filename
stringlengths 7
140
| content
stringlengths 0
76.7M
|
---|---|
code/backtracking/src/number_of_ways_in_maze/number_of_ways_in_maze.c | #include<stdio.h>
#define MAX_SIZE 10
/*
* Part of Cosmos by OpenGenus Foundation
*/
///i,j = current cell, m,n = destination
void solveMaze(char maze[][10],int sol[][10],int i,int j,int m,int n,int *ways){
///Base Case
if(i==m && j==n){
sol[m][n] = 1;
(*ways)++;
///Print the soln
for(int i=0;i<=m;i++){
for(int j=0;j<=n;j++){
printf("%d ", sol[i][j]);
}
printf("\n");
}
printf("\n");
return ;
}
if (sol[i][j]) {
return;
}
///Rec Case
///Assume there is a way from this cell
sol[i][j] = 1;
/// Try going Right
if(j+1<=n && maze[i][j+1]!='X'){
solveMaze(maze,sol,i,j+1,m,n,ways);
}
/// Try going Left
if(j-1>=0 && maze[i][j-1]!='X'){
solveMaze(maze,sol,i,j-1,m,n,ways);
}
/// Try going Up
if(i-1>=0 && maze[i-1][j]!='X'){
solveMaze(maze,sol,i-1,j,m,n,ways);
}
/// Try going Down
if(i+1<=m && maze[i+1][j]!='X'){
solveMaze(maze,sol,i+1,j,m,n,ways);
}
///Backtracking!
sol[i][j] =0;
return;
}
int main(){
char maze[MAX_SIZE][MAX_SIZE] = {
"00XXX",
"00000",
"0XX00",
"000X0",
"0X000"
};
int m = 4,n=4;
int sol[MAX_SIZE][MAX_SIZE];
int i,j;
for (i = 0; i < MAX_SIZE; i++) {
for (j = 0; j <MAX_SIZE; j++) {
sol[i][j]=0;
}
}
int ways=0;
solveMaze(maze,sol,0,0,m,n,&ways);
if(ways){
printf("Total ways %d\n", ways);
}
else{
printf("No ways\n");
}
return 0;
}
|
code/backtracking/src/number_of_ways_in_maze/number_of_ways_in_maze.cpp | #include <iostream>
using namespace std;
///i,j = current cell, m,n = destination
bool solveMaze(char maze[][10], int sol[][10], int i, int j, int m, int n, int &ways)
{
///Base Case
if (i == m && j == n)
{
sol[m][n] = 1;
ways++;
///Print the soln
for (int i = 0; i <= m; i++)
{
for (int j = 0; j <= n; j++)
cout << sol[i][j] << " ";
cout << endl;
}
cout << endl;
return true;
}
///Rec Case
///Assume jis cell pe khada hai vaha se rasta hai
sol[i][j] = 1;
/// Right mein X nahi hai
if (j + 1 <= n && maze[i][j + 1] != 'X')
{
bool rightSeRastaHai = solveMaze(maze, sol, i, j + 1, m, n, ways);
if (rightSeRastaHai)
{
// return true;
}
}
/// Down jake dekho agr rasta nahi mila right se
if (i + 1 <= m && maze[i + 1][j] != 'X')
{
bool downSeRastaHai = solveMaze(maze, sol, i + 1, j, m, n, ways);
if (downSeRastaHai)
{
//return true;
}
}
///Agr code is line mein aagya ! - Backtracking
sol[i][j] = 0;
return false;
}
int main()
{
char maze[10][10] = {
"00XXX",
"00000",
"0XX00",
"000X0",
"0X000"
};
int m = 4, n = 4;
int sol[10][10] = {0};
int ways = 0;
solveMaze(maze, sol, 0, 0, m, n, ways);
if (ways != 0)
cout << "Total ways " << ways << endl;
else
cout << "Koi rasta nahi hai " << endl;
return 0;
}
|
code/backtracking/src/number_of_ways_in_maze/number_of_ways_in_maze.go | // Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
type Point struct {
X int
Y int
}
var totalWays int
func SolveMaze(maze [][]byte, sol [][]byte, current, end Point, limitH, limitW int) {
if maze[current.X][current.Y] == '1' {
return
}
if sol[current.X][current.Y] == '1' {
return
}
sol[current.X][current.Y] = '1'
if current == end {
totalWays++
for _, v := range sol {
for _, k := range v {
fmt.Printf("%c ", k)
}
fmt.Print("\n")
}
fmt.Print("\n")
}
if current.X+1 < limitH {
current.X += 1
SolveMaze(maze, sol, current, end, limitH, limitW)
current.X -= 1
}
if current.X-1 >= 0 {
current.X -= 1
SolveMaze(maze, sol, current, end, limitH, limitW)
current.X += 1
}
if current.Y+1 < limitW {
current.Y += 1
SolveMaze(maze, sol, current, end, limitH, limitW)
current.Y -= 1
}
if current.Y-1 >= 0 {
current.Y -= 1
SolveMaze(maze, sol, current, end, limitH, limitW)
current.Y += 1
}
sol[current.X][current.Y] = '0'
return
}
func main() {
maze := [][]byte{
{'0', '0', '1', '1', '1'},
{'0', '0', '0', '0', '0'},
{'0', '1', '1', '0', '0'},
{'0', '0', '0', '1', '0'},
{'0', '1', '0', '0', '0'},
}
solution := [][]byte{
{'0', '0', '0', '0', '0'},
{'0', '0', '0', '0', '0'},
{'0', '0', '0', '0', '0'},
{'0', '0', '0', '0', '0'},
{'0', '0', '0', '0', '0'},
}
totalWays = 0
start := Point{X: 0, Y: 0}
end := Point{X: 4, Y: 4}
SolveMaze(maze, solution, start, end, 5, 5)
fmt.Printf("There are %d ways to escape from (%d:%d) to (%d:%d)\n", totalWays, start.X, start.Y, end.X, end.Y)
}
|
code/backtracking/src/number_of_ways_in_maze/number_of_ways_in_maze.java |
/*
* Part of Cosmos by OpenGenus Foundation
*/
public class RatMaze
{
final int N = 4;
/* A function to print solution matrix
sol[N][N] */
void printSolution(int sol[][])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
System.out.print(" " + sol[i][j] +
" ");
System.out.println();
}
}
/* A function to check if x,y is valid
index for N*N maze */
boolean isSafe(int maze[][], int x, int y)
{
// if (x,y outside maze) return false
return (x >= 0 && x < N && y >= 0 &&
y < N && maze[x][y] == 1);
}
boolean solveMaze(int maze[][])
{
int sol[][] = {{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};
if (solveMazeUtil(maze, 0, 0, sol) == false)
{
System.out.print("Solution doesn't exist");
return false;
}
printSolution(sol);
return true;
}
boolean solveMazeUtil(int maze[][], int x, int y,
int sol[][])
{
// if (x,y is goal) return true
if (x == N - 1 && y == N - 1)
{
sol[x][y] = 1;
return true;
}
// Check if maze[x][y] is valid
if (isSafe(maze, x, y) == true)
{
// mark x,y as part of solution path
sol[x][y] = 1;
/* Move forward in x direction */
if (solveMazeUtil(maze, x + 1, y, sol))
return true;
/* If moving in x direction doesn't give
solution then Move down in y direction */
if (solveMazeUtil(maze, x, y + 1, sol))
return true;
/* If none of the above movements work then
BACKTRACK: unmark x,y as part of solution
path */
sol[x][y] = 0;
