well as the release tag?\r\n\r\nMy reply:\r\n> Sure, here it is:\r\n> - Link to the repository: https://github.com/huggingface/datasets\r\n> - Link to the repository at the release tag: https://github.com/huggingface/datasets/releases/tag/1.8.0\r\n> - Release tag: 1.8.0", "Zenodo issue has been fixed. The 1.8.0 release DOI can be found here: https://zenodo.org/record/4946100#.YMd6vKj7RPY" ]
https://api.github.com/repos/huggingface/datasets/issues/6086
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6086/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6086/comments
https://api.github.com/repos/huggingface/datasets/issues/6086/events
https://github.com/huggingface/datasets/issues/6086
1,825,009,268
I_kwDODunzps5sx250
6,086
Support `fsspec` in `Dataset.to_<format>` methods
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
0
2023-07-27T19:08:37Z
2023-07-27T19:08:37Z
null
null
Supporting this should be fairly easy. Requested on the forum [here](https://discuss.huggingface.co/t/how-can-i-convert-a-loaded-dataset-in-to-a-parquet-file-and-save-it-to-the-s3/48353).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6086/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6086/timeline
null
null
null
null
false
[ "Hi @mariosasko unless someone's already working on it, I guess I can tackle it!", "Hi! Sure, feel free to tackle this.", "#self-assign", "I'm assuming this should just cover `to_csv`, `to_parquet`, and `to_json`, right? As `to_list` and `to_dict` just return Python objects, `to_pandas` returns a `pandas.DataFrame` and `to_sql` just inserts into a SQL DB, is that right?" ]
https://api.github.com/repos/huggingface/datasets/issues/5478
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5478/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5478/comments
https://api.github.com/repos/huggingface/datasets/issues/5478/events
https://github.com/huggingface/datasets/pull/5478
1,560,357,583
PR_kwDODunzps5ItXQG
5,478
Tip for recomputing metadata
[]
closed
false
null
2
2023-01-27T20:01:22Z
2023-01-30T19:22:21Z
2023-01-30T19:15:26Z
null
From this [feedback](https://discuss.huggingface.co/t/nonmatchingsplitssizeserror/30033) on the forum, thought I'd include a tip for recomputing the metadata numbers if it is your own dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5478/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5478/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5478.diff", "html_url": "https://github.com/huggingface/datasets/pull/5478", "merged_at": "2023-01-30T19:15:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5478.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5478" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008167 / 0.011353 (-0.003186) | 0.004404 / 0.011008 (-0.006605) | 0.100462 / 0.038508 (0.061954) | 0.028835 / 0.023109 (0.005726) | 0.326759 / 0.275898 (0.050861) | 0.355150 / 0.323480 (0.031670) | 0.007200 / 0.007986 (-0.000786) | 0.003293 / 0.004328 (-0.001035) | 0.078006 / 0.004250 (0.073756) | 0.033298 / 0.037052 (-0.003754) | 0.307119 / 0.258489 (0.048630) | 0.337689 / 0.293841 (0.043848) | 0.033016 / 0.128546 (-0.095530) | 0.011383 / 0.075646 (-0.064263) | 0.321989 / 0.419271 (-0.097283) | 0.039793 / 0.043533 (-0.003740) | 0.295388 / 0.255139 (0.040249) | 0.322694 / 0.283200 (0.039494) | 0.082989 / 0.141683 (-0.058694) | 1.496701 / 1.452155 (0.044546) | 1.548861 / 1.492716 (0.056145) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.176587 / 0.018006 (0.158580) | 0.397660 / 0.000490 (0.397170) | 0.001063 / 0.000200 (0.000863) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022386 / 0.037411 (-0.015025) | 0.096380 / 0.014526 (0.081854) | 0.103032 / 0.176557 (-0.073525) | 0.135050 / 0.737135 (-0.602086) | 0.105941 / 0.296338 (-0.190397) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430989 / 0.215209 (0.215780) | 4.310309 / 2.077655 (2.232654) | 2.142596 / 1.504120 (0.638477) | 1.952043 / 1.541195 (0.410848) | 1.817803 / 1.468490 (0.349312) | 0.690026 / 4.584777 (-3.894751) | 3.315413 / 3.745712 (-0.430299) | 3.370336 / 5.269862 (-1.899525) | 1.668707 / 4.565676 (-2.896970) | 0.081860 / 0.424275 (-0.342415) | 0.012493 / 0.007607 (0.004886) | 0.527779 / 0.226044 (0.301735) | 5.318732 / 2.268929 (3.049804) | 2.467029 / 55.444624 (-52.977596) | 2.247171 / 6.876477 (-4.629306) | 2.270825 / 2.142072 (0.128752) | 0.802288 / 4.805227 (-4.002939) | 0.148895 / 6.500664 (-6.351770) | 0.064967 / 0.075469 (-0.010503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259304 / 1.841788 (-0.582484) | 13.662441 / 8.074308 (5.588133) | 14.074662 / 10.191392 (3.883270) | 0.152907 / 0.680424 (-0.527516) | 0.028340 / 0.534201 (-0.505861) | 0.397356 / 0.579283 (-0.181927) | 0.392600 / 0.434364 (-0.041764) | 0.467935 / 0.540337 (-0.072402) | 0.539890 / 1.386936 (-0.847046) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006156 / 0.011353 (-0.005197) | 0.004371 / 0.011008 (-0.006637) | 0.076391 / 0.038508 (0.037883) | 0.026455 / 0.023109 (0.003346) | 0.339816 / 0.275898 (0.063917) | 0.370032 / 0.323480 (0.046552) | 0.004614 / 0.007986 (-0.003372) | 0.003200 / 0.004328 (-0.001129) | 0.075408 / 0.004250 (0.071157) | 0.034100 / 0.037052 (-0.002953) | 0.341232 / 0.258489 (0.082743) | 0.380290 / 0.293841 (0.086449) | 0.031021 / 0.128546 (-0.097525) | 0.011562 / 0.075646 (-0.064084) | 0.085564 / 0.419271 (-0.333708) | 0.041431 / 0.043533 (-0.002102) | 0.359570 / 0.255139 (0.104431) | 0.366919 / 0.283200 (0.083719) | 0.088242 / 0.141683 (-0.053441) | 1.460703 / 1.452155 (0.008548) | 1.534351 / 1.492716 (0.041635) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225703 / 0.018006 (0.207697) | 0.395014 / 0.000490 (0.394524) | 0.000385 / 0.000200 (0.000185) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023975 / 0.037411 (-0.013436) | 0.098658 / 0.014526 (0.084132) | 0.105043 / 0.176557 (-0.071513) | 0.139988 / 0.737135 (-0.597148) | 0.106854 / 0.296338 (-0.189484) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442454 / 0.215209 (0.227245) | 4.430860 / 2.077655 (2.353205) | 2.084823 / 1.504120 (0.580704) | 1.870421 / 1.541195 (0.329226) | 1.901618 / 1.468490 (0.433128) | 0.699214 / 4.584777 (-3.885563) | 3.336911 / 3.745712 (-0.408801) | 1.856479 / 5.269862 (-3.413383) | 1.166496 / 4.565676 (-3.399180) | 0.083189 / 0.424275 (-0.341086) | 0.012293 / 0.007607 (0.004686) | 0.543147 / 0.226044 (0.317102) | 5.452030 / 2.268929 (3.183101) | 2.506689 / 55.444624 (-52.937936) | 2.168186 / 6.876477 (-4.708291) | 2.172277 / 2.142072 (0.030205) | 0.813554 / 4.805227 (-3.991673) | 0.152074 / 6.500664 (-6.348590) | 0.066891 / 0.075469 (-0.008579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278635 / 1.841788 (-0.563153) | 13.690232 / 8.074308 (5.615924) | 13.403201 / 10.191392 (3.211809) | 0.128171 / 0.680424 (-0.552253) | 0.016687 / 0.534201 (-0.517514) | 0.378645 / 0.579283 (-0.200638) | 0.382922 / 0.434364 (-0.051442) | 0.467483 / 0.540337 (-0.072854) | 0.559026 / 1.386936 (-0.827910) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b262d411ec0e252615a140c4e3e60e7dbd38eef1 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/4144
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4144/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4144/comments
https://api.github.com/repos/huggingface/datasets/issues/4144/events
https://github.com/huggingface/datasets/pull/4144
1,200,016,983
PR_kwDODunzps42ARmu
4,144
Fix splits in local packaged modules, local datasets without script and hub datasets without script
[]
closed
false
null
7
2022-04-11T13:57:33Z
2022-04-29T09:12:14Z
2022-04-28T21:02:45Z
null
fixes #4150 I suggest to infer splits structure from files when `data_dir` is passed with `get_patterns_locally`, analogous to what's done in `LocalDatasetModuleFactoryWithoutScript` with `self.path`, instead of generating files with `data_dir/**` patterns and putting them all into a single default (train) split. I would also suggest to align `HubDatasetModuleFactoryWithoutScript` and `LocalDatasetModuleFactoryWithoutScript` with this logic (remove `data_files = os.path.join(data_dir, "**")`). It's not reflected in the current code now as I'd like to discuss it cause I might be unaware of some use cases. @lhoestq @mariosasko @albertvillanova WDYT?
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4144/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4144/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4144.diff", "html_url": "https://github.com/huggingface/datasets/pull/4144", "merged_at": "2022-04-28T21:02:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/4144.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4144" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks !\r\nI'm in favor of this change, even though it's a breaking change:\r\n\r\nif you had a dataset\r\n```\r\ndata/\r\n train.csv\r\n test.csv\r\n```\r\n\r\nthen running this code would now return both train and test splits:\r\n```python\r\nload_dataset(\"csv\", data_dir=\"data/\")\r\n```\r\nwhereas right now it returns only a train split with the data from both CSV files.\r\n\r\nIn my opinion it's ok do do this breaking change because:\r\n- it makes this behavior consistent with `load_dataset(\"path/to/data\")` that also returns both splits: data_files resolution must be the same\r\n- I don't expect too many affected users (unless people really wanted to group train and test images in the train split on purpose ?) compared to the many new users to come (especially with #4069 )\r\n- this usage will become more and more common as we add packaged builder and imagefolder/audiofolder usage grows, so it may be better to do this change early\r\n\r\nLet me know if you think this is acceptable @mariosasko @albertvillanova or not, and if you think we need to first have a warning for some time before switching to this new behavior", "Also, if people really want to put train and test, say, images in a single train split they could do \r\n`load_dataset(\"imagefolder\", data_files={\"train\": \"/path/to/data/**})`. Probably (arguably :)), if this is a more counterintuitive case, then it should require manual files specification, not a default one (in which we expect that users do want to infer splits from filenames / dir structure but currently they have to pass smth like `{\"train\": \"/path/to/data/train*\", \"test\": \"/path/to/data/test*\"}` explicitly as `data_files`) ", "I also like this change, and I don't think we even need a warning during the transition period, considering I've been asked several times since the release of `imagefolder` why splits are not correctly inferred if the directory structure is as follows:\r\n```\r\ndata_dir\r\n train\r\n label_a\r\n 0.jpg\r\n ...\r\n label_b \r\n 0.jpg\r\n ...\r\n test\r\n label_a\r\n 0.jpg\r\n ...\r\n label_b \r\n 0.jpg\r\n ...\r\n```", "Cool ! Feel free to add a test (maybe something similar to `test_PackagedDatasetModuleFactory_with_data_dir` but with a data_dir that contains several splits) and mark this PR as ready for review then @polinaeterna :)", "@lhoestq @mariosasko do you think it's a good idea to do the same with `HubDatasetModuleFactoryWithoutScript` and `LocalDatasetModuleFactoryWithoutScript` (see the latest change). If we agree on the current change, doing \r\n```python\r\nds = load_dataset(\"polinaeterna/jsonl_test\", data_dir=\"data/\")\r\n```\r\non dataset with the following structure:\r\n```\r\ntrain.jsonl\r\ntest.jsonl\r\ndata/\r\n train.jsonl\r\n test.jsonl\r\n```\r\nwill result in having two splits from files under `data/` dir in specified repo, while master version returns a single train split. \r\nThe same would be for local dataset without script if doing smth like:\r\n```python\r\nds = load_dataset(\"/home/polina/workspace/repos/jsonl_test\", data_dir=\"/home/polina/workspace/repos/jsonl_test/data\")\r\n```\r\n(though I'm not sure I understand this use case :D)\r\nLet me know if you think we should preserve the same logic for all factories or if I should roll back this change.", "@lhoestq to test passing subdirectory (`base_path`) to data_files functions and methods, I extended the temporary test directory with data so that it contains subdirectory. Because of that the number of files in this directory increased, so I had to change some numbers and patterns to account for this change - [907ddf0](https://github.com/huggingface/datasets/pull/4144/commits/907ddf09d3afece5afbae18675c859d6e453f2bf)\r\n\r\nDo you think it's ok? Another option is to create another tmp dir and do all the checks inside it. " ]
https://api.github.com/repos/huggingface/datasets/issues/1168
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1168/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1168/comments
https://api.github.com/repos/huggingface/datasets/issues/1168/events
https://github.com/huggingface/datasets/pull/1168
757,740,780
MDExOlB1bGxSZXF1ZXN0NTMzMDYzNjgy
1,168
Add Naver sentiment movie corpus
[]
closed
false
null
1
2020-12-05T17:25:23Z
2020-12-07T13:34:09Z
2020-12-07T13:34:09Z
null
This PR adds the [Naver sentiment movie corpus](https://github.com/e9t/nsmc), a dataset containing Korean movie reviews from Naver, the most commonly used search engine in Korea. This dataset is often used to benchmark models on Korean NLP tasks, as seen in [this paper](https://www.aclweb.org/anthology/2020.lrec-1.199.pdf).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1168/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1168/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1168.diff", "html_url": "https://github.com/huggingface/datasets/pull/1168", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1168.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1168" }
true
[ "Closed via #1252 " ]
https://api.github.com/repos/huggingface/datasets/issues/1646
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1646/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1646/comments
https://api.github.com/repos/huggingface/datasets/issues/1646/events
https://github.com/huggingface/datasets/pull/1646
775,499,344
MDExOlB1bGxSZXF1ZXN0NTQ2MTY4MTk3
1,646
Add missing homepage in some dataset cards
[]
closed
false
null
0
2020-12-28T17:09:48Z
2021-01-04T14:08:57Z
2021-01-04T14:08:56Z
null
In some dataset cards the homepage field in the `Dataset Description` section was missing/empty
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1646/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1646/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1646.diff", "html_url": "https://github.com/huggingface/datasets/pull/1646", "merged_at": "2021-01-04T14:08:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/1646.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1646" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1360
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1360/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1360/comments
https://api.github.com/repos/huggingface/datasets/issues/1360/events
https://github.com/huggingface/datasets/pull/1360
760,088,419
MDExOlB1bGxSZXF1ZXN0NTM0OTc4NzM0
1,360
add wisesight1000
[]
closed
false
null
0
2020-12-09T07:41:30Z
2020-12-10T14:28:41Z
2020-12-10T14:28:41Z
null
`wisesight1000` contains Thai social media texts randomly drawn from the full `wisesight-sentiment`, tokenized by human annotators. Out of the labels `neg` (negative), `neu` (neutral), `pos` (positive), `q` (question), 250 samples each. Some texts are removed because they look like spam.Because these samples are representative of real world content, we believe having these annotaed samples will allow the community to robustly evaluate tokenization algorithms.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1360/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1360/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1360.diff", "html_url": "https://github.com/huggingface/datasets/pull/1360", "merged_at": "2020-12-10T14:28:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/1360.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1360" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4608
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4608/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4608/comments
https://api.github.com/repos/huggingface/datasets/issues/4608/events
https://github.com/huggingface/datasets/pull/4608
1,290,298,002
PR_kwDODunzps46pm9A
4,608
Fix xisfile, xgetsize, xisdir, xlistdir in private repo
[]
closed
false
null
2
2022-06-30T15:23:21Z
2022-07-06T12:45:59Z
2022-07-06T12:34:19Z
null
`xisfile` is working in a private repository when passing a chained URL to a file inside an archive, e.g. `zip://a.txt::https://huggingface/datasets/username/dataset_name/resolve/main/data.zip`. However it's not working when passing a simple file `https://huggingface/datasets/username/dataset_name/resolve/main/data.zip`. This is because the authentication headers are not passed correctly in this case. This is causing dataset streaming to fail in private parquet repositories, as noted in https://github.com/huggingface/datasets/issues/4605 I fixed `xisfile` and the other functions that behave the same way: xgetsize, xisdir and xlistdir TODO: - [x] tests fix https://github.com/huggingface/datasets/issues/4605
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4608/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4608/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4608.diff", "html_url": "https://github.com/huggingface/datasets/pull/4608", "merged_at": "2022-07-06T12:34:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/4608.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4608" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Added tests for xisfile, xgetsize, xlistdir and xglob for private repos, and also tests for xwalk that was untested" ]
https://api.github.com/repos/huggingface/datasets/issues/4761
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4761/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4761/comments
https://api.github.com/repos/huggingface/datasets/issues/4761/events
https://github.com/huggingface/datasets/issues/4761
1,321,068,411
I_kwDODunzps5Oved7
4,761
parallel searching in multi-gpu setting using faiss
[]
open
false
null
26
2022-07-28T14:57:03Z
2023-07-21T02:07:10Z
null
null
While I notice that `add_faiss_index` has supported assigning multiple GPUs, I am still confused about how it works. Does the `search-batch` function automatically parallelizes the input queries to different gpus?https://github.com/huggingface/datasets/blob/d76599bdd4d186b2e7c4f468b05766016055a0a5/src/datasets/search.py#L360
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4761/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4761/timeline
null
null
null
null
false
[ "And I don't see any speed up when increasing the number of GPUs while calling `get_nearest_examples_batch`.", "Hi ! Yes search_batch uses FAISS search which happens in parallel across the GPUs\r\n\r\n> And I don't see any speed up when increasing the number of GPUs while calling get_nearest_examples_batch.\r\n\r\nThat's unexpected, can you share the code you're running ?", "here is the code snippet\r\n\r\n```python\r\n\r\n# add faiss index\r\nsource_dataset = load_dataset(source_path)\r\nqueries = load_dataset(query_path)\r\ngpu = [0,1,2,3]\r\nsource_dataset.add_faiss_index(\r\n \"embedding\",\r\n device=gpu,\r\n )\r\n\r\n\r\n# batch query\r\nbatch_size = 32\r\nfor i in tqdm(range(0, len(queries), batch_size)):\r\n if i + batch_size >= len(queries):\r\n batched_queries = queries[i:]\r\n else:\r\n batched_queries = queries[i:i+batch_size]\r\n\r\n batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n scores, candidates = source_dataset.get_nearest_examples_batch(\r\n \"embedding\",\r\n batched_query_embeddings,\r\n k=5\r\n )\r\n```", "My version of datasets is `2.4.1.dev0`.", "The code looks all good to me, do you see all the GPUs being utilized ? What version of faiss are you using ?", "I can see the memory usage of all the GPUs.\r\nMy version of `faiss-gpu` is `1.7.2`", "It looks all good to me then ^^ though you said you didn't experienced speed improvements by adding more GPUs ? What size is your source dataset and what time differences did you experience ?", "query set: 1e6\r\nsource dataset: 1e6\r\nembedding size: 768\r\nindex: Flat\r\ntopk: 20\r\nGPU: V100\r\n\r\nThe time taken to traverse the query set once is about 1.5h, which is almost not influenced by the value of query batch size or the number of GPUs according to my experiments.", "Hmmm the number of GPUs should divide the time, something is going wrong. Can you check that adding more GPU does divide the memory used per GPU ? Maybe it can be worth looking at similar issues in the FAISS repository or create a noew issue over there to understand what's going on", "> Can you check that adding more GPU does divide the memory used per GPU \r\n\r\nThe memory used per GPU is unchanged while adding more GPU. Is this unexpected?\r\n\r\nI used to think that every GPU loads all the source vectors and the data parallelism is at the query level. 😆 ", "> I used to think that every GPU loads all the source vectors and the data parallelism is at the query level. 😆\r\n\r\nOh indeed that's possible, I wasn't sure. Anyway you can check that calling get_nearest_examples_batch simply calls search under the hood: \r\n\r\nhttps://github.com/huggingface/datasets/blob/f90f71fbbb33889fe75a3ffc101cdf16a88a3453/src/datasets/search.py#L375", "Here is a runnable script. \r\nMulti-GPU searching still does not work in my experiments.\r\n\r\n\r\n```python\r\nimport os\r\nfrom tqdm import tqdm\r\nimport numpy as np\r\nimport datasets\r\nfrom datasets import Dataset\r\n\r\nclass DPRSelector:\r\n\r\n def __init__(self, source, target, index_name, gpu=None):\r\n self.source = source\r\n self.target = target\r\n self.index_name = index_name\r\n\r\n cache_path = 'embedding.faiss'\r\n\r\n if not os.path.exists(cache_path):\r\n self.source.add_faiss_index(\r\n column=\"embedding\",\r\n index_name=index_name,\r\n device=gpu,\r\n )\r\n self.source.save_faiss_index(index_name, cache_path)\r\n else:\r\n self.source.load_faiss_index(\r\n index_name,\r\n cache_path,\r\n device=gpu\r\n )\r\n print('index builded!')\r\n\r\n def build_dataset(self, top_k, batch_size):\r\n print('start search')\r\n\r\n for i in tqdm(range(0, len(self.target), batch_size)):\r\n if i + batch_size >= len(self.target):\r\n batched_queries = self.target[i:]\r\n else:\r\n batched_queries = self.target[i:i+batch_size]\r\n\r\n\r\n batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n search_res = self.source.get_nearest_examples_batch(\r\n self.index_name,\r\n batched_query_embeddings,\r\n k=top_k\r\n )\r\n \r\n print('finish search')\r\n\r\n\r\ndef get_pseudo_dataset():\r\n pseudo_dict = {\"embedding\": np.zeros((1000000, 768), dtype=np.float32)}\r\n print('generate pseudo data')\r\n\r\n dataset = Dataset.from_dict(pseudo_dict)\r\n def list_to_array(data):\r\n return {\"embedding\": [np.array(vector, dtype=np.float32) for vector in data[\"embedding\"]]} \r\n dataset.set_transform(list_to_array, columns='embedding', output_all_columns=True)\r\n\r\n print('build dataset')\r\n return dataset\r\n\r\n\r\n\r\nif __name__==\"__main__\":\r\n\r\n np.random.seed(42)\r\n\r\n\r\n source_dataset = get_pseudo_dataset()\r\n target_dataset = get_pseudo_dataset()\r\n\r\n gpu = [0,1,2,3,4,5,6,7]\r\n selector = DPRSelector(source_dataset, target_dataset, \"embedding\", gpu=gpu)\r\n\r\n selector.build_dataset(top_k=20, batch_size=32)\r\n```", "@lhoestq Hi, could you please test the code above if you have time? 😄 ", "Maybe @albertvillanova you can take a look ? I won't be available in the following days", "@albertvillanova Hi, can you help with this issue?", "Hi @xwwwwww I'm investigating it, but I'm not an expert in Faiss. In principle, it is weird that your code does not work properly because it seems right...", "Have you tried passing `gpu=-1` and check if there is a speedup?", "> Have you tried passing `gpu=-1` and check if there is a speedup?\r\n\r\nyes, there is a speed up using GPU compared with CPU. ", "When passing `device=-1`, ALL existing GPUs are used (multi GPU): this is the maximum speedup you can get. To know the number of total GPUs:\r\n```\r\nimport faiss\r\n\r\nngpus = faiss.get_num_gpus()\r\nprint(ngpus)\r\n```\r\n\r\nWhen passing a list of integers to `device`, then only that number of GPUs are used (multi GPU as well)\r\n- the speedup should be proportional (more or less) to the ratio of the number of elements passed to `device` over `ngpus`\r\n- if this is not the case, then there is an issue in the implementation of this use case (however, I have reviewed the code and in principle I can't find any evident bug)\r\n\r\nWhen passing a positive integer to `device`, then only a single GPU is used.\r\n- this time should be more or less proportional to the time when passing `device=-1` over `ngpus`", "Thanks for your help!\r\nHave you run the code and replicated the same experimental results (i.e., no speedup while increasing the number of GPUs)?", "@albertvillanova @lhoestq Sorry for the bother, is there any progress on this issue? 😃 ", "I can confirm `add_faiss_index` calls `index = faiss.index_cpu_to_gpus_list(index, gpus=list(device))`.\r\n\r\nCould this be an issue with your environment ? Could you try running with 1 and 8 GPUs with a code similar to[ this one from the FAISS examples](https://github.com/facebookresearch/faiss/blob/main/tutorial/python/5-Multiple-GPUs.py) but using `gpu_index = faiss.index_cpu_to_gpus_list(cpu_index, gpus=list(device))`, and see if the speed changes ?", "Hi, I test the FAISS example and the speed indeed changes. I set `nb=1000000`, `nq=1000000` and `d=64`\r\n\r\n| num GPUS | time cost |\r\n| -------- | --------- |\r\n| 1 | 28.53 |\r\n| 5 | 7.16 |\r\n\r\n\r\n\r\n", "Ok the benchmark is great, not sure why it doesn't speed up the index in your case though. You can try running the benchmark with the same settings as your actual dataset\r\n```\r\nquery set: 1e6\r\nsource dataset: 1e6\r\nembedding size: 768\r\nindex: Flat\r\ntopk: 20\r\nGPU: V100\r\n```\r\n\r\nNote that you can still pass a FAISS index you built yourself to a dataset using https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index_from_external_arrays", "> Here is a runnable script. Multi-GPU searching still does not work in my experiments.\r\n> \r\n> ```python\r\n> import os\r\n> from tqdm import tqdm\r\n> import numpy as np\r\n> import datasets\r\n> from datasets import Dataset\r\n> \r\n> class DPRSelector:\r\n> \r\n> def __init__(self, source, target, index_name, gpu=None):\r\n> self.source = source\r\n> self.target = target\r\n> self.index_name = index_name\r\n> \r\n> cache_path = 'embedding.faiss'\r\n> \r\n> if not os.path.exists(cache_path):\r\n> self.source.add_faiss_index(\r\n> column=\"embedding\",\r\n> index_name=index_name,\r\n> device=gpu,\r\n> )\r\n> self.source.save_faiss_index(index_name, cache_path)\r\n> else:\r\n> self.source.load_faiss_index(\r\n> index_name,\r\n> cache_path,\r\n> device=gpu\r\n> )\r\n> print('index builded!')\r\n> \r\n> def build_dataset(self, top_k, batch_size):\r\n> print('start search')\r\n> \r\n> for i in tqdm(range(0, len(self.target), batch_size)):\r\n> if i + batch_size >= len(self.target):\r\n> batched_queries = self.target[i:]\r\n> else:\r\n> batched_queries = self.target[i:i+batch_size]\r\n> \r\n> \r\n> batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n> search_res = self.source.get_nearest_examples_batch(\r\n> self.index_name,\r\n> batched_query_embeddings,\r\n> k=top_k\r\n> )\r\n> \r\n> print('finish search')\r\n> \r\n> \r\n> def get_pseudo_dataset():\r\n> pseudo_dict = {\"embedding\": np.zeros((1000000, 768), dtype=np.float32)}\r\n> print('generate pseudo data')\r\n> \r\n> dataset = Dataset.from_dict(pseudo_dict)\r\n> def list_to_array(data):\r\n> return {\"embedding\": [np.array(vector, dtype=np.float32) for vector in data[\"embedding\"]]} \r\n> dataset.set_transform(list_to_array, columns='embedding', output_all_columns=True)\r\n> \r\n> print('build dataset')\r\n> return dataset\r\n> \r\n> \r\n> \r\n> if __name__==\"__main__\":\r\n> \r\n> np.random.seed(42)\r\n> \r\n> \r\n> source_dataset = get_pseudo_dataset()\r\n> target_dataset = get_pseudo_dataset()\r\n> \r\n> gpu = [0,1,2,3,4,5,6,7]\r\n> selector = DPRSelector(source_dataset, target_dataset, \"embedding\", gpu=gpu)\r\n> \r\n> selector.build_dataset(top_k=20, batch_size=32)\r\n> ```\r\n\r\nBy the way, have you run this toy example and replicated my experiment results? I think it is a more direct way to figure this out :)", "Hi,\r\n\r\nI have a similar question and would like to know if there's any progress in this issue. \r\n\r\n`dataset.add_faiss_index(column=\"embedding\")`, this takes around 5minutes to add the index.\r\n\r\n`dataset.add_faiss_index(column=\"embedding\", device=-1)`, this ran for more than 10minutes and still didn't complete execution. \r\n\r\nNow, I don't understand why that's the case as I expected for GPU the indexing should be faster" ]
https://api.github.com/repos/huggingface/datasets/issues/5853
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5853/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5853/comments
https://api.github.com/repos/huggingface/datasets/issues/5853/events
https://github.com/huggingface/datasets/pull/5853
1,708,092,786
PR_kwDODunzps5QaZLP
5,853
[docs] Redirects, migrated from nginx
[]
closed
false
null
3
2023-05-12T19:19:27Z
2023-05-15T10:37:19Z
2023-05-15T10:30:14Z
null
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5853/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5853/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5853.diff", "html_url": "https://github.com/huggingface/datasets/pull/5853", "merged_at": "2023-05-15T10:30:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/5853.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5853" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "@mishig25 note that it's not exactly the same behavior as in nginx as here it interacts a bit with the `version` and the `language`\r\n\r\nShould be close enough, though.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007212 / 0.011353 (-0.004141) | 0.005125 / 0.011008 (-0.005883) | 0.098460 / 0.038508 (0.059952) | 0.034040 / 0.023109 (0.010931) | 0.320203 / 0.275898 (0.044305) | 0.357787 / 0.323480 (0.034307) | 0.006000 / 0.007986 (-0.001986) | 0.005644 / 0.004328 (0.001316) | 0.072654 / 0.004250 (0.068403) | 0.049393 / 0.037052 (0.012341) | 0.345686 / 0.258489 (0.087196) | 0.362345 / 0.293841 (0.068504) | 0.036597 / 0.128546 (-0.091949) | 0.012303 / 0.075646 (-0.063343) | 0.334374 / 0.419271 (-0.084897) | 0.062010 / 0.043533 (0.018477) | 0.312547 / 0.255139 (0.057408) | 0.336021 / 0.283200 (0.052821) | 0.112304 / 0.141683 (-0.029378) | 1.446706 / 1.452155 (-0.005449) | 1.523256 / 1.492716 (0.030540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217658 / 0.018006 (0.199652) | 0.449208 / 0.000490 (0.448718) | 0.002878 / 0.000200 (0.002679) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025735 / 0.037411 (-0.011676) | 0.105876 / 0.014526 (0.091350) | 0.114887 / 0.176557 (-0.061669) | 0.170984 / 0.737135 (-0.566152) | 0.121420 / 0.296338 (-0.174918) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419670 / 0.215209 (0.204461) | 4.189453 / 2.077655 (2.111798) | 1.938236 / 1.504120 (0.434116) | 1.769747 / 1.541195 (0.228553) | 1.910919 / 1.468490 (0.442429) | 0.705046 / 4.584777 (-3.879730) | 3.783774 / 3.745712 (0.038062) | 2.096504 / 5.269862 (-3.173358) | 1.339265 / 4.565676 (-3.226412) | 0.086670 / 0.424275 (-0.337605) | 0.012243 / 0.007607 (0.004636) | 0.524701 / 0.226044 (0.298657) | 5.240689 / 2.268929 (2.971760) | 2.473622 / 55.444624 (-52.971003) | 2.170568 / 6.876477 (-4.705909) | 2.289653 / 2.142072 (0.147581) | 0.848913 / 4.805227 (-3.956314) | 0.168332 / 6.500664 (-6.332332) | 0.064926 / 0.075469 (-0.010543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193614 / 1.841788 (-0.648173) | 14.920403 / 8.074308 (6.846095) | 14.475059 / 10.191392 (4.283667) | 0.164458 / 0.680424 (-0.515966) | 0.017613 / 0.534201 (-0.516588) | 0.426311 / 0.579283 (-0.152972) | 0.431478 / 0.434364 (-0.002886) | 0.520280 / 0.540337 (-0.020057) | 0.627738 / 1.386936 (-0.759198) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007458 / 0.011353 (-0.003895) | 0.005363 / 0.011008 (-0.005645) | 0.076713 / 0.038508 (0.038205) | 0.034189 / 0.023109 (0.011079) | 0.359938 / 0.275898 (0.084040) | 0.395532 / 0.323480 (0.072052) | 0.005977 / 0.007986 (-0.002008) | 0.004263 / 0.004328 (-0.000065) | 0.075971 / 0.004250 (0.071721) | 0.051924 / 0.037052 (0.014871) | 0.362818 / 0.258489 (0.104329) | 0.409897 / 0.293841 (0.116056) | 0.035494 / 0.128546 (-0.093053) | 0.012399 / 0.075646 (-0.063247) | 0.088335 / 0.419271 (-0.330937) | 0.047968 / 0.043533 (0.004435) | 0.355744 / 0.255139 (0.100606) | 0.376339 / 0.283200 (0.093139) | 0.104542 / 0.141683 (-0.037141) | 1.464826 / 1.452155 (0.012672) | 1.600665 / 1.492716 (0.107948) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220841 / 0.018006 (0.202834) | 0.446444 / 0.000490 (0.445954) | 0.000392 / 0.000200 (0.000192) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029402 / 0.037411 (-0.008009) | 0.116511 / 0.014526 (0.101986) | 0.122959 / 0.176557 (-0.053598) | 0.171674 / 0.737135 (-0.565462) | 0.129871 / 0.296338 (-0.166468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450411 / 0.215209 (0.235202) | 4.471859 / 2.077655 (2.394205) | 2.229439 / 1.504120 (0.725319) | 2.053308 / 1.541195 (0.512114) | 2.142476 / 1.468490 (0.673986) | 0.708299 / 4.584777 (-3.876478) | 3.797830 / 3.745712 (0.052118) | 2.142509 / 5.269862 (-3.127352) | 1.333357 / 4.565676 (-3.232320) | 0.086837 / 0.424275 (-0.337439) | 0.012102 / 0.007607 (0.004495) | 0.548428 / 0.226044 (0.322384) | 5.490611 / 2.268929 (3.221682) | 2.713882 / 55.444624 (-52.730742) | 2.399638 / 6.876477 (-4.476839) | 2.481549 / 2.142072 (0.339477) | 0.839812 / 4.805227 (-3.965415) | 0.168890 / 6.500664 (-6.331774) | 0.065564 / 0.075469 (-0.009906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275507 / 1.841788 (-0.566281) | 14.896343 / 8.074308 (6.822035) | 13.159701 / 10.191392 (2.968309) | 0.172065 / 0.680424 (-0.508359) | 0.017507 / 0.534201 (-0.516694) | 0.420031 / 0.579283 (-0.159252) | 0.438835 / 0.434364 (0.004471) | 0.490597 / 0.540337 (-0.049741) | 0.583952 / 1.386936 (-0.802984) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48c9755d0ae9abe4c4d6cd8c1ce76eff849f0e5c \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/5259
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5259/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5259/comments
https://api.github.com/repos/huggingface/datasets/issues/5259/events
https://github.com/huggingface/datasets/issues/5259
1,453,555,923
I_kwDODunzps5Wo4DT
5,259
datasets 2.7 introduces sharding error
[]
closed
false
null
3
2022-11-17T15:36:52Z
2022-12-24T01:44:02Z
2022-11-18T12:52:05Z
null
### Describe the bug dataset fails to load with runtime error `RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.` ### Steps to reproduce the bug With datasets[audio] 2.7 loaded, and logged into hugging face, `data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True)` creates the error. Full stack trace: ```--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [<ipython-input-7-8cb9ca0f79f0>](https://localhost:8080/#) in <module> ----> 1 data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True) 5 frames [/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) 1745 try_from_hf_gcs=try_from_hf_gcs, 1746 use_auth_token=use_auth_token, -> 1747 num_proc=num_proc, 1748 ) 1749 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 824 verify_infos=verify_infos, 825 **prepare_split_kwargs, --> 826 **download_and_prepare_kwargs, 827 ) 828 # Sync info [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) 1554 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): 1555 super()._download_and_prepare( -> 1556 dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs 1557 ) 1558 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 911 try: 912 # Prepare split will record examples associated to the split --> 913 self._prepare_split(split_generator, **prepare_split_kwargs) 914 except OSError as e: 915 raise OSError( [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1362 fpath = path_join(self._output_dir, fname) 1363 -> 1364 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) 1365 if num_input_shards <= 1 and num_proc is not None: 1366 logger.warning( [/usr/local/lib/python3.7/dist-packages/datasets/utils/sharding.py](https://localhost:8080/#) in _number_of_shards_in_gen_kwargs(gen_kwargs) 16 + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) 17 + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " ---> 18 + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." 19 ) 20 ) RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.``` ### Expected behavior the dataset loads in datasets version 2.6.1 and should load with datasets 2.7 ### Environment info - `datasets` version: 2.7.0 - Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.15 - PyArrow version: 6.0.1 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5259/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5259/timeline
null
completed
null
null
false
[ "I notice a comment in the code says:\r\n`Having lists of different sizes makes sharding ambigious, raise an error in this case until we decide how to define sharding without ambiguity for users` \r\n \r\n ... which suggests this update was pushed knowing that it might break some things. But, it didn't seem to have a useful error message of an argument that could be passed to avoid the error.", "Sorry for the inconvenience, I opened a PR in your repo to fix this: https://huggingface.co/datasets/sil-ai/bloom-speech/discussions/2\r\n\r\nBasically we've always considered lists in `gen_kwargs` to be a shard list that we can split and pass into different workers to generate the dataset (e.g. if you pass `num_proc=` in `load_dataset()` to generate the dataset in parallel), but it was documented only recently", "@lhoestq Thanks for the help. It looks like that took care of it." ]
https://api.github.com/repos/huggingface/datasets/issues/1409
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1409/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1409/comments
https://api.github.com/repos/huggingface/datasets/issues/1409/events
https://github.com/huggingface/datasets/pull/1409
760,593,932
MDExOlB1bGxSZXF1ZXN0NTM1Mzk5OTI1
1,409
Adding the ASSIN dataset
[]
closed
false
null
1
2020-12-09T19:07:00Z
2020-12-09T19:18:12Z
2020-12-09T19:15:52Z
null
Adding the ASSIN dataset, a Portuguese language dataset for Natural Language Inference and Semantic Similarity Scoring
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1409/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1409/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1409.diff", "html_url": "https://github.com/huggingface/datasets/pull/1409", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1409.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1409" }
true
[ "I wrongly commited data from another branch in this PR, I'll close this a reopen another PR with the fixed branch" ]
https://api.github.com/repos/huggingface/datasets/issues/645
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/645/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/645/comments
https://api.github.com/repos/huggingface/datasets/issues/645/events
https://github.com/huggingface/datasets/pull/645
704,542,234
MDExOlB1bGxSZXF1ZXN0NDg5NDQ5MjAx
645
Don't use take on dataset table in pyarrow 1.0.x
[]
closed
false
null
3
2020-09-18T17:31:34Z
2020-09-19T16:46:32Z
2020-09-19T16:46:31Z
null
Fix #615
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/645/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/645/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/645.diff", "html_url": "https://github.com/huggingface/datasets/pull/645", "merged_at": "2020-09-19T16:46:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/645.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/645" }
true
[ "I tried lower batch sizes and it didn't accelerate filter (quite the opposite actually).\r\nThe slow-down also appears for pyarrow 0.17.1 for some reason, not sure it comes from these changes", "I just checked the benchmarks of other PRs and some of them had 300s (!!) for filter. This needs some investigation..", "Merging this one since it's not the cause of the the slow down" ]
https://api.github.com/repos/huggingface/datasets/issues/2129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2129/comments
https://api.github.com/repos/huggingface/datasets/issues/2129/events
https://github.com/huggingface/datasets/issues/2129
843,033,656
MDU6SXNzdWU4NDMwMzM2NTY=
2,129
How to train BERT model with next sentence prediction?
