text
stringlengths
2
1.42k
label
int64
0
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjoint line bundle; polarized smooth projective surface; \(k\)-very ample line bundles; adjunction theory Mauro C. Beltrametti and Andrew J. Sommese, On the preservation of \?-very ampleness under adjunction, Math. Z. 212 (1993), no. 2, 257 -- 283.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; curve genus; sectional genus Lanteri, A., Maeda, H.: Ample vector bundles with sections vanishing on submanifolds of sectional genus three. Algebra, geometry and their interactions. In: Corso A., Migliore J. Polini C. (eds.) Contemp. Math., vol. 448, pp. 165--182. Amer. Math. Soc., Providence (2007)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces anti-Kodaira dimension; rational surface; isolated rational singularities; ample Cartier divisor; minimal resolution; Zariski decomposition of divisors; pseudo effective divisor; dimension formula; anti-genus Sakai, F. Anticanonical models of rational surfaces,Math. Ann. 269(3), 389--410, (1984).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces logarithmic genus; logarithmic Kodaira dimension; logarithmic irregularity; logarithmic differential form; non-complete algebraic varieties; birational geometry S. Iitaka : Algebraic Geometry. III . 1977 Iwanami- Shoten [Japanese].
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rational surface; Gauss map; very ample line bundle; plane curves; embeddings of rational surfaces; spanned line bundle; linear systems of plane curves; plane curves with prescribed singularities; injectivity of the Gauss map; blowing-up; very ample; Gauss maps C. De Volder, Very ampliness and Gauss maps of linear systems on blowings-up of projective varieties. Ph. D. Thesis, University of Ghent, 2000.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces compact Kähler manifold; Kähler manifold; nef line bundle; positive vector bundle; numerically effective line bundle; positive holomorphic vector bundle; multiplier ideal sheaf; almost plurisubharmonic function; big line bundle; vanishing theorems; numerical Kodaira dimension; hermitian metric on vector bundles; Hodge star operator; Kähler metric; coherent analytic sheaf Takegoshi, Kensho, On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds, Osaka J. Math., 34, 4, 783-802, (1997)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; spanned line bundle; minimal model; Kodaira dimensions
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Picard group; \(d\)-spanned line bundle; smooth polarized variety; Fujita conjecture; ample line bundle Kawachi, K., Proceedings of Computer Animation 1998
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vector bundles over a compact Riemann surface; residue; vector bundles admitting a logarithmic connection; pullback of line bundles; Picard group of moduli space of logarithmic connection; functions on the moduli space; compactification; torsor; Kodaira-Iitaka dimension; Fano three-folds; numerically effective tangent bundle I. Biswas, N. Raghavendra, Line bundles over a moduli space of logarithmic connections on a Riemann surface, Geom. Funct. Anal., in press
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of genus \(g\) curves \(M_{g}\); principally polarized abelian varieties of dimension \(g\); Siegel space; holomorphic sectional curvature of \(M_{g}\); Schiffer variation; Kähler form of the Siegel metric Colombo, E., Frediani, P.: Siegel metric and curvature of the moduli space of curves. Trans. Am. Math. Soc. 362(3), 1231--1246 (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces fundamental group; finite ramified covering; Kawai covering space; canonical bundle; dual line bundle; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces varieties of codimension 2; adjunction map; irregularity; sectional genus; non-special surfaces [IM] Idá M., Mezzetti E.: Smooth non-special surfaces ofP 4. Man. Math.68, 57--67 (1990)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces K3 surface; very ample line bundle; genus; projective model; complete intersection; Fano 3-folds; unirationality . S. Mukai , Curves, K3 surfaces and Fano 3-folds of genus \leq 10, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata (1988), to appear.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Enriques surfaces; Kodaira dimension 0; Picard lattice; Milne flat duality; genus 1 fibrations; nodal curves; Halphen pencils F.R. Cossec, I.V. Dolgachev, Enriques Surfaces. I, Progress in Mathematics, vol. 76 (Birkhäuser Boston, Inc., Boston, MA, 1989)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized \(n\)-fold; spannedness; very ample line bundle; three- dimensional quadric bundles; conic bundles BESANA G.M., ''On the geometry of conic bundles arising in adjunction theory'', Math. Nachr. 160 (1993), 223--251.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; sectional genus; ruled surface; scroll over a smooth surface