return false;
}
return false;
}
public static void main(String args[])
{
RatMaze rat = new RatMaze();
int maze[][] = {{1, 0, 0, 0},
{1, 1, 0, 1},
{0, 1, 0, 0},
{1, 1, 1, 1}
};
rat.solveMaze(maze);
}
} |
code/backtracking/src/number_of_ways_in_maze/number_of_ways_in_maze.rs | extern crate nalgebra as na;
extern crate num;
use na::DMatrix;
use na::Scalar;
use na::dimension::Dynamic;
use num::FromPrimitive;
use std::fmt::Display;
trait MazeSolve {
fn solveMaze(&mut self, end: (usize, usize));
fn solveMazeRec(&mut self, pos: (usize, usize), end: (usize, usize), ways: &mut usize);
fn printSolution(&self, end: (usize, usize));
}
const BK: usize = 0;
const BLOCK: usize = 1;
const PASSED: usize = 2;
static START: (usize, usize) = (0, 0);
impl<S> MazeSolve for DMatrix<S>
where
S: Scalar + Display + FromPrimitive,
{
fn solveMaze(&mut self, end: (usize, usize)) {
let mut ways: usize = 0;
self.solveMazeRec(START, end, &mut ways);
if ways != 0 {
println!("Total ways: {}", ways);
} else {
println!("No way");
}
}
fn solveMazeRec(&mut self, pos: (usize, usize), end: (usize, usize), ways: &mut usize) {
unsafe {
*self.get_unchecked_mut(pos.0, pos.1) = FromPrimitive::from_usize(PASSED).unwrap();
}
let check_move = [(0, 1), (1, 0)].to_vec();
if pos == end {
*ways += 1;
println!("Solution {}", *ways);
self.printSolution(end);
} else {
for (m_x, m_y) in check_move {
let after_mov = (pos.0 + m_x, pos.1 + m_y);
if after_mov.0 <= end.0 && after_mov.1 <= end.1 {
let self_at: S = FromPrimitive::from_usize(BLOCK).unwrap();
if self.iter()
.enumerate()
.filter(|i| {
i.0 == after_mov.0 + after_mov.1 * (end.0 + 1) && *i.1 == self_at
})
.count() == 0
{
self.solveMazeRec(after_mov, end, ways);
}
}
}
}
unsafe {
*self.get_unchecked_mut(pos.0, pos.1) = FromPrimitive::from_usize(BK).unwrap();
}
}
fn printSolution(&self, end: (usize, usize)) {
for (idx, item) in self.iter().enumerate() {
let bk: S = FromPrimitive::from_usize(BK).unwrap();
let block: S = FromPrimitive::from_usize(BLOCK).unwrap();
let passed: S = FromPrimitive::from_usize(PASSED).unwrap();
let charector = if *item == bk {
"O"
} else if *item == block {
"X"
} else if *item == passed {
"*"
} else {
"O"
};
print!("{position:>1}", position = charector);
if idx % (end.0 + 1) == end.0 {
println!();
}
}
println!();
}
}
fn main() {
let map_sample = [
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 1, 0, 0, 0],
];
let mut map =
DMatrix::from_fn_generic(Dynamic::new(5), Dynamic::new(5), |r, c| map_sample[c][r]);
println!("Print Map");
map.printSolution((4, 4));
map.solveMaze((4, 4));
}
|
code/backtracking/src/partitions_of_number/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/backtracking/src/partitions_of_number/partitions_of_number.cpp | /// Part of Cosmos by OpenGenus Foundation
#include <stdio.h>
#include <vector>
void backtrack(int level);
void print_sol(int length);
std::vector<int> solution;
int N, S = 0;
int solsFound = 0;
int main()
{
scanf("%d", &N);
solution.reserve(N + 1);
solution[0] = 1;
backtrack(1);
return 0;
}
void backtrack(int level)
{
if (S == N)
print_sol(level - 1);
else
for (int i = solution[level - 1]; i <= N - S; i++)
{
solution[level] = i;
S += i;
backtrack(level + 1);
S -= i;
}
}
void print_sol(int length)
{
printf("SOLUTION %d\n", ++solsFound);
printf("%d=", N);
for (int i = 1; i <= length - 1; i++)
printf("%d+", solution[i]);
printf("%d\n", solution[length]);
}
|
code/backtracking/src/partitions_of_number/partitions_of_number.go | /// Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
var totalSol int
func partitions(input int, sol []int, start int) {
if input == 0 {
fmt.Println(sol)
totalSol++
return
}
for i := start; i <= input; i++ {
sol = append(sol, i)
partitions(input-i, sol, i)
sol = sol[:len(sol)-1]
}
}
func main() {
input := 10
sol := []int{}
totalSol = 0
partitions(input, sol, 1)
fmt.Printf("There are %d ways to combine %d\n", totalSol, input)
}
|
code/backtracking/src/partitions_of_number/partitions_of_number.rs | #[macro_use]
extern crate text_io;
fn main() {
let n: usize = read!();
let mut s: usize = 0;
let mut solution: Vec<usize> = Vec::new();
solution.push(1);
for _ in 0..n {
solution.push(0);
}
backtrack(&mut solution, n, &mut s, 1);
}
fn backtrack(vec: &mut Vec<usize>, n: usize, s: &mut usize, level: usize) {
//println!("{:?}", vec);
if n == *s {
printsol(vec, n, level - 1);
} else {
let mut i = vec[level - 1];
while i <= n - *s {
if let Some(elem) = vec.get_mut(level) {
*elem = i;
}
*s += i;
backtrack(vec, n, s, level + 1);
*s -= i;
i += 1;
}
}
}
fn printsol(map: &Vec<usize>, num: usize, level: usize) {
println!("Solution");
print!("{} = ", num);
for idx in 1..level + 1 {
if idx == 1 {
print!("{:?}", map[idx]);
} else {
print!(" + {:?}", map[idx]);
}
}
println!();
}
|
code/backtracking/src/partitions_of_set/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/backtracking/src/partitions_of_set/partitions_of_set.cpp | /// Part of Cosmos by OpenGenus Foundation
#include <stdio.h>
#include <vector>
void backtrack(int level);
void print_sol();
std::vector<int> v;
std::vector<int> solution;
int maxfromSol = 0;
int N;
int solsFound = 0;
int main()
{
scanf("%d", &N);
v.reserve(N + 1);
solution.reserve(N + 1);
for (int i = 1; i <= N; i++)
scanf("%d", &v[i]);
backtrack(1);
return 0;
}
void backtrack(int level)
{
if (level == N + 1)
print_sol();
else
{
for (int i = 1; i <= maxfromSol; i++)
{
solution[level] = i;
backtrack(level + 1);
}
solution[level] = maxfromSol + 1;
maxfromSol++;
backtrack(level + 1);
maxfromSol--;
}
}
void print_sol()
{
printf("SOLUTION %d\n", ++solsFound);
for (int i = 1; i <= maxfromSol; i++)
{
printf("Partition %d:", i);
for (int j = 1; j <= N; j++)
