text
stringlengths
2
1.42k
label
int64
0
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moment map; polarization; reductive group; complex reductive group; algebraic group action; quotient morphism; ample line bundle; semistability; Stein holomorphic map; Kähler form; ample \(G\)-line bundle; semistable points; Geometric Invariant Theory P Heinzner, L Migliorini, Projectivity of moment map quotients, Osaka J. Math. 38 (2001) 167
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Genus 2 curves; Kummer surfaces; line complexes
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Poincaré bundle; abelian surfaces; duality; Fourier-Mukai transform; polarized K3 surfaces; moduli space; Chern class; Künneth component Mukai, S., \textit{duality of polarized \textit{K}3 surfaces}, New trends in algebraic geometry (Warwick, 1996), 311-326, (1999), Cambridge University Press, Cambridge
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces dagger closure; polarized abelian variety; vector bundle; symmetric line bundle Axel Stäbler, An inclusion result for dagger closure in certain section rings of abelian varieties, Beitr. Algebra Geom. 54 (2013), no. 1, 333 -- 346.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Iitaka fibration; cotangent bundle; vector bundle; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef value morphism; ample line bundle; adjunction theory
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; biregular classification of smooth rational surfaces; adjunction [Li1] E.L. Livorni, Classification of Algebraic Surfaces with Sectional Genus less than or equal to six. I: rational surfaces, Pacific Journal of Math., vol. 113, No. 1 (1984), p. 93--114
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces generalized adjunction; \(k\)-very ample vector bundle; \(k\)-very ampleness of line bundles
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension of the moduli space of curves of genus 15 Mei-Chu Chang and Ziv Ran. The {K}odaira dimension of the moduli space of curves of genus {\(15\)}. {J. Differential Geom.}, 24(2):205--220, 1986. DOI 10.4310/jdg/1214440435; zbl 0649.14015; MR0862048
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces affine C-bundle; nonelliptic Hopf surface; analytic Kodaira dimension; toric surface; affine structure
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; polarized manifold; hyperelliptic curve section DOI: 10.1515/form.2003.029
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifolds; adjoint bundles; sectional genus Y. Fukuma, On the dimension of \(H^{0}(K_{X}+mL)\) of polarized \(n\)-folds \((X,L)\) with \(m\geq n\), Kyushu J. Math. 71 (2017), no. 1, 115--128.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stability; polarizations; abelian surface; ample line bundle; Reider's method
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic surface sections; very ample line bundle; minimal model; del Pezzo fiber space
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces filtered Frobenius crystals; \(p\)-adic Hodge theory; semipositivity; vector bundles; very ample line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective embedding; Horrocks-Mumford bundle; Jacobian of a curve; Hilbert moduli space of principally polarized abelian surfaces H. Lange, Jacobian surfaces in \(\mathbf P_ 4\) , J. Reine Angew. Math. 372 (1986), 71-86.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces lattice polytope; discrete volume; toric variety; polarized variety; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fujita conjecture; ample line bundle; multiplier ideal sheaf Siu, Y-T, Effective very ampleness, Invent. Math., 124, 563-571, (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces abelian variety; freeness of an ample line bundle on a 3-fold; ample line bundle; isogeny; very ampleness Birkenhake, Ch., Lange, H., Ramanan, S.: Primitive line bundles on abelian threefolds. Manusc. Math.81, 299--310 (1993)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample divisor; sectional genus; \(\Delta\)-genus Ionescu, P., Ample and very ample divisors on a surface, Rev. Roum. Math. Pures Appl., 33 (1988), 349-358.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces non-special linear systems; Brill-Noether theory; line bundle; general curve of genus \(g\) --, Brill-Noether theory for non-special linear systems II: Connectedness and irreducibility.Geom. Dedic. 68 (1997), 169--185.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension 1; Ramanujan surface; Gurjar-Miyanishi surface; homology plane surfaces; action of an automorphism of finite order Petrie, T, Algebraic automorphisms of smooth affine surfaces, Invent. Math., 95, 355-378, (1989)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle on an abelian variety
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; conic fibration; adjunction; ample line bundle de Fernex T. (1998). Ample vector bundles with sections vanishing along conic fibrations over curves. Collect. Math. 49: 67--79
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective normality of ample line bundle; abelian threefold