[]
closed
false
null
4
2021-03-29T06:48:03Z
2021-04-01T04:58:40Z
2021-04-01T04:58:40Z
null
Hello. I'm trying to pretrain the BERT model with next sentence prediction. Is there any function that supports next sentence prediction like ` TextDatasetForNextSentencePrediction` of `huggingface/transformers` ?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2129/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2129/timeline
null
completed
null
null
false
[ "Hi !\r\nWe're not using `TextDatasetForNextSentencePrediction` in `datasets`.\r\nAlthough you can probably use the `TextDatasetForNextSentencePrediction.create_examples_from_document` on a dataset to prepare it for next sentence prediction.", "Thanks.\r\n\r\nDo you mean that `TextDatasetForNextSentencePrediction.create_exapmles_from_document` can be applied to dataset object other than `TextDatasetForNextSentencePrediction` e.g. a `Dataset` object which is loaded by `datasets.load_dataset`?", "It would probably require a bit of tweaking, but you can apply it to a dataset, yes.\r\nThis should give you a new dataset with sentence pairs you can train a model on.\r\n\r\nYou can find the documentation about dataset processing here:\r\nhttps://huggingface.co/docs/datasets/processing.html#processing-data-with-map", "Thank you for detail information.\r\n\r\nI'll try to apply `create_examples_from_document` to `Dataset` object.\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/689
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/689/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/689/comments
https://api.github.com/repos/huggingface/datasets/issues/689/events
https://github.com/huggingface/datasets/pull/689
712,095,262
MDExOlB1bGxSZXF1ZXN0NDk1NjMzNjMy
689
Switch to pandas reader for text dataset
[]
closed
false
null
1
2020-09-30T16:28:12Z
2020-09-30T16:45:32Z
2020-09-30T16:45:31Z
null
Following the discussion in #622 , it appears that there's no appropriate ways to use the payrrow csv reader to read text files because of the separator. In this PR I switched to pandas to read the file. Moreover pandas allows to read the file by chunk, which means that you can build the arrow dataset from a text file that is bigger than RAM (we used to have to shard text files an mentioned in https://github.com/huggingface/datasets/issues/610#issuecomment-691672919) From a test that I did locally on a 1GB text file, the pyarrow reader used to run in 150ms while the new one takes 650ms (multithreading off for pyarrow). This is probably due to chunking since I am having the same speed difference by calling `read()` and calling `read(chunksize)` + `readline()` to read the text file.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/689/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/689/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/689.diff", "html_url": "https://github.com/huggingface/datasets/pull/689", "merged_at": "2020-09-30T16:45:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/689.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/689" }
true
[ "If the windows tests in the CI pass, today will be a happy day" ]
https://api.github.com/repos/huggingface/datasets/issues/1054
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1054/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1054/comments
https://api.github.com/repos/huggingface/datasets/issues/1054/events
https://github.com/huggingface/datasets/pull/1054
756,265,688
MDExOlB1bGxSZXF1ZXN0NTMxODM3NzQ0
1,054
Add dataset - SemEval 2014 - Task 1
[]
closed
false
null
1
2020-12-03T14:52:59Z
2020-12-04T00:52:44Z
2020-12-04T00:52:44Z
null
Adding the dataset of SemEval 2014 Task 1 Found the dataset under the shared Google Sheet > Recurring Task Datasets Task Homepage - https://alt.qcri.org/semeval2014/task1 Thank you!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1054/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1054/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1054.diff", "html_url": "https://github.com/huggingface/datasets/pull/1054", "merged_at": "2020-12-04T00:52:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/1054.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1054" }
true
[ "Added the dataset card.\r\nRequesting another review." ]
https://api.github.com/repos/huggingface/datasets/issues/2334
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2334/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2334/comments
https://api.github.com/repos/huggingface/datasets/issues/2334/events
https://github.com/huggingface/datasets/pull/2334
879,810,107
MDExOlB1bGxSZXF1ZXN0NjMzNTAzNTEw
2,334
Updating the DART file checksums in GEM
[]
closed
false
null
1
2021-05-07T21:53:44Z
2021-05-07T22:18:10Z
2021-05-07T22:18:10Z
null
The DART files were just updated on the source GitHub https://github.com/Yale-LILY/dart/commit/34b3c872da4811523e334f1631e54ca8105dffab
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2334/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2334/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2334.diff", "html_url": "https://github.com/huggingface/datasets/pull/2334", "merged_at": "2021-05-07T22:18:10Z", "patch_url": "https://github.com/huggingface/datasets/pull/2334.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2334" }
true
[ "@sebastianGehrmann " ]
https://api.github.com/repos/huggingface/datasets/issues/2332
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2332/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2332/comments
https://api.github.com/repos/huggingface/datasets/issues/2332/events
https://github.com/huggingface/datasets/pull/2332
879,041,608
MDExOlB1bGxSZXF1ZXN0NjMyNzk1NDE4
2,332
Add note about indices mapping in save_to_disk docstring
[]
closed
false
null
0
2021-05-07T13:49:42Z
2021-05-07T17:20:48Z
2021-05-07T17:20:48Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2332/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2332/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2332.diff", "html_url": "https://github.com/huggingface/datasets/pull/2332", "merged_at": "2021-05-07T17:20:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/2332.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2332" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4994
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4994/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4994/comments
https://api.github.com/repos/huggingface/datasets/issues/4994/events
https://github.com/huggingface/datasets/issues/4994
1,379,084,015
I_kwDODunzps5SMybv
4,994
delete the hardcoded license list in `datasets`
[]
closed
false
null
0
2022-09-20T09:14:41Z
2022-09-22T11:45:47Z
2022-09-22T11:45:47Z
null
> Feel free to delete the license list in `datasets` [...] > > Also FYI in #4926 I also removed all the validation steps anyway (language, license, types etc.) _Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/4930#issuecomment-1238401662_ > [...], in my opinion we can just delete this file from `datasets`, the validation is happening hub-side anyways now? _Originally posted by @julien-c in https://github.com/huggingface/datasets/issues/4930#issuecomment-1238390659_
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/4994/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4994/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/396/comments
https://api.github.com/repos/huggingface/datasets/issues/396/events
https://github.com/huggingface/datasets/pull/396
657,477,952
MDExOlB1bGxSZXF1ZXN0NDQ5NTg3MDQ4
396
Fix memory issue when doing select
[]
closed
false
null
0
2020-07-15T16:15:04Z
2020-07-16T08:07:32Z
2020-07-16T08:07:31Z
null
We were passing the `nlp.Dataset` object to get the hash for the new dataset's file name. Fix #395
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/396/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/396/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/396.diff", "html_url": "https://github.com/huggingface/datasets/pull/396", "merged_at": "2020-07-16T08:07:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/396.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/396" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1037
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1037/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1037/comments
https://api.github.com/repos/huggingface/datasets/issues/1037/events
https://github.com/huggingface/datasets/pull/1037
755,975,586
MDExOlB1bGxSZXF1ZXN0NTMxNTk2NDkx
1,037
Fix docs indentation issues
[]
closed
false
null
2
2020-12-03T08:21:34Z
2020-12-22T16:01:15Z
2020-12-22T16:01:15Z
null
Replace tabs with spaces.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1037/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1037/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1037.diff", "html_url": "https://github.com/huggingface/datasets/pull/1037", "merged_at": "2020-12-22T16:01:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/1037.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1037" }
true
[ "is this an issue ?", "Yes @lhoestq, look at the docs site. For example, in https://huggingface.co/docs/datasets/add_dataset.html, look at the indentation in the code block under the sentence:\r\n> Here are the features of the SQuAD dataset for instance, which is taken from the squad dataset loading script:" ]
https://api.github.com/repos/huggingface/datasets/issues/2514
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2514/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2514/comments
https://api.github.com/repos/huggingface/datasets/issues/2514/events
https://github.com/huggingface/datasets/issues/2514
924,417,172
MDU6SXNzdWU5MjQ0MTcxNzI=
2,514
Can datasets remove duplicated rows?
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
7
2021-06-17T23:35:38Z
2022-09-10T14:43:26Z
null
null
**Is your feature request related to a problem? Please describe.** i find myself more and more relying on datasets just to do all the preprocessing. One thing however, for removing duplicated rows, I couldn't find out how and am always converting datasets to pandas to do that.. **Describe the solution you'd like** have a functionality of " remove duplicated rows" **Describe alternatives you've considered** convert dataset to pandas, remove duplicate, and convert back... **Additional context** no
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2514/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2514/timeline
null
null
null
null
false
[ "Hi ! For now this is probably the best option.\r\nWe might add a feature like this in the feature as well.\r\n\r\nDo you know any deduplication method that works on arbitrary big datasets without filling up RAM ?\r\nOtherwise we can have do the deduplication in memory like pandas but I feel like this is going to be limiting for some cases", "Yes, I'd like to work on this feature once I'm done with #2500, but first I have to do some research, and see if the implementation wouldn't be too complex.\r\n\r\nIn the meantime, maybe [this lib](https://github.com/TomScheffers/pyarrow_ops) can help. However, note that this lib operates directly on pyarrow tables and relies only on `hash` to find duplicates (e.g. `-1` and `-2` have the same hash in Python 3, so this lib will treat them as duplicates), which doesn't make much sense.", "> Hi ! For now this is probably the best option.\r\n> We might add a feature like this in the feature as well.\r\n> \r\n> Do you know any deduplication method that works on arbitrary big datasets without filling up RAM ?\r\n> Otherwise we can have do the deduplication in memory like pandas but I feel like this is going to be limiting for some cases\r\n\r\nGreat if this is can be done. Thanks!!\r\n\r\nNot sure if you are asking me. In any case I don't know of any unfortunately :( in practice if data is really large we normally do it with spark (only for info. I understand this is not useful in developing this library..)", "Hello,\r\n\r\nI'm also interested in this feature.\r\nHas there been progress on this issue?\r\n\r\nCould we use a similar trick as above, but with a better hashing algorithm like SHA?\r\n\r\nWe could also use a [bloom filter](https://en.wikipedia.org/wiki/Bloom_filter), should we care a lot about collision in this case?", "For reference, we can get a solution fairly easily if we assume that we can hold in memory all unique values. \r\n\r\n```python\r\nfrom datasets import Dataset\r\nfrom itertools import cycle\r\nfrom functools import partial\r\n\r\nmemory = set()\r\ndef is_unique(elem:Any , column: str, memory: set) -> bool:\r\n if elem[column] in memory:\r\n return False\r\n else:\r\n memory.add(elem[column])\r\n return True\r\n\r\n# Example dataset\r\nds = Dataset.from_dict({\"col1\" : [sent for i, sent in zip(range(10), cycle([\"apple\", \"orange\", \"pear\"]))],\r\n \"col2\": [i % 5 for i in range(10)]})\r\n\r\n# Drop duplicates in `ds` on \"col1\"\r\nds2 = ds.filter(partial(is_unique, column=\"col1\", memory=memory))\r\n```\r\n\r\nOf course, we can improve the API so that we can introduce `Dataset.drop_duplicates`.\r\nFor the parallel version, we can use a shared memory set.", "An approach that works assuming you can hold the all the unique document hashes in memory:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\ndef get_hash(example):\r\n \"\"\"Get hash of content field.\"\"\"\r\n return {\"hash\": hash(example[\"content\"])} # can use any hashing function here\r\n \r\ndef check_uniques(example, uniques):\r\n \"\"\"Check if current hash is still in set of unique hashes and remove if true.\"\"\"\r\n if example[\"hash\"] in uniques:\r\n uniques.remove(example[\"hash\"])\r\n return True\r\n else:\r\n return False\r\n\r\nds = load_dataset(\"some_dataset\")\r\nds = ds.map(get_hash)\r\nuniques = set(ds.unique(\"hash\"))\r\nds_filter = ds.filter(check_uniques, fn_kwargs={\"uniques\": uniques})\r\n```\r\nIf the `uniques` could be stored in arrow then no additional memory would used at all but I don't know if this is possible.\r\n", "@lvwerra hey, could you tell me how reliable is this deduplication method. i am currently using the same deduplication strategy to deduplicate a large text corpus to pretrain LLMs ~ 11B to 20B. just needed to ensure if this strategy would be fine on large datasets for LLMs pretraining. " ]
https://api.github.com/repos/huggingface/datasets/issues/2401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2401/comments
https://api.github.com/repos/huggingface/datasets/issues/2401/events
https://github.com/huggingface/datasets/issues/2401
899,910,521
MDU6SXNzdWU4OTk5MTA1MjE=
2,401
load_dataset('natural_questions') fails with "ValueError: External features info don't match the dataset"
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
4
2021-05-24T18:38:53Z
2021-06-09T09:07:25Z
2021-06-09T09:07:25Z
null
## Describe the bug load_dataset('natural_questions') throws ValueError ## Steps to reproduce the bug ```python from datasets import load_dataset datasets = load_dataset('natural_questions', split='validation[:10]') ``` ## Expected results Call to load_dataset returns data. ## Actual results ``` Using custom data configuration default Reusing dataset natural_questions (/mnt/d/huggingface/datasets/natural_questions/default/0.0.2/19bc04755018a3ad02ee74f7045cde4ba9b4162cb64450a87030ab786b123b76) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-2-d55ab8a8cc1c> in <module> ----> 1 datasets = load_dataset('natural_questions', split='validation[:10]', cache_dir='/mnt/d/huggingface/datasets') ~/miniconda3/lib/python3.8/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, script_version, use_auth_token, **config_kwargs) 756 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 757 ) --> 758 ds = builder_instance.as_dataset(split=split, ignore_verifications=ignore_verifications, in_memory=keep_in_memory) 759 if save_infos: 760 builder_instance._save_infos() ~/miniconda3/lib/python3.8/site-packages/datasets/builder.py in as_dataset(self, split, run_post_process, ignore_verifications, in_memory) 735 736 # Create a dataset for each of the given splits --> 737 datasets = utils.map_nested( 738 partial( 739 self._build_single_dataset, ~/miniconda3/lib/python3.8/site-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types) 193 # Singleton 194 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 195 return function(data_struct) 196 197 disable_tqdm = bool(logger.getEffectiveLevel() > INFO) ~/miniconda3/lib/python3.8/site-packages/datasets/builder.py in _build_single_dataset(self, split, run_post_process, ignore_verifications, in_memory) 762 763 # Build base dataset --> 764 ds = self._as_dataset( 765 split=split, 766 in_memory=in_memory, ~/miniconda3/lib/python3.8/site-packages/datasets/builder.py in _as_dataset(self, split, in_memory) 838 in_memory=in_memory, 839 ) --> 840 return Dataset(**dataset_kwargs) 841 842 def _post_process(self, dataset: Dataset, resources_paths: Dict[str, str]) -> Optional[Dataset]: ~/miniconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py in __init__(self, arrow_table, info, split, indices_table, fingerprint) 271 assert self._fingerprint is not None, "Fingerprint can't be None in a Dataset object" 272 if self.info.features.type != inferred_features.type: --> 273 raise ValueError( 274 "External features info don't match the dataset:\nGot\n{}\nwith type\n{}\n\nbut expected something like\n{}\nwith type\n{}".format( 275 self.info.features, self.info.features.type, inferred_features, inferred_features.type ValueError: External features info don't match the dataset: Got {'id': Value(dtype='string', id=None), 'document': {'title': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None), 'html': Value(dtype='string', id=None), 'tokens': Sequence(feature={'token': Value(dtype='string', id=None), 'is_html': Value(dtype='bool', id=None)}, length=-1, id=None)}, 'question': {'text': Value(dtype='string', id=None), 'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'annotations': Sequence(feature={'id': Value(dtype='string', id=None), 'long_answer': {'start_token': Value(dtype='int64', id=None), 'end_token': Value(dtype='int64', id=None), 'start_byte': Value(dtype='int64', id=None), 'end_byte': Value(dtype='int64', id=None)}, 'short_answers': Sequence(feature={'start_token': Value(dtype='int64', id=None), 'end_token': Value(dtype='int64', id=None), 'start_byte': Value(dtype='int64', id=None), 'end_byte': Value(dtype='int64', id=None), 'text': Value(dtype='string', id=None)}, length=-1, id=None), 'yes_no_answer': ClassLabel(num_classes=2, names=['NO', 'YES'], names_file=None, id=None)}, length=-1, id=None)} with type struct<annotations: struct<id: list<item: string>, long_answer: list<item: struct<start_token: int64, end_token: int64, start_byte: int64, end_byte: int64>>, short_answers: list<item: struct<end_byte: list<item: int64>, end_token: list<item: int64>, start_byte: list<item: int64>, start_token: list<item: int64>, text: list<item: string>>>, yes_no_answer: list<item: int64>>, document: struct<title: string, url: string, html: string, tokens: struct<is_html: list<item: bool>, token: list<item: string>>>, id: string, question: struct<text: string, tokens: list<item: string>>> but expected something like {'id': Value(dtype='string', id=None), 'document': {'html': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None), 'tokens': {'is_html': Sequence(feature=Value(dtype='bool', id=None), length=-1, id=None), 'token': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'url': Value(dtype='string', id=None)}, 'question': {'text': Value(dtype='string', id=None), 'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'annotations': {'id': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'long_answer': [{'end_byte': Value(dtype='int64', id=None), 'end_token': Value(dtype='int64', id=None), 'start_byte': Value(dtype='int64', id=None), 'start_token': Value(dtype='int64', id=None)}], 'short_answers': [{'end_byte': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'end_token': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'start_byte': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'start_token': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}], 'yes_no_answer': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)}} with type struct<annotations: struct<id: list<item: string>, long_answer: list<item: struct<end_byte: int64, end_token: int64, start_byte: int64, start_token: int64>>, short_answers: list<item: struct<end_byte: list<item: int64>, end_token: list<item: int64>, start_byte: list<item: int64>, start_token: list<item: int64>, text: list<item: string>>>, yes_no_answer: list<item: int64>>, document: struct<html: string, title: string, tokens: struct<is_html: list<item: bool>, token: list<item: string>>, url: string>, id: string, question: struct<text: string, tokens: list<item: string>>> ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.6.2 - Platform: Linux-5.4.72-microsoft-standard-WSL2-x86_64-with-glibc2.10 - Python version: 3.8.3 - PyTorch version (GPU?): 1.6.0 (False) - Tensorflow version (GPU?): not installed (NA) - Using GPU in script?: No - Using distributed or parallel set-up in script?: No
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2401/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2401/timeline
null
completed
null
null
false
[ "I faced the similar problem. Downgrading datasets to 1.5.0 fixed it.", "Thanks for reporting, I'm looking into it", "I just opened #2438 to fix this :)", "Hi ! This has been fixed in the 1.8.0 release of `datasets`" ]
https://api.github.com/repos/huggingface/datasets/issues/5128
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5128/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5128/comments
https://api.github.com/repos/huggingface/datasets/issues/5128/events
https://github.com/huggingface/datasets/pull/5128
1,412,783,855
PR_kwDODunzps5A_k9s
5,128
Make filename matching more robust
[]
closed
false
null
3
2022-10-18T08:22:48Z
2022-10-28T13:07:38Z
2022-10-28T13:05:06Z
null
Fix #5046
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5128/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5128/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5128.diff", "html_url": "https://github.com/huggingface/datasets/pull/5128", "merged_at": "2022-10-28T13:05:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/5128.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5128" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "> I think we should also modify one of the metadata files in the `folder_based_builder` tests to make sure \"./\" is ignored now in the `file_name`\r\n\r\n@mariosasko what do you mean here? I'm not sure which metadata file I should modify here", "You can modify this line for instance: https://github.com/huggingface/datasets/blob/2699593b33ee63d17aad2a2bfddedd38a8df57b8/tests/packaged_modules/test_folder_based_builder.py#L135" ]
https://api.github.com/repos/huggingface/datasets/issues/6019
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6019/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6019/comments
https://api.github.com/repos/huggingface/datasets/issues/6019/events
https://github.com/huggingface/datasets/pull/6019
1,799,532,822
PR_kwDODunzps5VPAlD
6,019
Improve logging
[]
closed
false
null
13
2023-07-11T18:30:23Z
2023-07-12T19:34:14Z
2023-07-12T17:19:28Z
null
Adds the StreamHandler (as `hfh` and `transformers` do) to the library's logger to log INFO messages and logs the messages about "loading a cached result" (and some other warnings) as INFO (Also removes the `leave=False` arg in the progress bars to be consistent with `hfh` and `transformers` - progress bars serve as an indicator that a result is not cached, so it makes more sense not to delete them) Fix #2832, fix https://github.com/huggingface/datasets/issues/1948, fix https://github.com/huggingface/datasets/issues/5444
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6019/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6019/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6019.diff", "html_url": "https://github.com/huggingface/datasets/pull/6019", "merged_at": "2023-07-12T17:19:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/6019.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6019" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007782 / 0.011353 (-0.003571) | 0.004451 / 0.011008 (-0.006557) | 0.099928 / 0.038508 (0.061420) | 0.081534 / 0.023109 (0.058425) | 0.379382 / 0.275898 (0.103484) | 0.410652 / 0.323480 (0.087172) | 0.005967 / 0.007986 (-0.002019) | 0.003702 / 0.004328 (-0.000627) | 0.076359 / 0.004250 (0.072109) | 0.066721 / 0.037052 (0.029669) | 0.383595 / 0.258489 (0.125106) | 0.423854 / 0.293841 (0.130013) | 0.032796 / 0.128546 (-0.095750) | 0.009728 / 0.075646 (-0.065918) | 0.344347 / 0.419271 (-0.074925) | 0.056320 / 0.043533 (0.012788) | 0.379974 / 0.255139 (0.124835) | 0.401294 / 0.283200 (0.118094) | 0.024110 / 0.141683 (-0.117572) | 1.804194 / 1.452155 (0.352039) | 1.860240 / 1.492716 (0.367523) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233803 / 0.018006 (0.215797) | 0.506893 / 0.000490 (0.506404) | 0.003894 / 0.000200 (0.003694) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033328 / 0.037411 (-0.004083) | 0.098661 / 0.014526 (0.084136) | 0.114971 / 0.176557 (-0.061586) | 0.186815 / 0.737135 (-0.550321) | 0.115490 / 0.296338 (-0.180848) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422590 / 0.215209 (0.207381) | 4.277189 / 2.077655 (2.199535) | 2.095565 / 1.504120 (0.591445) | 2.040825 / 1.541195 (0.499630) | 2.162562 / 1.468490 (0.694072) | 0.578602 / 4.584777 (-4.006175) | 4.203474 / 3.745712 (0.457762) | 6.674595 / 5.269862 (1.404734) | 3.913251 / 4.565676 (-0.652426) | 0.067777 / 0.424275 (-0.356498) | 0.008716 / 0.007607 (0.001109) | 0.548704 / 0.226044 (0.322660) | 5.162120 / 2.268929 (2.893192) | 2.600250 / 55.444624 (-52.844374) | 2.232730 / 6.876477 (-4.643747) | 2.485617 / 2.142072 (0.343544) | 0.650872 / 4.805227 (-4.154355) | 0.148022 / 6.500664 (-6.352642) | 0.064795 / 0.075469 (-0.010674) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.399439 / 1.841788 (-0.442349) | 22.438959 / 8.074308 (14.364651) | 16.447831 / 10.191392 (6.256439) | 0.202003 / 0.680424 (-0.478421) | 0.026200 / 0.534201 (-0.508001) | 0.472966 / 0.579283 (-0.106317) | 0.491621 / 0.434364 (0.057257) | 0.551580 / 0.540337 (0.011242) | 0.751420 / 1.386936 (-0.635516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007241 / 0.011353 (-0.004112) | 0.004434 / 0.011008 (-0.006574) | 0.075872 / 0.038508 (0.037364) | 0.080094 / 0.023109 (0.056985) | 0.459244 / 0.275898 (0.183346) | 0.492482 / 0.323480 (0.169002) | 0.005791 / 0.007986 (-0.002194) | 0.003657 / 0.004328 (-0.000671) | 0.075214 / 0.004250 (0.070964) | 0.064208 / 0.037052 (0.027156) | 0.464195 / 0.258489 (0.205706) | 0.497809 / 0.293841 (0.203968) | 0.036301 / 0.128546 (-0.092245) | 0.009855 / 0.075646 (-0.065791) | 0.080826 / 0.419271 (-0.338445) | 0.056700 / 0.043533 (0.013167) | 0.452850 / 0.255139 (0.197711) | 0.490738 / 0.283200 (0.207538) | 0.024145 / 0.141683 (-0.117538) | 1.689911 / 1.452155 (0.237757) | 1.789803 / 1.492716 (0.297087) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247741 / 0.018006 (0.229735) | 0.486769 / 0.000490 (0.486279) | 0.000418 / 0.000200 (0.000218) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036317 / 0.037411 (-0.001094) | 0.104943 / 0.014526 (0.090417) | 0.120972 / 0.176557 (-0.055585) | 0.188461 / 0.737135 (-0.548674) | 0.120926 / 0.296338 (-0.175412) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465788 / 0.215209 (0.250579) | 4.662369 / 2.077655 (2.584714) | 2.442241 / 1.504120 (0.938121) | 2.266328 / 1.541195 (0.725133) | 2.438998 / 1.468490 (0.970508) | 0.531384 / 4.584777 (-4.053393) | 4.125286 / 3.745712 (0.379574) | 3.920912 / 5.269862 (-1.348950) | 2.292149 / 4.565676 (-2.273528) | 0.070146 / 0.424275 (-0.354129) | 0.008887 / 0.007607 (0.001280) | 0.598181 / 0.226044 (0.372137) | 5.726454 / 2.268929 (3.457526) | 3.081836 / 55.444624 (-52.362788) | 2.683508 / 6.876477 (-4.192969) | 2.587350 / 2.142072 (0.445278) | 0.604736 / 4.805227 (-4.200491) | 0.141303 / 6.500664 (-6.359362) | 0.065020 / 0.075469 (-0.010449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.481850 / 1.841788 (-0.359938) | 22.259592 / 8.074308 (14.185284) | 16.304290 / 10.191392 (6.112898) | 0.173514 / 0.680424 (-0.506909) | 0.021590 / 0.534201 (-0.512611) | 0.471753 / 0.579283 (-0.107531) | 0.472132 / 0.434364 (0.037768) | 0.563344 / 0.540337 (0.023007) | 0.738509 / 1.386936 (-0.648427) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cb7ae56dbd814945a4982c63bf0e50859a7b93a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005910 / 0.011353 (-0.005443) | 0.004372 / 0.011008 (-0.006636) | 0.081583 / 0.038508 (0.043075) | 0.069598 / 0.023109 (0.046488) | 0.346360 / 0.275898 (0.070462) | 0.360733 / 0.323480 (0.037254) | 0.004725 / 0.007986 (-0.003261) | 0.003106 / 0.004328 (-0.001222) | 0.059916 / 0.004250 (0.055666) | 0.053242 / 0.037052 (0.016189) | 0.353551 / 0.258489 (0.095062) | 0.373052 / 0.293841 (0.079211) | 0.029036 / 0.128546 (-0.099510) | 0.007894 / 0.075646 (-0.067753) | 0.284131 / 0.419271 (-0.135140) | 0.049348 / 0.043533 (0.005815) | 0.347409 / 0.255139 (0.092270) | 0.355029 / 0.283200 (0.071830) | 0.022511 / 0.141683 (-0.119171) | 1.454495 / 1.452155 (0.002340) | 1.439551 / 1.492716 (-0.053166) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218889 / 0.018006 (0.200883) | 0.478734 / 0.000490 (0.478244) | 0.003758 / 0.000200 (0.003558) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025759 / 0.037411 (-0.011653) | 0.082511 / 0.014526 (0.067985) | 0.087578 / 0.176557 (-0.088979) | 0.137760 / 0.737135 (-0.599375) | 0.093312 / 0.296338 (-0.203027) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.378963 / 0.215209 (0.163754) | 3.645846 / 2.077655 (1.568191) | 1.741135 / 1.504120 (0.237015) | 1.599166 / 1.541195 (0.057972) | 1.610817 / 1.468490 (0.142327) | 0.459209 / 4.584777 (-4.125568) | 3.484857 / 3.745712 (-0.260855) | 3.928109 / 5.269862 (-1.341752) | 2.419784 / 4.565676 (-2.145892) | 0.051987 / 0.424275 (-0.372288) | 0.006495 / 0.007607 (-0.001112) | 0.427311 / 0.226044 (0.201267) | 4.226378 / 2.268929 (1.957450) | 2.212331 / 55.444624 (-53.232293) | 1.916213 / 6.876477 (-4.960264) | 1.978809 / 2.142072 (-0.163263) | 0.547351 / 4.805227 (-4.257876) | 0.121110 / 6.500664 (-6.379554) | 0.054163 / 0.075469 (-0.021306) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228594 / 1.841788 (-0.613193) | 19.410901 / 8.074308 (11.336593) | 13.014722 / 10.191392 (2.823330) | 0.156449 / 0.680424 (-0.523975) | 0.021032 / 0.534201 (-0.513169) | 