if (solution[j] == i)
printf("%d ", v[j]);
printf("\n");
}
}
|
code/backtracking/src/partitions_of_set/partitions_of_set.go | /// Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
var totalSol int
/*
expected output:
solution 1
[1 2 3]
solution 2
[1 2]
[3]
solution 3
[1 3]
[2]
solution 4
[1]
[2 3]
solution 5
[1]
[2]
[3]
*/
func setPartition(data []int, indexArr []int, index, currentLevel int) {
if index == len(data) {
totalSol++
fmt.Printf("solution %d\n", totalSol)
for level := 0; level <= currentLevel; level++ {
ans := []int{}
for i, v := range indexArr {
if v == level {
ans = append(ans, data[i])
}
}
fmt.Println(ans)
}
return
}
//Try eveny level within currentLevel for current index
for i := 0; i <= currentLevel; i++ {
indexArr[index] = i
setPartition(data, indexArr, index+1, currentLevel)
}
//Move to next level
indexArr[index] = currentLevel + 1
currentLevel++
setPartition(data, indexArr, index+1, currentLevel)
currentLevel--
}
func main() {
data := []int{1, 2, 3}
//Use index array to indicate which partition the element belong to
index := make([]int, len(data))
//Since {1},{2,3} is equal to {2,3},{1},
//We can always put first element in first partition and generate the partition of the rest of elements.
index[0] = 0
totalSol = 0
setPartition(data, index, 1, 0)
}
|
code/backtracking/src/permutations_of_string/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/backtracking/src/permutations_of_string/permutations_of_string.c | #include <stdio.h>
#include <string.h>
/* Function to swap values at two pointers */
// Part of Cosmos by OpenGenus Foundation
void swap(char *x, char *y)
{
char temp;
temp = *x;
*x = *y;
*y = temp;
}
/* Function to print permutations of string
This function takes three parameters:
1. String
2. Starting index of the string
3. Ending index of the string. */
void permute(char *a, int l, int r)
{
int i;
if (l == r) {
printf("%s\n", a);
}
else
{
for (i = l; i <= r; i++)
{
swap((a+l), (a+i));
permute(a, l+1, r);
swap((a+l), (a+i)); //backtrack
}
}
}
/* Driver program to test above functions */
int main() {
char str[] = "ABC";
int n = strlen(str);
permute(str, 0, n - 1);
return 0;
}
/*OUTPUT
ABC
ACB
BAC
BCA
CBA
CAB*/
|
code/backtracking/src/permutations_of_string/permutations_of_string.go | // Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
func permutation(data []byte, start, end int) {
if start == end {
fmt.Println(string(data))
} else {
for i := start; i <= end; i++ {
data[start], data[i] = data[i], data[start]
permutation(data, start+1, end)
data[start], data[i] = data[i], data[start]
}
}
}
func main() {
data := string("ABC")
byteArray := []byte(data)
permutation(byteArray, 0, len(byteArray)-1)
}
|
code/backtracking/src/permutations_of_string/permutations_of_string.kt | // Part of Cosmos by OpenGenus Foundation
fun permute(s: String, l: Int = 0, r: Int = s.length - 1) {
val builder = StringBuilder(s)
var i: Int
if (l == r) {
println(s)
} else {
i = l
while (i <= r) {
var tmp = builder[l]
builder[l] = builder[i]
builder[i] = tmp
permute(builder.toString(), l + 1, r)
tmp = builder[l]
builder[l] = builder[i]
builder[i] = tmp
i++
}
}
}
fun main(args: Array<String>) {
permute("ABC")
/*
Output:
ABC
ACB
BAC
BCA
CBA
CAB
*/
} |
code/backtracking/src/permutations_of_string/permutations_of_string.py | # Part of Cosmos by OpenGenus Foundation
import typing
def permute(s: str, i: int = 0) -> typing.Iterator[str]:
"""
>>> list(permute('ABC'))
['ABC', 'ACB', 'BAC', 'BCA', 'CBA', 'CAB']
"""
if i == len(s) - 1:
yield "".join(s)
else:
for j in range(i, len(s)):
yield from permute(s[:i] + s[i : j + 1][::-1] + s[j + 1 :], i + 1)
|
code/backtracking/src/permutations_of_string/permutations_of_string_itertools.py | # Part of Cosmos by OpenGenus Foundation
import itertools
import typing
def permute(string: str) -> typing.Iterator[str]:
"""
>>> list(permute('ABC'))
['ABC', 'ACB', 'BAC', 'BCA', 'CAB', 'CBA']
"""
yield from map("".join, itertools.permutations(string))
|
code/backtracking/src/permutations_of_string/permutations_of_string_stl.cpp | // Part of Cosmos by OpenGenus Foundation
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
int main()
{
string s;
cin >> s;
sort(s.begin(), s.end());
do
cout << s << endl;
while (next_permutation(s.begin(), s.end()));
return 0;
}
|
code/backtracking/src/power_set/power_set.c | #include <stdio.h>
#include <math.h>
void
find_power_set(char *set, int set_size)
{
unsigned int power_set_size = 1 << set_size;
int counter, j;
for (counter = 0; counter < power_set_size; counter++) {
for (j = 0; j < set_size; j++) {
if (counter & (1 << j))
printf("%c", set[j]);
}
printf("\n");
}
}
int
main()
{
char set[] = {'a', 'b', 'c'};
find_power_set(set, sizeof(set) / sizeof(set[0]));
return (0);
}
|
code/backtracking/src/power_set/power_set.go | //Part of Open Genus foundation
package main
/*
{1 2 3 }
{1 2 }
{1 3 }
{1 }
{2 3 }
{2 }
{3 }
{}
*/
import "fmt"
func powerSet(input, record []int, index int) {
if index == len(input) {
fmt.Printf("{")
for i, v := range record {
if v == 1 {
fmt.Printf(" %v", input[i])
}
}
fmt.Printf(" }\n")
return
}
record[index] = 1
powerSet(input, record, index+1)
record[index] = 0
powerSet(input, record, index+1)
}
func main() {
input := []int{1, 2, 3}
record := make([]int, len(input))
powerSet(input, record, 0)
}
|
code/backtracking/src/power_set/power_set.java | /**
* Part of Cosmos by OpenGenus Foundation
* This code snippet shows how to generate the powerset of a set which is the
* set of all subsets of a set. There are two common ways of doing this which
* are to use the binary representation of numbers on a computer or to
* do it recursively. Both methods are shown here, pick your flavor!