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized variety; \(i\)-th sectional genus, \(i\)-th \(\Delta\)-genus; partially ordered set
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective manifold; ample line bundle; Okounkov body; Seshadri constant; packings problem
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces arithmetic cycles; arithmetically ample line bundle; Chow group; Grothendieck's standard conjectures; regular arithmetic varieties; Hodge index theorem Moriwaki, A., \textit{Hodge index theorem for arithmetic cycles of codimension one}, Math. Res. Lett., 3, 173-183, (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; irregularity; canonical divisor; threefold
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; adjunction theory; quasi polarized Fukuma, Y., A lower bound for the second sectional geometric genus of quasi-polarized manifolds and its applications, Rend. Sem. Mat. Univ. Pol. Torino, 69, 73-90, (2011)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifold; Fano manifold; sectional genus; \(\Delta\)-genus; sectional geometric genus; \(i\)-th \(\Delta\)-genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal free resolution of homogeneous coordinate ring; elliptic ruled surface; very ample line bundle; adjoint bundle; Koszul cohomology; cohomology vanishings Gallego, F.J.; Purnaprajna, B.P., Higher syzygies of elliptic ruled surfaces, J. Algebra, 186, 626-659, (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces arithmetic intersection; Arakelov theorem; arithmetic Hilbert-Samuel theorem; sections of an ample line bundle; arithmetic variety A. Abbes and T. Bouche, Théorème de Hilbert-Samuel ''arithmétique'', Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 375 -- 401 (French, with English and French summaries).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces lattice triangles; Ehrhart polynomials; \(h^\ast\)-vector; toric surfaces; sectional genus; Scott's inequality
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces extremal ray; cone theorem; adjoint divisor; ample line bundle; complete linear system; Mori's theory
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces structure of 4 folds; ample divisor; extension of projective bundle; line bundle Fania, M. L.; Sato, E.-I.; Sommese, A. J., On the structure of 4-folds with a hyperplane section which is a \textbf{P}1 bundle over a surface that fibres over a curve, Nagoya Math. J., 108, 1-14, (1987)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces cuspidal curves; Hirzebruch surfaces; number of cusps; logarithmic Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Discriminant locus; ample line bundle; dual variety Lanteri A., Muñoz R.: Discriminant loci of ample and spanned line bundles. J. Pure Appl. Algebra 212(4), 808--831 (2008) MR MR2363494 (2009c:14012)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces lef line bundle; semismall map; ample bundles; first Chern class; hard Lefschetz theorem; Hodge-Riemann bilinear relations; Grauert contractibility criterion; Hodge index theorem; decomposition theorem; direct image of the constant sheaf; stratification; definite intersection forms M. A. de Cataldo and L. Migliorini, The hard Lefschetz theorem and the topology of semismall maps. \textit{Ann. Sci. École Norm. Sup. }(4) 35 (2002), 759--772.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normally generated line bundle; syzygy; genus; gonality; Clifford index of curves Green, M. L.; Lazarsfeld, R., On the projective normality of complete linear series on an algebraic curve, \textit{Invent. Math.}, 83, 73-90, (1986)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjoint sheaf of ample line bundle; finite number of irregular singularities; normal irreducible Cohen Macaulay projective varieties [AS] Andreatta, M., Sommese, A.J.: On the adjunction mapping for singular projective varieties. Forum Math.1, 143-152 (1989)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Chern classes; ruled surface; ample line bundle; moduli space; rank two vector bundles Aprodu, Marian; Brînzǎnescu, Vasile, Stable rank-2 vector bundles over ruled surfaces, C. R. Acad. Sci. Paris Sér. I Math., 325, 3, 295-300, (1997)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Martens-Mumford's theorems; symmetric products; very ample line bundle \textsc{C. Keem,} A remark on the variety of special linear systems on an algebraic curve, Ph.D Thesis, Brown University, 1983.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjoint linear system; global generation of adjoint bundle; ample line bundle S. Helmke, ''On Fujita's conjecture,''Duke Math. J.,88:2, 201--216 (1997).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef line bundle; Seshadri constant; polarized varieties; quartic surface Bauer, T., Seshadri constants of quartic surfaces, Math. Ann., 309, 475-481, (1997)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifolds; Fujita delta genus; scrolls; quadric bundles; regular surface; geometrically ruled conic bundles; irregular surfaces; projective classification T. Horowitz, Varieties of low degree, Brown University Ph. D. Thesis, (1982) and Varieties of low \(\Delta\)-genus, Duke Math. J. 50 (1983), 667-683 .