0.403976 / 0.579283 (-0.175307) | 0.413885 / 0.434364 (-0.020479) | 0.470465 / 0.540337 (-0.069873) | 0.641322 / 1.386936 (-0.745614) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007210 / 0.011353 (-0.004143) | 0.003824 / 0.011008 (-0.007185) | 0.058227 / 0.038508 (0.019719) | 0.076211 / 0.023109 (0.053102) | 0.336626 / 0.275898 (0.060728) | 0.420542 / 0.323480 (0.097062) | 0.006178 / 0.007986 (-0.001808) | 0.003332 / 0.004328 (-0.000997) | 0.058073 / 0.004250 (0.053823) | 0.062485 / 0.037052 (0.025432) | 0.386175 / 0.258489 (0.127686) | 0.415659 / 0.293841 (0.121818) | 0.031264 / 0.128546 (-0.097282) | 0.007502 / 0.075646 (-0.068144) | 0.072079 / 0.419271 (-0.347192) | 0.055860 / 0.043533 (0.012327) | 0.343508 / 0.255139 (0.088369) | 0.437844 / 0.283200 (0.154645) | 0.032852 / 0.141683 (-0.108831) | 1.409241 / 1.452155 (-0.042913) | 1.623949 / 1.492716 (0.131233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207511 / 0.018006 (0.189504) | 0.464149 / 0.000490 (0.463660) | 0.003248 / 0.000200 (0.003048) | 0.000226 / 0.000054 (0.000172) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030767 / 0.037411 (-0.006645) | 0.079169 / 0.014526 (0.064643) | 0.093111 / 0.176557 (-0.083445) | 0.153369 / 0.737135 (-0.583767) | 0.092939 / 0.296338 (-0.203400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.375602 / 0.215209 (0.160392) | 3.968612 / 2.077655 (1.890957) | 2.081749 / 1.504120 (0.577629) | 1.899772 / 1.541195 (0.358577) | 1.847923 / 1.468490 (0.379433) | 0.442867 / 4.584777 (-4.141910) | 3.646664 / 3.745712 (-0.099048) | 5.870600 / 5.269862 (0.600739) | 3.356698 / 4.565676 (-1.208979) | 0.051422 / 0.424275 (-0.372853) | 0.006006 / 0.007607 (-0.001601) | 0.442439 / 0.226044 (0.216395) | 4.466256 / 2.268929 (2.197328) | 2.483832 / 55.444624 (-52.960792) | 2.105612 / 6.876477 (-4.770865) | 2.060650 / 2.142072 (-0.081422) | 0.531119 / 4.805227 (-4.274108) | 0.123436 / 6.500664 (-6.377228) | 0.059838 / 0.075469 (-0.015632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283042 / 1.841788 (-0.558746) | 19.688251 / 8.074308 (11.613943) | 13.346386 / 10.191392 (3.154994) | 0.197463 / 0.680424 (-0.482961) | 0.018484 / 0.534201 (-0.515717) | 0.391727 / 0.579283 (-0.187556) | 0.425061 / 0.434364 (-0.009303) | 0.448177 / 0.540337 (-0.092160) | 0.653694 / 1.386936 (-0.733242) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01604752fe89d290479fa406b1a24ac1f346826e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008966 / 0.011353 (-0.002387) | 0.005195 / 0.011008 (-0.005813) | 0.102879 / 0.038508 (0.064371) | 0.090902 / 0.023109 (0.067792) | 0.434397 / 0.275898 (0.158498) | 0.454013 / 0.323480 (0.130534) | 0.008507 / 0.007986 (0.000521) | 0.005000 / 0.004328 (0.000671) | 0.075789 / 0.004250 (0.071538) | 0.067608 / 0.037052 (0.030555) | 0.435091 / 0.258489 (0.176602) | 0.469411 / 0.293841 (0.175570) | 0.050859 / 0.128546 (-0.077687) | 0.013560 / 0.075646 (-0.062086) | 0.345473 / 0.419271 (-0.073799) | 0.094974 / 0.043533 (0.051441) | 0.429626 / 0.255139 (0.174487) | 0.434290 / 0.283200 (0.151090) | 0.052269 / 0.141683 (-0.089413) | 1.700549 / 1.452155 (0.248395) | 1.890693 / 1.492716 (0.397976) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296618 / 0.018006 (0.278612) | 0.613908 / 0.000490 (0.613419) | 0.000484 / 0.000200 (0.000284) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034346 / 0.037411 (-0.003065) | 0.096836 / 0.014526 (0.082310) | 0.113332 / 0.176557 (-0.063224) | 0.194464 / 0.737135 (-0.542671) | 0.111732 / 0.296338 (-0.184606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624954 / 0.215209 (0.409745) | 6.442193 / 2.077655 (4.364538) | 2.818331 / 1.504120 (1.314211) | 2.529607 / 1.541195 (0.988413) | 2.549026 / 1.468490 (1.080536) | 0.967367 / 4.584777 (-3.617410) | 5.446885 / 3.745712 (1.701173) | 6.259099 / 5.269862 (0.989237) | 3.652936 / 4.565676 (-0.912740) | 0.106420 / 0.424275 (-0.317855) | 0.011293 / 0.007607 (0.003686) | 0.772026 / 0.226044 (0.545982) | 7.823986 / 2.268929 (5.555057) | 3.725328 / 55.444624 (-51.719297) | 2.851489 / 6.876477 (-4.024988) | 3.013722 / 2.142072 (0.871649) | 1.045090 / 4.805227 (-3.760137) | 0.213174 / 6.500664 (-6.287490) | 0.077104 / 0.075469 (0.001635) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.657135 / 1.841788 (-0.184652) | 24.547604 / 8.074308 (16.473296) | 19.989533 / 10.191392 (9.798141) | 0.257139 / 0.680424 (-0.423285) | 0.028448 / 0.534201 (-0.505753) | 0.490801 / 0.579283 (-0.088482) | 0.628072 / 0.434364 (0.193708) | 0.584873 / 0.540337 (0.044536) | 0.825258 / 1.386936 (-0.561678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009258 / 0.011353 (-0.002095) | 0.005660 / 0.011008 (-0.005348) | 0.080577 / 0.038508 (0.042069) | 0.095786 / 0.023109 (0.072676) | 0.473334 / 0.275898 (0.197436) | 0.527962 / 0.323480 (0.204482) | 0.006537 / 0.007986 (-0.001449) | 0.004411 / 0.004328 (0.000083) | 0.080702 / 0.004250 (0.076452) | 0.077020 / 0.037052 (0.039968) | 0.483205 / 0.258489 (0.224716) | 0.556916 / 0.293841 (0.263076) | 0.047670 / 0.128546 (-0.080877) | 0.016647 / 0.075646 (-0.058999) | 0.090653 / 0.419271 (-0.328619) | 0.062122 / 0.043533 (0.018589) | 0.498326 / 0.255139 (0.243187) | 0.546572 / 0.283200 (0.263372) | 0.037525 / 0.141683 (-0.104157) | 1.869520 / 1.452155 (0.417365) | 1.915335 / 1.492716 (0.422619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248287 / 0.018006 (0.230281) | 0.611440 / 0.000490 (0.610950) | 0.004102 / 0.000200 (0.003902) | 0.000132 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038228 / 0.037411 (0.000817) | 0.103510 / 0.014526 (0.088984) | 0.114337 / 0.176557 (-0.062219) | 0.189662 / 0.737135 (-0.547473) | 0.119078 / 0.296338 (-0.177260) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606622 / 0.215209 (0.391413) | 6.053900 / 2.077655 (3.976246) | 2.857972 / 1.504120 (1.353852) | 2.549756 / 1.541195 (1.008561) | 2.584557 / 1.468490 (1.116067) | 0.930431 / 4.584777 (-3.654346) | 5.524077 / 3.745712 (1.778365) | 7.858406 / 5.269862 (2.588545) | 4.890697 / 4.565676 (0.325020) | 0.095356 / 0.424275 (-0.328919) | 0.008614 / 0.007607 (0.001007) | 0.774227 / 0.226044 (0.548182) | 7.470215 / 2.268929 (5.201287) | 3.784820 / 55.444624 (-51.659805) | 3.199364 / 6.876477 (-3.677113) | 3.212002 / 2.142072 (1.069929) | 1.054104 / 4.805227 (-3.751123) | 0.226044 / 6.500664 (-6.274620) | 0.092237 / 0.075469 (0.016768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.801054 / 1.841788 (-0.040734) | 24.220404 / 8.074308 (16.146096) | 21.652936 / 10.191392 (11.461544) | 0.247004 / 0.680424 (-0.433420) | 0.029651 / 0.534201 (-0.504550) | 0.475702 / 0.579283 (-0.103581) | 0.621121 / 0.434364 (0.186757) | 0.570489 / 0.540337 (0.030151) | 0.768840 / 1.386936 (-0.618096) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2fc21eda345643fb57d1d1167ebed9043310911 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009223 / 0.011353 (-0.002130) | 0.005750 / 0.011008 (-0.005258) | 0.105264 / 0.038508 (0.066756) | 0.088478 / 0.023109 (0.065369) | 0.461119 / 0.275898 (0.185221) | 0.481115 / 0.323480 (0.157636) | 0.006366 / 0.007986 (-0.001619) | 0.004515 / 0.004328 (0.000186) | 0.079296 / 0.004250 (0.075045) | 0.063483 / 0.037052 (0.026430) | 0.444490 / 0.258489 (0.186001) | 0.496474 / 0.293841 (0.202634) | 0.048568 / 0.128546 (-0.079978) | 0.013574 / 0.075646 (-0.062073) | 0.379213 / 0.419271 (-0.040059) | 0.086464 / 0.043533 (0.042932) | 0.437526 / 0.255139 (0.182387) | 0.447117 / 0.283200 (0.163917) | 0.049502 / 0.141683 (-0.092180) | 1.749146 / 1.452155 (0.296992) | 1.831082 / 1.492716 (0.338365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268205 / 0.018006 (0.250199) | 0.627406 / 0.000490 (0.626917) | 0.005439 / 0.000200 (0.005239) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030564 / 0.037411 (-0.006848) | 0.096365 / 0.014526 (0.081840) | 0.117484 / 0.176557 (-0.059072) | 0.189104 / 0.737135 (-0.548032) | 0.118073 / 0.296338 (-0.178266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618229 / 0.215209 (0.403019) | 6.437853 / 2.077655 (4.360199) | 2.789946 / 1.504120 (1.285826) | 2.339245 / 1.541195 (0.798050) | 2.588779 / 1.468490 (1.120289) | 0.921008 / 4.584777 (-3.663769) | 5.402940 / 3.745712 (1.657227) | 4.818783 / 5.269862 (-0.451078) | 3.162259 / 4.565676 (-1.403417) | 0.108501 / 0.424275 (-0.315774) | 0.009384 / 0.007607 (0.001777) | 0.766811 / 0.226044 (0.540766) | 7.624629 / 2.268929 (5.355701) | 3.442420 / 55.444624 (-52.002204) | 2.759967 / 6.876477 (-4.116510) | 3.049644 / 2.142072 (0.907572) | 1.113308 / 4.805227 (-3.691919) | 0.223923 / 6.500664 (-6.276741) | 0.079156 / 0.075469 (0.003687) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.683318 / 1.841788 (-0.158470) | 25.062141 / 8.074308 (16.987833) | 21.777131 / 10.191392 (11.585739) | 0.266939 / 0.680424 (-0.413485) | 0.029670 / 0.534201 (-0.504531) | 0.476761 / 0.579283 (-0.102522) | 0.622080 / 0.434364 (0.187716) | 0.601781 / 0.540337 (0.061443) | 0.785126 / 1.386936 (-0.601811) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010198 / 0.011353 (-0.001155) | 0.005777 / 0.011008 (-0.005231) | 0.083003 / 0.038508 (0.044495) | 0.093411 / 0.023109 (0.070302) | 0.496178 / 0.275898 (0.220280) | 0.554670 / 0.323480 (0.231190) | 0.008351 / 0.007986 (0.000365) | 0.004678 / 0.004328 (0.000350) | 0.083631 / 0.004250 (0.079381) | 0.075538 / 0.037052 (0.038485) | 0.492410 / 0.258489 (0.233921) | 0.545209 / 0.293841 (0.251368) | 0.048365 / 0.128546 (-0.080181) | 0.014219 / 0.075646 (-0.061427) | 0.100749 / 0.419271 (-0.318523) | 0.063431 / 0.043533 (0.019898) | 0.511115 / 0.255139 (0.255976) | 0.532965 / 0.283200 (0.249765) | 0.037968 / 0.141683 (-0.103715) | 1.940268 / 1.452155 (0.488113) | 2.032934 / 1.492716 (0.540217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238179 / 0.018006 (0.220172) | 0.605767 / 0.000490 (0.605277) | 0.004033 / 0.000200 (0.003833) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036436 / 0.037411 (-0.000975) | 0.108034 / 0.014526 (0.093509) | 0.118624 / 0.176557 (-0.057933) | 0.183079 / 0.737135 (-0.554056) | 0.121739 / 0.296338 (-0.174600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.630538 / 0.215209 (0.415329) | 6.552184 / 2.077655 (4.474529) | 3.003412 / 1.504120 (1.499292) | 2.669026 / 1.541195 (1.127832) | 2.791109 / 1.468490 (1.322619) | 0.884003 / 4.584777 (-3.700774) | 5.538660 / 3.745712 (1.792947) | 5.126708 / 5.269862 (-0.143154) | 3.120825 / 4.565676 (-1.444852) | 0.101178 / 0.424275 (-0.323097) | 0.009027 / 0.007607 (0.001420) | 0.785914 / 0.226044 (0.559869) | 7.994720 / 2.268929 (5.725792) | 4.061996 / 55.444624 (-51.382629) | 3.263230 / 6.876477 (-3.613247) | 3.288622 / 2.142072 (1.146550) | 1.141867 / 4.805227 (-3.663360) | 0.255287 / 6.500664 (-6.245378) | 0.100637 / 0.075469 (0.025168) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.769821 / 1.841788 (-0.071967) | 24.994008 / 8.074308 (16.919700) | 21.765971 / 10.191392 (11.574579) | 0.268493 / 0.680424 (-0.411931) | 0.028047 / 0.534201 (-0.506154) | 0.489472 / 0.579283 (-0.089811) | 0.594809 / 0.434364 (0.160445) | 0.613578 / 0.540337 (0.073241) | 0.879360 / 1.386936 (-0.507576) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b85b1154aef2a9ab4d558f60d91623f2cc1583c4 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006003 / 0.011353 (-0.005350) | 0.003590 / 0.011008 (-0.007418) | 0.084657 / 0.038508 (0.046149) | 0.057884 / 0.023109 (0.034775) | 0.318347 / 0.275898 (0.042449) | 0.345976 / 0.323480 (0.022496) | 0.004706 / 0.007986 (-0.003279) | 0.002921 / 0.004328 (-0.001407) | 0.061850 / 0.004250 (0.057600) | 0.050558 / 0.037052 (0.013505) | 0.320877 / 0.258489 (0.062388) | 0.356062 / 0.293841 (0.062222) | 0.027511 / 0.128546 (-0.101035) | 0.007954 / 0.075646 (-0.067693) | 0.260290 / 0.419271 (-0.158981) | 0.051207 / 0.043533 (0.007674) | 0.334423 / 0.255139 (0.079284) | 0.338575 / 0.283200 (0.055375) | 0.022330 / 0.141683 (-0.119353) | 1.445446 / 1.452155 (-0.006709) | 1.500626 / 1.492716 (0.007910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192440 / 0.018006 (0.174433) | 0.428455 / 0.000490 (0.427965) | 0.000318 / 0.000200 (0.000118) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022933 / 0.037411 (-0.014478) | 0.072795 / 0.014526 (0.058269) | 0.081149 / 0.176557 (-0.095407) | 0.142941 / 0.737135 (-0.594195) | 0.082410 / 0.296338 (-0.213928) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405220 / 0.215209 (0.190011) | 4.048585 / 2.077655 (1.970931) | 2.027908 / 1.504120 (0.523788) | 1.887828 / 1.541195 (0.346633) | 2.131780 / 1.468490 (0.663290) | 0.502847 / 4.584777 (-4.081930) | 3.069498 / 3.745712 (-0.676215) | 4.094774 / 5.269862 (-1.175088) | 2.544004 / 4.565676 (-2.021673) | 0.059540 / 0.424275 (-0.364735) | 0.006501 / 0.007607 (-0.001106) | 0.477218 / 0.226044 (0.251173) | 4.764961 / 2.268929 (2.496032) | 2.434594 / 55.444624 (-53.010030) | 2.104833 / 6.876477 (-4.771644) | 2.263059 / 2.142072 (0.120987) | 0.591755 / 4.805227 (-4.213472) | 0.131167 / 6.500664 (-6.369497) | 0.061808 / 0.075469 (-0.013661) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345364 / 1.841788 (-0.496424) | 18.122584 / 8.074308 (10.048276) | 13.318689 / 10.191392 (3.127297) | 0.144526 / 0.680424 (-0.535898) | 0.016997 / 0.534201 (-0.517204) | 0.336036 / 0.579283 (-0.243247) | 0.359532 / 0.434364 (-0.074832) | 0.386945 / 0.540337 (-0.153392) | 0.538659 / 1.386936 (-0.848277) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006088 / 0.011353 (-0.005265) | 0.003684 / 0.011008 (-0.007324) | 0.062340 / 0.038508 (0.023832) | 0.058461 / 0.023109 (0.035352) | 0.360134 / 0.275898 (0.084236) | 0.393298 / 0.323480 (0.069818) | 0.004664 / 0.007986 (-0.003322) | 0.002909 / 0.004328 (-0.001420) | 0.062668 / 0.004250 (0.058418) | 0.050145 / 0.037052 (0.013092) | 0.361897 / 0.258489 (0.103408) | 0.402008 / 0.293841 (0.108167) | 0.027491 / 0.128546 (-0.101055) | 0.008113 / 0.075646 (-0.067534) | 0.068114 / 0.419271 (-0.351157) | 0.043303 / 0.043533 (-0.000230) | 0.360569 / 0.255139 (0.105430) | 0.387144 / 0.283200 (0.103944) | 0.020194 / 0.141683 (-0.121489) | 1.418066 / 1.452155 (-0.034089) | 1.475640 / 1.492716 (-0.017076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200291 / 0.018006 (0.182285) | 0.432298 / 0.000490 (0.431809) | 0.003303 / 0.000200 (0.003103) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027749 / 0.037411 (-0.009662) | 0.081890 / 0.014526 (0.067364) | 0.094319 / 0.176557 (-0.082238) | 0.148646 / 0.737135 (-0.588490) | 0.091830 / 0.296338 (-0.204509) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433546 / 0.215209 (0.218337) | 4.326855 / 2.077655 (2.249200) | 2.230186 / 1.504120 (0.726066) | 2.052524 / 1.541195 (0.511329) | 2.117270 / 1.468490 (0.648779) | 0.500331 / 4.584777 (-4.084446) | 3.113662 / 3.745712 (-0.632050) | 2.931540 / 5.269862 (-2.338322) | 1.853615 / 4.565676 (-2.712062) | 0.058250 / 0.424275 (-0.366025) | 0.006546 / 0.007607 (-0.001061) | 0.508850 / 0.226044 (0.282806) | 5.081809 / 2.268929 (2.812880) | 2.687037 / 55.444624 (-52.757588) | 2.369317 / 6.876477 (-4.507160) | 2.383549 / 2.142072 (0.241477) | 0.587039 / 4.805227 (-4.218188) | 0.125858 / 6.500664 (-6.374806) | 0.062522 / 0.075469 (-0.012947) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294929 / 1.841788 (-0.546858) | 18.056312 / 8.074308 (9.982004) | 13.755117 / 10.191392 (3.563725) | 0.132037 / 0.680424 (-0.548387) | 0.016866 / 0.534201 (-0.517335) | 0.339040 / 0.579283 (-0.240243) | 0.364371 / 0.434364 (-0.069993) | 0.399533 / 0.540337 (-0.140804) | 0.564524 / 1.386936 (-0.822412) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#64b811c13a7982015d7e078e3d693ce5359a05a2 \"CML watermark\")\n", "@lhoestq This bar comes from: https://github.com/huggingface/datasets/blob/b8067c0262073891180869f700ebef5ac3dc5cce/src/datasets/builder.py#L1156-L1166\r\n\r\nDo you prefer not showing it or, e.g., having `desc=\"Generating splits\"`?", "No strong opinion. Since there is a \"Generating\" progress bar already, maybe it can be \"Preparing splits\" (ref to download_and_prepare)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006348 / 0.011353 (-0.005005) | 0.003721 / 0.011008 (-0.007287) | 0.084039 / 0.038508 (0.045531) | 0.067627 / 0.023109 (0.044517) | 0.308372 / 0.275898 (0.032474) | 0.335131 / 0.323480 (0.011652) | 0.005157 / 0.007986 (-0.002829) | 0.003266 / 0.004328 (-0.001062) | 0.065374 / 0.004250 (0.061124) | 0.055550 / 0.037052 (0.018498) | 0.314001 / 0.258489 (0.055512) | 0.350510 / 0.293841 (0.056669) | 0.030859 / 0.128546 (-0.097688) | 0.008286 / 0.075646 (-0.067361) | 0.287122 / 0.419271 (-0.132149) | 0.051494 / 0.043533 (0.007961) | 0.309868 / 0.255139 (0.054729) | 0.325845 / 0.283200 (0.042645) | 0.022622 / 0.141683 (-0.119061) | 1.468730 / 1.452155 (0.016575) | 1.547871 / 1.492716 (0.055155) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202763 / 0.018006 (0.184757) | 0.456403 / 0.000490 (0.455914) | 0.003116 / 0.000200 (0.002916) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027297 / 0.037411 (-0.010114) | 0.081204 / 0.014526 (0.066678) | 0.094274 / 0.176557 (-0.082282) | 0.154391 / 0.737135 (-0.582744) | 0.094312 / 0.296338 (-0.202026) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387382 / 0.215209 (0.172173) | 3.865597 / 2.077655 (1.787943) | 1.855959 / 1.504120 (0.351839) | 1.685411 / 1.541195 (0.144216) | 1.732127 / 1.468490 (0.263637) | 0.482230 / 4.584777 (-4.102547) | 3.664947 / 3.745712 (-0.080765) | 5.114379 / 5.269862 (-0.155482) | 3.102803 / 4.565676 (-1.462873) | 0.056509 / 0.424275 (-0.367766) | 0.007230 / 0.007607 (-0.000377) | 0.456788 / 0.226044 (0.230744) | 4.575831 / 2.268929 (2.306902) | 2.335249 / 55.444624 (-53.109375) | 2.003805 / 6.876477 (-4.872672) | 2.141788 / 2.142072 (-0.000285) | 0.577501 / 4.805227 (-4.227726) | 0.130264 / 6.500664 (-6.370400) | 0.058889 / 0.075469 (-0.016580) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.252673 / 1.841788 (-0.589115) | 18.676897 / 8.074308 (10.602589) | 13.988101 / 10.191392 (3.796709) | 0.151376 / 0.680424 (-0.529048) | 0.018104 / 0.534201 (-0.516097) | 0.388413 / 0.579283 (-0.190870) | 0.414841 / 0.434364 (-0.019523) | 0.456078 / 0.540337 (-0.084259) | 0.641715 / 1.386936 (-0.745221) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006315 / 0.011353 (-0.005038) | 0.003847 / 0.011008 (-0.007162) | 0.063989 / 0.038508 (0.025481) | 0.068244 / 0.023109 (0.045135) | 0.416201 / 0.275898 (0.140303) | 0.438446 / 0.323480 (0.114966) | 0.005820 / 0.007986 (-0.002166) | 0.003165 / 0.004328 (-0.001163) | 0.064143 / 0.004250 (0.059892) | 0.056529 / 0.037052 (0.019477) | 0.414916 / 0.258489 (0.156427) | 0.450771 / 0.293841 (0.156930) | 0.030611 / 0.128546 (-0.097935) | 0.008289 / 0.075646 (-0.067357) | 0.070725 / 0.419271 (-0.348546) | 0.047998 / 0.043533 (0.004465) | 0.405609 / 0.255139 (0.150470) | 0.421895 / 0.283200 (0.138696) | 0.022135 / 0.141683 (-0.119548) | 1.444238 / 1.452155 (-0.007916) | 1.515823 / 1.492716 (0.023107) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227043 / 0.018006 (0.209037) | 0.439732 / 0.000490 (0.439242) | 0.001267 / 0.000200 (0.001067) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029082 / 0.037411 (-0.008329) | 0.086201 / 0.014526 (0.071675) | 0.098653 / 0.176557 (-0.077903) | 0.152574 / 0.737135 (-0.584561) | 0.100696 / 0.296338 (-0.195642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411243 / 0.215209 (0.196034) | 4.100170 / 2.077655 (2.022515) | 2.118310 / 1.504120 (0.614190) | 1.935646 / 1.541195 (0.394451) | 1.970798 / 1.468490 (0.502307) | 0.478635 / 4.584777 (-4.106142) | 3.589396 / 3.745712 (-0.156316) | 3.312462 / 5.269862 (-1.957399) | 1.963081 / 4.565676 (-2.602595) | 0.056392 / 0.424275 (-0.367883) | 0.007134 / 0.007607 (-0.000473) | 0.485131 / 0.226044 (0.259086) | 4.838946 / 2.268929 (2.570017) | 2.624550 / 55.444624 (-52.820075) | 2.223046 / 6.876477 (-4.653431) | 2.230642 / 2.142072 (0.088570) | 0.594892 / 4.805227 (-4.210335) | 0.130523 / 6.500664 (-6.370141) | 0.059585 / 0.075469 (-0.015884) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.329941 / 1.841788 (-0.511847) | 19.199057 / 8.074308 (11.124748) | 14.166009 / 10.191392 (3.974617) | 0.190595 / 0.680424 (-0.489829) | 0.018419 / 0.534201 (-0.515782) | 0.392031 / 0.579283 (-0.187252) | 0.409395 / 0.434364 (-0.024969) | 0.475930 / 0.540337 (-0.064408) | 0.654412 / 1.386936 (-0.732524) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#42fdfbd567674d075c3a9148ec3c95221eb62cfe \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.004328 / 0.011008 (-0.006681) | 0.086718 / 0.038508 (0.048209) | 0.098638 / 0.023109 (0.075529) | 0.335308 / 0.275898 (0.059409) | 0.369163 / 0.323480 (0.045683) | 0.005733 / 0.007986 (-0.002253) | 0.003738 / 0.004328 (-0.000590) | 0.066452 / 0.004250 (0.062202) | 0.066245 / 0.037052 (0.029192) | 0.337609 / 0.258489 (0.079120) | 0.388584 / 0.293841 (0.094744) | 0.031742 / 0.128546 (-0.096804) | 0.008721 / 0.075646 (-0.066925) | 0.290820 / 0.419271 (-0.128452) | 0.053323 / 0.043533 (0.009790) | 0.329192 / 0.255139 (0.074053) | 0.350560 / 0.283200 (0.067360) | 0.025402 / 0.141683 (-0.116281) | 1.476174 / 1.452155 (0.024020) | 1.578194 / 1.492716 (0.085478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256160 / 0.018006 (0.238154) | 0.560315 / 0.000490 (0.559825) | 0.005287 / 0.000200 (0.005088) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029164 / 0.037411 (-0.008247) | 0.084881 / 0.014526 (0.070356) | 0.100979 / 0.176557 (-0.075577) | 0.156539 / 0.737135 (-0.580597) | 0.101510 / 0.296338 (-0.194828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381138 / 0.215209 (0.165929) | 3.791573 / 2.077655 (1.713918) | 1.841954 / 1.504120 (0.337834) | 1.672463 / 1.541195 (0.131268) | 1.785769 / 1.468490 (0.317279) | 0.483263 / 4.584777 (-4.101514) | 3.617391 / 3.745712 (-0.128322) | 5.607794 / 5.269862 (0.337933) | 3.359530 / 4.565676 (-1.206147) | 0.056826 / 0.424275 (-0.367449) | 0.007375 / 0.007607 (-0.000232) | 0.455853 / 0.226044 (0.229809) | 4.548965 / 2.268929 (2.280037) | 2.412716 / 55.444624 (-53.031908) | 1.991456 / 6.876477 (-4.885021) | 2.242851 / 2.142072 (0.100778) | 0.573070 / 4.805227 (-4.232157) | 0.134658 / 6.500664 (-6.366006) | 0.061539 / 0.075469 (-0.013930) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278306 / 1.841788 (-0.563481) | 20.634317 / 8.074308 (12.560009) | 15.164246 / 10.191392 (4.972854) | 0.167487 / 0.680424 (-0.512937) | 0.019006 / 0.534201 (-0.515195) | 0.394617 / 0.579283 (-0.184666) | 0.423385 / 0.434364 (-0.010979) | 0.469968 / 0.540337 (-0.070370) | 0.630058 / 1.386936 (-0.756878) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006793 / 0.011353 (-0.004559) | 0.004260 / 0.011008 (-0.006748) | 0.065398 / 0.038508 (0.026890) | 0.077850 / 0.023109 (0.054741) | 0.371754 / 0.275898 (0.095855) | 0.400652 / 0.323480 (0.077172) | 0.005729 / 0.007986 (-0.002256) | 0.003660 / 0.004328 (-0.000669) | 0.065119 / 0.004250 (0.060869) | 0.060714 / 0.037052 (0.023661) | 0.384592 / 0.258489 (0.126103) | 0.412806 / 0.293841 (0.118965) | 0.031865 / 0.128546 (-0.096681) | 0.008807 / 0.075646 (-0.066839) | 0.071156 / 0.419271 (-0.348115) | 0.049571 / 0.043533 (0.006038) | 0.367381 / 0.255139 (0.112242) | 0.386713 / 0.283200 (0.103513) | 0.024838 / 0.141683 (-0.116845) | 1.492986 / 1.452155 (0.040831) | 1.559243 / 1.492716 (0.066526) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269737 / 0.018006 (0.251730) | 0.565177 / 0.000490 (0.564687) | 0.000404 / 0.000200 (0.000204) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031631 / 0.037411 (-0.005780) | 0.087289 / 0.014526 (0.072764) | 0.102798 / 0.176557 (-0.073759) | 0.158977 / 0.737135 (-0.578158) | 0.105495 / 0.296338 (-0.190843) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425067 / 0.215209 (0.209858) | 4.243121 / 2.077655 (2.165466) | 2.234567 / 1.504120 (0.730447) | 2.070810 / 1.541195 (0.529615) | 2.176802 / 1.468490 (0.708312) | 0.484987 / 4.584777 (-4.099790) | 3.647000 / 3.745712 (-0.098712) | 3.574843 / 5.269862 (-1.695019) | 2.092581 / 4.565676 (-2.473095) | 0.057299 / 0.424275 (-0.366976) | 0.007480 / 0.007607 (-0.000128) | 0.507838 / 0.226044 (0.281794) | 5.076594 / 2.268929 (2.807666) | 2.718858 / 55.444624 (-52.725766) | 2.362793 / 6.876477 (-4.513684) | 2.451962 / 2.142072 (0.309890) | 0.581355 / 4.805227 (-4.223872) | 0.133723 / 6.500664 (-6.366941) | 0.061896 / 0.075469 (-0.013573) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.325814 / 1.841788 (-0.515974) | 20.614502 / 8.074308 (12.540194) | 14.769422 / 10.191392 (4.578029) | 0.193797 / 0.680424 (-0.486627) | 0.018379 / 0.534201 (-0.515822) | 0.394153 / 0.579283 (-0.185130) | 0.409585 / 0.434364 (-0.024779) | 0.479107 / 0.540337 (-0.061231) | 0.668397 / 1.386936 (-0.718539) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2d892237169bad5512c91cae453d257ebefc201 \"CML watermark\")\n", "In the end, I decided to remove the progress bar to avoid having it displayed when loading a cached dataset.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006673 / 0.011353 (-0.004680) | 0.004162 / 0.011008 (-0.006846) | 0.084017 / 0.038508 (0.045509) | 0.079536 / 0.023109 (0.056426) | 0.313594 / 0.275898 (0.037695) | 0.349200 / 0.323480 (0.025720) | 0.005544 / 0.007986 (-0.002441) | 0.003472 / 0.004328 (-0.000857) | 0.064742 / 0.004250 (0.060491) | 0.056857 / 0.037052 (0.019805) | 0.318635 / 0.258489 (0.060146) | 0.354378 / 0.293841 (0.060537) | 0.030856 / 0.128546 (-0.097690) | 0.008759 / 0.075646 (-0.066887) | 0.287760 / 0.419271 (-0.131511) | 0.052307 / 0.043533 (0.008775) | 0.316396 / 0.255139 (0.061257) | 0.351408 / 0.283200 (0.068208) | 0.024914 / 0.141683 (-0.116769) | 1.484592 / 1.452155 (0.032437) | 1.560662 / 1.492716 (0.067945) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280938 / 0.018006 (0.262932) | 0.580236 / 0.000490 (0.579747) | 0.003369 / 0.000200 (0.003169) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028736 / 0.037411 (-0.008675) | 0.082916 / 0.014526 (0.068390) | 0.097761 / 0.176557 (-0.078796) | 0.153515 / 0.737135 (-0.583620) | 0.099282 / 0.296338 (-0.197057) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401244 / 0.215209 (0.186035) | 4.019866 / 2.077655 (1.942211) | 2.029642 / 1.504120 (0.525522) | 1.849591 / 1.541195 (0.308396) | 1.946829 / 1.468490 (0.478339) | 0.479750 / 4.584777 (-4.105027) | 3.482822 / 3.745712 (-0.262890) | 3.955859 / 5.269862 (-1.314003) | 2.370747 / 4.565676 (-2.194930) | 0.056905 / 0.424275 (-0.367370) | 0.007319 / 0.007607 (-0.000288) | 0.485310 / 0.226044 (0.259266) | 4.858228 / 2.268929 (2.589299) | 2.500476 / 55.444624 (-52.944148) | 2.171156 / 6.876477 (-4.705320) | 2.427266 / 2.142072 (0.285194) | 0.570199 / 4.805227 (-4.235029) | 0.130855 / 6.500664 (-6.369809) | 0.060269 / 0.075469 (-0.015200) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258044 / 1.841788 (-0.583743) | 20.218657 / 8.074308 (12.144349) | 13.597970 / 10.191392 (3.406578) | 0.167656 / 0.680424 (-0.512768) | 0.018137 / 0.534201 (-0.516064) | 0.395309 / 0.579283 (-0.183975) | 0.406325 / 0.434364 (-0.028039) | 0.467457 / 0.540337 (-0.072880) | 0.613636 / 1.386936 (-0.773300) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004507) | 0.004207 / 0.011008 (-0.006802) | 0.064525 / 0.038508 (0.026017) | 0.081329 / 0.023109 (0.058220) | 0.399838 / 0.275898 (0.123940) | 0.431305 / 0.323480 (0.107825) | 0.005859 / 0.007986 (-0.002127) | 0.003568 / 0.004328 (-0.000760) | 0.065262 / 0.004250 (0.061011) | 0.064796 / 0.037052 (0.027744) | 0.406858 / 0.258489 (0.148369) | 0.440971 / 0.293841 (0.147130) | 0.031421 / 0.128546 (-0.097125) | 0.008777 / 0.075646 (-0.066870) | 0.071418 / 0.419271 (-0.347853) | 0.049263 / 0.043533 (0.005730) | 0.384279 / 0.255139 (0.129140) | 0.410745 / 0.283200 (0.127546) | 0.024467 / 0.141683 (-0.117216) | 1.522379 / 1.452155 (0.070224) | 1.581636 / 1.492716 (0.088920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276161 / 0.018006 (0.258155) | 0.548842 / 0.000490 (0.548352) | 0.004523 / 0.000200 (0.004324) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030747 / 0.037411 (-0.006664) | 0.087493 / 0.014526 (0.072967) | 0.106563 / 0.176557 (-0.069993) | 0.162949 / 0.737135 (-0.574186) | 0.105303 / 0.296338 (-0.191036) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425854 / 0.215209 (0.210645) | 4.244797 / 2.077655 (2.167142) | 2.269006 / 1.504120 (0.764886) | 2.097428 / 1.541195 (0.556234) | 2.181038 / 1.468490 (0.712548) | 0.477286 / 4.584777 (-4.107491) | 3.591452 / 3.745712 (-0.154260) | 3.481281 / 5.269862 (-1.788580) | 2.066895 / 4.565676 (-2.498782) | 0.056576 / 0.424275 (-0.367699) | 0.007409 / 0.007607 (-0.000199) | 0.498411 / 0.226044 (0.272367) | 4.994873 / 2.268929 (2.725945) | 2.749148 / 55.444624 (-52.695476) | 2.378544 / 6.876477 (-4.497932) | 2.452859 / 2.142072 (0.310786) | 0.571340 / 4.805227 (-4.233887) | 0.132174 / 6.500664 (-6.368490) | 0.061507 / 0.075469 (-0.013962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.370773 / 1.841788 (-0.471015) | 20.493342 / 8.074308 (12.419034) | 14.809886 / 10.191392 (4.618494) | 0.175730 / 0.680424 (-0.504693) | 0.018617 / 0.534201 (-0.515583) | 0.393808 / 0.579283 (-0.185476) | 0.416419 / 0.434364 (-0.017945) | 0.477183 / 0.540337 (-0.063155) | 0.668060 / 1.386936 (-0.718876) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2de7a2a4af5d94b0f98a7a6db94e78984af40602 \"CML watermark\")\n", "Nice one :)" ]
https://api.github.com/repos/huggingface/datasets/issues/295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/295/comments
https://api.github.com/repos/huggingface/datasets/issues/295/events
https://github.com/huggingface/datasets/issues/295
643,245,412
MDU6SXNzdWU2NDMyNDU0MTI=
295
Improve input warning for evaluation metrics
[]
closed
false
null
0
2020-06-22T17:28:57Z
2020-06-23T14:47:37Z
2020-06-23T14:47:37Z
null
Hi, I am the author of `bert_score`. Recently, we received [ an issue ](https://github.com/Tiiiger/bert_score/issues/62) reporting a problem in using `bert_score` from the `nlp` package (also see #238 in this repo). After looking into this, I realized that the problem arises from the format `nlp.Metric` takes input. Here is a minimal example: ```python import nlp scorer = nlp.load_metric("bertscore") with open("pred.txt") as p, open("ref.txt") as g: for lp, lg in zip(p, g): scorer.add(lp, lg) score = scorer.compute(lang="en") ``` The problem in the above code is that `scorer.add()` expects a list of strings as input for the references. As a result, the `scorer` here would take a list of characters in `lg` to be the references. The correct implementation would be calling ```python scorer.add(lp, [lg]) ``` I just want to raise this issue to you to prevent future user errors of a similar kind. I assume some simple type checking can prevent this from happening? Thanks!