*
* Time Complexity: O( 2^n )
*
* @author William Fiset, [email protected]
**/
public class PowerSet {
// Use the fact that numbers represented in binary can be
// used to generate all the subsets of an array
static void powerSetUsingBinary(int[] set) {
final int N = set.length;
final int MAX_VAL = 1 << N;
for (int subset = 0; subset < MAX_VAL; subset++) {
System.out.print("{ ");
for (int i = 0; i < N; i++) {
int mask = 1 << i;
if ((subset & mask) == mask)
System.out.print(set[i] + " ");
}
System.out.println("}");
}
}
// Recursively generate the powerset (set of all subsets) of an array by maintaining
// a boolean array used to indicate which element have been selected
static void powerSetRecursive(int at, int[] set, boolean[] used) {
if (at == set.length) {
// Print found subset!
System.out.print("{ ");
for (int i = 0; i < set.length; i++)
if (used[i])
System.out.print(set[i] + " ");
System.out.println("}");
} else {
// Include this element
used[at] = true;
powerSetRecursive(at + 1, set, used);
// Backtrack and don't include this element
used[at] = false;
powerSetRecursive(at + 1, set, used);
}
}
public static void main(String[] args) {
// Example usage:
int[] set = {1, 2, 3 };
powerSetUsingBinary(set);
// prints:
// { }
// { 1 }
// { 2 }
// { 1 2 }
// { 3 }
// { 1 3 }
// { 2 3 }
// { 1 2 3 }
System.out.println();
powerSetRecursive(0, set, new boolean[set.length]);
// prints:
// { 1 2 3 }
// { 1 2 }
// { 1 3 }
// { 1 }
// { 2 3 }
// { 2 }
// { 3 }
// { }
}
}
|
code/backtracking/src/rat_in_a_maze/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/backtracking/src/rat_in_a_maze/rat_in_a_maze.cpp | /* C/C++ program to solve Rat in a Maze problem using
* backtracking */
#include <stdio.h>
// Maze size
#define N 4
bool solveMazeUtil(int maze[N][N], int x, int y, int sol[N][N]);
/* A utility function to print solution matrix sol[N][N] */
void printSolution(int sol[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
printf(" %d ", sol[i][j]);
printf("\n");
}
}
/* A utility function to check if x,y is valid index for N*N maze */
bool isSafe(int maze[N][N], int x, int y)
{
// if (x,y outside maze) return false
if (x >= 0 && x < N && y >= 0 && y < N && maze[x][y] == 1)
return true;
return false;
}
/* This function solves the Maze problem using Backtracking. It mainly
* uses solveMazeUtil() to solve the problem. It returns false if no
* path is possible, otherwise return true and prints the path in the
* form of 1s. Please note that there may be more than one solutions,
* this function prints one of the feasible solutions.*/
bool solveMaze(int maze[N][N])
{
int sol[N][N] = { {0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};
if (solveMazeUtil(maze, 0, 0, sol) == false)
{
printf("Solution doesn't exist");
return false;
}
printSolution(sol);
return true;
}
/* A recursive utility function to solve Maze problem */
bool solveMazeUtil(int maze[N][N], int x, int y, int sol[N][N])
{
// if (x,y is goal) return true
if (x == N - 1 && y == N - 1)
{
sol[x][y] = 1;
return true;
}
// Check if maze[x][y] is valid
if (isSafe(maze, x, y) == true)
{
// mark x,y as part of solution path
sol[x][y] = 1;
/* Move forward in x direction */
if (solveMazeUtil(maze, x + 1, y, sol) == true)
return true;
/* If moving in x direction doesn't give solution then
* Move down in y direction */
if (solveMazeUtil(maze, x, y + 1, sol) == true)
return true;
/* If none of the above movements work then BACKTRACK:
* unmark x,y as part of solution path */
sol[x][y] = 0;
return false;
}
return false;
}
// driver program to test above function
int main()
{
int maze[N][N] = { {1, 0, 0, 0},
{1, 1, 0, 1},
{0, 1, 0, 0},
{1, 1, 1, 1}
};
solveMaze(maze);
return 0;
}
|
code/backtracking/src/rat_in_a_maze/rat_in_a_maze.py | # Maze size
N = 4
def solve_maze_util(maze, x, y, sol):
# if (x,y is goal) return True
if x == N - 1 and y == N - 1:
sol[x][y] = 1
return True
# Check if maze[x][y] is valid
if is_safe(maze, x, y):
# Mark x,y as part of solution path
sol[x][y] = 1
# Move forward in x direction
if solve_maze_util(maze, x + 1, y, sol):
return True
# If moving in x direction doesn't give a solution then move down in y direction
if solve_maze_util(maze, x, y + 1, sol):
return True
# If none of the above movements work, then BACKTRACK: unmark x,y as part of the solution path
sol[x][y] = 0
return False
return False
def is_safe(maze, x, y):
# if (x,y outside maze) return False
if 0 <= x < N and 0 <= y < N and maze[x][y] == 1:
return True
return False
def print_solution(sol):
for row in sol:
for val in row:
print(val, end=' ')
print()
def solve_maze(maze):
sol = [[0 for _ in range(N)] for _ in range(N)]
if not solve_maze_util(maze, 0, 0, sol):
print("Solution doesn't exist")
return False
print_solution(sol)
return True
# Driver program to test above function
if __name__ == "__main__":
maze = [[1, 0, 0, 0],
[1, 1, 0, 1],
[0, 1, 0, 0],
[1, 1, 1, 1]]
solve_maze(maze)
|
code/backtracking/src/subset_sum/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
SubsetSum is to compute a sum S using a selected subset of a given set of N weights.