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifolds; sectional genus Y. FUKUMA, On the sectional geometric genus of quasi-polarized varieties, I, Comm. Alg., 32 (2004), pp. 1069-1100. Zbl1068.14008 MR2063799
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective toric variety; one-parameter subgroup; wall-crossing; semi-orthogonal decomposition; singularity categories; full exceptional collection; GIT; windows; geometric invariant theory; fan structure; bounded derived category of coherent sheaves; equivariant ample line bundle; VGIT; reductive linear algebraic group; variations of GIT structures; birational methods; blow-ups at smooth centres; linearisation of a group action
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of surfaces; factorial surfaces; logarithmic Kodaira dimension R. V. Gurjar & Shameek Paul, ''A classification of factorial surfaces of nongeneral type'', Michigan Math. J.61 (2012) no. 3, p. 517-529 |
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces secant loci; symmetric products; very ample line bundle; gonality Bajravani, A., Remarks on the geometry of secant loci, Arch. Math., 108, 373-381, (2016)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized surfaces; self-intersection number; delta-genus; linear system; blowing up; image of the exceptional curve
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rational surfaces; logarithmic Kodaira dimension; rationality of \(\mathbb{Q}\)-homology planes C.R. Pradeep and A.R. Shastri: On rationality of logarithmic \(\mathbf{Q}\)-homology planes I, Osaka J. Math. 34 (1997), 429-456.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(k\)-very ample line bundle; Clifford index; gonality Knutsen, A. L., \textit{on \textit{k}th order embeddings of K3 surfaces and Enriques surfaces}, Manuscripta Math., 104, 211-237, (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira vanishing theorem; positive characteristic; counterexample Kodaira vanishing theorem; Raynaud polarized surfaces Takayama, Yukihide, On non-vanishing of cohomologies of generalized raynaud polarized surfaces, J. pure appl. algebra, 214, 1110-1120, (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonical divisor; minimal surface; geometric genus; minimal complex algebraic surfaces of general type; irregularity; canonical system; canonical map O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), no. 3, 319-346, With an appendix by A. Beauville.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces space curve; blowing-up; very ample line bundle; hyperplane line bundle; Hilbert function
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; growth of the cohomological Hilbert function; coherent sheaf Brodmann, M.: Bounds on the Serre Cohomology of a Projective Variety. Ĉas. Peŝtovóní Mat.112, 238--244 (1987)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample divisors; del Pezzo surface; normal Gorenstein surface; Gorenstein singularities; dualizing sheaf; ample line bundle; classification Sommese A.I., Abh. Math. Sem. Univ. Hamburg 55 pp 151-- (1985)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces formal completion; ring of formal rational functions; formal duality; cohomological dimension; zero scheme of a global section of an ample vector bundle L. Badescu, E. Ballico: Formal rational functions along zero loci of sections of ample vector bundles. Rev. Roumaine Math. Pur. Appl.38 (1993), 609-630
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces compact Kähler manifolds; ample normal bundle; algebraic dimension; cone of curves Peternell, Thomas, Compact subvarieties with ample normal bundles, algebraicity, and cones of cycles, Michigan Math. J., 61, 4, 875-889, (2012)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; Gorenstein variety A.J. Sommese , Ample divisors on Gorenstein varieties , Revue de l'Institute E. Cartan , Journées Complexe, Nancy , 10 ( 1986 ). MR 933787 | Zbl 0646.14007
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space; \(K3\) surfaces; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; Lefschetz-Barth theorems; codimension 2