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/295/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/295/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/2080
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2080/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2080/comments
https://api.github.com/repos/huggingface/datasets/issues/2080/events
https://github.com/huggingface/datasets/issues/2080
835,023,000
MDU6SXNzdWU4MzUwMjMwMDA=
2,080
Multidimensional arrays in a Dataset
[]
closed
false
null
2
2021-03-18T16:29:14Z
2021-03-25T12:46:53Z
2021-03-25T12:46:53Z
null
Hi, I'm trying to put together a `datasets.Dataset` to be used with LayoutLM which is available in `transformers`. This model requires as input the bounding boxes of each of the token of a sequence. This is when I realized that `Dataset` does not support multi-dimensional arrays as a value for a column in a row. The following code results in conversion error in pyarrow (`pyarrow.lib.ArrowInvalid: ('Can only convert 1-dimensional array values', 'Conversion failed for column bbox with type object')`) ``` from datasets import Dataset import pandas as pd import numpy as np dataset = pd.DataFrame({ 'bbox': [ np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]), np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]), np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]), np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]) ], 'input_ids': [1, 2, 3, 4] }) dataset = Dataset.from_pandas(dataset) ``` Since I wanted to use pytorch for the downstream training task, I also tried a few ways to directly put in a column of 2-D pytorch tensor in a formatted dataset, but I can only have a list of 1-D tensors, or a list of arrays, or a list of lists. ``` import torch from datasets import Dataset import pandas as pd dataset = pd.DataFrame({ 'bbox': [ [[1,2,3,4],[1,2,3,4],[1,2,3,4]], [[1,2,3,4],[1,2,3,4],[1,2,3,4]], [[1,2,3,4],[1,2,3,4],[1,2,3,4]], [[1,2,3,4],[1,2,3,4],[1,2,3,4]] ], 'input_ids': [1, 2, 3, 4] }) dataset = Dataset.from_pandas(dataset) def test(examples): return {'bbbox': torch.Tensor(examples['bbox'])} dataset = dataset.map(test) print(dataset[0]['bbox']) print(dataset[0]['bbbox']) dataset.set_format(type='torch', columns=['input_ids', 'bbox'], output_all_columns=True) print(dataset[0]['bbox']) print(dataset[0]['bbbox']) def test2(examples): return {'bbbox': torch.stack(examples['bbox'])} dataset = dataset.map(test2) print(dataset[0]['bbox']) print(dataset[0]['bbbox']) ``` Is is possible to support n-D arrays/tensors in datasets? It seems that it can also be useful for this [feature request](https://github.com/huggingface/datasets/issues/263).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2080/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2080/timeline
null
completed
null
null
false
[ "Hi !\r\n\r\nThis is actually supported ! but not yet in `from_pandas`.\r\nYou can use `from_dict` for now instead:\r\n```python\r\nfrom datasets import Dataset, Array2D, Features, Value\r\nimport pandas as pd\r\nimport numpy as np\r\n\r\ndataset = {\r\n 'bbox': [\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]])\r\n ],\r\n 'input_ids': [1, 2, 3, 4]\r\n}\r\ndataset = Dataset.from_dict(dataset)\r\n```\r\n\r\nThis will work but to use it with the torch formatter you must specify the `Array2D` feature type in order to tell the shape:\r\n```python\r\nfrom datasets import Dataset, Array2D, Features, Value\r\nimport pandas as pd\r\nimport numpy as np\r\n\r\ndataset = {\r\n 'bbox': [\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]),\r\n np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4]])\r\n ],\r\n 'input_ids': [1, 2, 3, 4]\r\n}\r\ndataset = Dataset.from_dict(dataset, features=Features({\r\n \"bbox\": Array2D(shape=(3, 4), dtype=\"int64\"),\r\n \"input_ids\": Value(\"int64\")\r\n}))\r\ndataset.set_format(\"torch\")\r\nprint(dataset[0]['bbox'])\r\n# tensor([[1, 2, 3, 4],\r\n# [1, 2, 3, 4],\r\n# [1, 2, 3, 4]])\r\n```\r\nIf you don't specify the `Array2D` feature type, then the inferred type will be Sequence(Sequence(Value(\"int64\"))) and therefore the torch formatter will return list of tensors", "Thanks for the explanation. \r\nWith my original DataFrame, I did\r\n```\r\ndataset = dataset.to_dict(\"list\")\r\n```\r\nand then the rest of the transformation from dictionary works just fine." ]
https://api.github.com/repos/huggingface/datasets/issues/4684
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4684/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4684/comments
https://api.github.com/repos/huggingface/datasets/issues/4684/events
https://github.com/huggingface/datasets/issues/4684
1,305,554,654
I_kwDODunzps5N0S7e
4,684
How to assign new values to Dataset?
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
2
2022-07-15T04:17:57Z
2023-03-20T15:50:41Z
2022-10-10T11:53:38Z
null
![image](https://user-images.githubusercontent.com/37113676/179149159-bbbda0c8-a661-403c-87ed-dc2b4219cd68.png) Hi, if I want to change some values of the dataset, or add new columns to it, how can I do it? For example, I want to change all the labels of the SST2 dataset to `0`: ```python from datasets import load_dataset data = load_dataset('glue','sst2') data['train']['label'] = [0]*len(data) ``` I will get the error: ``` TypeError: 'Dataset' object does not support item assignment ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4684/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4684/timeline
null
completed
null
null
false
[ "Hi! One option is use `map` with a function that overwrites the labels (`dset = dset.map(lamba _: {\"label\": 0}, features=dset.features`)). Or you can use the `remove_column` + `add_column` combination (`dset = dset.remove_columns(\"label\").add_column(\"label\", [0]*len(data)).cast(dset.features)`, but note that this approach creates an in-memory table for the added column instead of writing to disk, which could be problematic for large datasets.", "Hi! I tried your proposed solution, but it does not solve my problem unfortunately. I am working with a set of protein sequences that have been tokenized with ESM, but some sequences are longer than `max_length`, they have been truncated in the tokenization. So now I want to truncate my labels as well, but that does not work with a mapping (e.g. `dset.map` as you suggested). Specifically, what I did was the following:\r\n\r\n```\r\ndef postprocess_tokenize(tokenized_data):\r\n \"\"\"\r\n adjust label lengths if they dont match.\r\n \"\"\"\r\n if len(tokenized_data['input_ids']) < len(tokenized_data['labels']):\r\n new_labels = tokenized_data['labels'][:len(tokenized_data['input_ids'])]\r\n tokenized_data[\"labels\"] = new_labels\r\n return tokenized_data\r\n\r\ntokenized_data = tokenized_data.map(postprocess_tokenize, batched=True) # this does not adjust the labels...\r\n```\r\n\r\nAny tips on how to do this properly?\r\n\r\nMore generally, I am wondering why the DataCollator supports padding but does not support truncation? Seems odd to me.\r\n\r\nThanks in advance!" ]
https://api.github.com/repos/huggingface/datasets/issues/1549
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1549/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1549/comments
https://api.github.com/repos/huggingface/datasets/issues/1549/events
https://github.com/huggingface/datasets/pull/1549
765,612,905
MDExOlB1bGxSZXF1ZXN0NTM5MDA3MTU4
1,549
Generics kb new branch
[]
closed
false
null
0
2020-12-13T19:33:10Z
2020-12-21T13:55:09Z
2020-12-21T13:55:09Z
null
Datasets need manual downloads. Have thus created dummy data as well. But pytest on real and dummy data are failing. I have completed the readme , tags and other required things. I need to create the metadata json once tests get successful. Opening a PR while working with Yacine Jernite to resolve my pytest issues.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/1549/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1549/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1549.diff", "html_url": "https://github.com/huggingface/datasets/pull/1549", "merged_at": "2020-12-21T13:55:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/1549.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1549" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4591
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4591/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4591/comments
https://api.github.com/repos/huggingface/datasets/issues/4591/events
https://github.com/huggingface/datasets/issues/4591
1,288,021,332
I_kwDODunzps5MxaVU
4,591
Can't push Images to hub with manual Dataset
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-06-29T00:01:23Z
2022-07-08T12:01:36Z
2022-07-08T12:01:35Z
null
## Describe the bug If I create a dataset including an 'Image' feature manually, when pushing to hub decoded images are not pushed, instead it looks for image where image local path is/used to be. This doesn't (at least didn't used to) happen with imagefolder. I want to build dataset manually because it is complicated. This happens even though the dataset is looking like decoded images: ![image](https://user-images.githubusercontent.com/15624271/176322689-2cc819cf-9d5c-4a8f-9f3d-83ae8ec06f20.png) and I use `embed_external_files=True` while `push_to_hub` (same with false) ## Steps to reproduce the bug ```python from PIL import Image from datasets import Image as ImageFeature from datasets import Features,Dataset #manually create dataset feats=Features( { "images": [ImageFeature()], #same even if explicitly ImageFeature(decode=True) "input_image": ImageFeature(), } ) test_data={"images":[[Image.open("test.jpg"),Image.open("test.jpg"),Image.open("test.jpg")]], "input_image":[Image.open("test.jpg")]} test_dataset=Dataset.from_dict(test_data,features=feats) print(test_dataset) test_dataset.push_to_hub("ceyda/image_test_public",private=False,token="",embed_external_files=True) # clear cache rm -r ~/.cache/huggingface # remove "test.jpg" # remove to see that it is looking for image on the local path test_dataset=load_dataset("ceyda/image_test_public",use_auth_token="") print(test_dataset) print(test_dataset['train'][0]) ``` ## Expected results should be able to push image bytes if dataset has `Image(decode=True)` ## Actual results errors because it is trying to decode file from the non existing local path. ``` ----> print(test_dataset['train'][0]) File ~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py:2154, in Dataset.__getitem__(self, key) 2152 def __getitem__(self, key): # noqa: F811 2153 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2154 return self._getitem( 2155 key, 2156 ) File ~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py:2139, in Dataset._getitem(self, key, decoded, **kwargs) 2137 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs) 2138 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 2139 formatted_output = format_table( 2140 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2141 ) 2142 return formatted_output File ~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns) 530 python_formatter = PythonFormatter(features=None) 531 if format_columns is None: ... -> 3068 fp = builtins.open(filename, "rb") 3069 exclusive_fp = True 3071 try: FileNotFoundError: [Errno 2] No such file or directory: 'test.jpg' ``` ## Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.4.0-1074-azure-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 8.0.0 - Pandas version: 1.4.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4591/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4591/timeline
null
completed
null
null
false
[ "Hi, thanks for reporting! This issue stems from the changes introduced in https://github.com/huggingface/datasets/pull/4282 (cc @lhoestq), in which list casts are ignored if they don't change the list type (required to preserve `null` values). And `push_to_hub` does a special cast to embed external image files but doesn't change the types, hence the failure." ]
https://api.github.com/repos/huggingface/datasets/issues/51
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/51/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/51/comments
https://api.github.com/repos/huggingface/datasets/issues/51/events
https://github.com/huggingface/datasets/pull/51
613,266,668
MDExOlB1bGxSZXF1ZXN0NDE0MDUyOTYw
51
[Testing] Improved testing structure
[]
closed
false
null
1
2020-05-06T12:03:07Z
2020-05-07T22:07:19Z
2020-05-06T13:20:18Z
null
This PR refactors the test design a bit and puts the mock download manager in the `utils` files as it is just a test helper class. as @mariamabarham pointed out, creating a dummy folder structure can be quite hard to grasp. This PR tries to change that to some extent. It follows the following logic for the `dummy` folder structure now: 1.) The data bulider has no config -> the `dummy` folder structure is: `dummy/<version>/dummy_data.zip` 2) The data builder has >= 1 configs -> the `dummy` folder structure is: `dummy/<config_name_1>/<version>/dummy_data.zip` `dummy/<config_name_2>/<version>/dummy_data.zip` Now, the difficult part is how to create the `dummy_data.zip` file. There are two cases: A) The `data_urs` parameter inserted into the `download_and_extract` fn is a **string**: -> the `dummy_data.zip` file zips the folder: `dummy_data/<relative_path_of_folder_structure_of_url>` B) The `data_urs` parameter inserted into the `download_and_extract` fn is a **dict**: -> the `dummy_data.zip` file zips the folder: `dummy_data/<relative_path_of_folder_structure_of_url_behind _key_1>` `dummy_data/<relative_path_of_folder_structure_of_url_behind _key_2>` By relative folder structure I mean `url_path.split('./')[-1]`. As an example the dataset **xquad** by deepmind has the following url path behind the key `de`: `https://github.com/deepmind/xquad/blob/master/xquad.de.json` -> This means that the relative url path should be `xquad.de.json`. @mariamabarham B) is a change from how is was before and I think is makes more sense. While before the `dummy_data.zip` file for xquad with config `de` looked like: `dummy_data/de` it would now look like `dummy_data/xquad.de.json`. I think this is better and easier to understand. Therefore there are currently 6 tests that would have to have changed their dummy folder structure, but which can easily be done (30min). I also added a function: `print_dummy_data_folder_structure` that prints out the expected structures when testing which should be quite helpful.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/51/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/51/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/51.diff", "html_url": "https://github.com/huggingface/datasets/pull/51", "merged_at": "2020-05-06T13:20:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/51.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/51" }
true
[ "Awesome!\r\nLet's have this in the doc at the end :-)" ]
https://api.github.com/repos/huggingface/datasets/issues/158
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/158/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/158/comments
https://api.github.com/repos/huggingface/datasets/issues/158/events
https://github.com/huggingface/datasets/pull/158
620,396,658
MDExOlB1bGxSZXF1ZXN0NDE5NjUyNTQy
158
add Toronto Books Corpus
[]
closed
false
null
0
2020-05-18T17:54:45Z
2020-06-11T07:49:15Z
2020-05-19T07:34:56Z
null
This PR adds the Toronto Books Corpus. . It on consider TMX and plain text files (Moses) defined in the table **Statistics and TMX/Moses Downloads** [here](http://opus.nlpl.eu/Books.php )
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/158/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/158/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/158.diff", "html_url": "https://github.com/huggingface/datasets/pull/158", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/158.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/158" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1793
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1793/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1793/comments
https://api.github.com/repos/huggingface/datasets/issues/1793/events
https://github.com/huggingface/datasets/pull/1793
796,940,299
MDExOlB1bGxSZXF1ZXN0NTY0MDMzMjk0
1,793
Minor fix the docstring of load_metric
[]
closed
false
null
0
2021-01-29T14:47:35Z
2021-01-29T16:53:32Z
2021-01-29T16:53:32Z
null
Minor fix: - duplicated attributes - format fix
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1793/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1793/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1793.diff", "html_url": "https://github.com/huggingface/datasets/pull/1793", "merged_at": "2021-01-29T16:53:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/1793.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1793" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1936
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1936/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1936/comments
https://api.github.com/repos/huggingface/datasets/issues/1936/events
https://github.com/huggingface/datasets/pull/1936
814,726,512
MDExOlB1bGxSZXF1ZXN0NTc4NjY3NTQ4
1,936
[WIP] Adding Support for Reading Pandas Category
[]
closed
false
null
6
2021-02-23T18:32:54Z
2022-03-09T18:46:22Z
2022-03-09T18:46:22Z
null
@lhoestq - continuing our conversation from https://github.com/huggingface/datasets/issues/1906#issuecomment-784247014 The goal of this PR is to support `Dataset.from_pandas(df)` where the dataframe contains a Category. Just the 4 line change below actually does seem to work: ``` >>> from datasets import Dataset >>> import pandas as pd >>> df = pd.DataFrame(pd.Series(["a", "b", "c", "a"], dtype="category")) >>> ds = Dataset.from_pandas(df) >>> ds.to_pandas() 0 0 a 1 b 2 c 3 a >>> ds.to_pandas().dtypes 0 category dtype: object ``` save_to_disk, etc. all seem to work as well. The main things that are theoretically "incorrect" if we leave this are: ``` >>> ds.features.type StructType(struct<0: int64>) ``` there are a decent number of references to this property in the library, but I can't find anything that seems to actually break as a result of this being int64 vs. dictionary? I think the gist of my question is: a) do we *need* to change the dtype of Classlabel and have get_nested_type return a pyarrow.DictionaryType instead of int64? and b) do you *want* it to change? The biggest challenge I see to implementing this correctly is that the data will need to be passed in along with the pyarrow schema when instantiating the Classlabel (I *think* this is unavoidable, since the type itself doesn't contain the actual label values) which could be a fairly intrusive change - e.g. `from_arrow_schema`'s interface would need to change to include optional arrow data? Once we start going down this path of modifying the public interfaces I am admittedly feeling a little bit outside of my comfort zone Additionally I think `int2str`, `str2int`, and `encode_example` probably won't work - but I can't find any usages of them in the library itself.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1936/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1936/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1936.diff", "html_url": "https://github.com/huggingface/datasets/pull/1936", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1936.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1936" }
true
[ "Thanks ! could you maybe add a few tests in test_arrow_dataset.py to make sure from_pandas works as expected with categorical types ?\r\n\r\nIn particular I'm pretty sure that if you now try to `cast` the dataset to the same features at its current features, it will break instead of just being a no-op.\r\nThis is because `features.type` returns an arrow int64 type for the classlabel column instead of the arrow dictionary type that you have in the arrow table. There are two issues in this case:\r\n- it will try to replace the arrow type from dictionary to int64 instead of being a no-op\r\n- it will crash because pyarrow is not able to cast a dictionary to int64 (even if it's actually possible do cast the column by hand by accessing the sub-array of the dictionary array containing the indices/integers)\r\n\r\nIt would be awesome to fix this case ! Ideally the arrow `pa_type` of classlabel ([here](https://github.com/huggingface/datasets/blob/7072e1becd69d421d863374b825e3da4c6551798/src/datasets/features.py#L558)) should be an arrow dictionary type. This should fix the issue. Then we can start working on backward compatibility.\r\n\r\nLet me know if you have questions or if I can help.\r\nIn particular if there is some glue-ing to do I can take care of that if you want ;)\r\n\r\n--------------\r\n\r\nAlso just a few information regarding the functions you mentioned\r\n\r\n`int2str` and `str2int` are used by users to transforms the labels if they want to. Here sine ClassLabel is instantiated without the class names, they would crash. I was about to make a PR to disallow the creation of an empty ClassLabel feature type.\r\nTherefore can you provide class_names= when creating the ClassLabel ?\r\n\r\n`encode_example` is mostly used with a dataset builder (e.g. squad.py) so it's not used when using .from_pandas.\r\n\r\n\r\n", "Got it - that's super helpful, I was trying to figure out what would break!\r\n\r\nI think there are two issues we're discussing here:\r\n\r\n1. modifying the pa_type of ClassLabel: totally agree with you on that one if that's OK from a back-compat perspective. (i.e. are users of `datasets` not supposed to access or use the .pa_type attribute of ClassLabel?)\r\n2. creating a ClassLabel requires information that's not present on the pa.DictionaryType object: I think the crux of the problem is that at this line (https://github.com/huggingface/datasets/pull/1936/files#diff-54081ede051fd0a7ef65748c481cc06f90209f01bb89968747089d13a2ca052bR933) - you only have access to the `pa_type`, which is `DictionaryType[int8, string]`. I've unpacked it and looked at all of the available methods, and I don't believe that any of the actual values (\"names\") are present - those are stored on the `pyarrow.DictArray.dictionary` attribute (i.e. as data, not on the pyarrow.DataType) - so in order to actually be able to instantiate the ClassLabel with the names= parameter, we need to pass in more information to this method.\r\n\r\nWe *could* mostly accomplish this by modifying https://github.com/huggingface/datasets/pull/1936/files#diff-54081ede051fd0a7ef65748c481cc06f90209f01bb89968747089d13a2ca052bR909 to accept a pyarrow Table in addition to the type, and it's not too difficult to do, but it feels a little bit off to me:\r\n\r\n- It feels a bit off that a \"schema\" definition will change depending on what data gets added to the dataset. In particular, if someone adds rows or concatenates two datasets, the ClassLabel \"names\" will also need to change, right? I think maybe we're getting around this because a Dataset is immutable (I think?) and so any new dataset is freshly constructed, but for example - I think this check wouldn't work for `ClassLabel`s if we were to compare the `Dataset.features` instead of the underlying pyarrow type https://github.com/huggingface/datasets/blob/master/src/datasets/arrow_dataset.py#L2664\r\n- To that end I wonder if ClassLabel should actually just be the \"type\" akin to Category, and the \"names\" should be considered \"data\" and not part of the \"type\"? Similar to how pyarrow maintains two data objects - the array of indices and the array of string values.\r\n\r\nWith that in mind, I'm wondering if you *should* allow an empty ClassLabel (and`int2str`, etc. can be updated to have more descriptive error messages if labels aren't provided or inferred), and if the underlying data is a pa.DictionaryType, then the names can be inferred and applied at these points in the code:\r\n- https://github.com/huggingface/datasets/blob/96578adface7e4bc1f3e8bafbac920d72ca1ca60/src/datasets/arrow_dataset.py#L274\r\n- https://github.com/huggingface/datasets/blob/96578adface7e4bc1f3e8bafbac920d72ca1ca60/src/datasets/arrow_dataset.py#L686\r\n- https://github.com/huggingface/datasets/blob/96578adface7e4bc1f3e8bafbac920d72ca1ca60/src/datasets/arrow_dataset.py#L673\r\n\r\nI think perhaps the mismatch here is when the data is stored on disk as an int there should be a convenient way of saying \"this is a dictionary and here are some explicitly provided labels\", whereas when it's stored as a string, we'd ideally like to say \"this is a Category and please condense the representation and automatically infer the labels\".\r\n\r\nSorry for the long comment! Hopefully my thoughts make sense - thanks for taking the time to discuss!", "Yes that makes sense. I completely forgot that the label names of an arrow Dictionary type were not stored in the type but in the DictionaryArray.\r\n\r\nThis is made me realize that it's actually pretty unpractical and I feel that handling this can add unnecessary complexity in the handling of dtypes.\r\nMore specifically:\r\n- it's not possible to create a DictionaryArray from a call to pyarrow.array with python objects, which is the function we use to convert python objects to pyarrow objects (or we would need to convert the python objects to pandas categorical series beforehand but it doesn't work for nested types)\r\n- casting nested types containing Dictionary types would require a lot of array manipulations since it's not compatible with pyarrow.array.cast\r\n\r\nI feel like the original feature request (support of pandas Categorical) should be addressable without adding so much complexity to the library.\r\n\r\nIf we admit that we don't want to deal with arrow Dictionary type, maybe we can simply convert the pandas categorical series to an int64 series and set the feature type to the right ClassLabel in `from_pandas`. We can have the reverse operation in `to_pandas`. This way we don't need to support the arrow DictionaryType and so we can keep simple/accessible code for conversion from python to arrow and also for type casting. Let me know what you think.\r\n\r\nIn the future depending on the usage of the ClassLabel types with pandas/pyarrow we might reconsider this but for now I believe this simple solution is enough.", "I like that idea! Let me try working up a PR for this", "OK! I just whipped up the `from_pandas()` portion of this PR, and it works, though I'm not *super* familiar with the available APIs so I'm not sure if there's a more \"vectorized\" way of doing all of these updates - so happy to get some feedback and iterate!\r\n\r\nApologies for multiple commits - I realized how to solve a few different problems right after I gave up and pushed with the intent to ask for help :-)\r\n\r\nI wanted to get some guidance on how to handle the reverse direction: I think there are two main areas to look at, `.to_pandas()` and also `.set_format('pandas')` and then pulling out a dataframe like so: `dataset[:]`. Is there a single place where I can handle both of these cases at once or do these need to be handled independently?", "Thanks ! This is awesome :) \r\nCould you also add a test ? There is already `test_to_pandas` in test_arrow_dataset.py\r\nFeel free to complete this test to make sure it works for Categorical :)\r\n\r\nTo make it work with the \"pandas\" formating (when you do `set_format(\"pandas\")` and then query `dataset[0]`, `dataset[:]`, etc.), you can take a look and the `PandasFormatter` in formatting.py\r\nIt takes a pyarrow table as input of its formatting methods (one method for rows, one for columns and one for batches) and returns a pandas DataFrame (or a Series for the method for formatting a column). You can cast to Categorical in each one of the formatter methods and it should work directly when you use a pandas-formatted dataset.\r\n\r\nThis formatter can then also be used in `to_pandas` (currently it does `pa_table.to_pandas()` but `PandasFormatter().format_batch(pa_table)` can be used instead)." ]
https://api.github.com/repos/huggingface/datasets/issues/4248
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4248/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4248/comments
https://api.github.com/repos/huggingface/datasets/issues/4248/events
https://github.com/huggingface/datasets/issues/4248
1,218,460,444
I_kwDODunzps5IoDsc
4,248
conll2003 dataset loads original data.
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-04-28T09:33:31Z
2022-07-18T07:15:48Z
2022-07-18T07:15:48Z
null
## Describe the bug I load `conll2003` dataset to use refined data like [this](https://huggingface.co/datasets/conll2003/viewer/conll2003/train) preview, but it is original data that contains `'-DOCSTART- -X- -X- O'` text. Is this a bug or should I use another dataset_name like `lhoestq/conll2003` ? ## Steps to reproduce the bug ```python import datasets from datasets import load_dataset dataset = load_dataset("conll2003") ``` ## Expected results { "chunk_tags": [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 13, 11, 21, 22, 11, 12, 17, 11, 21, 17, 11, 12, 12, 21, 22, 22, 13, 11, 0], "id": "0", "ner_tags": [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "pos_tags": [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 35, 24, 35, 37, 16, 21, 15, 24, 41, 15, 16, 21, 21, 20, 37, 40, 35, 21, 7], "tokens": ["The", "European", "Commission", "said", "on", "Thursday", "it", "disagreed", "with", "German", "advice", "to", "consumers", "to", "shun", "British", "lamb", "until", "scientists", "determine", "whether", "mad", "cow", "disease", "can", "be", "transmitted", "to", "sheep", "."] } ## Actual results ```python print(dataset) DatasetDict({ train: Dataset({ features: ['text'], num_rows: 219554 }) test: Dataset({ features: ['text'], num_rows: 50350 }) validation: Dataset({ features: ['text'], num_rows: 55044 }) }) ``` ```python for i in range(20): print(dataset['train'][i]) {'text': '-DOCSTART- -X- -X- O'} {'text': ''} {'text': 'EU NNP B-NP B-ORG'} {'text': 'rejects VBZ B-VP O'} {'text': 'German JJ B-NP B-MISC'} {'text': 'call NN I-NP O'} {'text': 'to TO B-VP O'} {'text': 'boycott VB I-VP O'} {'text': 'British JJ B-NP B-MISC'} {'text': 'lamb NN I-NP O'} {'text': '. . O O'} {'text': ''} {'text': 'Peter NNP B-NP B-PER'} {'text': 'Blackburn NNP I-NP I-PER'} {'text': ''} {'text': 'BRUSSELS NNP B-NP B-LOC'} {'text': '1996-08-22 CD I-NP O'} {'text': ''} {'text': 'The DT B-NP O'} {'text': 'European NNP I-NP B-ORG'} ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4248/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4248/timeline
null
completed
null
null
false
[ "Thanks for reporting @sue99.\r\n\r\nUnfortunately. I'm not able to reproduce your problem:\r\n```python\r\nIn [1]: import datasets\r\n ...: from datasets import load_dataset\r\n ...: dataset = load_dataset(\"conll2003\")\r\n\r\nIn [2]: dataset\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\r\n num_rows: 14042\r\n })\r\n validation: Dataset({\r\n features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\r\n num_rows: 3251\r\n })\r\n test: Dataset({\r\n features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\r\n num_rows: 3454\r\n })\r\n})\r\n\r\nIn [3]: dataset[\"train\"][0]\r\nOut[3]: \r\n{'id': '0',\r\n 'tokens': ['EU',\r\n 'rejects',\r\n 'German',\r\n 'call',\r\n 'to',\r\n 'boycott',\r\n 'British',\r\n 'lamb',\r\n '.'],\r\n 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],\r\n 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],\r\n 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}\r\n```\r\n\r\nJust guessing: might be the case that you are calling `load_dataset` from a working directory that contains a local folder named `conll2003` (containing the raw data files)? If that is the case, `datasets` library gives precedence to the local folder over the dataset on the Hub. " ]
https://api.github.com/repos/huggingface/datasets/issues/2009
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2009/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2009/comments
https://api.github.com/repos/huggingface/datasets/issues/2009/events
https://github.com/huggingface/datasets/issues/2009
825,541,366
MDU6SXNzdWU4MjU1NDEzNjY=
2,009
Ambiguous documentation
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
null
2
2021-03-09T08:42:11Z
2021-03-12T15:01:34Z
2021-03-12T15:01:34Z
null
https://github.com/huggingface/datasets/blob/2ac9a0d24a091989f869af55f9f6411b37ff5188/templates/new_dataset_script.py#L156-L158 Looking at the template, I find this documentation line to be confusing, the method parameters don't include the `gen_kwargs` so I'm unclear where they're coming from. Happy to push a PR with a clearer statement when I understand the meaning.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2009/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2009/timeline
null
completed
null
null
false
[ "Hi @theo-m !\r\n\r\nA few lines above this line, you'll find that the `_split_generators` method returns a list of `SplitGenerator`s objects:\r\n\r\n```python\r\ndatasets.SplitGenerator(\r\n name=datasets.Split.VALIDATION,\r\n # These kwargs will be passed to _generate_examples\r\n gen_kwargs={\r\n \"filepath\": os.path.join(data_dir, \"dev.jsonl\"),\r\n \"split\": \"dev\",\r\n },\r\n),\r\n```\r\n\r\nNotice the `gen_kwargs` argument passed to the constructor of `SplitGenerator`: this dict will be unpacked as keyword arguments to pass to the `_generat_examples` method (in this case the `filepath` and `split` arguments).\r\n\r\nLet me know if that helps!", "Oh ok I hadn't made the connection between those two, will offer a tweak to the comment and the template then - thanks!" ]
https://api.github.com/repos/huggingface/datasets/issues/4334
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4334/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4334/comments
https://api.github.com/repos/huggingface/datasets/issues/4334/events
https://github.com/huggingface/datasets/pull/4334
1,234,103,477
PR_kwDODunzps43uguB
4,334
Adding eval metadata for billsum
[]
closed
false
null
0
2022-05-12T14:49:08Z
2022-05-12T14:49:24Z
2022-05-12T14:49:24Z
null
Adding eval metadata for billsum
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4334/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4334/timeline
null
null
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/4334.diff", "html_url": "https://github.com/huggingface/datasets/pull/4334", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4334.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4334" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/1438
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1438/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1438/comments
https://api.github.com/repos/huggingface/datasets/issues/1438/events
https://github.com/huggingface/datasets/pull/1438
760,962,193
MDExOlB1bGxSZXF1ZXN0NTM1NzAzMTEw
1,438
A descriptive name for my changes
[]
closed
false
null
3
2020-12-10T06:47:24Z
2020-12-15T10:36:27Z
2020-12-15T10:36:26Z
null
hind encorp resubmited
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1438/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1438/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1438.diff", "html_url": "https://github.com/huggingface/datasets/pull/1438", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1438.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1438" }
true
[ "I have noticed that the master branch of your fork has diverged from the one of the repo. This is probably what causes the mess in the github diff \"Files changed\".\r\n\r\nI would suggest to re-fork the `datasets` repo and recreate a new branch and a new PR. ", "You're pretty close to having all things ready to merge !\r\nFeel free to ping me when you have a new PR", "Closing this one in favor of #1575 " ]
https://api.github.com/repos/huggingface/datasets/issues/3058
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3058/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3058/comments
https://api.github.com/repos/huggingface/datasets/issues/3058/events
https://github.com/huggingface/datasets/issues/3058
1,022,612,664
I_kwDODunzps4889S4
3,058
Dataset wikipedia and Bookcorpusopen cannot be fetched from dataloader.