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces covering spaces of projective manifolds; ample line bundle; holomorphic functions of slow growth; Riemann surfaces with corona; generating Hörmander algebras on covering spaces; dichotomy; covering group; harmonic functions; weighted Bergman spaces Finnur Lárusson, Holomorphic functions of slow growth on nested covering spaces of compact manifolds, Canad. J. Math. 52 (2000), no. 5, 982 -- 998.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Seshadri constants; polarized varieties; nef line bundle; embedding; slope; nef cone; sub-maximal curves at very general points; abelian surfaces of Picard number one Bauer T. Seshadri constants on algebraic sufaces. Math Ann, 1999, 313: 547--583
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; Hilbert polynomial; ampleness; polarized surface Fernandez del Busto, A Matsusaka type theorem on surfaces, J. Algebraic Geom. 5 pp 513-- (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized surfaces; ample line bundles; spannedness; very ampleness; branched coverings Lanteri, A., Palleschi, M.: Adjunction properties of polarized surfaces via Reider's method. Math. Scand. (To appear.)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; polarized varieties; spanned line bundles; threefold; triple covers; adjunction
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjunction theory; bicanonical map; log-general type; smooth complex polarized threefold; surface section; surface of general type; very ample line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; nef; numerically effective; polarized manifolds; extremal rays; cone theorem; vanishing theorem T. Fujita, On polarized manifold whose adjoint bundles are not semipositive , In ``Algebraic geometry, Sendai'', Adv. Studies in Pure Math. 16 , 167-178, Kinokuniya-North-Holland, 1987.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of polarized manifolds; sectional genus; irregularity Y. FUKUMA, On complex manifolds polarized by an ample line bundle of sectional genus q(X)12, Math. Z., 234 (2000), pp. 573-604. Zbl0970.14005 MR1774098
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normally generated ample line bundle; polarized abelian variety Rubei E. Projective normality of abelian varieties with a line bundle of type (2,...), Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (2) (1998), 361--367
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vanishing Kodaira dimension; ample vector bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ball quotient compactifications; Kodaira dimension; geometric genus; irregularity; Kodaira-Enriques classification
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifold; adjoint bundle; sectional geometric genus; effectivity and nefness Fukuma, Y.: Classification of bi-polarized \(3\)-folds \((X,L\_{1},L\_{2})\) with \(h^{0}(K\_{X}+L\_{1}+L\_{2})=1\) (2016) Hiroshima Math. J. (\textbf{to appear})
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; curve genus; sectional genus; genus; Chern class H. ISHIHARA, A generalization of curve genus for ample vector bundles, I, Comm. Alg., 27 (1999), pp. 4327-4335. Zbl0995.14016 MR1705870
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized surface; jet bundle; ample line bundle; adjunction mapping; ruled surface; second Chern class; scroll M. Palleschi and C. Turrini, On polarized surfaces with a small generalized class, Extracta Math. 13 (1998), 371--381.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized surface; very ample line bundle Edoardo Ballico and Andrew J. Sommese, Projective surfaces with \?-very ample line bundles of degree \le 4\?+4, Nagoya Math. J. 136 (1994), 57 -- 79.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized surface; sectional genus; irregularity; Fujita's conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjunction; adjoint systems; polarized 3-folds of log-general type; very ample line bundle on a 3-fold BELTRAMETTI M. C. and SOMMESE A. J., ''On the dimension of the adjoint linear system for threefolds'', Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. (4), XXII (1995), 1--24.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces very ample line bundle; adjoint linear system; multiplier ideals L. Ein, \textit{Adjoint linear systems}, in: \textit{Current Topics in Complex Algebraic Geometry}, MSRI Publications, 1995, pp. 87-95.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces very ample line bundle; adjoint bundles; projective normality
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective variety; nef and big (ample) line bundle; (quasi-)polarized variety; \(i\)th \(\Delta\)-genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces odd sections; even sections; ample symmetric line bundle; abelian surface; Kummer surface Bauer, Th., Projective Images of Kummer Surfaces, Math. Ann., 1994, vol. 299, pp. 155--170.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces log abundance theorem; semilog canonical surfaces; Kodaira dimension Abramovich, D.; Fong, L.-Y.; Kollár, J.; McKernan, J., Semi log canonical surfaces, Flips and abundance for algebraic threefolds, Astérisque, 211, 139-154, (2002), MR1225842
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quasi-polarized manifold; sectional genus DOI: 10.4171/RSMUP/125-7
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces holomorphic maps; dominating maps; classification; holomorphically dominable algebraic surfaces; \(K3\) surface; Kodaira dimension; fundamental group G. Buzzard, S. Lu, Algebraic Surfaces Holomorphically Dominable by \(\(\mathbb{C}^2\)\). Invent. Math. 139, 617-659 (2000). arXiv:math/0005232