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces reduced plane curve; logarithmic Kodaira dimension; fundamental group; classification theory of affine surfaces Kojima, H.: Complements of plane curves with logarithmic Kodaira dimension zero. J. math. Soc. Japan 52, 793-806 (2000)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces abelian variety; Albanese map; Albanese morphism; canonical bundle formula; generic vanishing; Kodaira dimension; positive characteristic
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces very ampleness of ample line bundle; abelian surface; polarization K. Hulek and H. Lange, Examples of abelian surfaces in \?\(^{4}\), J. Reine Angew. Math. 363 (1985), 201 -- 216.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Polarized manifolds; adjoint bundles; ample line bundles Broustet, A.; Höring, A., Effective non-vanishing conjectures for projective threefolds, Adv. Geom., 10, 737-746, (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normal singular surfaces of degree 6; classification; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; irregularity Y. Fukuma, A lower bound for KXL2 of polarized 3-folds (X,L) of general type, preprint.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of complex projective smooth surface with an ample line bundle; Chern classes of the Tschirnhaus bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Matsusaka's Big Theorem; very ampleness; ample line bundle; existence of nontrivial global holomorphic sections; vanishing theorems Siu, Y.-T., A new bound for the effective matsusaka big theorem, Houston J. Math., 28, 1, 389-409, (2002)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stability theory; Zariski topologies over an algebraically closed field; Zariski geometry; dimension; smooth algebraic variety; algebraic curve; ample; finite covers of the projective line Hrushovski E. and Zilber B., Zariski geometries, J. Amer. Math. Soc. 9 (1996), 1-56.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces instantons; determinant line bundle over moduli space of stable bundles; abelian surfaces; torsion; Mukai transform Maciocia A. (1994) The determinant line bundle over moduli spaces of instantons on abelian surfaces. Math. Z. 217(2): 317--333
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective variety; ample line bundle; nef-value morphism
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces abelian differentials; Riemann surfaces; moduli spaces; strata; compactification; Kodaira dimension Gendron, Q., The Deligne-Mumford and the incidence variety compactifications of the strata of \(\Omega {\mathcal{M}}_{g}\), Ann. Inst. Fourier (Grenoble), 68, 1169-1240, (2018)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; ample Cartier divisor; normal surface [Sa] Sakai, F., Ample Cartier divisors on normal surfaces, J. reine und angew. Math.366 (1986), 121--128.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces positive line bundle; linear series; vanishing theorems; Lelong number; intersection theory; Bochner technique; \(L^ 2\) estimates; Seshadri constant; numerically effective line bundle; Fujita conjecture; Monge-Ampere equation; very ample line bundle; algebraic vector bundles; effective Matsusaka big theorem Demailly, J. P., \(L^2\) vanishing theorems for positive line bundles and adjunction theory, (Transcendental Methods in Algebraic Geometry, (1996), Springer Berlin, Heidelberg), 1-97
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ramified double covering; compact Riemann surfaces; ample line bundles; normally generated line bundles; Clifford index
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces real projective manifold; ample line bundle; random polynomial; Betti numbers Gayet, Damien; Welschinger, Jean-Yves, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu, 14, 4, 673\textendash702 pp., (2015)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces tangent cone; very ample line bundle; secant loci
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kähler manifold; tangent bundle; anti-Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; \(L^ 2\)-estimates; Nadel multiplier ideal U. Angehrn and Y.\ T. Siu, Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), no. 2, 291-308.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces interpolation estimate; Seshadri constant; ample line bundle; commutative algebraic group; obstruction subgroup; Seshadri exceptional subvariety Masser, D.: Interpolation on group varieties. In: Bertrand, D., Waldschmidt, M. (eds.) Approximations diophantiennes et nombres transcendants (Luminy, 1982), Progress in Math., vol. 31, pp. 151-171. Birkhäuser, Boston (1983)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; vector bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces hyperelliptic surfaces; ample line bundles; Seshadri constants