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2021-10-11T11:54:59Z
2022-01-19T14:03:49Z
2022-01-19T14:03:49Z
null
## Describe the bug I have used the previous version of `transformers` and `datasets`. The dataset `wikipedia` can be successfully used. Recently, I upgrade them to the newest version and find it raises errors. I also tried other datasets. The `wikitext` works and the `bookcorpusopen` raises the same errors as `wikipedia`. ## Steps to reproduce the bug Run the `run_mlm_no_trainer.py` and the given script on this [link](https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling). Change the dataset from wikitext to wikipedia or bookcorpusopen. BTW, the library transformers is of version 4.11.3. ## Expected results The data batchs are fetched from the data loader and train. ## Actual results The first time to fetch data batch occurs error. `Traceback (most recent call last): File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 705, in convert_to_tensors tensor = as_tensor(value) ValueError: too many dimensions 'str' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "src/original_run_mlm_no_trainer.py", line 528, in <module> main() File "src/original_run_mlm_no_trainer.py", line 488, in main for step, batch in enumerate(train_dataloader): File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/accelerate/data_loader.py", line 303, in __iter__ for batch in super().__iter__(): File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 517, in __next__ data = self._next_data() File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 557, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch return self.collate_fn(data) File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/data/data_collator.py", line 41, in __call__ return self.torch_call(features) File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/data/data_collator.py", line 671, in torch_call batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of) File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 2774, in pad return BatchEncoding(batch_outputs, tensor_type=return_tensors) File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 210, in __init__ self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) File "/home/zyli/anaconda3/envs/LatestStacking/lib/python3.7/site-packages/transformers/tokenization_utils_base.py", line 722, in convert_to_tensors "Unable to create tensor, you should probably activate truncation and/or padding " ValueError: Unable to create tensor, you should probably activate truncation and/or padding with 'padding=True' 'truncation=True' to have batched tensors with the same length. ` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.12.1 - Platform: Linux-5.8.0-59-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.6 - PyArrow version: 5.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3058/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3058/timeline
null
completed
null
null
false
[ "Hi ! I think this issue is more related to the `transformers` project. Could you open an issue on https://github.com/huggingface/transformers ?\r\n\r\nAnyway I think the issue could be that both wikipedia and bookcorpusopen have an additional \"title\" column, contrary to wikitext which only has a \"text\" column. After calling `load_dataset`, can you try doing `dataset = dataset.remove_columns(\"title\")` ?", "Removing the \"title\" column works! Thanks for your advice.\r\n\r\nMaybe I should still create an issue to `transformers' to mark this solution?" ]
https://api.github.com/repos/huggingface/datasets/issues/5449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5449/comments
https://api.github.com/repos/huggingface/datasets/issues/5449/events
https://github.com/huggingface/datasets/pull/5449
1,550,801,453
PR_kwDODunzps5INgD9
5,449
Support fsspec 2023.1.0 in CI
[]
closed
false
null
2
2023-01-20T12:53:17Z
2023-01-20T13:32:50Z
2023-01-20T13:26:03Z
null
Support fsspec 2023.1.0 in CI. In the 2023.1.0 fsspec release, they replaced the type of `fsspec.registry`: - from `ReadOnlyRegistry`, with an attribute called `target` - to `MappingProxyType`, without that attribute Consequently, we need to change our `mock_fsspec` fixtures, that were using the `target` attribute. Fix #5448.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5449/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5449/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5449.diff", "html_url": "https://github.com/huggingface/datasets/pull/5449", "merged_at": "2023-01-20T13:26:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/5449.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5449" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008227 / 0.011353 (-0.003126) | 0.004496 / 0.011008 (-0.006512) | 0.099319 / 0.038508 (0.060811) | 0.029929 / 0.023109 (0.006820) | 0.296686 / 0.275898 (0.020788) | 0.355372 / 0.323480 (0.031892) | 0.006864 / 0.007986 (-0.001122) | 0.003458 / 0.004328 (-0.000871) | 0.077234 / 0.004250 (0.072983) | 0.037072 / 0.037052 (0.000020) | 0.311675 / 0.258489 (0.053186) | 0.338965 / 0.293841 (0.045124) | 0.033562 / 0.128546 (-0.094985) | 0.011399 / 0.075646 (-0.064248) | 0.322406 / 0.419271 (-0.096865) | 0.043034 / 0.043533 (-0.000499) | 0.298083 / 0.255139 (0.042944) | 0.323661 / 0.283200 (0.040462) | 0.089380 / 0.141683 (-0.052303) | 1.479363 / 1.452155 (0.027208) | 1.518337 / 1.492716 (0.025620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.177822 / 0.018006 (0.159816) | 0.400806 / 0.000490 (0.400317) | 0.002121 / 0.000200 (0.001921) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021986 / 0.037411 (-0.015426) | 0.096749 / 0.014526 (0.082223) | 0.101443 / 0.176557 (-0.075113) | 0.137519 / 0.737135 (-0.599616) | 0.105558 / 0.296338 (-0.190780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418983 / 0.215209 (0.203774) | 4.189579 / 2.077655 (2.111924) | 1.877831 / 1.504120 (0.373711) | 1.666213 / 1.541195 (0.125019) | 1.680735 / 1.468490 (0.212245) | 0.693033 / 4.584777 (-3.891744) | 3.420553 / 3.745712 (-0.325160) | 1.819647 / 5.269862 (-3.450214) | 1.144934 / 4.565676 (-3.420743) | 0.082209 / 0.424275 (-0.342066) | 0.012433 / 0.007607 (0.004826) | 0.526781 / 0.226044 (0.300737) | 5.273689 / 2.268929 (3.004760) | 2.323468 / 55.444624 (-53.121156) | 1.960508 / 6.876477 (-4.915969) | 2.035338 / 2.142072 (-0.106735) | 0.812789 / 4.805227 (-3.992438) | 0.148429 / 6.500664 (-6.352235) | 0.064727 / 0.075469 (-0.010742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253218 / 1.841788 (-0.588569) | 13.303426 / 8.074308 (5.229118) | 13.651074 / 10.191392 (3.459682) | 0.135178 / 0.680424 (-0.545246) | 0.028483 / 0.534201 (-0.505717) | 0.393284 / 0.579283 (-0.185999) | 0.401957 / 0.434364 (-0.032407) | 0.457136 / 0.540337 (-0.083201) | 0.535835 / 1.386936 (-0.851101) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006335 / 0.011353 (-0.005017) | 0.004454 / 0.011008 (-0.006554) | 0.097565 / 0.038508 (0.059057) | 0.026917 / 0.023109 (0.003808) | 0.350779 / 0.275898 (0.074881) | 0.391979 / 0.323480 (0.068499) | 0.004648 / 0.007986 (-0.003337) | 0.003204 / 0.004328 (-0.001124) | 0.076987 / 0.004250 (0.072737) | 0.035257 / 0.037052 (-0.001796) | 0.347193 / 0.258489 (0.088704) | 0.391462 / 0.293841 (0.097621) | 0.031244 / 0.128546 (-0.097302) | 0.011460 / 0.075646 (-0.064186) | 0.321606 / 0.419271 (-0.097665) | 0.041218 / 0.043533 (-0.002315) | 0.341884 / 0.255139 (0.086745) | 0.374920 / 0.283200 (0.091720) | 0.086383 / 0.141683 (-0.055300) | 1.501750 / 1.452155 (0.049595) | 1.565060 / 1.492716 (0.072344) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.165447 / 0.018006 (0.147441) | 0.401885 / 0.000490 (0.401395) | 0.000975 / 0.000200 (0.000775) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024494 / 0.037411 (-0.012917) | 0.097334 / 0.014526 (0.082808) | 0.105324 / 0.176557 (-0.071232) | 0.142430 / 0.737135 (-0.594705) | 0.107249 / 0.296338 (-0.189089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441632 / 0.215209 (0.226423) | 4.407729 / 2.077655 (2.330074) | 2.078167 / 1.504120 (0.574047) | 1.864210 / 1.541195 (0.323015) | 1.885948 / 1.468490 (0.417458) | 0.693974 / 4.584777 (-3.890803) | 3.386837 / 3.745712 (-0.358875) | 1.840291 / 5.269862 (-3.429571) | 1.150524 / 4.565676 (-3.415153) | 0.082240 / 0.424275 (-0.342035) | 0.012488 / 0.007607 (0.004881) | 0.537589 / 0.226044 (0.311545) | 5.404007 / 2.268929 (3.135078) | 2.537467 / 55.444624 (-52.907157) | 2.190775 / 6.876477 (-4.685702) | 2.224746 / 2.142072 (0.082674) | 0.799524 / 4.805227 (-4.005703) | 0.150639 / 6.500664 (-6.350025) | 0.066473 / 0.075469 (-0.008997) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258559 / 1.841788 (-0.583228) | 13.773583 / 8.074308 (5.699275) | 13.964322 / 10.191392 (3.772930) | 0.156295 / 0.680424 (-0.524129) | 0.016824 / 0.534201 (-0.517377) | 0.377476 / 0.579283 (-0.201807) | 0.390163 / 0.434364 (-0.044201) | 0.442541 / 0.540337 (-0.097796) | 0.529404 / 1.386936 (-0.857532) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f500a5c554b213aafe87293bd593920567742c3 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/1483
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1483/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1483/comments
https://api.github.com/repos/huggingface/datasets/issues/1483/events
https://github.com/huggingface/datasets/pull/1483
762,712,337
MDExOlB1bGxSZXF1ZXN0NTM3MjMxMzQ4
1,483
Added Times of India News Headlines Dataset
[]
closed
false
null
3
2020-12-11T18:12:38Z
2020-12-14T18:08:08Z
2020-12-14T18:08:08Z
null
Dataset name: Times of India News Headlines link: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DPQMQH
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1483/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1483/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1483.diff", "html_url": "https://github.com/huggingface/datasets/pull/1483", "merged_at": "2020-12-14T18:08:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/1483.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1483" }
true
[ "@lhoestq @abhishekkrthakur what happened here ?\r\n", "@lhoestq everything alright here ?", "@tanmoyio please have patience. @lhoestq has to look at 150+ PRs and it may take time. The PR looks good to me but we wait for his confirmation :) 🤗 " ]
https://api.github.com/repos/huggingface/datasets/issues/5476
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5476/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5476/comments
https://api.github.com/repos/huggingface/datasets/issues/5476/events
https://github.com/huggingface/datasets/pull/5476
1,559,594,684
PR_kwDODunzps5IqwC_
5,476
Pin sqlalchemy
[]
closed
false
null
3
2023-01-27T11:26:38Z
2023-01-27T12:06:51Z
2023-01-27T11:57:48Z
null
since sqlalchemy update to 2.0.0 the CI started to fail: https://github.com/huggingface/datasets/actions/runs/4023742457/jobs/6914976514 the error comes from pandas: https://github.com/pandas-dev/pandas/issues/51015
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5476/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5476/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5476.diff", "html_url": "https://github.com/huggingface/datasets/pull/5476", "merged_at": "2023-01-27T11:57:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/5476.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5476" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012442 / 0.011353 (0.001089) | 0.006274 / 0.011008 (-0.004734) | 0.128249 / 0.038508 (0.089741) | 0.040117 / 0.023109 (0.017008) | 0.383725 / 0.275898 (0.107827) | 0.510494 / 0.323480 (0.187014) | 0.009037 / 0.007986 (0.001051) | 0.008256 / 0.004328 (0.003927) | 0.105329 / 0.004250 (0.101079) | 0.046909 / 0.037052 (0.009857) | 0.401980 / 0.258489 (0.143491) | 0.461332 / 0.293841 (0.167491) | 0.065629 / 0.128546 (-0.062917) | 0.020043 / 0.075646 (-0.055604) | 0.453773 / 0.419271 (0.034501) | 0.063456 / 0.043533 (0.019923) | 0.384458 / 0.255139 (0.129319) | 0.449699 / 0.283200 (0.166499) | 0.118197 / 0.141683 (-0.023486) | 1.915080 / 1.452155 (0.462925) | 1.957132 / 1.492716 (0.464416) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209657 / 0.018006 (0.191651) | 0.592478 / 0.000490 (0.591988) | 0.004137 / 0.000200 (0.003937) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029607 / 0.037411 (-0.007804) | 0.129559 / 0.014526 (0.115033) | 0.148326 / 0.176557 (-0.028231) | 0.190506 / 0.737135 (-0.546629) | 0.143177 / 0.296338 (-0.153162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626166 / 0.215209 (0.410957) | 6.612680 / 2.077655 (4.535026) | 2.432354 / 1.504120 (0.928234) | 2.051482 / 1.541195 (0.510287) | 2.055822 / 1.468490 (0.587332) | 1.210099 / 4.584777 (-3.374678) | 5.498117 / 3.745712 (1.752405) | 3.054838 / 5.269862 (-2.215024) | 2.182875 / 4.565676 (-2.382802) | 0.144518 / 0.424275 (-0.279757) | 0.014132 / 0.007607 (0.006525) | 0.801805 / 0.226044 (0.575761) | 7.911235 / 2.268929 (5.642307) | 3.372762 / 55.444624 (-52.071862) | 2.517266 / 6.876477 (-4.359210) | 2.515329 / 2.142072 (0.373256) | 1.501731 / 4.805227 (-3.303497) | 0.252569 / 6.500664 (-6.248096) | 0.080987 / 0.075469 (0.005518) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.709880 / 1.841788 (-0.131907) | 18.640340 / 8.074308 (10.566032) | 23.560908 / 10.191392 (13.369516) | 0.265680 / 0.680424 (-0.414744) | 0.046438 / 0.534201 (-0.487763) | 0.571973 / 0.579283 (-0.007310) | 0.642425 / 0.434364 (0.208061) | 0.698167 / 0.540337 (0.157830) | 0.842132 / 1.386936 (-0.544804) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009268 / 0.011353 (-0.002085) | 0.006052 / 0.011008 (-0.004956) | 0.133448 / 0.038508 (0.094939) | 0.034417 / 0.023109 (0.011308) | 0.435573 / 0.275898 (0.159675) | 0.479642 / 0.323480 (0.156162) | 0.008016 / 0.007986 (0.000030) | 0.006616 / 0.004328 (0.002288) | 0.106256 / 0.004250 (0.102005) | 0.048995 / 0.037052 (0.011942) | 0.450056 / 0.258489 (0.191567) | 0.511027 / 0.293841 (0.217187) | 0.052928 / 0.128546 (-0.075618) | 0.020824 / 0.075646 (-0.054822) | 0.450105 / 0.419271 (0.030834) | 0.062729 / 0.043533 (0.019196) | 0.438887 / 0.255139 (0.183748) | 0.468732 / 0.283200 (0.185532) | 0.116101 / 0.141683 (-0.025582) | 1.909689 / 1.452155 (0.457534) | 2.042007 / 1.492716 (0.549291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198265 / 0.018006 (0.180259) | 0.541799 / 0.000490 (0.541309) | 0.003938 / 0.000200 (0.003738) | 0.000116 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035933 / 0.037411 (-0.001478) | 0.130754 / 0.014526 (0.116229) | 0.146143 / 0.176557 (-0.030414) | 0.202042 / 0.737135 (-0.535094) | 0.155648 / 0.296338 (-0.140691) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.691123 / 0.215209 (0.475914) | 6.708370 / 2.077655 (4.630715) | 2.957120 / 1.504120 (1.453000) | 2.558350 / 1.541195 (1.017155) | 2.611271 / 1.468490 (1.142781) | 1.327355 / 4.584777 (-3.257422) | 5.755975 / 3.745712 (2.010263) | 3.295556 / 5.269862 (-1.974305) | 2.159831 / 4.565676 (-2.405845) | 0.161409 / 0.424275 (-0.262866) | 0.015470 / 0.007607 (0.007863) | 0.840611 / 0.226044 (0.614567) | 8.550064 / 2.268929 (6.281136) | 3.832013 / 55.444624 (-51.612612) | 3.032909 / 6.876477 (-3.843568) | 3.155651 / 2.142072 (1.013578) | 1.612486 / 4.805227 (-3.192741) | 0.273789 / 6.500664 (-6.226875) | 0.085618 / 0.075469 (0.010149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.808376 / 1.841788 (-0.033412) | 18.267614 / 8.074308 (10.193306) | 21.047679 / 10.191392 (10.856286) | 0.259089 / 0.680424 (-0.421335) | 0.029211 / 0.534201 (-0.504990) | 0.556303 / 0.579283 (-0.022980) | 0.625264 / 0.434364 (0.190900) | 0.680814 / 0.540337 (0.140476) | 0.810146 / 1.386936 (-0.576790) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#20ea76c80e07acad78cf67198a4046a982feda21 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008779 / 0.011353 (-0.002574) | 0.004644 / 0.011008 (-0.006364) | 0.099814 / 0.038508 (0.061306) | 0.029830 / 0.023109 (0.006721) | 0.299159 / 0.275898 (0.023261) | 0.354815 / 0.323480 (0.031335) | 0.006968 / 0.007986 (-0.001018) | 0.003521 / 0.004328 (-0.000808) | 0.077687 / 0.004250 (0.073437) | 0.035019 / 0.037052 (-0.002034) | 0.309548 / 0.258489 (0.051059) | 0.345228 / 0.293841 (0.051387) | 0.033644 / 0.128546 (-0.094902) | 0.011564 / 0.075646 (-0.064083) | 0.321835 / 0.419271 (-0.097437) | 0.041798 / 0.043533 (-0.001735) | 0.298190 / 0.255139 (0.043051) | 0.328874 / 0.283200 (0.045674) | 0.088175 / 0.141683 (-0.053508) | 1.481755 / 1.452155 (0.029600) | 1.503085 / 1.492716 (0.010369) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.170930 / 0.018006 (0.152924) | 0.422155 / 0.000490 (0.421666) | 0.001708 / 0.000200 (0.001509) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022588 / 0.037411 (-0.014824) | 0.095775 / 0.014526 (0.081249) | 0.103939 / 0.176557 (-0.072618) | 0.138441 / 0.737135 (-0.598694) | 0.107896 / 0.296338 (-0.188442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418243 / 0.215209 (0.203034) | 4.171432 / 2.077655 (2.093777) | 1.906029 / 1.504120 (0.401909) | 1.698174 / 1.541195 (0.156979) | 1.748339 / 1.468490 (0.279849) | 0.691026 / 4.584777 (-3.893751) | 3.393354 / 3.745712 (-0.352358) | 2.722412 / 5.269862 (-2.547450) | 1.462439 / 4.565676 (-3.103238) | 0.084713 / 0.424275 (-0.339562) | 0.012131 / 0.007607 (0.004524) | 0.522153 / 0.226044 (0.296109) | 5.197916 / 2.268929 (2.928988) | 2.314270 / 55.444624 (-53.130354) | 1.986599 / 6.876477 (-4.889878) | 2.012757 / 2.142072 (-0.129315) | 0.802540 / 4.805227 (-4.002687) | 0.148673 / 6.500664 (-6.351991) | 0.065924 / 0.075469 (-0.009545) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263790 / 1.841788 (-0.577998) | 13.874784 / 8.074308 (5.800476) | 13.842276 / 10.191392 (3.650884) | 0.149002 / 0.680424 (-0.531422) | 0.028550 / 0.534201 (-0.505651) | 0.396913 / 0.579283 (-0.182370) | 0.401543 / 0.434364 (-0.032821) | 0.473754 / 0.540337 (-0.066583) | 0.560455 / 1.386936 (-0.826481) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006724 / 0.011353 (-0.004629) | 0.004507 / 0.011008 (-0.006502) | 0.098447 / 0.038508 (0.059939) | 0.027888 / 0.023109 (0.004779) | 0.428956 / 0.275898 (0.153058) | 0.451557 / 0.323480 (0.128077) | 0.005056 / 0.007986 (-0.002929) | 0.003363 / 0.004328 (-0.000965) | 0.075990 / 0.004250 (0.071740) | 0.038688 / 0.037052 (0.001635) | 0.421550 / 0.258489 (0.163061) | 0.459480 / 0.293841 (0.165639) | 0.031408 / 0.128546 (-0.097138) | 0.011559 / 0.075646 (-0.064088) | 0.320054 / 0.419271 (-0.099217) | 0.041917 / 0.043533 (-0.001616) | 0.420878 / 0.255139 (0.165739) | 0.444813 / 0.283200 (0.161613) | 0.090409 / 0.141683 (-0.051274) | 1.490058 / 1.452155 (0.037904) | 1.645206 / 1.492716 (0.152489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221105 / 0.018006 (0.203099) | 0.407537 / 0.000490 (0.407047) | 0.000410 / 0.000200 (0.000210) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024658 / 0.037411 (-0.012754) | 0.099230 / 0.014526 (0.084705) | 0.107788 / 0.176557 (-0.068769) | 0.143040 / 0.737135 (-0.594096) | 0.109440 / 0.296338 (-0.186899) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453303 / 0.215209 (0.238094) | 4.520376 / 2.077655 (2.442722) | 2.133909 / 1.504120 (0.629789) | 1.926996 / 1.541195 (0.385801) | 2.019870 / 1.468490 (0.551380) | 0.707423 / 4.584777 (-3.877354) | 3.391903 / 3.745712 (-0.353809) | 1.860661 / 5.269862 (-3.409201) | 1.159940 / 4.565676 (-3.405736) | 0.083773 / 0.424275 (-0.340502) | 0.012228 / 0.007607 (0.004621) | 0.554666 / 0.226044 (0.328622) | 5.567564 / 2.268929 (3.298636) | 2.636718 / 55.444624 (-52.807907) | 2.240215 / 6.876477 (-4.636262) | 2.218951 / 2.142072 (0.076879) | 0.817167 / 4.805227 (-3.988060) | 0.151633 / 6.500664 (-6.349032) | 0.066515 / 0.075469 (-0.008954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296665 / 1.841788 (-0.545123) | 13.997898 / 8.074308 (5.923590) | 13.286607 / 10.191392 (3.095215) | 0.148906 / 0.680424 (-0.531518) | 0.016600 / 0.534201 (-0.517601) | 0.377459 / 0.579283 (-0.201824) | 0.379938 / 0.434364 (-0.054426) | 0.461628 / 0.540337 (-0.078709) | 0.550592 / 1.386936 (-0.836344) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#053f51a3e2adb762236eb29dd02791307f45f02f \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/2640
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2640/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2640/comments
https://api.github.com/repos/huggingface/datasets/issues/2640/events
https://github.com/huggingface/datasets/pull/2640
943,591,055
MDExOlB1bGxSZXF1ZXN0Njg5MjAxMDkw
2,640
Fix docstrings
[]
closed
false
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
0
2021-07-13T16:09:14Z
2021-07-15T06:51:01Z
2021-07-15T06:06:12Z
null
Fix rendering of some docstrings.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2640/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2640/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2640.diff", "html_url": "https://github.com/huggingface/datasets/pull/2640", "merged_at": "2021-07-15T06:06:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/2640.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2640" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3706
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3706/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3706/comments
https://api.github.com/repos/huggingface/datasets/issues/3706/events
https://github.com/huggingface/datasets/issues/3706
1,132,218,874
I_kwDODunzps5DfEn6
3,706
Unable to load dataset 'big_patent'
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
5
2022-02-11T09:48:34Z
2022-02-14T15:26:03Z
2022-02-14T15:26:03Z
null
## Describe the bug Unable to load the "big_patent" dataset ## Steps to reproduce the bug ```python load_dataset('big_patent', 'd', 'validation') ``` ## Expected results Download big_patents' validation split from the 'd' subset ## Getting an error saying: {FileNotFoundError}Local file ..\huggingface\datasets\downloads\6159313604f4f2c01e7d1cac52139343b6c07f73f6de348d09be6213478455c5\bigPatentData\train.tar.gz doesn't exist ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version:1.18.3 - Platform: Windows - Python version:3.8 - PyArrow version:7.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3706/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3706/timeline
null
completed
null
null
false
[ "Hi @ankitk2109,\r\n\r\nHave you tried passing the split name with the keyword `split=`? See e.g. an example in our Quick Start docs: https://huggingface.co/docs/datasets/quickstart.html#load-the-dataset-and-model\r\n```python\r\n ds = load_dataset(\"big_patent\", \"d\", split=\"validation\")", "Hi @albertvillanova,\r\n\r\nThanks for your response.\r\n\r\nYes, I tried the `split='validation'` as well. But getting the same issue. ", "I'm sorry, but I can't reproduce your problem:\r\n```python\r\nIn [5]: ds = load_dataset(\"big_patent\", \"d\", split=\"validation\")\r\nDownloading and preparing dataset big_patent/d (download: 6.01 GiB, generated: 169.61 MiB, post-processed: Unknown size, total: 6.17 GiB) to .../.cache/big_patent/d/1.0.0/bdefa7c0b39fba8bba1c6331b70b738e30d63c8ad4567f983ce315a5fef6131c...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.45G/6.45G [27:36<00:00, 3.89MB/s]\r\nExtracting data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [03:18<00:00, 66.08s/it]\r\nDataset big_patent downloaded and prepared to .../.cache/big_patent/d/1.0.0/bdefa7c0b39fba8bba1c6331b70b738e30d63c8ad4567f983ce315a5fef6131c. Subsequent calls will reuse this data. \r\n\r\nIn [6]: ds\r\nOut[6]: \r\nDataset({\r\n features: ['description', 'abstract'],\r\n num_rows: 565\r\n})\r\n", "Maybe you had a connection issue while downloading the file and this was corrupted?\r\nOur cache system uses the file you downloaded first time.\r\nIf so, you could try forcing redownload of the file with:\r\n```python\r\nds = load_dataset(\"big_patent\", \"d\", split=\"validation\", download_mode=\"force_redownload\")", "I am able to download the dataset with ``` download_mode=\"force_redownload\"```. As you mentioned it was an issue with the cached version which was failed earlier due to a network issue. I am closing the issue now, once again thank you." ]
https://api.github.com/repos/huggingface/datasets/issues/142
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/142/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/142/comments
https://api.github.com/repos/huggingface/datasets/issues/142/events
https://github.com/huggingface/datasets/pull/142
619,450,068
MDExOlB1bGxSZXF1ZXN0NDE4OTU0OTc1
142
[WMT] Add all wmt
[]
closed
false
null
0
2020-05-16T11:28:46Z
2020-05-17T12:18:21Z
2020-05-17T12:18:20Z
null
This PR adds all wmt datasets scripts. At the moment the script is **not** functional for the language pairs "cs-en", "ru-en", "hi-en" because apparently it takes up to a week to get the manual data for these datasets: see http://ufal.mff.cuni.cz/czeng. The datasets are fully functional though for the "big" language pairs "de-en" and "fr-en". Overall I think the scripts are very messy and might need a big refactoring at some point. For now I think there are good to merge (most dataset configs can be used). I will add "cs", "ru" and "hi" when the manual data is available.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/142/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/142/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/142.diff", "html_url": "https://github.com/huggingface/datasets/pull/142", "merged_at": "2020-05-17T12:18:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/142.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/142" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/5877
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5877/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5877/comments
https://api.github.com/repos/huggingface/datasets/issues/5877/events
https://github.com/huggingface/datasets/issues/5877
1,717,983,961
I_kwDODunzps5mZlrZ
5,877
Request for text deduplication feature
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
3
2023-05-20T01:56:00Z
2023-07-26T21:42:14Z
null
null
### Feature request It would be great if there would be support for high performance, highly scalable text deduplication algorithms as part of the datasets library. ### Motivation Motivated by this blog post https://huggingface.co/blog/dedup and this library https://github.com/google-research/deduplicate-text-datasets, but slightly frustrated by how its not very easy to work with these tools I am proposing this feature. ### Your contribution I would be happy to contribute to the development effort of this feature. would love to collaborate with others in the development effort.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5877/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5877/timeline
null
null
null
null
false
[ "The \"exact match\" deduplication will be possible when we resolve https://github.com/huggingface/datasets/issues/2514 (first, https://github.com/apache/arrow/issues/30950 needs to be addressed on the Arrow side). In the meantime, you can use Polars or DuckDB (e.g., via [datasets-sql](https://github.com/mariosasko/datasets_sql)).\r\n\r\nFuzzy deduplication is out-of-scope for now ([splink](https://github.com/moj-analytical-services/splink) is probably the best tool for it).", "This library can be an intermediate solution : https://github.com/ChenghaoMou/text-dedup/tree/main", "I have been using polars to remove duplicates but it would be nice to do it directly in pyarrow.\r\n\r\nFor example,\r\n\r\n1. Read dataset with pyarrow\r\n2. Use scan_pyarrow_dataset() with Polars to create a LazyFrame\r\n3. Use sort and unique to remove duplicates based on a subset of columns\r\n4. Convert to table and save data with ds.write_dataset()\r\n\r\nThere are times where that workflow makes perfect sense because I do additional transformations with Polars. Most of the time I am simply just reading dataset A and writing dataset B without duplicates though, and I wish I could use a pyarrow scanner or table directly. " ]
https://api.github.com/repos/huggingface/datasets/issues/3717
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3717/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3717/comments
https://api.github.com/repos/huggingface/datasets/issues/3717/events
https://github.com/huggingface/datasets/issues/3717
1,137,183,015
I_kwDODunzps5DyAkn
3,717
wrong condition in `Features ClassLabel encode_example`
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-02-14T11:44:35Z
2022-02-14T15:09:36Z
2022-02-14T15:07:43Z
null
## Describe the bug The `encode_example` function in *features.py* seems to have a wrong condition. ```python if not -1 <= example_data < self.num_classes: raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}") ``` ## Expected results The `not - 1` condition change the result of the condition. For instance, if `example_data` equals 4 and ` self.num_classes` equals 4 too, `example_data < self.num_classes` will give `False` as expected . But if i add the `not - 1` condition, `not -1 <= example_data < self.num_classes` will give `True` and raise an exception. ## Environment info - `datasets` version: 1.18.3 - Python version: 3.8.10 - PyArrow version: 7.00
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3717/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3717/timeline
null
completed
null
null
false
[ "Hi @Tudyx, \r\n\r\nPlease note that in Python, the boolean NOT operator (`not`) has lower precedence than comparison operators (`<=`, `<`), thus the expression you mention is equivalent to:\r\n```python\r\n not (-1 <= example_data < self.num_classes)\r\n```\r\n\r\nAlso note that as expected, the exception is raised if:\r\n- `example_data < -1`\r\n- or `example_data >= self.num_classes`\r\n\r\nThe raise of the exception is expected when `example_data` equals 4 and `self.num_classes` equals 4 too." ]
https://api.github.com/repos/huggingface/datasets/issues/4814
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4814/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4814/comments
https://api.github.com/repos/huggingface/datasets/issues/4814/events
https://github.com/huggingface/datasets/issues/4814
1,333,356,230
I_kwDODunzps5PeWbG
4,814
Support CSV as metadata file format in AudioFolder/ImageFolder
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
0
2022-08-09T14:36:49Z
2022-08-31T11:59:08Z
2022-08-31T11:59:08Z
null
Requested here: https://discuss.huggingface.co/t/how-to-structure-an-image-dataset-repo-using-the-image-folder-approach/21004. CSV is also used in AutoTrain for specifying metadata in image datasets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4814/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4814/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/4914
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4914/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4914/comments
https://api.github.com/repos/huggingface/datasets/issues/4914/events
https://github.com/huggingface/datasets/pull/4914
1,355,482,624
PR_kwDODunzps4-CFyN
4,914
Support streaming swda dataset
[]
closed
false
null
1
2022-08-30T09:46:28Z
2022-08-30T11:16:33Z
2022-08-30T11:14:16Z
null
Support streaming swda dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4914/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4914/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4914.diff", "html_url": "https://github.com/huggingface/datasets/pull/4914", "merged_at": "2022-08-30T11:14:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/4914.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4914" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
https://api.github.com/repos/huggingface/datasets/issues/1434
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1434/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1434/comments
https://api.github.com/repos/huggingface/datasets/issues/1434/events
https://github.com/huggingface/datasets/pull/1434
760,821,474
MDExOlB1bGxSZXF1ZXN0NTM1NTg3NjEx
1,434
add_sofc_materials_articles
[]
closed
false
null
1
2020-12-10T02:15:02Z
2020-12-17T09:59:54Z
2020-12-17T09:59:54Z
null
adding [SOFC-Exp Corpus](https://arxiv.org/abs/2006.03039)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1434/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1434/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1434.diff", "html_url": "https://github.com/huggingface/datasets/pull/1434", "merged_at": "2020-12-17T09:59:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/1434.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1434" }
true
[ "Hey @lhoestq , thanks for the feedback on this! I updated the `_generate_examples` with some comments on the process, and reduced the `dummy_data.zip` down quite a bit as well. \r\n\r\nFor the dummy data, I reduced the text to only three sentences, and aligned the corresponding entity/token/sentence annotations to that (reduced accordingly). The frames file is a strange combined format for the annotations and I found if I reduced that that would break the parser no matter what I did, so I left that as is. The difference between a reduced frames and non-reduced frames file in the compressed dummy data was only about ~4kb, so hopefully leaving this as is will be ok!" ]
https://api.github.com/repos/huggingface/datasets/issues/4105
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4105/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4105/comments
https://api.github.com/repos/huggingface/datasets/issues/4105/events
https://github.com/huggingface/datasets/issues/4105
1,194,297,119
I_kwDODunzps5HL4cf
4,105
push to hub fails with huggingface-hub 0.5.0
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
5
2022-04-06T08:59:57Z
2022-04-13T14:30:47Z
2022-04-13T14:30:47Z
null
## Describe the bug `ds.push_to_hub` is failing when updating a dataset in the form "org_id/repo_id" ## Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("rubrix/news_test") ds.push_to_hub("<your-user>/news_test", token="<your-token>") ``` ## Expected results The dataset is successfully uploaded ## Actual results An error validation is raised: ```bash if repo_id and (name or organization): > raise ValueError( "Only pass `repo_id` and leave deprecated `name` and " "`organization` to be None." E ValueError: Only pass `repo_id` and leave deprecated `name` and `organization` to be None. ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.1 - `huggingface-hub`: 0.5 - Platform: macOS - Python version: 3.8.12 - PyArrow version: 6.0.0 cc @adrinjalali
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4105/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4105/timeline
null
completed
null
null
false
[ "Hi ! Indeed there was a breaking change in `huggingface_hub` 0.5.0 in `HfApi.create_repo`, which is called here in `datasets` by passing the org name in both the `repo_id` and the `organization` arguments:\r\n\r\nhttps://github.com/huggingface/datasets/blob/2230f7f7d7fbaf102cff356f5a8f3bd1561bea43/src/datasets/arrow_dataset.py#L3363-L3369\r\n\r\nI think we should fix that in `huggingface_hub`, will keep you posted. In the meantime please use `huggingface_hub` 0.4.0", "I'll be sending a fix for this later today on the `huggingface_hub` side.\r\n\r\nThe error would be converted to a `FutureWarning` if `datasets` uses kwargs instead of positional, for example here: \r\n\r\nhttps://github.com/huggingface/datasets/blob/2230f7f7d7fbaf102cff356f5a8f3bd1561bea43/src/datasets/arrow_dataset.py#L3363-L3369\r\n\r\nto be:\r\n\r\n``` python\r\n api.create_repo(\r\n name=dataset_name,\r\n token=token,\r\n repo_type=\"dataset\",\r\n organization=organization,\r\n private=private,\r\n )\r\n```\r\n\r\nBut `name` and `organization` are deprecated in `huggingface_hub=0.5`, and people should pass `repo_id='org/name` instead. Note that `repo_id` was introduced in 0.5 and if `datasets` wants to support older `huggingface_hub` versions (which I encourage it to do), there needs to be a helper function to do that. It can be something like:\r\n\r\n\r\n```python\r\ndef create_repo(\r\n client,\r\n name: str,\r\n token: Optional[str] = None,\r\n organization: Optional[str] = None,\r\n private: Optional[bool] = None,\r\n repo_type: Optional[str] = None,\r\n exist_ok: Optional[bool] = False,\r\n space_sdk: Optional[str] = None,\r\n) -> str:\r\n try:\r\n return client.create_repo(\r\n repo_id=f\"{organization}/{name}\",\r\n token=token,\r\n private=private,\r\n repo_type=repo_type,\r\n exist_ok=exist_ok,\r\n space_sdk=space_sdk,\r\n )\r\n except TypeError:\r\n return client.create_repo(\r\n name=name,\r\n organization=organization,\r\n token=token,\r\n private=private,\r\n repo_type=repo_type,\r\n exist_ok=exist_ok,\r\n space_sdk=space_sdk,\r\n )\r\n```\r\n\r\nin a `utils/_fixes.py` kinda file and and be used internally.\r\n\r\nI'll be sending a patch to `huggingface_hub` to convert the error reported in this issue to a `FutureWarning`.", "PR with the hotfix on the `huggingface_hub` side: https://github.com/huggingface/huggingface_hub/pull/822", "We can definitely change `push_to_hub` to use `repo_id` in `datasets` and require `huggingface_hub>=0.5.0`.\r\n\r\nLet me open a PR :)", "`huggingface_hub` 0.5.1 just got released with a fix, feel free to update `huggingface_hub` ;)" ]