It works by backtracking, returning all possible solutions one at a time, keeping track of the selected weights using a 0/1 mask vector of size N.
A={1,2,3,4,7}
S=4
subets={1,3},{4}
|
code/backtracking/src/subset_sum/subset_sum.c | // Part of Cosmos by OpenGenus Foundation
#include <stdio.h>
// Recursive Solution
// Driver program to test above function
// Returns true if there is a subset of set[] with sun equal to given sum
int isSubsetSum(int set[], int n, int sum)
{
// Base Cases
if (sum == 0)
return 1;
if (n == 0 && sum != 0)
return 0;
// If last element is greater than sum, then ignore it
if (set[n-1] > sum)
return isSubsetSum(set, n-1, sum);
/* else, check if sum can be obtained by any of the following
(a) including the last element
(b) excluding the last element */
return isSubsetSum(set, n-1, sum) || isSubsetSum(set, n-1, sum-set[n-1]);
}
int main()
{
int n,i,sum;
printf("Input number of elements\n");
scanf("%d",&n);
int set[n];
printf("Input array elements\n");
for(i = 0; i < n;i++)
scanf("%d",&set[i]);
printf("Enter Sum to check\n");
scanf("%d",&sum);
if (isSubsetSum(set, n, sum) == 1)
printf("Found a subset with given sum\n");
else
printf("No subset with given sum\n");
return 0;
}
|
code/backtracking/src/subset_sum/subset_sum.cpp | /* Part of Cosmos by OpenGenus Foundation */
#include <iostream>
#include <vector>
using namespace std;
/*
* Generate all possible subset sums
* of array v that sum up to targetSum
*/
vector< vector<int>> generateSubsetSums(int v[], size_t size, int targetSum)
{
vector< vector<int>> solutions;
for (int i = 0; i < (1 << size); ++i)
{
int currentSum = 0;
for (size_t j = 0; j < size; ++j)
if (i & (1 << j))
currentSum += v[j];
if (currentSum == targetSum)
{
vector<int> subsetSum;
for (size_t j = 0; j < size; ++j)
if (i & (1 << j))
subsetSum.push_back(v[j]);
solutions.push_back(subsetSum);
}
}
return solutions;
}
int main()
{
int v[] = {5, 12, -3, 10, -2, 7, -1, 8, 11};
int targetSum = 7;
vector< vector<int>> subsetSums = generateSubsetSums(v, sizeof(v) / sizeof(v[0]), targetSum);
cout << "Subset sums:\n";
for (size_t i = 0; i < subsetSums.size(); ++i)
{
cout << subsetSums[i][0];
for (size_t j = 1; j < subsetSums[i].size(); ++j)
cout << ", " << subsetSums[i][j];
cout << '\n';
}
return 0;
}
|
code/backtracking/src/subset_sum/subset_sum.go | // Part of Cosmos by OpenGenus Foundation
package main
import "fmt"
var totalSol int
/*
Expected output:
[1 2 3]
[1 5]
[2 4]
[6]
There're 4 ways to combine 6 from [1 2 3 4 5 6 7 8 9 10 11 12 13 14]
*/
func subSetSum(data []int, sol []int, index, target int) {
if target == 0 {
totalSol++
fmt.Println(sol)
return
}
if target < 0 || index >= len(data) {
return
}
sol = append(sol, data[index])
subSetSum(data, sol, index+1, target-data[index])
sol = sol[:len(sol)-1]
subSetSum(data, sol, index+1, target)
}
func main() {
data := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
sol := []int{}
target := 6
totalSol = 0
subSetSum(data, sol, 0, target)
fmt.Printf("There're %d ways to combine %d from %v\n", totalSol, target, data)
}
|
code/backtracking/src/subset_sum/subset_sum.java | import java.util.ArrayList;
import java.util.Scanner;
public class SubsetSum {
public static ArrayList<ArrayList<Integer>> SubsetGenerate(int arr[], int requiredSum){
ArrayList<ArrayList<Integer>> RequiredSubsets = new ArrayList<ArrayList<Integer>>();
int temp,size = arr.length;
for(int i=0;i<(1<<size);i++){
temp = 0;
for(int j=0;j<size;j++)
if((i & (1<<j)) > 0)
temp += arr[j];
if(requiredSum == temp){
ArrayList<Integer> subset = new ArrayList<>();
for(int j=0;j<size;j++)
if((i & (1<<j)) > 0)
subset.add(arr[j]);
RequiredSubsets.add(subset);
}
}
return RequiredSubsets;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.print("Enter n >> ");
int n = sc.nextInt();
int arr[] = new int[n];
System.out.print("Enter n array elements >> ");
for(int i=0;i<n;i++)
arr[i] = sc.nextInt();
System.out.print("Enter required Subset Sum >> ");
int requiredSum = sc.nextInt();
ArrayList<ArrayList<Integer>> RequiredSubsets = SubsetGenerate(arr,requiredSum);
int temp;
System.out.println("Subsets with sum = " + requiredSum + " : ");
for(int i=0;i<RequiredSubsets.size();i++){
temp = RequiredSubsets.get(i).size();
for(int j=0;j<temp;j++){
System.out.print(RequiredSubsets.get(i).get(j) + " ");
}
System.out.println();
}
}
}
|
code/backtracking/src/subset_sum/subset_sum.py | # Part of Cosmos by OpenGenus Foundation
# subsetsum function below
def subsetsum(cs, k, r, x, w, d):
x[k] = 1
if cs + w[k] == d:
for i in range(0, k + 1):
if x[i] == 1:
print(w[i], end=" ")
print()
elif cs + w[k] + w[k + 1] <= d:
subsetsum(cs + w[k], k + 1, r - w[k], x, w, d)
if (cs + r - w[k] >= d) and (cs + w[k] <= d):
x[k] = 0
subsetsum(cs, k + 1, r - w[k], x, w, d)
# driver for the above code
# Main array w
w = [2, 3, 4, 5, 0]
x = [0 for i in range(len(w))]
print("Enter the no u want to get the subsets sum for")
num = int(input())
if num <= sum(w):
print("The subsets are:-\n")
subsetsum(0, 0, sum(w), x, w, num)
else:
print(
"Not possible The no is greater than the sum of all the elements in the array"
)
|
code/backtracking/src/subset_sum/subset_sum_duplicates.py | def combinationSum(candidates, target):
"""
Problem description:
Given a set of candidate numbers (C) (without duplicates) and a target number (T),
find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Args:
candidates: list of pickable integers
target: target sum
Returns:
List of subsets that sum to the target sum of target
"""
result_set = []
backtrack(0, sorted(candidates), target, 0, result_set, [])
return result_set
def backtrack(pos, candidates, target, currentSum, result_set, sequence):
"""
Helper function for backtracking. Initially does a DFS traversal on each
index to check all combinations of subsets to see if they sum to the target
sum.