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces integrable systems; Picard group; Riemann surfaces of infinite genus; complete integrability; eigenbundles; holomorphic line bundles; spectral curve; divisors; Darboux coordinates; Serre duality Schmidt M U 1996 \textit{Integrable Systems and Riemann Surfaces of Infinite Genus}\textit{(Memoirs of the American Mathematical Society vol 122)} (Providence, RI: American Mathematical Society) pp 1--111
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces secant variety; normality of secant variety; \(k\)-very ample line bundle; Hilbert scheme; positivity; vector bundle Ullery, B.: On the normality of secant varieties. Adv. Math. \textbf{288}, 631-647 (2016). arXiv:1408.0865v2
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Seshadri constant; ample line bundle; abelian surface; elliptic curve Bauer, T; Schulz, C, Seshadri constants on the self-product of an elliptic curve, J. Algebra., 320, 2981-3005, (2008)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces affine ruledness; non-complete surfaces; affine uniruledness; logarithmic Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of polarized threefolds; very ample line bundles D'Ambros, P., Bipolarized threefolds with hyperelliptic curve sections, Ann. Univ. Ferrara. Sez. VII, XLV, 75-86, (1999)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Picard group; adjunction process; surfaces of small sectional genus; Castelnuovo's bound for the genus of a curve
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces invariant measures of integration; ample line bundle; complex abelian variety; hermitian metric; invariant measure G. R. Kempf, Metrics on invertible sheaves on abelian varieties , Topics in algebraic geometry (Guanajuato, 1989), Aportaciones Mat. Notas Investigación, 5, Soc. Mat. Mexicana, México, 1992, pp. 107--108.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces threefold; smooth ample divisor; logarithmic Kodaira dimension; elliptic fibration D'Souza, H., Threefolds whose hyperplane sections are elliptic surfaces, Pac. J. Math., 134, 57-78, (1988)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Albanese varieties; irregularity of cyclic coverings of surfaces; JFM 35.0423.01; JFM 36.0491.01; JFM 39.0698.03; JFM 42.0448.01; Albanese dimension F. Catanese and C. Ciliberto, ''On the irregularity of cyclic coverings of algebraic surfaces,'' in Geometry of Complex Projective Varieties, Rende: Mediterranean, 1993, vol. 9, pp. 89-115.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective varieties; Frobenius-Seshadri constants; jet separation; ample line bundle Murayama, T., Frobenius-Seshadri constants and characterizations of projective space, Math. Res. Lett., 25, 3, 905-936, (2018)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces numerically effective tangent bundle; étale cover of an abelian 3-fold; Kodaira dimension \beginbarticle \bauthor\binitsF. \bsnmCampana and \bauthor\binitsT. \bsnmPeternell, \batitleProjective manifolds whose tangent bundles are numerically effective, \bjtitleMath. Ann. \bvolume289 (\byear1991), page 169-\blpage187. \endbarticle \OrigBibText \beginbarticle \bauthor\binitsF. \bsnmCampana and \bauthor\binitsT. \bsnmPeternell, \batitleProjective manifolds whose tangent bundles are numerically effective, \bjtitleMath. Ann. \bvolume289 (\byear1991), page 169-\blpage187. \endbarticle \DOI10.1007/BF01446566 \endOrigBibText \bptokaddids, structpyb \endbibitem Mathematical Reviews (MathSciNet):
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample line bundle; Néron-Severi group; Dirichlet series
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces trigonal curve; 3-sheeted covering; Maroni invariant; syzygies; very ample nonspecial line bundle Martens G., Schreyer F.O.,Line bundles and syzygies of trigonal curves, Preprint Universität Kaiserslautern99.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of smooth varieties; semisimple cotangent bundle; Kodaira dimension; para-abelian variety T. Fujiwara,Varieties of small Kodaira dimension whose cotangent bundles are semiample, Compositio Math84 (1992), 43--52
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional capacity; arithmetic Hilbert-Samuel theorem; adelic metrized line bundle; transfinite diameter; local Chebyshev constant; logarithmic capacity; Arakelov theory R.\ S. Rumely, C.\ F. Lau and R. Varley, Existence of the sectional capacity, Mem. Amer. Math. Soc. 145 (2000), Article No. 690.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces very ampleness of line bundles; Kähler manifolds; sectional curvature; Kodaira embedding theorem S.-K. Yeung, Very ampleness of line bundles and canonical embedding of coverings of manifolds, Compos. Math. 123 (2000), no. 2, 209-223.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal model; extremal contraction; nef value; ample line bundle; terminal varieties; adjunction theory