https://api.github.com/repos/huggingface/datasets/issues/3507
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3507/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3507/comments
https://api.github.com/repos/huggingface/datasets/issues/3507/events
https://github.com/huggingface/datasets/issues/3507
1,091,214,808
I_kwDODunzps5BCp3Y
3,507
Discuss whether support canonical datasets w/o dataset_infos.json and/or dummy data
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "c5def5", "default": false, "description": "Generic discussion on the library", "id": 2067400324, "name": "generic discussion", "node_id": "MDU6TGFiZWwyMDY3NDAwMzI0", "url": "https://api.github.com/repos/huggingface/datasets/labels/generic%20discussion" } ]
closed
false
null
17
2021-12-30T17:04:25Z
2022-11-04T15:31:38Z
2022-11-04T15:31:37Z
null
I open this PR to have a public discussion about this topic and make a decision. As previously discussed, once we have the metadata in the dataset card (README file, containing both Markdown info and YAML tags), what is the point of having also the JSON metadata (dataset_infos.json file)? On the other hand, the dummy data is necessary for testing (in our CI suite) that the canonical dataset loads correctly. However: - the dataset preview feature is already an indirect test that the dataset loads correctly (it also tests it is streamable though) - we are migrating canonical datasets to the Hub Do we really need to continue testing them in out CI? Also note that for generating both (dataset_infos.json file and dummy data), the entire dataset needs being downloaded. This can be an issue for huge datasets (like WIT, with 400 GB of data). Feel free to ping other people for the discussion. CC: @lhoestq @mariosasko @thomwolf @julien-c @patrickvonplaten @anton-l @LysandreJik @yjernite @nateraw
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3507/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3507/timeline
null
completed
null
null
false
[ "IMO, the data streaming test is good enough of a test that the dataset works correctly (assuming that we can more or less ensure that if streaming works then the non-streaming case will also work), so that for datasets that have a working dataset preview, we can remove the dummy data IMO. On the other hand, it seems like not all datasets have streaming enabled yet and for those datasets (if they are used a lot), I think it would be nice to continue testing some dummy data.\r\n\r\nI don't really have an opinion regarding the JSON metadata as I don't know enough about it.\r\n\r\n", "I don't know all the details, but generally I'd be in favor of unifying the metadata formats into YAML inside .md (and so deprecating the dataset_infos.json) \r\n\r\n(Ultimately the CI can run on \"HuggingFace Actions\" instead of on GitHub)", "The dataset_infos.json file currently has these useful infos for each dataset configuration, that I think can be moved to the dataset tags:\r\n- Size of the dataset in MB: download size, arrow file size, and total size (sum of download + arrow)\r\n- Size of each split in MB and number of examples. Again this can be moved to the dataset tags\r\n- Feature type of each column\r\n- supported task templates (it defines what columns correspond to the features and labels for example)\r\n\r\nBut it also has this, which I'm not sure if it should be in the tags or not:\r\n- Checksums of the downloaded files for integrity verifications\r\n\r\nSo ultimately this file could probably be deprecated in favor of having the infos in the tags.\r\n\r\n> Also note that for generating both (dataset_infos.json file and dummy data), the entire dataset needs being downloaded. This can be an issue for huge datasets (like WIT, with 400 GB of data).\r\n\r\nTo get the exact number of examples and size in MB of the dataset, one needs to download and generate it completely. IMO these infos are very important when someone considers using a dataset. Though using streaming we could do some extrapolation to have approximate values instead.\r\n\r\nFor the integrity verifications we also need the number of examples and the checksums of the downloaded files, so it requires the dataset to be fully downloaded once. This can be optional though.\r\n\r\n> IMO, the data streaming test is good enough of a test that the dataset works correctly (assuming that we can more or less ensure that if streaming works then the non-streaming case will also work)\r\n\r\nI agree with this. Usually if a dataset works in streaming mode, then it works in non-streaming mode (the other way around is not true though).\r\n\r\n> On the other hand, it seems like not all datasets have streaming enabled yet and for those datasets (if they are used a lot), I think it would be nice to continue testing some dummy data.\r\n\r\nYes indeed, or at least make sure that it was tested on the true data.", "(note that if we wanted to display sizes, etc we could also pretty easily parse the `dataset_infos.json` on the hub side)", "I agree that we can move the relevant parts of `dataset_infos.json` to the YAML tags.\r\n\r\n> On the other hand, it seems like not all datasets have streaming enabled yet and for those datasets (if they are used a lot), I think it would be nice to continue testing some dummy data. <\r\n> > Yes indeed, or at least make sure that it was tested on the true data.\r\n\r\nI like the idea of testing streaming and falling back to the dummy data test if streaming does not work. Generating dummy data can be very tedious, so this would be a nice incentive for the contributors to make their datasets streamable. ", "CC: @severo ", "About dummy data, please see e.g. this PR: https://github.com/huggingface/datasets/pull/3692/commits/62368daac0672041524a471386d5e78005cf357a\r\n- I updated the previous dummy data: I just had to rename the file and its directory\r\n - the dummy data zip contains only a single file: `pubmed22n0001.xml.gz`\r\n\r\nThen I discover it fails: https://app.circleci.com/pipelines/github/huggingface/datasets/9800/workflows/173a4433-8feb-4fc6-ab9e-59762084e3e1/jobs/60437\r\n```\r\nNo such file or directory: '.../dummy_data/pubmed22n0002.xml.gz'\r\n```\r\n- it needs dummy data for all the 1114 files: \r\n `_URLs = [f\"ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed22n{i:04d}.xml.gz\" for i in range(1, 1115)]`\r\n- this confirms me that it never passed the test: these dummy data files were not present before my PR\r\n- therefore, is it really useful the data test if we just ignore it when it does not pass?\r\n\r\nIn relation with JSON metadata, I'm generating the file for `pubmed` (see above) in a GCP instance: it's running for more than 3 hours and only 9 million examples generated so far (before my PR, it had 32 million, now it has more).", "I mention in https://github.com/huggingface/datasets-server/wiki/Preliminary-design that the future \"datasets server\" could be in charge of generating both the dummy data and the dataset-info.json file if required (or their equivalent).", "Hi ! I think dummy data generation is out of scope for the datasets server, since it's about generating the original data files.\r\n\r\nThat would be amazing to have it generate the dataset_infos.json though !", "From some offline discussion with @mariosasko and especially for vision datasets, we'll probably not require dummy data anymore and use streaming instead :) This will make adding a new dataset much easier.\r\nThis should also make sure that streaming works as expected directly in the CI, without having to check the dataset viewer once the PR is merged", "OK. I removed the \"dummy data\" item from the services of the dataset server", "It seems that migration from dataset-info.json to dataset card YAML has been acted.\r\n\r\nProbably it's a good idea, but I didn't find the pros and cons of this decision, so I put some I could think of:\r\n\r\npros:\r\n- only one file to parse, share, sync\r\n- it gives a hint to the users that if you write your dataset card, you should also specify the metadata\r\n\r\ncons:\r\n- the metadata header might be very long, before reaching the start of the README/dataset card. It might be surprising when you edit the file because the metadata is not shown on top when the dataset card is rendered (dataset page). It also somewhat prevents including large strings like the checksums\r\n- YAML vs JSON: not sure which one is easier for users to fill and maintain\r\n- two concepts are mixed in the same file (metadata and documentation). This means that if you're interested only in one of them, you still have to know how to parse the whole file.\r\n- [low priority] besides the JSON file, we might want to support yaml or toml file if the user prefers (as [prettier](https://prettier.io/docs/en/configuration.html) and others do for their config files, for example). Inside the md, I understand that only YAML is allowed", "> the metadata header might be very long, before reaching the start of the README/dataset card. It might be surprising when you edit the file because the metadata is not shown on top when the dataset card is rendered (dataset page). It also somewhat prevents including large strings like the checksums\r\n\r\nNote that we could simply not have the checksums in the YAML metadata at all, or maybe at one point have a pointer to another file instead.\r\n\r\nWe can also choose to hide (collapse) certain sections in the YAML by default when we open the dataset card editor.\r\n\r\n> two concepts are mixed in the same file (metadata and documentation). This means that if you're interested only in one of them, you still have to know how to parse the whole file.\r\n\r\nI think it's fine for now. Later if we really end up with too many YAML sections we can see if we need to tweak the API endpoints or the `datasets`/`huggingface_hub` tools\r\n\r\n> YAML vs JSON: not sure which one is easier for users to fill and maintain\r\n\r\nRegarding YAML vs JSON: I think YAML is easier to write by hand, and I also think that it's better for consistency - i.e. we're using more and more YAML to configure models/datasets/spaces", "I didn't know the decision was already taken. Good to know. 😅", "> the metadata header might be very long, before reaching the start of the README/dataset card. It might be surprising when you edit the file because the metadata is not shown on top when the dataset card is rendered (dataset page). It also somewhat prevents including large strings like the checksums\r\n\r\nWe can definitely work on this on the hub side to make the UX better", "Tensorflow Datasets catalog includes a community catalog where you can find and use HF datasets (see [here](https://www.tensorflow.org/datasets/community_catalog/huggingface)).\r\n\r\nFYI I noticed today that they are using the exported dataset_infos.json files from github to get the metadata (see their code [here](https://github.com/tensorflow/datasets/blob/a482f01c036a10496f5e22e69a2ef81b707cc418/tensorflow_datasets/scripts/documentation/build_community_catalog.py#L261))", "Metadata is now stored as YAML, and dummy data is deprecated, so I think we can close this issue." ]
https://api.github.com/repos/huggingface/datasets/issues/266
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/266/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/266/comments
https://api.github.com/repos/huggingface/datasets/issues/266/events
https://github.com/huggingface/datasets/pull/266
637,156,392
MDExOlB1bGxSZXF1ZXN0NDMzMTk1NDgw
266
Add sort, shuffle, test_train_split and select methods
[]
closed
false
null
4
2020-06-11T16:22:20Z
2020-06-18T16:23:25Z
2020-06-18T16:23:24Z
null
Add a bunch of methods to reorder/split/select rows in a dataset: - `dataset.select(indices)`: Create a new dataset with rows selected following the list/array of indices (which can have a different size than the dataset and contain duplicated indices, the only constrain is that all the integers in the list must be smaller than the dataset size, otherwise we're indexing outside the dataset...) - `dataset.sort(column_name)`: sort a dataset according to a column (has to be a column with a numpy compatible type) - `dataset.shuffle(seed)`: shuffle a dataset rows - `dataset.train_test_split(test_size, train_size)`: Return a dictionary with two random train and test subsets (`train` and `test` ``Dataset`` splits) All these methods are **not** in-place which means they return new ``Dataset``. This is the default behavior in the library. Fix #147 #166 #259
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/266/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/266/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/266.diff", "html_url": "https://github.com/huggingface/datasets/pull/266", "merged_at": "2020-06-18T16:23:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/266.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/266" }
true
[ "Nice !\r\n\r\nAlso it looks like we can have a train_test_split method for free:\r\n```python\r\ntrain_indices, test_indices = train_test_split(range(len(dataset)))\r\ntrain = dataset.sort(indices=train_indices)\r\ntest = dataset.sort(indices=test_indices)\r\n```\r\n\r\nand a shuffling method for free:\r\n```python\r\nshuffled_indices = shuffle(range(len(dataset)))\r\nshuffled_dataset = dataset.sort(indices=shuffled_indices)\r\n```\r\n\r\nMaybe we can have a specific API for train_test_split and shuffle. They are two features asked quite often (see #147, #166)", "Ok, I think this one is ready to merge.\r\n\r\n@patrickvonplaten @jplu @mariamabarham @joeddav @n1t0 @julien-c you may want to give it a look, it adds a bunch of methods to reorder/split/select rows in a dataset:\r\n- `dataset.select(indices)`: Create a new dataset with rows selected following the list/array of indices (which can have a different size than the dataset and contain duplicated indices, the only constrain is that all the integers in the list must be smaller than the dataset size, otherwise we're indexing outside the dataset...)\r\n- `dataset.sort(column_name)`: sort a dataset according to a column (has to be a column with a numpy compatible type)\r\n- `dataset.shuffle(seed)`: shuffle a dataset rows\r\n- `dataset.train_test_split(test_size, train_size)`: Return a dictionary with two random train and test subsets (`train` and `test` ``Dataset`` splits)\r\n\r\nAll these methods are **not** in-place which means they return new ``Dataset``, which is the default behavior in the library.", "> Might be a solution to put 0.25 and 0.75 as default values for respectively `test_size` and `train_size`. WDYT?\r\n\r\nAccording to sklearn documentation, it is indeed set to 0.25 and 0.75 if both `test_size` and `train_size` are None.\r\nLet me add it.", "I think we're good to go now :) @joeddav @thomwolf @jplu " ]
https://api.github.com/repos/huggingface/datasets/issues/3659
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3659/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3659/comments
https://api.github.com/repos/huggingface/datasets/issues/3659/events
https://github.com/huggingface/datasets/issues/3659
1,120,913,672
I_kwDODunzps5Cz8kI
3,659
push_to_hub but preview not working
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
null
1
2022-02-01T16:23:57Z
2022-02-09T08:00:37Z
2022-02-09T08:00:37Z
null
## Dataset viewer issue for '*happifyhealth/twitter_pnn*' **Link:** *[link to the dataset viewer page](https://huggingface.co/datasets/happifyhealth/twitter_pnn)* I used ``` dataset.push_to_hub("happifyhealth/twitter_pnn") ``` but the preview is not working. Am I the one who added this dataset ? Yes
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3659/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3659/timeline
null
completed
null
null
false
[ "Hi @thomas-happify, please note that the preview may take some time before rendering the data.\r\n\r\nI've seen it is already working.\r\n\r\nI close this issue. Please feel free to reopen it if the problem arises again." ]
https://api.github.com/repos/huggingface/datasets/issues/2599
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2599/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2599/comments
https://api.github.com/repos/huggingface/datasets/issues/2599/events
https://github.com/huggingface/datasets/pull/2599
937,980,229
MDExOlB1bGxSZXF1ZXN0Njg0NDQ2MTYx
2,599
Update processing.rst with other export formats
[]
closed
false
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
0
2021-07-06T14:50:38Z
2021-07-12T14:10:16Z
2021-07-07T08:05:48Z
null
Add other supported export formats than CSV in the docs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2599/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2599/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2599.diff", "html_url": "https://github.com/huggingface/datasets/pull/2599", "merged_at": "2021-07-07T08:05:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/2599.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2599" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4235
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4235/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4235/comments
https://api.github.com/repos/huggingface/datasets/issues/4235/events
https://github.com/huggingface/datasets/issues/4235
1,216,952,640
I_kwDODunzps5IiTlA
4,235
How to load VERY LARGE dataset?
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
1
2022-04-27T07:50:13Z
2023-07-25T15:07:57Z
2023-07-25T15:07:57Z
null
### System Info ```shell I am using transformer trainer while meeting the issue. The trainer requests torch.utils.data.Dataset as input, which loads the whole dataset into the memory at once. Therefore, when the dataset is too large to load, there's nothing I can do except using IterDataset, which loads samples of data seperately, and results in low efficiency. I wonder if there are any tricks like Sharding in huggingface trainer. Looking forward to your reply. ``` ### Who can help? Trainer: @sgugger ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction None ### Expected behavior ```shell I wonder if there are any tricks like fairseq Sharding very large datasets https://fairseq.readthedocs.io/en/latest/getting_started.html. Thanks a lot! ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4235/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4235/timeline
null
completed
null
null
false
[ "The `Trainer` support `IterableDataset`, not just datasets." ]
https://api.github.com/repos/huggingface/datasets/issues/4696
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4696/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4696/comments
https://api.github.com/repos/huggingface/datasets/issues/4696/events
https://github.com/huggingface/datasets/issues/4696
1,307,183,099
I_kwDODunzps5N6gf7
4,696
Cannot load LinCE dataset
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
2
2022-07-17T19:01:54Z
2022-07-18T09:20:40Z
2022-07-18T07:24:22Z
null
## Describe the bug Cannot load LinCE dataset due to a connection error ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("lince", "ner_spaeng") ``` A notebook with this code and corresponding error can be found at https://colab.research.google.com/drive/1pgX3bNB9amuUwAVfPFm-XuMV5fEg-cD2 ## Expected results It should load the dataset ## Actual results ```python --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) <ipython-input-2-fc551ddcebef> in <module>() 1 from datasets import load_dataset 2 ----> 3 dataset = load_dataset("lince", "ner_spaeng") 10 frames /usr/local/lib/python3.7/dist-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1682 ignore_verifications=ignore_verifications, 1683 try_from_hf_gcs=try_from_hf_gcs, -> 1684 use_auth_token=use_auth_token, 1685 ) 1686 /usr/local/lib/python3.7/dist-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 703 if not downloaded_from_gcs: 704 self._download_and_prepare( --> 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 706 ) 707 # Sync info /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 1219 1220 def _download_and_prepare(self, dl_manager, verify_infos): -> 1221 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) 1222 1223 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 769 split_dict = SplitDict(dataset_name=self.name) 770 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 771 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 772 773 # Checksums verification /root/.cache/huggingface/modules/datasets_modules/datasets/lince/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589/lince.py in _split_generators(self, dl_manager) 481 def _split_generators(self, dl_manager): 482 """Returns SplitGenerators.""" --> 483 lince_dir = dl_manager.download_and_extract(f"{_LINCE_URL}/{self.config.name}.zip") 484 data_dir = os.path.join(lince_dir, self.config.data_dir) 485 return [ /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in download_and_extract(self, url_or_urls) 429 extracted_path(s): `str`, extracted paths of given URL(s). 430 """ --> 431 return self.extract(self.download(url_or_urls)) 432 433 def get_recorded_sizes_checksums(self): /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in download(self, url_or_urls) 313 num_proc=download_config.num_proc, 314 disable_tqdm=not is_progress_bar_enabled(), --> 315 desc="Downloading data files", 316 ) 317 duration = datetime.now() - start_time /usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm, desc) 346 # Singleton 347 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 348 return function(data_struct) 349 350 disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled() /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in _download(self, url_or_filename, download_config) 333 # append the relative path to the base_path 334 url_or_filename = url_or_path_join(self._base_path, url_or_filename) --> 335 return cached_path(url_or_filename, download_config=download_config) 336 337 def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]): /usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 195 use_auth_token=download_config.use_auth_token, 196 ignore_url_params=download_config.ignore_url_params, --> 197 download_desc=download_config.download_desc, 198 ) 199 elif os.path.exists(url_or_filename): /usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token, ignore_url_params, download_desc) 531 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") 532 if head_error is not None: --> 533 raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") 534 elif response is not None: 535 raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") ConnectionError: Couldn't reach https://ritual.uh.edu/lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (ConnectTimeout(MaxRetryError("HTTPSConnectionPool(host='ritual.uh.edu', port=443): Max retries exceeded with url: /lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7feb1c45a690>, 'Connection to ritual.uh.edu timed out. (connect timeout=100)'))"))) ``` ## Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - PyArrow version: 6.0.1 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4696/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4696/timeline
null
completed
null
null
false
[ "Hi @finiteautomata, thanks for reporting.\r\n\r\nUnfortunately, I'm not able to reproduce your issue:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: dataset = load_dataset(\"lince\", \"ner_spaeng\")\r\nDownloading builder script: 20.8kB [00:00, 9.09MB/s] \r\nDownloading metadata: 31.2kB [00:00, 13.5MB/s] \r\nDownloading and preparing dataset lince/ner_spaeng (download: 2.93 MiB, generated: 18.45 MiB, post-processed: Unknown size, total: 21.38 MiB) to .../.cache/huggingface/datasets/lince/ner_spaeng/1.0.0/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589...\r\nDownloading data: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.08M/3.08M [00:01<00:00, 2.73MB/s]\r\nDataset lince downloaded and prepared to .../.cache/huggingface/datasets/lince/ner_spaeng/1.0.0/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589. Subsequent calls will reuse this data.\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 630.66it/s]\r\n\r\nIn [2]: dataset\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 33611\r\n })\r\n validation: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 10085\r\n })\r\n test: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 23527\r\n })\r\n})\r\n``` \r\n\r\nPlease note that for this dataset, the original data files are not hosted on the Hugging Face Hub, but on https://ritual.uh.edu\r\nAnd sometimes, the server might be temporarily unavailable, as your error message said (trying to connect to the server timed out):\r\n```\r\nConnectionError: Couldn't reach https://ritual.uh.edu/lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (ConnectTimeout(MaxRetryError(\"HTTPSConnectionPool(host='ritual.uh.edu', port=443): Max retries exceeded with url: /lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7feb1c45a690>, 'Connection to ritual.uh.edu timed out. (connect timeout=100)'))\")))\r\n```\r\nIn these cases you could:\r\n- either contact the owners of the data server where the data is hosted to inform them about the issue in their server\r\n- or re-try after waiting some time: usually these issues are just temporary", "Great, thanks for checking out!" ]
https://api.github.com/repos/huggingface/datasets/issues/1069
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1069/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1069/comments
https://api.github.com/repos/huggingface/datasets/issues/1069/events
https://github.com/huggingface/datasets/pull/1069
756,425,737
MDExOlB1bGxSZXF1ZXN0NTMxOTcyNjYz
1,069
Test
[]
closed
false
null
0
2020-12-03T18:01:45Z
2020-12-04T04:24:18Z
2020-12-04T04:24:11Z
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1069/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1069/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1069.diff", "html_url": "https://github.com/huggingface/datasets/pull/1069", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1069.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1069" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3011
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3011/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3011/comments
https://api.github.com/repos/huggingface/datasets/issues/3011/events
https://github.com/huggingface/datasets/issues/3011
1,014,935,713
I_kwDODunzps48frCh
3,011
load_dataset_builder should error if "name" does not exist?
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
open
false
null
1
2021-10-04T09:20:46Z
2022-09-20T13:05:07Z
null
null
``` import datasets as ds builder = ds.load_dataset_builder('sent_comp', name="doesnotexist") builder.info.config_name ``` returns ``` 'doesnotexist' ``` Shouldn't it raise an error instead? For this dataset, the only valid values for `name` should be: `"default"` or `None` (ie. argument not passed)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3011/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3011/timeline
null
null
null
null
false
[ "Yes I think it should raise an error. Currently it looks like it instantiates a custom configuration with the name given by the user:\r\nhttps://github.com/huggingface/datasets/blob/ba27ce33bf568374cf23a07669fdd875b5718bc2/src/datasets/builder.py#L391-L397" ]
https://api.github.com/repos/huggingface/datasets/issues/2635
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2635/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2635/comments
https://api.github.com/repos/huggingface/datasets/issues/2635/events
https://github.com/huggingface/datasets/pull/2635
943,030,999
MDExOlB1bGxSZXF1ZXN0Njg4Njk5OTM5
2,635
Streaming for the CSV loader
[]
closed
false
null
0
2021-07-13T09:08:58Z
2021-07-13T15:19:38Z
2021-07-13T15:19:37Z
null
It was not using `open` in the builder. Therefore `pd.read_csv` was downloading the full file to start yielding rows. Indeed, when streaming, `open` is extended to support reading from remote file progressively.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2635/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2635/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2635.diff", "html_url": "https://github.com/huggingface/datasets/pull/2635", "merged_at": "2021-07-13T15:19:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/2635.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2635" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3517
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3517/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3517/comments
https://api.github.com/repos/huggingface/datasets/issues/3517/events
https://github.com/huggingface/datasets/pull/3517
1,092,726,651
PR_kwDODunzps4wemwU
3,517
Add CPPE-5 dataset
[]
closed
false
null
1
2022-01-03T18:31:20Z
2022-01-19T02:23:37Z
2022-01-05T18:53:02Z
null
Adds the recently released CPPE-5 dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3517/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3517/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3517.diff", "html_url": "https://github.com/huggingface/datasets/pull/3517", "merged_at": "2022-01-05T18:53:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/3517.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3517" }
true
[ "Thanks so much, @mariosasko and @lhoestq , much appreciated!" ]
https://api.github.com/repos/huggingface/datasets/issues/3289
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3289/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3289/comments
https://api.github.com/repos/huggingface/datasets/issues/3289/events
https://github.com/huggingface/datasets/pull/3289
1,056,323,715
PR_kwDODunzps4uqf79
3,289
Unpin markdown for build_docs now that it's fixed
[]
closed
false
null
0
2021-11-17T16:22:53Z
2021-11-17T16:23:09Z
2021-11-17T16:23:08Z
null
`markdown`'s bug has been fixed, so this PR reverts #3286
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3289/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3289/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3289.diff", "html_url": "https://github.com/huggingface/datasets/pull/3289", "merged_at": "2021-11-17T16:23:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/3289.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3289" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3861
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3861/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3861/comments
https://api.github.com/repos/huggingface/datasets/issues/3861/events
https://github.com/huggingface/datasets/issues/3861
1,162,702,044
I_kwDODunzps5FTWzc
3,861
big_patent cased version
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
2
2022-03-08T14:08:55Z
2023-04-21T14:32:03Z
2023-04-21T14:32:03Z
null
Hi! I am interested in working with the big_patent dataset. In Tensorflow, there are a number of versions of the dataset: - 1.0.0 : lower cased tokenized words - 2.0.0 : Update to use cased raw strings - 2.1.2 (default): Fix update to cased raw strings. The version in the huggingface `datasets` library is the 1.0.0. I would be very interested in using the 2.1.2 cased version (used more, recently, for example in the Pegasus paper), but it does not seem to be supported (I tried using the `revision` parameter in `load_datasets`). Is there a way to already load it, or would it be possible to add that version?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3861/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3861/timeline
null
completed
null
null
false
[ "To follow up on this: the cased and uncased versions actually contain different content, and the cased one is easier since it contains a Summary of the Invention in the input.\r\n\r\nSee the paper describing the issue here:\r\nhttps://aclanthology.org/2022.gem-1.34/", "Thanks for proposing the addition of the cased version of this dataset and for pinging again recently.\r\n\r\nI have just merged a PR that adds the cased version: https://huggingface.co/datasets/big_patent/discussions/3\r\n\r\nThe cased version (2.1.2) is the default one:\r\n```python\r\nds = load_dataset(\"big_patent\", \"all\")\r\n```\r\n\r\nTo use the 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:\r\n```python\r\nds = load_dataset(\"big_patent\", codes=\"all\", version=\"1.0.0\")\r\n```\r\n\r\nClosed by: https://huggingface.co/datasets/big_patent/discussions/3" ]
https://api.github.com/repos/huggingface/datasets/issues/3438
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3438/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3438/comments
https://api.github.com/repos/huggingface/datasets/issues/3438/events
https://github.com/huggingface/datasets/pull/3438
1,081,302,203
PR_kwDODunzps4v52Va
3,438
Update supported versions of Python in setup.py
[]
closed
false
null
0
2021-12-15T17:30:12Z
2021-12-20T14:22:13Z
2021-12-20T14:22:12Z
null
Update the list of supported versions of Python in `setup.py` to keep the PyPI project description updated.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3438/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3438/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3438.diff", "html_url": "https://github.com/huggingface/datasets/pull/3438", "merged_at": "2021-12-20T14:22:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/3438.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3438" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/596
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/596/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/596/comments
https://api.github.com/repos/huggingface/datasets/issues/596/events
https://github.com/huggingface/datasets/pull/596
696,928,139
MDExOlB1bGxSZXF1ZXN0NDgyOTM5MTgw
596
[style/quality] Moving to isort 5.0.0 + style/quality on datasets and metrics
[]
closed
false
null
1
2020-09-09T15:47:21Z
2020-09-10T10:05:04Z
2020-09-10T10:05:03Z
null
Move the repo to isort 5.0.0. Also start testing style/quality on datasets and metrics. Specific rule: we allow F401 (unused imports) in metrics to be able to add imports to detect early on missing dependencies. Maybe we could add this in datasets but while cleaning this I've seen many example of really unused imports in dataset so maybe it's better to have it as a line-by-line nova instead of a general rule like in metrics.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/596/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/596/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/596.diff", "html_url": "https://github.com/huggingface/datasets/pull/596", "merged_at": "2020-09-10T10:05:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/596.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/596" }
true
[ "Ready for review @lhoestq, just updated a few 156 files here" ]
https://api.github.com/repos/huggingface/datasets/issues/442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/442/comments
https://api.github.com/repos/huggingface/datasets/issues/442/events
https://github.com/huggingface/datasets/issues/442
666,201,810
MDU6SXNzdWU2NjYyMDE4MTA=
442
[Suggestion] Glue Diagnostic Data with Labels
[ { "color": "72f99f", "default": false, "description": "Discussions on the datasets", "id": 2067401494, "name": "Dataset discussion", "node_id": "MDU6TGFiZWwyMDY3NDAxNDk0", "url": "https://api.github.com/repos/huggingface/datasets/labels/Dataset%20discussion" } ]
open
false
null
0
2020-07-27T10:59:58Z
2020-08-24T15:13:20Z
null
null
Hello! First of all, thanks for setting up this useful project! I've just realised you provide the the [Glue Diagnostics Data](https://huggingface.co/nlp/viewer/?dataset=glue&config=ax) without labels, indicating in the `GlueConfig` that you've only a test set. Yet, the data with labels is available, too (see also [here](https://gluebenchmark.com/diagnostics#introduction)): https://www.dropbox.com/s/ju7d95ifb072q9f/diagnostic-full.tsv?dl=1 Have you considered incorporating it?