Args:
pos: current pivot index
candidates: candidates list (main list of pickable integers)
currentSum: current sum of the list
result_set: list to store all result_set
sequence: list being used to contain elements relevent to the current DFS
Returns:
None
"""
if currentSum == target:
result_set.append(sequence[:])
elif currentSum < target:
for i in range(pos, len(candidates)):
newSum = currentSum + candidates[i]
if newSum > target:
break
sequence.append(candidates[i])
backtrack(i, candidates, target, newSum, result_set, sequence)
sequence.pop()
if __name__ == "__main__":
arr = [2, 3, 6, 7]
print(combinationSum(arr, 7))
|
code/backtracking/src/sudoku_solve/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/backtracking/src/sudoku_solve/sudoku_solve.c | /*
** Reimua
** Part of Cosmos by OpenGenus Foundation
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
static const int map_size = 9;
/*
** Check a number's existance on a line.
*/
int exist_on_line(char map[map_size][map_size + 2], const int pos_y, const char c)
{
int i = 0;
while (i < map_size)
{
if (map[pos_y][i++] == c)
return (1);
}
return (0);
}
/*
** Check a number's existance on a column.
*/
int exist_on_column(char map[map_size][map_size + 2], const int pos_x, const char c)
{
int i = 0;
while (i < map_size)
{
if (map[i++][pos_x] == c)
return (1);
}
return (0);
}
/*
** Check a number's existance on a block.
*/
int exist_on_block(char map[map_size][map_size + 2], const int pos_x, const int pos_y, const char c)
{
int i = pos_y - (pos_y % 3);
int j = pos_x - (pos_x % 3);
int m = i;
int n = j;
while (m < i + 3)
{
while (n < j + 3)
{
if (map[m][n] == c)
return (1);
n++;
}
m++;
n = j;
}
return (0);
}
/*
** Solve the sudoku by using backtracking.
**
** The following could be improved by changing
** the order of completion instead of going
** from 0 to map_size².
*/
int resolve_sudoku(char map[map_size][map_size + 2], const int pos)
{
if (pos == map_size * map_size)
return (1);
int pos_x = pos % 9;
int pos_y = pos / 9;
if (map[pos_y][pos_x] != '0')
return (resolve_sudoku(map, pos + 1));
char c = '1';
while (c <= map_size + '0')
{
if (!exist_on_line(map, pos_y, c) &&
!exist_on_column(map, pos_x, c) &&
!exist_on_block(map, pos_x, pos_y, c))
{
map[pos_y][pos_x] = c;
if (resolve_sudoku(map, pos + 1))
return (1);
}
c++;
}
map[pos_y][pos_x] = '0';
return (0);
}
/*
** Read from stdin.
*/
int read_map(char map[map_size][map_size + 2])
{
int i = 0;
while (i < map_size)
{
if (!fgets(map[i], map_size + 2, stdin) ||
(int)strlen(map[i]) < map_size)
return (1);
map[i++][map_size] = '\0';
}
return (0);
}
int main(void)
{
int i = 0;
char map[map_size][map_size + 2];
if (read_map(map))
return (1);
resolve_sudoku(map, 0);
while (i < map_size)
printf("%s\n", map[i++]);
return (0);
}
|
code/backtracking/src/sudoku_solve/sudoku_solve.cpp | #include <iostream>
using namespace std;
/*
* Part of Cosmos by OpenGenus Foundation
*/
int n = 9;
bool isPossible(int mat[][9], int i, int j, int no)
{
///Row or col should not have no
for (int x = 0; x < n; x++)
if (mat[x][j] == no || mat[i][x] == no)
return false;
/// Subgrid should not have no
int sx = (i / 3) * 3;
int sy = (j / 3) * 3;
for (int x = sx; x < sx + 3; x++)
for (int y = sy; y < sy + 3; y++)
if (mat[x][y] == no)
return false;
return true;
}
void printMat(int mat[][9])
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
cout << mat[i][j] << " ";
if ((j + 1) % 3 == 0)
cout << '\t';
}
if ((i + 1) % 3 == 0)
cout << endl;
cout << endl;
}
}
bool solveSudoku(int mat[][9], int i, int j)
{
///Base Case
if (i == 9)
{
printMat(mat);
return true;
}
///Crossed the last Cell in the row
if (j == 9)
return solveSudoku(mat, i + 1, 0);
///Skip if filled cell
if (mat[i][j] != 0)
return solveSudoku(mat, i, j + 1);
///White Cell
///Try to place every possible no
for (int no = 1; no <= 9; no++)
if (isPossible(mat, i, j, no))
{
///Place the no - assuming solution is possible with this
mat[i][j] = no;
bool isSolve = solveSudoku(mat, i, j + 1);
if (isSolve)
return true;
///loop will place the next no.
}
///Backtracking
mat[i][j] = 0;
return false;
}
int main()
{
int mat[9][9] =
{{5, 3, 0, 0, 7, 0, 0, 0, 0},
{6, 0, 0, 1, 9, 5, 0, 0, 0},
{0, 9, 8, 0, 0, 0, 0, 6, 0},
{8, 0, 0, 0, 6, 0, 0, 0, 3},
{4, 0, 0, 8, 0, 3, 0, 0, 1},
{7, 0, 0, 0, 2, 0, 0, 0, 6},
{0, 6, 0, 0, 0, 0, 2, 8, 0},
{0, 0, 0, 4, 1, 9, 0, 0, 5},
{0, 0, 0, 0, 8, 0, 0, 7, 9}};
printMat(mat);
cout << "Solution " << endl;
solveSudoku(mat, 0, 0);
return 0;
}
|
code/backtracking/src/sudoku_solve/sudoku_solve.py | # A Backtracking program in Pyhton to solve Sudoku problem
# A Utility Function to print the Grid
def print_grid(arr):
for i in range(9):
for j in range(9):
print(arr[i][j], end=" "),
print(end="\n")