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces characterization of projective space; ample line bundle Wahl, J. M., A cohomological characterization of \textbf{P}\textit{n}, Invent. Math., 72, 2, 315-322, (1983)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Picard group; number of Hilbert polynomials of polarized pairs; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces random real projective manifold; ample line bundle; random matrix; random polynomial; Gaussian probability measure
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces degree of discriminant locus; elliptic quasi-bundle; very ample line bundle; class of elliptic algebraic surface A. Lanteri, On the class of an elliptic projective surface, Arch. Math. (Basel) 64 (1995), 359--368.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Seshadri constant; adjoint ample line bundle; universal lower bound Bauer, T.; Szemberg, T.: On the Seshadri constants of adjoint line bundles. Manuscr. math. 135, No. 1-2, 215-228 (2011)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces principal bundles; finite fields; principal \(G\)-bundle; fundamental group scheme; ample line bundle; numerically effective line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces growth condition; ample line bundle; toric geometry; Seshadri constant; Okounkov body; Kähler embeddings Witt Nyström, D., Canonical growth conditions associated to ample line bundles
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces positive line bundle; holomorphic line bundle; compact complex manifold; estimates; closed positive current; Lelong number; strong Morse inequality; Matsusaka's big theorem; ample line bundle Siu, Y.T.: An effective Matsusaka big theorem. Ann. Inst. Fourier (Grenoble) \textbf{43}(5), 1387-1405 (1993). http://www.numdam.org/item?id=AIF_1993__43_5_1387_0
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces higher order embeddings; very ample line bundle; gonality; K3 surface
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces defect of positivity; ampleness; nef divisor; effective divisor; Kodaira dimension; Lelong numbers; intersection numbers of nef line bundles Stefano Trapani, ''Numerical criteria for the positivity of the difference of ample divisors'', Math. Z.219 (1995) no. 3, p. 387-401 | {\copyright} Annales de L'Institut Fourier - ISSN (électronique) : 1777-5310
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Hermitian line bundles; Abelian fibrations; first Chern class; polarized Enriques surfaces Jorgenson, J., Kramer, J.: Star products of Green's currents and automorphic forms. Duke Math. J. 106, 553--580 (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces simply-generated line bundle; effective estimates on birationality; effective estimates on base point freeness; effective estimates on very ampleness; canonical Calabi-Yau threefold; minimal Calabi-Yau threefold; polarized variety Oguiso, K.; Peternell, T., On polarized canonical Calabi-Yau threefolds, Math. Ann., 301, 2, 237-248, (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(r\)-generated line bundle; polarized manifold A. Laface, A very ampleness result, Matematiche, 52 (1997), 431-442.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces multipolarized variety; ith sectional genus; adjoint bundle Fukuma, Y., Invariants of ample line bundles on projective varieties and their applications, II, Kodai Math. J., 33, 416-445, (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized Abelian surfaces; cusp forms of small weight; paramodular group; Siegel modular threefolds; canonical differential forms; moduli space; geometric genus; exceptional polarizations; smooth projective model; maximal Abelian covering V. Gritsenko and K. Hulek, ''Commutator coverings of Siegel threefolds,'' Preprint RIMS Kyoto University RIMS-1128 (1997); alg-geom/9702007.
0