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/442/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/442/timeline
null
null
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/6012
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6012/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6012/comments
https://api.github.com/repos/huggingface/datasets/issues/6012/events
https://github.com/huggingface/datasets/issues/6012
1,795,575,432
I_kwDODunzps5rBk6I
6,012
[FR] Transform Chaining, Lazy Mapping
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
6
2023-07-09T21:40:21Z
2023-07-14T13:12:40Z
null
null
### Feature request Currently using a `map` call processes and duplicates the whole dataset, which takes both time and disk space. The solution is to allow lazy mapping, which is essentially a saved chain of transforms that are applied on the fly whenever a slice of the dataset is requested. The API should look like `map`, as `set_transform` changes the current dataset while `map` returns another dataset. ### Motivation Lazy processing allows lower disk usage and faster experimentation. ### Your contribution _
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6012/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6012/timeline
null
null
null
null
false
[ "You can use `with_transform` to get a new dataset object.\r\n\r\nSupport for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex. ", "> You can use `with_transform` to get a new dataset object.\r\n> \r\n> Support for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex.\r\n\r\nI read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\n`with_transform` still does not chain AFAIU.", "> I read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\nYou must cache an `IterableDataset` to disk to load it as a `Dataset`. One way to do this is with `Dataset.from_generator`:\r\n```python\r\nfrom functools import partial\r\nfrom datasets import Dataset\r\n\r\ndef gen_from_iterable_dataset(iterable_ds)\r\n yield from iterable_ds\r\n\r\nds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n```\r\n\r\n> with_transform still does not chain AFAIU.\r\n\r\nYes, not supported yet - the solution is to combine the transforms into a single one.", "I wonder if it would be beneficial to have a dedicated method to do that ? Maybe a `.save_to_disk()` so that the user can reload the resulting dataset later ?", "> ```python\r\n> from functools import partial\r\n> from datasets import Dataset\r\n> \r\n> def gen_from_iterable_dataset(iterable_ds)\r\n> yield from iterable_ds\r\n> \r\n> ds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n> ```\r\n\r\n@mariosasko With these complex mapping functions, what hash will be used to cache this dataset?\r\n", "The params passed to `Dataset.from_generator` will be used to compute the hash (`partial` encapsulates the `iterable_ds` value, so changing it will also change the hash)" ]
https://api.github.com/repos/huggingface/datasets/issues/144
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/144/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/144/comments
https://api.github.com/repos/huggingface/datasets/issues/144/events
https://github.com/huggingface/datasets/pull/144
619,477,367
MDExOlB1bGxSZXF1ZXN0NDE4OTY5NjA1
144
[AWS tests] AWS test should not run for canonical datasets
[]
closed
false
null
0
2020-05-16T13:39:30Z
2020-05-16T13:44:34Z
2020-05-16T13:44:33Z
null
AWS tests should in general not run for canonical datasets. Only local tests will run in this case. This way a PR is able to pass when adding a new dataset. This PR changes to logic to the following: 1) All datasets that are present in `nlp/datasets` are tested only locally. This way when one adds a canonical dataset, the PR includes his dataset in the tests. 2) All datasets that are only present on AWS, such as `webis/tl_dr` atm are tested only on AWS. I think the testing structure might need a bigger refactoring and better documentation very soon. Merging for now to unblock new PRs @thomwolf @mariamabarham .
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/144/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/144/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/144.diff", "html_url": "https://github.com/huggingface/datasets/pull/144", "merged_at": "2020-05-16T13:44:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/144.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/144" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/4898
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4898/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4898/comments
https://api.github.com/repos/huggingface/datasets/issues/4898/events
https://github.com/huggingface/datasets/issues/4898
1,351,851,254
I_kwDODunzps5Qk5z2
4,898
Dataset Viewer issue for timit_asr
[]
closed
false
null
5
2022-08-26T07:12:05Z
2022-10-03T12:40:28Z
2022-10-03T12:40:27Z
null
### Link _No response_ ### Description _No response_ ### Owner _No response_
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4898/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4898/timeline
null
completed
null
null
false
[ "Yes, the dataset viewer is based on `datasets`, and the following does not work:\r\n\r\n```\r\n>>> from datasets import get_dataset_split_names\r\n>>> get_dataset_split_names('timit_asr')\r\nDownloading builder script: 7.48kB [00:00, 6.69MB/s]\r\nTraceback (most recent call last):\r\n File \"/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py\", line 354, in get_dataset_config_info\r\n for split_generator in builder._split_generators(\r\n File \"/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/timit_asr/43f9448dd5db58e95ee48a277f466481b151f112ea53e27f8173784da9254fb2/timit_asr.py\", line 117, in _split_generators\r\n data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))\r\n File \"/home/slesage/.pyenv/versions/3.9.6/lib/python3.9/posixpath.py\", line 231, in expanduser\r\n path = os.fspath(path)\r\nTypeError: expected str, bytes or os.PathLike object, not NoneType\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py\", line 404, in get_dataset_split_names\r\n info = get_dataset_config_info(\r\n File \"/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py\", line 359, in get_dataset_config_info\r\n raise SplitsNotFoundError(\"The split names could not be parsed from the dataset config.\") from err\r\ndatasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.\r\n```\r\n\r\ncc @huggingface/datasets ", "Due to license restriction, this dataset needs manual downloading of the original data.\r\n\r\nThis information is in the dataset card: https://huggingface.co/datasets/timit_asr\r\n> The dataset needs to be downloaded manually from https://catalog.ldc.upenn.edu/LDC93S1", "Maybe a better error message for datasets that need manual downloading? @severo \r\n\r\nMaybe we can raise a specific excpetion as done from `load_dataset`...", "Yes, ideally something like https://github.com/huggingface/datasets/blob/main/src/datasets/builder.py#L81\r\n", "The preview is now disabled (and a descriptive warning is displayed) for datasets requiring manual download. See:\r\n\r\n![timit_asr-manual-download](https://user-images.githubusercontent.com/8515462/193578572-3d21b790-f848-4257-9e9b-7cab3d76a269.png)\r\n" ]
https://api.github.com/repos/huggingface/datasets/issues/5685
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5685/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5685/comments
https://api.github.com/repos/huggingface/datasets/issues/5685/events
https://github.com/huggingface/datasets/issues/5685
1,646,048,667
I_kwDODunzps5iHLWb
5,685
Broken Image render on the hub website
[]
closed
false
null
3
2023-03-29T15:25:30Z
2023-03-30T07:54:25Z
2023-03-30T07:54:25Z
null
### Describe the bug Hi :wave: Not sure if this is the right place to ask, but I am trying to load a huge amount of datasets on the hub (:partying_face: ) but I am facing a little issue with the `image` type ![image](https://user-images.githubusercontent.com/15908060/228587875-427a37f1-3a31-4e17-8bbe-0f759003910d.png) See this [dataset](https://huggingface.co/datasets/Francesco/cell-towers), basically for some reason the first image has numerical bytes inside, not sure if that is okay, but the image render feature **doesn't work** So the dataset is stored in the following way ```python builder.download_and_prepare(output_dir=str(output_dir)) ds = builder.as_dataset(split="train") # [NOTE] no idea how to push it from the builder folder ds.push_to_hub(repo_id=repo_id) builder.as_dataset(split="validation").push_to_hub(repo_id=repo_id) ds = builder.as_dataset(split="test") ds.push_to_hub(repo_id=repo_id) ``` The build is this class ```python class COCOLikeDatasetBuilder(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "objects": datasets.Sequence( { "id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence( datasets.Value("float32"), length=4 ), "category": datasets.ClassLabel(names=categories), } ), } ) return datasets.DatasetInfo( description=description, features=features, homepage=homepage, license=license, citation=citation, ) def _split_generators(self, dl_manager): archive = dl_manager.download(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotation_file_path": "train/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "annotation_file_path": "test/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "annotation_file_path": "valid/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, annotation_file_path, files): def process_annot(annot, category_id_to_category): return { "id": annot["id"], "area": annot["area"], "bbox": annot["bbox"], "category": category_id_to_category[annot["category_id"]], } image_id_to_image = {} idx = 0 # This loop relies on the ordering of the files in the archive: # Annotation files come first, then the images. for path, f in files: file_name = os.path.basename(path) if annotation_file_path in path: annotations = json.load(f) category_id_to_category = { category["id"]: category["name"] for category in annotations["categories"] } print(category_id_to_category) image_id_to_annotations = collections.defaultdict(list) for annot in annotations["annotations"]: image_id_to_annotations[annot["image_id"]].append(annot) image_id_to_image = { annot["file_name"]: annot for annot in annotations["images"] } elif file_name in image_id_to_image: image = image_id_to_image[file_name] objects = [ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]] ] print(file_name) yield idx, { "image_id": image["id"], "image": {"path": path, "bytes": f.read()}, "width": image["width"], "height": image["height"], "objects": objects, } idx += 1 ``` Basically, I want to add to the hub every dataset I come across on coco format Thanks Fra ### Steps to reproduce the bug In this case, you can just navigate on the [dataset](https://huggingface.co/datasets/Francesco/cell-towers) ### Expected behavior I was expecting the image rendering feature to work ### Environment info Not a lot to share, I am using `datasets` from a fresh venv
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5685/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5685/timeline
null
completed
null
null
false
[ "Hi! \r\n\r\nYou can fix the viewer by adding the `dataset_info` YAML field deleted in https://huggingface.co/datasets/Francesco/cell-towers/commit/b95b59ddd91ebe9c12920f0efe0ed415cd0d4298 back to the metadata section of the card. \r\n\r\nTo avoid this issue in the feature, you can use `huggingface_hub`'s [RepoCard](https://huggingface.co/docs/huggingface_hub/package_reference/cards) API to update the dataset card instead of `upload_file`:\r\n```python\r\nfrom huggingface_hub import DatasetCard\r\n# Load card\r\ncard = DatasetCard.load(\"<namespace>/<repo_id>\")\r\n# Modify card content\r\ncard.content = ...\r\n# Push card to the Hub\r\ncard.push_to_hub(\"<namespace>/<repo_id>\")\r\n```\r\n\r\nHowever, the best solution would be to use the features info stored in the header of the Parquet shards generated with `push_to_hub` on the viewer side to avoid unexpected issues such as this one. This shouldn't be too hard to address.", "Thanks for reporting @FrancescoSaverioZuppichini.\r\n\r\nFor future issues with your specific dataset, you can use its \"Community\" tab to start a conversation: https://huggingface.co/datasets/Francesco/cell-towers/discussions/new", "Thanks @albertvillanova , @mariosasko I was not aware of this requirement from the doc (must have skipped :sweat_smile: )\r\n\r\nConfirmed, adding back `dataset_info` fixed the issu" ]
https://api.github.com/repos/huggingface/datasets/issues/1192
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1192/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1192/comments
https://api.github.com/repos/huggingface/datasets/issues/1192/events
https://github.com/huggingface/datasets/pull/1192
757,839,671
MDExOlB1bGxSZXF1ZXN0NTMzMTM0NjI3
1,192
Add NewsPH_NLI dataset
[]
closed
false
null
0
2020-12-06T04:00:31Z
2020-12-07T15:39:43Z
2020-12-07T15:39:43Z
null
This PR adds the NewsPH-NLI Dataset, the first benchmark dataset for sentence entailment in the low-resource Filipino language. Constructed through exploting the structure of news articles. Contains 600,000 premise-hypothesis pairs, in 70-15-15 split for training, validation, and testing. Link to the paper: https://arxiv.org/pdf/2010.11574.pdf Link to the dataset/repo: https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1192/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1192/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1192.diff", "html_url": "https://github.com/huggingface/datasets/pull/1192", "merged_at": "2020-12-07T15:39:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/1192.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1192" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/3053
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3053/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3053/comments
https://api.github.com/repos/huggingface/datasets/issues/3053/events
https://github.com/huggingface/datasets/issues/3053
1,022,076,905
I_kwDODunzps4866fp
3,053
load_dataset('the_pile_openwebtext2') produces ArrowInvalid, value too large to fit in C integer type
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
5
2021-10-10T19:55:21Z
2023-02-24T14:02:20Z
2023-02-24T14:02:20Z
null
## Describe the bug When loading `the_pile_openwebtext2`, we get the error `pyarrow.lib.ArrowInvalid: Value 2111 too large to fit in C integer type` ## Steps to reproduce the bug ```python import datasets ds = datasets.load_dataset('the_pile_openwebtext2') ``` ## Expected results Should download the dataset, convert it to an arrow file, and return a working Dataset object. ## Actual results The download works, but conversion to the arrow file fails as follows: ``` >>> ds = datasets.load_dataset('the_pile_openwebtext2') Downloading and preparing dataset openwebtext2/plain_text (download: 27.33 GiB, generated: 63.86 GiB , post-processed: Unknown size, total: 91.19 GiB) to /home/davidbau/.cache/huggingface/datasets/open webtext2/plain_text/1.0.0/c48ec73ba3483bac673463f48f67e9a4fd8cb49a9d6ec4fb957f0b424b97cf25... Traceback (most recent call last): File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/builder.py", line 1133, in _prepare_split writer.write(example, key) File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 366, in write self.write_examples_on_file() File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 311, in write_examples_on_file pa_array = pa.array(typed_sequence) File "pyarrow/array.pxi", line 222, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/davidbau/.conda/envs/tenv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 115, in __arrow_array__ out = pa.array(cast_to_python_objects(self.data, only_1d_for_numpy=True), type=type) File "pyarrow/array.pxi", line 305, in pyarrow.lib.array File "pyarrow/array.pxi", line 39, in pyarrow.lib._sequence_to_array File "pyarrow/error.pxi", line 122, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 84, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Value 2111 too large to fit in C integer type ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: ``` - Platform: Ubuntu 20.04 - Python version: python 3.9 - PyArrow version: 3.0.0
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3053/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3053/timeline
null
completed
null
null
false
[ "I encountered the same bug using different datasets.\r\nany suggestions?", "+1, can reproduce here!", "I get the same error\r\nPlatform: Windows 10\r\nPython: python 3.8.8\r\nPyArrow: 5.0", "I was getting a similar error `pyarrow.lib.ArrowInvalid: Integer value 528 not in range: -128 to 127` - AFAICT, this is because the type specified for `reddit_scores` is `datasets.Sequence(datasets.Value(\"int8\"))`, but the actual values can be well outside the max range for 8-bit integers.\r\n\r\nI worked around this by downloading the `the_pile_openwebtext2.py` and editing it to use local files and drop reddit scores as a column (not needed for my purposes).", "Addressed in https://huggingface.co/datasets/the_pile_openwebtext2/discussions/4" ]
https://api.github.com/repos/huggingface/datasets/issues/4362
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4362/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4362/comments
https://api.github.com/repos/huggingface/datasets/issues/4362/events
https://github.com/huggingface/datasets/pull/4362
1,238,680,112
PR_kwDODunzps439bkf
4,362
Update dataset_infos for UDHN/udhr dataset
[]
closed
false
null
5
2022-05-17T13:52:59Z
2022-06-08T19:20:11Z
2022-06-08T19:11:21Z
null
Checksum update to `udhr` for issue #4361
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4362/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4362/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4362.diff", "html_url": "https://github.com/huggingface/datasets/pull/4362", "merged_at": "2022-06-08T19:11:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/4362.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4362" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks for contributing @leondz.\r\n\r\nThe checksums of the files have changed because more languages have been added:\r\n- the new language codes need to be added to the dataset card (README file)\r\n- I think the dataset version number should also be increased, so that users who had previously cached it, get a new dataset download (with the additional languages)", "Yep! All done (also fixed the language tags in the README which were iso639-3 instead of the expected bcp47)", "I guess the language code CI failure is due to languages.json being a subset of bcp47 (see issue #4304), happy to contribute a solution here, e.g. autogeneration of the lang list from the relevant isos and the ietf bcp47 subtag register or full code for validation", "> Thanks again for your contribution, @leondz.\r\n> \r\n> Yes, I think it is OK to set version 1.0.0 (as previous was 0.0.0).\r\n> \r\n> One of the CI failures is related to dummy data: once you have updated the dataset version, the dummy_data ZIP file should be moved from \"dummy/0.0.0/dummy_data.zip\" to \"dummy/1.0.0/dummy_data.zip\".\r\n\r\nOh, thanks, I missed that one\r\n\r\n\r\n> Other CI failure is related to missing languages in our resources file. This has been addressed in this PR:\r\n> \r\n> * #4371\r\n> \r\n> You should merge master branch into your feature branch to incorporate that fix.\r\n\r\nYeah, I saw this :) I already have the merge, thanks. I'm talking about the longer-term picture: every time another language code comes up (e.g. da-bornholm or es-VE), the json will need updating, because the current approach is non-exhaustive manual whitelisting instead of relying on the established bcp standard." ]
https://api.github.com/repos/huggingface/datasets/issues/1496
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1496/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1496/comments
https://api.github.com/repos/huggingface/datasets/issues/1496/events
https://github.com/huggingface/datasets/pull/1496
763,091,663
MDExOlB1bGxSZXF1ZXN0NTM3NTc4NzQw
1,496
Add Multi-Dimensional Gender Bias classification data
[]
closed
false
null
0
2020-12-12T00:17:37Z
2020-12-14T21:14:55Z
2020-12-14T21:14:55Z
null
https://parl.ai/projects/md_gender/ Mostly has the ABOUT dimension since the others are inferred from other datasets in most cases. I tried to keep the dummy data small but one of the configs has 140 splits ( > 56KB data)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1496/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1496/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1496.diff", "html_url": "https://github.com/huggingface/datasets/pull/1496", "merged_at": "2020-12-14T21:14:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/1496.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1496" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/2257
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2257/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2257/comments
https://api.github.com/repos/huggingface/datasets/issues/2257/events
https://github.com/huggingface/datasets/pull/2257
866,755,203
MDExOlB1bGxSZXF1ZXN0NjIyNTkwMDQw
2,257
added metrics for CUAD
[]
closed
false
null
3
2021-04-24T14:09:54Z
2021-04-29T09:53:38Z
2021-04-27T16:16:32Z
null
For now I've added F1, AUPR, Precision at 80% recall, and Precision at 90%. Last 3 metrics were reported in the [paper](https://arxiv.org/pdf/2103.06268.pdf). Please let me know if we require `exact_match` metric too here
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2257/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2257/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/2257.diff", "html_url": "https://github.com/huggingface/datasets/pull/2257", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2257.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2257" }
true
[ "> For now I've added F1, AUPR, Precision at 80% recall, and Precision at 90%. Last 3 metrics were reported in the [paper](https://arxiv.org/pdf/2103.06268.pdf). Please let me know if we require `exact_match` metric too here\r\n\r\n@bhavitvyamalik I guess the mentioned metrics are enough but it would be better if exact match is also added since the standard SQUAD dataset also has it.", "I would like to quote it from the website that I am following to learn\nthese things.\nExact Match:\nThis metric is as simple as it sounds. For each question+answer pair, if\nthe characters of the model's prediction exactly match the characters of\n*(one\nof) the True Answer(s)*, EM = 1, otherwise EM = 0. This is a strict\nall-or-nothing metric; being off by a single character results in a score\nof 0. When assessing against a negative example, if the model predicts any\ntext at all, it automatically receives a 0 for that example.\n\nSo, I guess you need to ensure at least 1 predicted answer matches for EM\nto be 1.\nSource:\nhttps://qa.fastforwardlabs.com/no%20answer/null%20threshold/bert/distilbert/exact%20match/f1/robust%20predictions/2020/06/09/Evaluating_BERT_on_SQuAD.html\n\nYou can go to their homepage and read the other links. They have detailed\nexplanations on evaluation metrics. You can also have a look at the\nsquad_v2 metric file for further clarification.\n\nRegards,\nMohammed Rakib\n\nOn Sun, 25 Apr 2021 at 15:20, Bhavitvya Malik ***@***.***>\nwrote:\n\n> I'm a little confused when it comes to 2 ground truths which can be a\n> possible answer. Like here for eg.\n>\n> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User:\n> Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id':\n> 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply\n> Agreement__Parties'}]\n>\n> references = [{'answers': {'answer_start': [143, 49], 'text': ['The\n> seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co.,\n> Ltd.']}, 'id':\n> 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply\n> Agreement__Parties'}]\n>\n> Should I ensure at least 1 predicted answer matches or both predicted\n> answers should match (like in this case) for EM to be 1?\n>\n> —\n> You are receiving this because you commented.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/pull/2257#issuecomment-826289753>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AHMYZAZSAEZNFWEMVAPK6M3TKPNHLANCNFSM43QFZVPQ>\n> .\n>\n", "Updated the same @MohammedRakib! Even if a single answer matches I'm returning 1 in that case for EM (not traversing all predictions once we have one `exact_match` from prediction)" ]
https://api.github.com/repos/huggingface/datasets/issues/886
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/886/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/886/comments
https://api.github.com/repos/huggingface/datasets/issues/886/events
https://github.com/huggingface/datasets/pull/886
750,829,314
MDExOlB1bGxSZXF1ZXN0NTI3NDU1MDU5
886
Fix wikipedia custom config
[]
closed
false
null
1
2020-11-25T13:44:12Z
2021-06-25T05:24:16Z
2020-11-25T15:42:13Z
null
It should be possible to use the wikipedia dataset with any `language` and `date`. However it was not working as noticed in #784 . Indeed the custom wikipedia configurations were not enabled for some reason. I fixed that and was able to run ```python from datasets import load_dataset load_dataset("./datasets/wikipedia", language="zh", date="20201120", beam_runner='DirectRunner') ``` cc @stvhuang @SamuelCahyawijaya Fix #784
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/886/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/886/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/886.diff", "html_url": "https://github.com/huggingface/datasets/pull/886", "merged_at": "2020-11-25T15:42:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/886.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/886" }
true
[ "I think this issue is still not resolve yet. Please check my comment in the following issue, thanks.\r\n[#577](https://github.com/huggingface/datasets/issues/577#issuecomment-868122769)" ]
https://api.github.com/repos/huggingface/datasets/issues/5918
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5918/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5918/comments
https://api.github.com/repos/huggingface/datasets/issues/5918/events
https://github.com/huggingface/datasets/issues/5918
1,735,313,549
I_kwDODunzps5nbsiN
5,918
File not found for audio dataset
[]
open
false
null
1
2023-06-01T02:15:29Z
2023-06-11T06:02:25Z
null
null
### Describe the bug After loading an audio dataset, and looking at a sample entry, the `path` element, which is supposed to be the path to the audio file, doesn't actually exist. ### Steps to reproduce the bug Run bug.py: ```py import os.path from datasets import load_dataset def run() -> None: cv13 = load_dataset( "mozilla-foundation/common_voice_13_0", "hi", split="train", ) print(cv13[0]) audio_file = cv13[0]["path"] if not os.path.exists(audio_file): raise ValueError(f'File {audio_file} does not exist.') if __name__ == "__main__": run() ``` The result (on my machine): ```json {'client_id': '0f018a99663f33afbb7d38aee281fb1afcfd07f9e7acd00383f604e1e17c38d6ed8adf1bd2ccbf927a52c5adefb8ac4b158ce27a7c2ed9581e71202eb302dfb3', 'path': 'C:\\Users\\rober\\.cache\\huggingface\\datasets\\downloads\\extracted\\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\\common_voice_hi_26008353.mp3', 'audio': {'path': 'C:\\Users\\rober\\.cache\\huggingface\\datasets\\downloads\\extracted\\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\\common_voice_hi_26008353.mp3', 'array': array([ 6.46234854e-26, -1.35709319e-25, -8.07793567e-26, ..., 1.06425944e-07, 4.46417090e-08, 2.61451660e-09]), 'sampling_rate': 48000}, 'sentence': 'हमने उसका जन्मदिन मनाया।', 'up_votes': 2, 'down_votes': 0, 'age': '', 'gender': '', 'accent': '', 'locale': 'hi', 'segment': '' ', 'variant': ''} ``` ```txt Traceback (most recent call last): File "F:\eo-reco\bug.py", line 18, in <module> run() File "F:\eo-reco\bug.py", line 15, in run raise ValueError(f'File {audio_file} does not exist.') ValueError: File C:\Users\rober\.cache\huggingface\datasets\downloads\extracted\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\common_voice_hi_26008353.mp3 does not exist. ``` ### Expected behavior The `path` element points to the correct file, which happens to be: ``` C:\Users\rober\.cache\huggingface\datasets\downloads\extracted\8d1479bc09b4609bc2675bd02d6869a4d5e09f7e6616f540bd55eacef46c6e2b\hi_train_0\common_voice_hi_26008353.mp3 ``` That is, there's an extra directory `hi_train_0` that is not in the `path` element. ### Environment info - `datasets` version: 2.12.0 - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.11.3 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 -
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5918/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5918/timeline
null
null
null
null
false
[ "load_dataset () did not work for loading local files either " ]
https://api.github.com/repos/huggingface/datasets/issues/2149
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2149/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2149/comments
https://api.github.com/repos/huggingface/datasets/issues/2149/events
https://github.com/huggingface/datasets/issues/2149
844,734,076
MDU6SXNzdWU4NDQ3MzQwNzY=
2,149
Telugu subset missing for xtreme tatoeba dataset
[]
closed
false
null
2
2021-03-30T15:26:34Z
2022-10-05T13:28:30Z
2022-10-05T13:28:30Z
null
from nlp import load_dataset train_dataset = load_dataset('xtreme', 'tatoeba.tel')['validation'] ValueError: BuilderConfig tatoeba.tel not found. but language tel is actually included in xtreme: https://github.com/google-research/xtreme/blob/master/utils_preprocess.py def tatoeba_preprocess(args): lang3_dict = { 'afr':'af', 'ara':'ar', 'bul':'bg', 'ben':'bn', 'deu':'de', 'ell':'el', 'spa':'es', 'est':'et', 'eus':'eu', 'pes':'fa', 'fin':'fi', 'fra':'fr', 'heb':'he', 'hin':'hi', 'hun':'hu', 'ind':'id', 'ita':'it', 'jpn':'ja', 'jav':'jv', 'kat':'ka', 'kaz':'kk', 'kor':'ko', 'mal':'ml', 'mar':'mr', 'nld':'nl', 'por':'pt', 'rus':'ru', 'swh':'sw', 'tam':'ta', **_'tel':'te'_**, 'tha':'th', 'tgl':'tl', <----here 'tur':'tr', 'urd':'ur', 'vie':'vi', 'cmn':'zh', 'eng':'en', }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2149/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2149/timeline
null
completed
null
null
false
[ "Good catch ! Thanks for reporting\r\n\r\nI just opened #2180 to fix this", "Fixed in #2180" ]
https://api.github.com/repos/huggingface/datasets/issues/5295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5295/comments
https://api.github.com/repos/huggingface/datasets/issues/5295/events
https://github.com/huggingface/datasets/issues/5295
1,464,006,743
I_kwDODunzps5XQvhX
5,295
Extractions failed when .zip file located on read-only path (e.g., SageMaker FastFile mode)
[]
closed
false
null
2
2022-11-25T03:59:43Z
2023-07-21T14:39:09Z
2023-07-21T14:39:09Z
null
### Describe the bug Hi, `load_dataset()` does not work .zip files located on a read-only directory. Looks like it's because Dataset creates a lock file in the [same directory](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/utils/extract.py) as the .zip file. Encountered this when attempting `load_dataset()` on a datadir with SageMaker FastFile mode. ### Steps to reproduce the bug ```python # Showing relevant lines only. hyperparameters = { "dataset_name": "ydshieh/coco_dataset_script", "dataset_config_name": 2017, "data_dir": "/opt/ml/input/data/coco", "cache_dir": "/tmp/huggingface-cache", # Fix dataset complains out-of-space. ... } estimator = PyTorch( base_job_name="clip", source_dir="../src/sm-entrypoint", entry_point="run_clip.py", # Transformers/src/examples/pytorch/contrastive-image-text/run_clip.py framework_version="1.12", py_version="py38", hyperparameters=hyperparameters, instance_count=1, instance_type="ml.p3.16xlarge", volume_size=100, distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) fast_file = lambda x: TrainingInput(x, input_mode='FastFile') estimator.fit( { "pre-trained": fast_file("s3://vm-sagemakerr-us-east-1/clip/pre-trained-checkpoint/"), "coco": fast_file("s3://vm-sagemakerr-us-east-1/clip/coco-zip-files/"), } ) ``` Error message: ```text ErrorMessage "OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock' """ The above exception was the direct cause of the following exception Traceback (most recent call last) File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/mpi4py/__main__.py", line 7, in <module> main() File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 198, in main run_command_line(args) File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 47, in run_command_line run_path(sys.argv[0], run_name='__main__') File "/opt/conda/lib/python3.8/runpy.py", line 265, in run_path return _run_module_code(code, init_globals, run_name, File "/opt/conda/lib/python3.8/runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "run_clip_smddp.py", line 594, in <module> File "run_clip_smddp.py", line 327, in main dataset = load_dataset( File "/opt/conda/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 891, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/root/.cache/huggingface/modules/datasets_modules/datasets/ydshieh--coco_dataset_script/e033205c0266a54c10be132f9264f2a39dcf893e798f6756d224b1ff5078998f/coco_dataset_script.py", line 123, in _split_generators archive_path = dl_manager.download_and_extract(_DL_URLS) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 447, in download_and_extract return self.extract(self.download(url_or_urls)) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 419, in extract extracted_paths = map_nested( File "/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 472, in map_nested mapped = pool.map(_single_map_nested, split_kwds) File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 364, in map return self._map_async(func, iterable, mapstar, chunksize).get() File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 771, in get raise self._value OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'" ``` ### Expected behavior `load_dataset()` to succeed, just like when .zip file is passed in SageMaker File mode. ### Environment info * datasets-2.7.1 * transformers-4.24.0 * python-3.8 * torch-1.12 * SageMaker PyTorch DLC
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5295/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5295/timeline
null
completed
null
null
false
[ "Hi ! Thanks for reporting. Indeed the lock file should be placed in a directory with write permission (e.g. in the directory where the archive is extracted).", "I opened https://github.com/huggingface/datasets/pull/5320 to fix this - it places the lock file in the cache directory instead of trying to put in next to the ZIP where it's read-only" ]