# Function to Find the entry in the Grid that is still not used
# Searches the grid to find an entry that is still unassigned. If
# found, the reference parameters row, col will be set the location
# that is unassigned, and true is returned. If no unassigned entries
# remain, false is returned.
# 'l' is a list variable that has been passed from the solve_sudoku function
# to keep track of incrementation of Rows and Columns
def find_empty_location(arr, l):
for row in range(9):
for col in range(9):
if arr[row][col] == 0:
l[0] = row
l[1] = col
return True
return False
# Returns a boolean which indicates whether any assigned entry
# in the specified row matches the given number.
def used_in_row(arr, row, num):
for i in range(9):
if arr[row][i] == num:
return True
return False
# Returns a boolean which indicates whether any assigned entry
# in the specified column matches the given number.
def used_in_col(arr, col, num):
for i in range(9):
if arr[i][col] == num:
return True
return False
# Returns a boolean which indicates whether any assigned entry
# within the specified 3x3 box matches the given number
def used_in_box(arr, row, col, num):
for i in range(3):
for j in range(3):
if arr[i + row][j + col] == num:
return True
return False
# Checks whether it will be legal to assign num to the given row,col
# Returns a boolean which indicates whether it will be legal to assign
# num to the given row,col location.
def check_location_is_safe(arr, row, col, num):
# Check if 'num' is not already placed in current row,
# current column and current 3x3 box
return (
not used_in_row(arr, row, num)
and not used_in_col(arr, col, num)
and not used_in_box(arr, row - row % 3, col - col % 3, num)
)
# Takes a partially filled-in grid and attempts to assign values to
# all unassigned locations in such a way to meet the requirements
# for Sudoku solution (non-duplication across rows, columns, and boxes)
def solve_sudoku(arr):
# 'l' is a list variable that keeps the record of row and col in find_empty_location Function
l = [0, 0]
# If there is no unassigned location, we are done
if not find_empty_location(arr, l):
return True
# Assigning list values to row and col that we got from the above Function
row = l[0]
col = l[1]
# consider digits 1 to 9
for num in range(1, 10):
# if looks promising
if check_location_is_safe(arr, row, col, num):
# make tentative assignment
arr[row][col] = num
# return, if sucess, ya!
if solve_sudoku(arr):
return True
# failure, unmake & try again
arr[row][col] = 0
# this triggers backtracking
return False
# Driver main function to test above functions
if __name__ == "__main__":
# creating a 2D array for the grid
grid = [[0 for x in range(9)] for y in range(9)]
# assigning values to the grid
grid = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# if sucess print the grid
if solve_sudoku(grid):
print_grid(grid)
else:
print("No solution exists")
|
code/backtracking/src/sudoku_solve/sudoku_solve.rs | // Part of Cosmos by OpenGenus
const N: usize = 9;
const UNASSIGNED: u8 = 0;
type Board = [[u8; N]; N];
fn solve_sudoku(grid: &mut Board) -> bool {
let row;
let col;
if let Some((r, c)) = find_unassigned_cells(&grid) {
row = r;
col = c;
} else {
// SOLVED
return true;
}
for num in 1..=9 {
if is_safe(&grid, row, col, num) {
grid[row][col] = num;
if solve_sudoku(grid) {
return true;
}
// Failed, try again
grid[row][col] = UNASSIGNED;
}
}
false
}
fn used_in_row(grid: &Board, row: usize, num: u8) -> bool {
for col in 0..N {
if grid[row][col] == num {
return true;
}
}
false
}
fn used_in_col(grid: &Board, col: usize, num: u8) -> bool {
for row in grid.iter().take(N) {
if row[col] == num {
return true;
}
}
false
}
fn used_in_box(grid: &Board, row_start: usize, col_start: usize, num: u8) -> bool {
for row in 0..3 {
for col in 0..3 {
if grid[row + row_start][col + col_start] == num {
return true;
}
}
}
false
}
fn is_safe(grid: &Board, row: usize, col: usize, num: u8) -> bool {
!used_in_row(grid, row, num)
&& !used_in_col(grid, col, num)
&& !used_in_box(grid, row - (row % 3), col - (col % 3), num)
}
fn find_unassigned_cells(grid: &Board) -> Option<(usize, usize)> {
for (row, _) in grid.iter().enumerate().take(N) {
for col in 0..N {
if grid[row][col] == UNASSIGNED {
return Some((row, col));
}
}
}
None
}
fn print_grid(grid: &Board) {
for row in grid.iter().take(N) {
for col in 0..N {
print!("{} ", row[col]);
}
println!();
}
}
#[test]
fn test1() {
let mut board = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
];
// Can solve
assert!(solve_sudoku(&mut board));
let solved_board = [
[3, 1, 6, 5, 7, 8, 4, 9, 2],
[5, 2, 9, 1, 3, 4, 7, 6, 8],
[4, 8, 7, 6, 2, 9, 5, 3, 1],
[2, 6, 3, 4, 1, 5, 9, 8, 7],
[9, 7, 4, 8, 6, 3, 1, 2, 5],
[8, 5, 1, 7, 9, 2, 6, 4, 3],
[1, 3, 8, 9, 4, 7, 2, 5, 6],
[6, 9, 2, 3, 5, 1, 8, 7, 4],
[7, 4, 5, 2, 8, 6, 3, 1, 9],
];
assert_eq!(board, solved_board)
}
#[test]
fn test2() {
let mut board = [
[2, 0, 0, 9, 0, 0, 1, 0, 0],
[6, 0, 0, 0, 5, 1, 0, 0, 0],
[0, 9, 5, 2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 2, 0, 0],
[5, 0, 9, 1, 0, 2, 4, 0, 3],
[0, 0, 8, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 5, 6, 3, 0],
[0, 0, 0, 4, 6, 0, 0, 0, 9],
[0, 0, 3, 0, 0, 9, 0, 0, 2],
];
// Can solve
assert!(solve_sudoku(&mut board));
let solved = [
[2, 3, 4, 9, 7, 6, 1, 8, 5],
[6, 8, 7, 3, 5, 1, 9, 2, 4],
[1, 9, 5, 2, 4, 8, 3, 7, 6],
[4, 1, 6, 5, 3, 7, 2, 9, 8],
[5, 7, 9, 1, 8, 2, 4, 6, 3],
[3, 2, 8, 6, 9, 4, 7, 5, 1],
[9, 4, 1, 8, 2, 5, 6, 3, 7],
[7, 5, 2, 4, 6, 3, 8, 1, 9],
[8, 6, 3, 7, 1, 9, 5, 4, 2],
];
assert_eq!(board, solved);
}
|
code/backtracking/src/sudoku_solve/sudoku_solveNxN.cpp | #include<iostream>
using std ::cout;
using std ::cin;
const int n = 9;
int grid[n][n];
void input_grid() {