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of complex projective smooth surface with an ample; line bundle; Chern classes of the Tschirnhaus bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rationality of \({\mathbb{Q}}\)-homology planes; rational surfaces; logarithmic Kodaira dimension Gurjar, RV; Pradeep, CR; Shastri, AR, On rationality of logarithmic \({\mathbb{Q}}\)-homology planes. II, Osaka J. Math., 34, 725-743, (1997)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces homogeneous line bundle; characteristic \(p\); negative Euler characteristic; counter-example to Kodaira's vanishing theorem Lauritzen, N.: The Euler characteristic of a homogeneous line bundle. C. R. Acad. sci. Paris sér. I 315, 715-718 (1992)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces exotic affine spheres; topologically contractible surfaces; Serre construction; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces surfaces with at most quasi-elliptic singularities; Kodaira dimension R. Blache. Positivity Results for Euler Characteristics of Singular Surfaces.Math. Z. 215 (1994), 1--12.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nonprincipal polarisations; ample line bundle on an abelian variety; type of the line bundle; Prym variety Nagaraj, D. S.; Ramanan, S., Polarisations of type \((1, 2, \ldots, 2)\) on abelian varieties, Duke Math. J., 80, 1, 157-194, (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces adjoint bundles; polarized manifold; Beltrametti-Sommese conjecture; the sectional geometric genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces compactification of surfaces; logarithmic Kodaira dimension; parabolic Inoue surface T. Vo Van. On the compactification problems for strongly pseudoconvex surfaces III. Math. Zeit., 195 (1987), 259--267.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle; Fano variety; ample divisor
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quadratic forms; line bundle-valued quadratic forms; Clifford algebras; Brauer groups; Brauer dimension; classical invariants; cohomological invariants Auel, A.: Surjectivity of the total Clifford invariant and Brauer dimension, arXiv:1108.5728 (2011)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces families of manifolds; minimal models; Kodaira dimension; variation of Hodge structures; moduli of polarized varieties
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rational surfaces; sectional genus; degree of parameterization; adjunction Schicho, J.: A degree bound for the parameterization of a rational surface. J. Pure Appl. Alg. 145, 91--105 (1999)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ring of differential operators; smooth affine variety; ample line bundle; smooth projective curve; graded algebra; isolated singularity; rational singularities
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; Fano manifold; nef line bundle; adjoint bundles; positive characteristic; rational curves
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces curves on surfaces; non-negative Kodaira dimension; number of rational curves; quasi-rational singularities; Euler characteristic
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Hermitian metrics on line bundles; Fujita conjecture; ample line bundle; very ampleness; vanishing theorem; Mori theory; Matsusaka big theorem J. P. Demaily, Effective bounds for very ample line bundles, Invent. Math., 124 (1996), pp. 243-261. Zbl0862.14004 MR1369417
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces triple cover; triple section of an ample line bundle Takao Fujita, Triple covers by smooth manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 169 -- 175.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces smooth projective surface; blowing up; algebraic surfaces; bounded negativity conjecture; logarithmic Kodaira dimension; Hirzebruch surface
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifolds; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces discriminant locus; ample line bundle; dual variety; defect; scrolls
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef bundle; generically ample divisors; big line bundle; Gorenstein surface; adjunction mapping; minimal desingularization [A-S] M. Andreatta--A.J. Sommese, Generically ample divisors on normal Gorenstein surfaces, Contemporary Mathematics, Proc. I.M.A. Singularities, vol 90 (1989), p. 1--19
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Del Pezzo manifolds; extremal ray; very ample line bundle; adjunction; Mori theory BELTRAMETTI M. C. and SOMMESE A. J., ''New properties of special varieties arising from adjunction theory'', J. Math. Soc. Japan 43 (1991), 381--412.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; spanned vector bundle; genus Francesco Russo, Some inequalities for ample and spanned vector bundles on algebraic surfaces, Boll. Un. Mat. Ital. A (7) 8 (1994), no. 3, 323 -- 333 (English, with Italian summary).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef value morphism; ample line bundle; projective variety; adjunction theoretic classification Y. Zhao: On classification of polarized varieties with non-integral nef values , Proc. Amer. Math. Soc. 129 (2001), 1907-1913.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic surfaces; non-complete algebraic surfaces; affine surfaces; projective surfaces; Enriques-Kodaira classification of surfaces; Kodaira dimension; birational geometry; logarithmic Kodaira dimension Miyanishi, M.: Open Algebraic Surfaces. Amer. Math. Soc. \textbf{12}. CRM Monograph Series, Providence (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized Abelian surfaces; arithmetic lifting; Lorentzian Kac-Moody algebras; Siegel modular forms; paramodular groups of genus 2; moduli space