https://api.github.com/repos/huggingface/datasets/issues/285
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/285/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/285/comments
https://api.github.com/repos/huggingface/datasets/issues/285/events
https://github.com/huggingface/datasets/pull/285
641,360,702
MDExOlB1bGxSZXF1ZXN0NDM2NjAyMjk4
285
Consistent formatting of citations
[]
closed
false
null
1
2020-06-18T16:25:23Z
2020-06-22T08:09:25Z
2020-06-22T08:09:24Z
null
#283
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/285/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/285/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/285.diff", "html_url": "https://github.com/huggingface/datasets/pull/285", "merged_at": "2020-06-22T08:09:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/285.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/285" }
true
[ "Circle CI shuold be green :-) " ]
https://api.github.com/repos/huggingface/datasets/issues/5952
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5952/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5952/comments
https://api.github.com/repos/huggingface/datasets/issues/5952/events
https://github.com/huggingface/datasets/pull/5952
1,756,481,591
PR_kwDODunzps5S-OIh
5,952
Add Arrow builder docs
[]
closed
false
null
3
2023-06-14T09:42:46Z
2023-06-14T14:42:31Z
2023-06-14T14:34:39Z
null
following https://github.com/huggingface/datasets/pull/5944
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5952/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5952/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5952.diff", "html_url": "https://github.com/huggingface/datasets/pull/5952", "merged_at": "2023-06-14T14:34:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/5952.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5952" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006522 / 0.011353 (-0.004831) | 0.004319 / 0.011008 (-0.006690) | 0.099280 / 0.038508 (0.060772) | 0.033117 / 0.023109 (0.010007) | 0.339392 / 0.275898 (0.063494) | 0.366219 / 0.323480 (0.042739) | 0.003896 / 0.007986 (-0.004090) | 0.003412 / 0.004328 (-0.000916) | 0.076655 / 0.004250 (0.072404) | 0.045203 / 0.037052 (0.008150) | 0.355800 / 0.258489 (0.097311) | 0.372533 / 0.293841 (0.078692) | 0.032318 / 0.128546 (-0.096229) | 0.009030 / 0.075646 (-0.066616) | 0.328701 / 0.419271 (-0.090571) | 0.052891 / 0.043533 (0.009358) | 0.341131 / 0.255139 (0.085992) | 0.351593 / 0.283200 (0.068393) | 0.105136 / 0.141683 (-0.036546) | 1.475953 / 1.452155 (0.023798) | 1.566074 / 1.492716 (0.073357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216671 / 0.018006 (0.198664) | 0.446952 / 0.000490 (0.446462) | 0.006340 / 0.000200 (0.006140) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028293 / 0.037411 (-0.009118) | 0.112298 / 0.014526 (0.097773) | 0.118634 / 0.176557 (-0.057923) | 0.175542 / 0.737135 (-0.561593) | 0.124773 / 0.296338 (-0.171565) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435209 / 0.215209 (0.220000) | 4.344361 / 2.077655 (2.266706) | 2.128943 / 1.504120 (0.624823) | 1.945465 / 1.541195 (0.404271) | 2.049932 / 1.468490 (0.581442) | 0.547126 / 4.584777 (-4.037651) | 3.768698 / 3.745712 (0.022986) | 1.924441 / 5.269862 (-3.345420) | 1.146364 / 4.565676 (-3.419312) | 0.067466 / 0.424275 (-0.356809) | 0.011175 / 0.007607 (0.003568) | 0.540978 / 0.226044 (0.314933) | 5.393120 / 2.268929 (3.124191) | 2.639027 / 55.444624 (-52.805597) | 2.327216 / 6.876477 (-4.549261) | 2.500532 / 2.142072 (0.358460) | 0.679120 / 4.805227 (-4.126107) | 0.148824 / 6.500664 (-6.351840) | 0.064195 / 0.075469 (-0.011274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.158387 / 1.841788 (-0.683401) | 14.880751 / 8.074308 (6.806443) | 14.725249 / 10.191392 (4.533857) | 0.149785 / 0.680424 (-0.530639) | 0.017338 / 0.534201 (-0.516863) | 0.390980 / 0.579283 (-0.188303) | 0.425611 / 0.434364 (-0.008753) | 0.458851 / 0.540337 (-0.081487) | 0.559209 / 1.386936 (-0.827727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006835 / 0.011353 (-0.004518) | 0.004318 / 0.011008 (-0.006690) | 0.076715 / 0.038508 (0.038207) | 0.033528 / 0.023109 (0.010419) | 0.411986 / 0.275898 (0.136087) | 0.438752 / 0.323480 (0.115272) | 0.004039 / 0.007986 (-0.003947) | 0.003509 / 0.004328 (-0.000819) | 0.077924 / 0.004250 (0.073673) | 0.049519 / 0.037052 (0.012467) | 0.420595 / 0.258489 (0.162106) | 0.450536 / 0.293841 (0.156695) | 0.032817 / 0.128546 (-0.095729) | 0.008963 / 0.075646 (-0.066684) | 0.083818 / 0.419271 (-0.335454) | 0.057591 / 0.043533 (0.014058) | 0.404605 / 0.255139 (0.149466) | 0.423661 / 0.283200 (0.140462) | 0.110698 / 0.141683 (-0.030984) | 1.512515 / 1.452155 (0.060361) | 1.569207 / 1.492716 (0.076490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200795 / 0.018006 (0.182789) | 0.448853 / 0.000490 (0.448363) | 0.003657 / 0.000200 (0.003457) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031612 / 0.037411 (-0.005799) | 0.116712 / 0.014526 (0.102186) | 0.126162 / 0.176557 (-0.050395) | 0.180522 / 0.737135 (-0.556614) | 0.129768 / 0.296338 (-0.166570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433797 / 0.215209 (0.218588) | 4.353099 / 2.077655 (2.275444) | 2.117582 / 1.504120 (0.613462) | 1.934487 / 1.541195 (0.393292) | 2.016988 / 1.468490 (0.548498) | 0.531387 / 4.584777 (-4.053390) | 3.843520 / 3.745712 (0.097807) | 1.879560 / 5.269862 (-3.390301) | 1.129445 / 4.565676 (-3.436231) | 0.065952 / 0.424275 (-0.358323) | 0.011566 / 0.007607 (0.003959) | 0.533949 / 0.226044 (0.307904) | 5.327447 / 2.268929 (3.058518) | 2.572202 / 55.444624 (-52.872422) | 2.240723 / 6.876477 (-4.635753) | 2.329290 / 2.142072 (0.187217) | 0.662162 / 4.805227 (-4.143066) | 0.143191 / 6.500664 (-6.357473) | 0.065273 / 0.075469 (-0.010196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274945 / 1.841788 (-0.566843) | 15.444511 / 8.074308 (7.370203) | 14.793524 / 10.191392 (4.602132) | 0.175607 / 0.680424 (-0.504817) | 0.017324 / 0.534201 (-0.516877) | 0.396172 / 0.579283 (-0.183111) | 0.437334 / 0.434364 (0.002970) | 0.472621 / 0.540337 (-0.067716) | 0.574888 / 1.386936 (-0.812048) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b4ab1b3ed7257b0e0ad075d7271a51835f320a5e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006976 / 0.011353 (-0.004377) | 0.004541 / 0.011008 (-0.006467) | 0.106085 / 0.038508 (0.067577) | 0.029148 / 0.023109 (0.006039) | 0.306386 / 0.275898 (0.030488) | 0.351474 / 0.323480 (0.027994) | 0.003924 / 0.007986 (-0.004062) | 0.004588 / 0.004328 (0.000260) | 0.090479 / 0.004250 (0.086229) | 0.041195 / 0.037052 (0.004142) | 0.346020 / 0.258489 (0.087531) | 0.362526 / 0.293841 (0.068685) | 0.041020 / 0.128546 (-0.087526) | 0.012536 / 0.075646 (-0.063110) | 0.333247 / 0.419271 (-0.086024) | 0.059786 / 0.043533 (0.016253) | 0.318094 / 0.255139 (0.062955) | 0.343879 / 0.283200 (0.060679) | 0.110083 / 0.141683 (-0.031600) | 1.514027 / 1.452155 (0.061872) | 1.551435 / 1.492716 (0.058719) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235401 / 0.018006 (0.217395) | 0.544292 / 0.000490 (0.543803) | 0.005284 / 0.000200 (0.005084) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025008 / 0.037411 (-0.012403) | 0.102235 / 0.014526 (0.087709) | 0.105523 / 0.176557 (-0.071034) | 0.180846 / 0.737135 (-0.556289) | 0.107078 / 0.296338 (-0.189261) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502374 / 0.215209 (0.287165) | 5.224254 / 2.077655 (3.146600) | 1.987193 / 1.504120 (0.483073) | 1.694680 / 1.541195 (0.153485) | 1.663907 / 1.468490 (0.195417) | 0.786470 / 4.584777 (-3.798307) | 4.977895 / 3.745712 (1.232183) | 4.713451 / 5.269862 (-0.556410) | 2.298763 / 4.565676 (-2.266913) | 0.090225 / 0.424275 (-0.334051) | 0.011427 / 0.007607 (0.003820) | 0.640686 / 0.226044 (0.414641) | 6.351727 / 2.268929 (4.082798) | 2.636912 / 55.444624 (-52.807712) | 2.075566 / 6.876477 (-4.800911) | 2.080260 / 2.142072 (-0.061812) | 0.952727 / 4.805227 (-3.852500) | 0.188651 / 6.500664 (-6.312013) | 0.068997 / 0.075469 (-0.006472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258878 / 1.841788 (-0.582910) | 15.444724 / 8.074308 (7.370416) | 17.521918 / 10.191392 (7.330526) | 0.189732 / 0.680424 (-0.490692) | 0.031084 / 0.534201 (-0.503117) | 0.445150 / 0.579283 (-0.134133) | 0.575844 / 0.434364 (0.141480) | 0.498162 / 0.540337 (-0.042176) | 0.635885 / 1.386936 (-0.751051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007402 / 0.011353 (-0.003951) | 0.005058 / 0.011008 (-0.005950) | 0.077659 / 0.038508 (0.039151) | 0.034934 / 0.023109 (0.011825) | 0.373139 / 0.275898 (0.097241) | 0.411857 / 0.323480 (0.088377) | 0.003751 / 0.007986 (-0.004235) | 0.003634 / 0.004328 (-0.000695) | 0.075914 / 0.004250 (0.071663) | 0.037555 / 0.037052 (0.000503) | 0.387482 / 0.258489 (0.128993) | 0.434407 / 0.293841 (0.140566) | 0.040540 / 0.128546 (-0.088006) | 0.013458 / 0.075646 (-0.062189) | 0.096129 / 0.419271 (-0.323143) | 0.055369 / 0.043533 (0.011836) | 0.386564 / 0.255139 (0.131425) | 0.410417 / 0.283200 (0.127218) | 0.093265 / 0.141683 (-0.048418) | 1.432841 / 1.452155 (-0.019314) | 1.533180 / 1.492716 (0.040463) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281051 / 0.018006 (0.263045) | 0.547635 / 0.000490 (0.547146) | 0.004434 / 0.000200 (0.004234) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026409 / 0.037411 (-0.011002) | 0.098586 / 0.014526 (0.084060) | 0.109223 / 0.176557 (-0.067334) | 0.165958 / 0.737135 (-0.571177) | 0.111751 / 0.296338 (-0.184587) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542717 / 0.215209 (0.327508) | 5.530075 / 2.077655 (3.452420) | 2.351141 / 1.504120 (0.847022) | 2.021659 / 1.541195 (0.480464) | 1.964900 / 1.468490 (0.496410) | 0.819698 / 4.584777 (-3.765079) | 4.917412 / 3.745712 (1.171700) | 2.425149 / 5.269862 (-2.844712) | 1.561953 / 4.565676 (-3.003724) | 0.098417 / 0.424275 (-0.325858) | 0.012594 / 0.007607 (0.004986) | 0.717212 / 0.226044 (0.491168) | 6.994833 / 2.268929 (4.725904) | 2.997347 / 55.444624 (-52.447277) | 2.388366 / 6.876477 (-4.488111) | 2.502913 / 2.142072 (0.360841) | 1.030545 / 4.805227 (-3.774682) | 0.184844 / 6.500664 (-6.315820) | 0.076889 / 0.075469 (0.001420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371647 / 1.841788 (-0.470141) | 15.522995 / 8.074308 (7.448687) | 17.349823 / 10.191392 (7.158431) | 0.229709 / 0.680424 (-0.450714) | 0.023303 / 0.534201 (-0.510898) | 0.413874 / 0.579283 (-0.165409) | 0.567552 / 0.434364 (0.133188) | 0.491722 / 0.540337 (-0.048615) | 0.590640 / 1.386936 (-0.796296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1911ffa5d1f58f509d04fe1ddeb9d00a63f94d5 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/4148
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4148/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4148/comments
https://api.github.com/repos/huggingface/datasets/issues/4148/events
https://github.com/huggingface/datasets/issues/4148
1,201,169,242
I_kwDODunzps5HmGNa
4,148
fix confusing bleu metric example
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
0
2022-04-12T06:18:26Z
2022-04-13T14:16:34Z
2022-04-13T14:16:34Z
null
**Is your feature request related to a problem? Please describe.** I would like to see the example in "Metric Card for BLEU" changed. The 0th element in the predictions list is not closed in square brackets, and the 1st list is missing a comma. The BLEU score are calculated correctly, but it is difficult to understand, so it would be helpful if you could correct this. ``` >> predictions = [ ... ["hello", "there", "general", "kenobi", # <- no closing square bracket. ... ["foo", "bar" "foobar"] # <- no comma between "bar" and "foobar" ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"]], ... [["foo", "bar", "foobar"]] ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results) {'bleu': 0.6370964381207871, ... ``` **Describe the solution you'd like** ``` >> predictions = [ ... ["hello", "there", "general", "kenobi", # <- no closing square bracket. ... ["foo", "bar" "foobar"] # <- no comma between "bar" and "foobar" ... ] # and >>> print(results) {'bleu':1.0, ... ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4148/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4148/timeline
null
completed
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/4356
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4356/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4356/comments
https://api.github.com/repos/huggingface/datasets/issues/4356/events
https://github.com/huggingface/datasets/pull/4356
1,236,846,308
PR_kwDODunzps433OsB
4,356
Fix dataset builder default version
[]
closed
false
null
2
2022-05-16T09:05:10Z
2022-05-30T13:56:58Z
2022-05-30T13:47:54Z
null
Currently, when using a custom config (subclass of `BuilderConfig`), default version set at the builder level is ignored: we must set default version in the custom config class. However, when loading a dataset with `config_kwargs` (for a configuration not present in `BUILDER_CONFIGS`), the default version set in the custom config is ignored and "0.0.0" is used instead: ```python ds = load_dataset("wikipedia", language="co", date="20220501", beam_runner="DirectRunner") ``` generates the following config: ```python WikipediaConfig(name='20220501.co', version=0.0.0, data_dir=None, data_files=None, description='Wikipedia dataset for co, parsed from 20220501 dump.') ``` with version "0.0.0" instead of "2.0.0". See as a counter-example, when the config is present in `BUILDER_CONFIGS`: ```python ds = load_dataset("wikipedia", "20220301.fr", beam_runner="DirectRunner") ``` generates the following config: ```python WikipediaConfig(name='20220301.fr', version=2.0.0, data_dir=None, data_files=None, description='Wikipedia dataset for fr, parsed from 20220301 dump.') ``` with correct version "2.0.0", as set in the custom config class. The reason for this is that `DatasetBuilder` has a default VERSION ("0.0.0") that overwrites the default version set at the custom config class. This PR: - Removes the default VERSION at `DatasetBuilder` (set to None, so that the class attribute exists but it does not override the custom config default version). - Note that the `BuilderConfig` class already sets a default version = "0.0.0"; no need to pass this from the builder.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4356/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4356/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/4356.diff", "html_url": "https://github.com/huggingface/datasets/pull/4356", "merged_at": "2022-05-30T13:47:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/4356.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4356" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "This PR requires one of these other PRs being merged first:\r\n- #4359 \r\n- huggingface/doc-builder#211" ]
https://api.github.com/repos/huggingface/datasets/issues/1963
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1963/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1963/comments
https://api.github.com/repos/huggingface/datasets/issues/1963/events
https://github.com/huggingface/datasets/issues/1963
818,289,967
MDU6SXNzdWU4MTgyODk5Njc=
1,963
bug in SNLI dataset
[]
closed
false
null
1
2021-02-28T19:36:20Z
2022-10-05T13:13:46Z
2022-10-05T13:13:46Z
null
Hi There is label of -1 in train set of SNLI dataset, please find the code below: ``` import numpy as np import datasets data = datasets.load_dataset("snli")["train"] labels = [] for d in data: labels.append(d["label"]) print(np.unique(labels)) ``` and results: `[-1 0 1 2]` version of datasets used: `datasets 1.2.1 <pip> ` thanks for your help. @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1963/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1963/timeline
null
completed
null
null
false
[ "Hi ! The labels -1 correspond to the examples without gold labels in the original snli dataset.\r\nFeel free to remove these examples if you don't need them by using\r\n```python\r\ndata = data.filter(lambda x: x[\"label\"] != -1)\r\n```" ]
https://api.github.com/repos/huggingface/datasets/issues/5653
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5653/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5653/comments
https://api.github.com/repos/huggingface/datasets/issues/5653/events
https://github.com/huggingface/datasets/issues/5653
1,633,254,159
I_kwDODunzps5hWXsP
5,653
Doc: save_to_disk, `num_proc` will affect `num_shards`, but it's not documented
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
null
1
2023-03-21T05:25:35Z
2023-03-24T16:36:23Z
2023-03-24T16:36:23Z
null
### Describe the bug [`num_proc`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_proc) will affect `num_shards`, but it's not documented ### Steps to reproduce the bug Nothing to reproduce ### Expected behavior [document of `num_shards`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_shards) explicitly says that it depends on `max_shard_size`, it should also mention `num_proc`. ### Environment info datasets main document
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5653/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5653/timeline
null
completed
null
null
false
[ "I agree this should be documented" ]
https://api.github.com/repos/huggingface/datasets/issues/493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/493/comments
https://api.github.com/repos/huggingface/datasets/issues/493/events
https://github.com/huggingface/datasets/pull/493
676,527,351
MDExOlB1bGxSZXF1ZXN0NDY1ODIxOTA0
493
Fix wmt zh-en url
[]
closed
false
null
1
2020-08-11T02:14:52Z
2020-08-11T02:22:28Z
2020-08-11T02:22:12Z
null
I verified that ``` wget https://stuncorpusprod.blob.core.windows.net/corpusfiles/UNv1.0.en-zh.tar.gz.00 ``` runs in 2 minutes.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/493/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/493/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/493.diff", "html_url": "https://github.com/huggingface/datasets/pull/493", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/493.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/493" }
true
[ "this doesn't work. I can decompress the file after download locally." ]
https://api.github.com/repos/huggingface/datasets/issues/1995
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1995/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1995/comments
https://api.github.com/repos/huggingface/datasets/issues/1995/events
https://github.com/huggingface/datasets/pull/1995
822,878,431
MDExOlB1bGxSZXF1ZXN0NTg1NDI5NTg0
1,995
[Timit_asr] Make sure not only the first sample is used
[]
closed
false
null
4
2021-03-05T08:42:51Z
2021-06-30T06:25:53Z
2021-03-05T08:58:59Z
null
When playing around with timit I noticed that only the first sample is used for all indices. I corrected this typo so that the dataset is correctly loaded.
{ "+1": 4, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/1995/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1995/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/1995.diff", "html_url": "https://github.com/huggingface/datasets/pull/1995", "merged_at": "2021-03-05T08:58:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/1995.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1995" }
true
[ "cc @lhoestq @vrindaprabhu", "Failing `run (push)` is unrelated -> merging", "Thanks for fixing this, it was affecting my runs for https://github.com/huggingface/transformers/pull/10581/", "I am seeing this very late! Sorry for the blunder everyone! :(" ]
https://api.github.com/repos/huggingface/datasets/issues/3469
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3469/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3469/comments
https://api.github.com/repos/huggingface/datasets/issues/3469/events
https://github.com/huggingface/datasets/pull/3469
1,085,882,664
PR_kwDODunzps4wIrOV
3,469
Fix METEOR missing NLTK's omw-1.4
[]
closed
false
null
1
2021-12-21T14:19:11Z
2021-12-21T14:52:28Z
2021-12-21T14:49:28Z
null
NLTK 3.6.6 now requires `omw-1.4` to be downloaded for METEOR to work. This should fix the CI on master
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3469/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3469/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3469.diff", "html_url": "https://github.com/huggingface/datasets/pull/3469", "merged_at": "2021-12-21T14:49:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/3469.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3469" }
true
[ "I also modified the doctest call to raise the exception that doctest may catch, instead of `doctest.UnexpectedException`.\r\nThis will make debugging easier if it happens again" ]
https://api.github.com/repos/huggingface/datasets/issues/6037
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6037/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6037/comments
https://api.github.com/repos/huggingface/datasets/issues/6037/events
https://github.com/huggingface/datasets/issues/6037
1,805,887,184
I_kwDODunzps5ro6bQ
6,037
Documentation links to examples are broken
[]
closed
false
null
2
2023-07-15T04:54:50Z
2023-07-17T22:35:14Z
2023-07-17T15:10:32Z
null
### Describe the bug The links at the bottom of [add_dataset](https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html) to examples of specific datasets are all broken, for example - text classification: [ag_news](https://github.com/huggingface/datasets/blob/master/datasets/ag_news/ag_news.py) (original data are in csv files) ### Steps to reproduce the bug Click on links to examples from latest documentation ### Expected behavior Links should be up to date - it might be more stable to link to https://huggingface.co/datasets/ag_news/blob/main/ag_news.py ### Environment info dataset v1.2.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6037/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6037/timeline
null
completed
null
null
false
[ "These docs are outdated (version 1.2.1 is over two years old). Please refer to [this](https://huggingface.co/docs/datasets/dataset_script) version instead.\r\n\r\nInitially, we hosted datasets in this repo, but now you can find them [on the HF Hub](https://huggingface.co/datasets) (e.g. the [`ag_news`](https://huggingface.co/datasets/ag_news/blob/main/ag_news.py) script)", "Sorry I thought I'd selected the latest version." ]
https://api.github.com/repos/huggingface/datasets/issues/6001
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6001/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6001/comments
https://api.github.com/repos/huggingface/datasets/issues/6001/events
https://github.com/huggingface/datasets/pull/6001
1,782,516,627
PR_kwDODunzps5UVMMh
6,001
Align `column_names` type check with type hint in `sort`
[]
closed
false
null
3
2023-06-30T13:15:50Z
2023-06-30T14:18:32Z
2023-06-30T14:11:24Z
null
Fix #5998
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6001/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6001/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/6001.diff", "html_url": "https://github.com/huggingface/datasets/pull/6001", "merged_at": "2023-06-30T14:11:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6001.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6001" }
true
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006038 / 0.011353 (-0.005315) | 0.003797 / 0.011008 (-0.007211) | 0.097686 / 0.038508 (0.059178) | 0.035235 / 0.023109 (0.012126) | 0.317294 / 0.275898 (0.041396) | 0.377682 / 0.323480 (0.054202) | 0.003485 / 0.007986 (-0.004501) | 0.003603 / 0.004328 (-0.000725) | 0.077268 / 0.004250 (0.073017) | 0.054649 / 0.037052 (0.017597) | 0.322293 / 0.258489 (0.063804) | 0.372277 / 0.293841 (0.078436) | 0.027927 / 0.128546 (-0.100619) | 0.008495 / 0.075646 (-0.067151) | 0.313078 / 0.419271 (-0.106193) | 0.046974 / 0.043533 (0.003441) | 0.313848 / 0.255139 (0.058709) | 0.338454 / 0.283200 (0.055255) | 0.020462 / 0.141683 (-0.121221) | 1.473027 / 1.452155 (0.020873) | 1.539468 / 1.492716 (0.046752) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221429 / 0.018006 (0.203423) | 0.412044 / 0.000490 (0.411555) | 0.005866 / 0.000200 (0.005666) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022870 / 0.037411 (-0.014541) | 0.099129 / 0.014526 (0.084603) | 0.103463 / 0.176557 (-0.073094) | 0.164969 / 0.737135 (-0.572166) | 0.110000 / 0.296338 (-0.186339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431311 / 0.215209 (0.216102) | 4.293562 / 2.077655 (2.215907) | 1.961209 / 1.504120 (0.457089) | 1.733680 / 1.541195 (0.192485) | 1.793171 / 1.468490 (0.324681) | 0.568566 / 4.584777 (-4.016211) | 3.401794 / 3.745712 (-0.343918) | 1.827949 / 5.269862 (-3.441913) | 1.055963 / 4.565676 (-3.509714) | 0.068459 / 0.424275 (-0.355816) | 0.011586 / 0.007607 (0.003979) | 0.533936 / 0.226044 (0.307891) | 5.347637 / 2.268929 (3.078708) | 2.378056 / 55.444624 (-53.066569) | 2.032159 / 6.876477 (-4.844318) | 2.159064 / 2.142072 (0.016991) | 0.674528 / 4.805227 (-4.130699) | 0.136859 / 6.500664 (-6.363805) | 0.066629 / 0.075469 (-0.008840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.218084 / 1.841788 (-0.623704) | 14.141710 / 8.074308 (6.067402) | 13.588415 / 10.191392 (3.397023) | 0.155104 / 0.680424 (-0.525320) | 0.017160 / 0.534201 (-0.517041) | 0.375558 / 0.579283 (-0.203725) | 0.386293 / 0.434364 (-0.048071) | 0.459476 / 0.540337 (-0.080862) | 0.548561 / 1.386936 (-0.838375) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005878 / 0.011353 (-0.005475) | 0.003750 / 0.011008 (-0.007259) | 0.077720 / 0.038508 (0.039212) | 0.034955 / 0.023109 (0.011846) | 0.357480 / 0.275898 (0.081582) | 0.418210 / 0.323480 (0.094730) | 0.004566 / 0.007986 (-0.003419) | 0.002918 / 0.004328 (-0.001410) | 0.076517 / 0.004250 (0.072266) | 0.050202 / 0.037052 (0.013150) | 0.368166 / 0.258489 (0.109677) | 0.415681 / 0.293841 (0.121840) | 0.029496 / 0.128546 (-0.099050) | 0.008547 / 0.075646 (-0.067099) | 0.083037 / 0.419271 (-0.336234) | 0.045001 / 0.043533 (0.001468) | 0.356503 / 0.255139 (0.101364) | 0.383747 / 0.283200 (0.100547) | 0.025071 / 0.141683 (-0.116612) | 1.541985 / 1.452155 (0.089830) | 1.594710 / 1.492716 (0.101994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204491 / 0.018006 (0.186484) | 0.408686 / 0.000490 (0.408196) | 0.002505 / 0.000200 (0.002305) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024446 / 0.037411 (-0.012965) | 0.101432 / 0.014526 (0.086906) | 0.108105 / 0.176557 (-0.068452) | 0.161195 / 0.737135 (-0.575940) | 0.112671 / 0.296338 (-0.183667) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459697 / 0.215209 (0.244488) | 4.570071 / 2.077655 (2.492416) | 2.211547 / 1.504120 (0.707427) | 1.996651 / 1.541195 (0.455457) | 2.015621 / 1.468490 (0.547131) | 0.567423 / 4.584777 (-4.017354) | 3.408027 / 3.745712 (-0.337685) | 2.913824 / 5.269862 (-2.356038) | 1.423223 / 4.565676 (-3.142453) | 0.068740 / 0.424275 (-0.355535) | 0.010997 / 0.007607 (0.003390) | 0.567340 / 0.226044 (0.341296) | 5.666280 / 2.268929 (3.397351) | 2.804934 / 55.444624 (-52.639690) | 2.430761 / 6.876477 (-4.445716) | 2.451820 / 2.142072 (0.309748) | 0.681926 / 4.805227 (-4.123301) | 0.137761 / 6.500664 (-6.362903) | 0.067173 / 0.075469 (-0.008296) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.329853 / 1.841788 (-0.511934) | 14.436232 / 8.074308 (6.361924) | 14.398645 / 10.191392 (4.207253) | 0.147421 / 0.680424 (-0.533002) | 0.016743 / 0.534201 (-0.517458) | 0.364964 / 0.579283 (-0.214319) | 0.387072 / 0.434364 (-0.047292) | 0.423892 / 0.540337 (-0.116445) | 0.521304 / 1.386936 (-0.865632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a62b6ce65f718e9ff4189da86d160ae4bb197fc2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004889) | 0.003923 / 0.011008 (-0.007086) | 0.102096 / 0.038508 (0.063588) | 0.040230 / 0.023109 (0.017121) | 0.384688 / 0.275898 (0.108789) | 0.445574 / 0.323480 (0.122094) | 0.003590 / 0.007986 (-0.004395) | 0.004023 / 0.004328 (-0.000306) | 0.080125 / 0.004250 (0.075875) | 0.057406 / 0.037052 (0.020354) | 0.395049 / 0.258489 (0.136560) | 0.438065 / 0.293841 (0.144224) | 0.028963 / 0.128546 (-0.099583) | 0.008693 / 0.075646 (-0.066954) | 0.317158 / 0.419271 (-0.102114) | 0.047930 / 0.043533 (0.004397) | 0.382442 / 0.255139 (0.127303) | 0.410665 / 0.283200 (0.127466) | 0.020127 / 0.141683 (-0.121555) | 1.558554 / 1.452155 (0.106400) | 1.590959 / 1.492716 (0.098242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208826 / 0.018006 (0.190820) | 0.432037 / 0.000490 (0.431547) | 0.006509 / 0.000200 (0.006309) | 0.000285 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023460 / 0.037411 (-0.013951) | 0.099070 / 0.014526 (0.084545) | 0.105771 / 0.176557 (-0.070785) | 0.166683 / 0.737135 (-0.570452) | 0.108755 / 0.296338 (-0.187583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424324 / 0.215209 (0.209115) | 4.225696 / 2.077655 (2.148042) | 1.910955 / 1.504120 (0.406835) | 1.704493 / 1.541195 (0.163298) | 1.782784 / 1.468490 (0.314293) | 0.562927 / 4.584777 (-4.021850) | 3.380163 / 3.745712 (-0.365550) | 1.779641 / 5.269862 (-3.490221) | 1.029134 / 4.565676 (-3.536543) | 0.068325 / 0.424275 (-0.355950) | 0.011528 / 0.007607 (0.003921) | 0.530141 / 0.226044 (0.304097) | 5.323443 / 2.268929 (3.054514) | 2.346956 / 55.444624 (-53.097668) | 2.013335 / 6.876477 (-4.863142) | 2.118531 / 2.142072 (-0.023541) | 0.675206 / 4.805227 (-4.130021) | 0.135473 / 6.500664 (-6.365191) | 0.064804 / 0.075469 (-0.010665) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240179 / 1.841788 (-0.601608) | 14.692449 / 8.074308 (6.618141) | 13.672223 / 10.191392 (3.480831) | 0.147748 / 0.680424 (-0.532676) | 0.017119 / 0.534201 (-0.517082) | 0.369481 / 0.579283 (-0.209802) | 0.390133 / 0.434364 (-0.044231) | 0.458768 / 0.540337 (-0.081569) | 0.548989 / 1.386936 (-0.837947) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006319 / 0.011353 (-0.005034) | 0.003975 / 0.011008 (-0.007033) | 0.077886 / 0.038508 (0.039378) | 0.038322 / 0.023109 (0.015213) | 0.379851 / 0.275898 (0.103953) | 0.456749 / 0.323480 (0.133269) | 0.005320 / 0.007986 (-0.002665) | 0.003135 / 0.004328 (-0.001194) | 0.078272 / 0.004250 (0.074022) | 0.059919 / 0.037052 (0.022866) | 0.430062 / 0.258489 (0.171573) | 0.477432 / 0.293841 (0.183591) | 0.029713 / 0.128546 (-0.098833) | 0.008704 / 0.075646 (-0.066942) | 0.082488 / 0.419271 (-0.336784) | 0.044667 / 0.043533 (0.001134) | 0.354910 / 0.255139 (0.099771) | 0.434637 / 0.283200 (0.151438) | 0.026402 / 0.141683 (-0.115281) | 1.528825 / 1.452155 (0.076671) | 1.548209 / 1.492716 (0.055493) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237988 / 0.018006 (0.219982) | 0.420402 / 0.000490 (0.419913) | 0.003098 / 0.000200 (0.002898) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026253 / 0.037411 (-0.011159) | 0.106137 / 0.014526 (0.091611) | 0.110273 / 0.176557 (-0.066284) | 0.165316 / 0.737135 (-0.571819) | 0.115720 / 0.296338 (-0.180619) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454244 / 0.215209 (0.239035) | 4.526018 / 2.077655 (2.448364) | 2.395985 / 1.504120 (0.891865) | 2.234822 / 1.541195 (0.693627) | 2.370235 / 1.468490 (0.901745) | 0.567607 / 4.584777 (-4.017169) | 3.650156 / 3.745712 (-0.095556) | 3.360094 / 5.269862 (-1.909768) | 1.415252 / 4.565676 (-3.150424) | 0.068012 / 0.424275 (-0.356263) | 0.011135 / 0.007607 (0.003528) | 0.561967 / 0.226044 (0.335923) | 5.621819 / 2.268929 (3.352890) | 2.676912 / 55.444624 (-52.767712) | 2.338306 / 6.876477 (-4.538171) | 2.430888 / 2.142072 (0.288815) | 0.684576 / 4.805227 (-4.120651) | 0.138923 / 6.500664 (-6.361741) | 0.069933 / 0.075469 (-0.005536) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313383 / 1.841788 (-0.528405) | 15.125088 / 8.074308 (7.050780) | 14.801501 / 10.191392 (4.610109) | 0.134235 / 0.680424 (-0.546189) | 0.017058 / 0.534201 (-0.517143) | 0.365166 / 0.579283 (-0.214117) | 0.395415 / 0.434364 (-0.038949) | 0.419355 / 0.540337 (-0.120983) | 0.513411 / 1.386936 (-0.873525) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8b9649b3cfb49342e44873ce7e29e0c75eaf3efa \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/3120
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3120/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3120/comments
https://api.github.com/repos/huggingface/datasets/issues/3120/events
https://github.com/huggingface/datasets/pull/3120
1,031,574,511
PR_kwDODunzps4tcril
3,120
Correctly update metadata to preserve features when concatenating datasets with axis=1
[]
closed
false
null
0
2021-10-20T15:54:58Z
2021-10-22T08:28:51Z
2021-10-21T14:50:21Z
null
This PR correctly updates metadata to preserve higher-level feature types (e.g. `ClassLabel`) in `datasets.concatenate_datasets` when `axis=1`. Previously, we would delete the feature metadata in `datasets.concatenate_datasets` if `axis=1` and restore the feature types from the arrow table schema in `Dataset.__init__`. However, this approach only works for simple feature types (e.g. `Value`). Fixes #3111
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3120/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3120/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/3120.diff", "html_url": "https://github.com/huggingface/datasets/pull/3120", "merged_at": "2021-10-21T14:50:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/3120.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3120" }
true
[]
https://api.github.com/repos/huggingface/datasets/issues/863
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/863/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/863/comments
https://api.github.com/repos/huggingface/datasets/issues/863/events
https://github.com/huggingface/datasets/pull/863
744,954,534
MDExOlB1bGxSZXF1ZXN0NTIyNTk0Mjg1
863
Add clear_cache parameter in the test command
[]
closed
false
null
0
2020-11-17T17:52:29Z
2020-11-18T14:44:25Z
2020-11-18T14:44:24Z
null
For certain datasets like OSCAR #348 there are lots of different configurations and each one of them can take a lot of disk space. I added a `--clear_cache` flag to the `datasets-cli test` command to be able to clear the cache after each configuration test to avoid filling up the disk. It should enable an easier generation for the `dataset_infos.json` file for OSCAR.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/863/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/863/timeline
null
null
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/863.diff", "html_url": "https://github.com/huggingface/datasets/pull/863", "merged_at": "2020-11-18T14:44:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/863.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/863" }
true
[]