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kähler surface; topological type; irregularity; Kodaira dimension; exceptional curve; fibre surgery
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifold; adjunction theory; adjoint bundles; sectional genus; sectional geometric genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces primary Kodaira surface; Picard group; Néron-Severi-group; holomorphic line bundle; Appel-Humbert data Brînzănescu, V, The Picard group of a primary Kodaira surface, Math. Ann., 296, 725-738, (1993)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces k-positive line bundle; cohomology vanishing theorems for holomorphic vector bundles on; complex manifolds; compact Kaehler manifolds; imbedding theorem of Kodaira; Hodge theory of harmonic forms; Kodaira vanishing theorem; Nakano vanishing theorem; k-negative line bundles; first Lefschetz theorem; complex projective space; vanishing theorem of Le Potier on Grassmann manifolds; vanishing theorems for vector bundles; Griffiths; Ramanujam; Kawamata; Viehweg; Mumford; Grauert- Riemenschneider; cohomology vanishing theorems for holomorphic vector bundles on complex manifolds Shiffman, Bernard; Sommese, Andrew John, Vanishing theorems on complex manifolds, Progress in Mathematics 56, xiii+170 pp., (1985), Birkhäuser Boston, Inc., Boston, MA
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces cyclic coverings of a curve; abelian surface; very ample line bundle; Horrocks-Mumford bundle Ramanan, S.: Ample divisors on abelian surfaces. Proc. of London Math. Soc.51, 231--245 (1985)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normal singular surfaces of degree 8; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces big line bundle; numerically effective line bundle; nef; injectivity theorems; semiample line bundles; Kodaira vanishing theorem [K] Koll?r, J.: Vanishing theorems for cohomology groups, to appear in the Proceedings of the 1985 conference at Bowdoin
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Appell-Humbert theorem; Bieberbach group; cohomology of groups; complex structure; group action; global section of line bundle; group representation; flat Riemannian manifold; holonomy group; Lyndon-Hotschild-Serre spectral sequence; Lefschetz's theorem; Lie group; (ample) line bundle; Neron-Severi group; Picard group
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; nef canonical divisor; minimal 3-fold; fundamental theorem of the classification of surfaces Y. Miyaoka: Abundance conjecture for 3-folds: case \(\nu = 1\), Compositio Math. 68 (1988), 203--220.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces determinant line bundle; vertex operators; loop group; Kac-Moody Lie algebras; affine algebras; infinite-dimensional Lie groups; central extensions; circle group; Grassmannian; polarized Hilbert space; Schubert cell decomposition; homogeneous space; complex manifold; Borel-Weil theory; spin representation; Kac character formula; Bernstein-Gel'fand- Gel'fand resolution A. Pressley and G. Segal, \textit{Loop Groups}, Clarendon Press, Oxford (1986).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; quasi polarized surface; quasi polarized variety Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), pp. 229-251. Zbl0897.14008 MR1436766
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces non-Kähler compact complex manifold; Inoue-Hirzebruch surfaces; torus embeddings; Kodaira dimension G. K. Sankaran, A class of non-Kähler complex manifolds , Tohoku Math. J. (2) 41 (1989), no. 1, 43-64.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Riemann surfaces; inhomogeneous Cauchy-Riemann equation with \(L^{2}\) estimates; holomorphic line bundle with positive curvature; subharmonic exhaustion function; divisor; uniformization theorem; biholomorphic classification of Riemann surfaces; Teichmüller theory T.~Napier, M.~Ramachandran: {\em An Introduction to Riemann Surfaces}, Springer (2011). DOI 10.1007/978-0-8176-4693-6; zbl 1237.30001; MR3014916
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces normally generated line bundles on a projective curve; \(\Delta\)-genus; sectional genus; nondegenerate surface K. Akahori, Classification of projective surface and projective normality.Tsukuba J. Math. 22 (1998), 213--225.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces surface of general type; ample line bundle; Seshadri constant; multi-point Seshadri constant; canonical line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces smooth curve; special line bundle; very ample special line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces abundance conjecture; Kodaira dimension; numerical Kodaira dimension; pluricanonical bundle Yum-Tong Siu, Abundance conjecture, Geometry and analysis. No. 2, Adv. Lect. Math. (ALM), vol. 18, Int. Press, Somerville, MA, 2011, pp. 271 -- 317.
0