//int i, j;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> grid[i][j];
}
}
}
void print_grid() {
//int i, j;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << grid[i][j] << " ";
}
cout << '\n';
}
}
bool can_be_placed(int row, int col, int num) {
int ii = 0, jj = col;
// row check
while (ii < n) {
if (grid[ii][jj] == num) {
return false;
}
ii++;
}
// col check
ii = row; jj = 0;
while (jj < n) {
if (grid[ii][jj] == num) {
return false;
}
jj++;
}
// 3*3 check
int startrow, startcol;
startrow = (row / 3) * 3;
startcol = (col / 3) * 3;
for (ii = startrow; ii < startrow + 3; ii++) {
for (jj = startcol; jj < startcol + 3; jj++) {
if (grid[ii][jj] == num) {
return false;
}
}
}
return true;
}
void sudoku_solver(int row, int col) {
// cout<<row<<" "<<col<<'\n';
if (row == n && col == 0) {
print_grid();
return ;
}
if (grid[row][col] == 0) {
for (int num = 1; num <= n; num++) {
if ((can_be_placed(row, col, num))) {
grid[row][col] = num;
if (col == n - 1) {
sudoku_solver(row + 1, 0);
}
else {
sudoku_solver(row, col + 1);
}
grid[row][col] = 0;
}
}
}
else {
if (col == n - 1) {
sudoku_solver(row + 1, 0);
}
else {
sudoku_solver(row, col + 1);
}
}
}
int main()
{
input_grid();
sudoku_solver(0, 0);
}
//created by aryan
|
code/backtracking/src/sudoku_solve/sudoku_solver.java | public static boolean isSafe(int[][] board,
int row, int col,
int num)
{
for (int d = 0; d < board.length; d++)
{
if (board[row][d] == num) {
return false;
}
}
for (int r = 0; r < board.length; r++)
{
if (board[r][col] == num)
{
return false;
}
}
int sqrt = (int)Math.sqrt(board.length);
int boxRowStart = row - row % sqrt;
int boxColStart = col - col % sqrt;
for (int r = boxRowStart;
r < boxRowStart + sqrt; r++)
{
for (int d = boxColStart;
d < boxColStart + sqrt; d++)
{
if (board[r][d] == num)
{
return false;
}
}
}
return true;
}
public static boolean solveSudoku(
int[][] board, int n)
{
int row = -1;
int col = -1;
boolean isEmpty = true;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (board[i][j] == 0)
{
row = i;
col = j;
isEmpty = false;
break;
}
}
if (!isEmpty) {
break;
}
}
if (isEmpty)
{
return true;
}
for (int num = 1; num <= n; num++)
{
if (isSafe(board, row, col, num))
{
board[row][col] = num;
if (solveSudoku(board, n))
{
return true;
}
else
{
board[row][col] = 0;
}
}
}
return false;
}
public static void print(
int[][] board, int N)
{
for (int r = 0; r < N; r++)
{
for (int d = 0; d < N; d++)
{
System.out.print(board[r][d]);
System.out.print(" ");
}
System.out.print("\n");
if ((r + 1) % (int)Math.sqrt(N) == 0)
{
System.out.print("");
}
}
}
public static void main(String args[])
{
int[][] board = new int[][] {
{ 3, 0, 6, 5, 0, 8, 4, 0, 0 },
{ 5, 2, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 8, 7, 0, 0, 0, 0, 3, 1 },
{ 0, 0, 3, 0, 1, 0, 0, 8, 0 },
{ 9, 0, 0, 8, 6, 3, 0, 0, 5 },
{ 0, 5, 0, 0, 9, 0, 6, 0, 0 },
{ 1, 3, 0, 0, 0, 0, 2, 5, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 7, 4 },
{ 0, 0, 5, 2, 0, 6, 3, 0, 0 }
};
int N = board.length;
if (solveSudoku(board, N))
{
print(board, N);
}
else {
System.out.println("No solution");
}
}
|
code/backtracking/test/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/Find the element that appears once/Find_the_element_that_appears_once.cpp | // C++ program to find the element
// that occur only once
#include <bits/stdc++.h>
using namespace std;
#define INT_SIZE 32
int getSingle(int arr[], int n)
{
// Initialize result
int result = 0;
int x, sum;
// Iterate through every bit
for (int i = 0; i < INT_SIZE; i++) {
// Find sum of set bits at ith position in all
// array elements
sum = 0;
x = (1 << i);
for (int j = 0; j < n; j++) {
if (arr[j] & x)
sum++;
}
// The bits with sum not multiple of 3, are the
// bits of element with single occurrence.
if ((sum % 3) != 0)
result |= x;
}
return result;
}
// Driver code
int main()
{
int arr[] = { 12, 1, 12, 3, 12, 1, 1, 2, 3, 2, 2, 3, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "The element with single occurrence is " << getSingle(arr, n);
return 0;
}
// This code is contributed by rathbhupendra
|
code/bit_manipulation/src/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/addition_using_bits/addition_using_bits.c | /*
Problem Statement :
Add two numbers using bitwise operators
(i.e without using arithmetic operators)
*/
#include <stdio.h>
#include <limits.h>
// Function to add two numbers using bitwise operators
int bitwiseAddition(int n, int m)
{
while (m != 0)
{
int carry = n & m;
n = n ^ m;
m = carry << 1;
// Check for overflow (positive to negative or vice versa)
if ((n < 0 && m > 0) || (n > 0 && m < 0))
{
fprintf(stderr, "Overflow detected. Cannot add numbers.\n");
return INT_MAX; // Return the maximum possible value
}
}
return n;
}
// recursive function
int bitwiseAdditionRecursive(int n, int m)
{
if (m == 0)
return n;
else
{
int carry = n & m;
return bitwiseAdditionRecursive(n ^ m, carry << 1);
}
}
int main()
{
int a, b;
printf("Enter two numbers: ");
if (scanf("%d %d", &a, &b) != 2)
{
fprintf(stderr, "Invalid input. Please enter two integers.\n");
return 1; // Exit with an error code
}
int result = bitwiseAddition(a, b);
if (result == INT_MAX)
{
return 1; // Exit with an error code
}
printf("\nBitwise addition using iterative function : %d", bitwiseAddition(a, b));
printf("\nBitwise addition using recursive function : %d", bitwiseAdditionRecursive(a, b));
return 0;
}
/*
Enter two numbers : 3 5
Bitwise addition using iterative function : 8
Bitwise addition using recursive function : 8
*/
|
code/bit_manipulation/src/addition_using_bits/addition_using_bits.cpp | #include <iostream>
// Part of Cosmos by OpenGenus Foundation
int bitwiseAddition(int n, int m)
{
while (m != 0)
{
int carry = n & m; // Variable carry keeps track of bits that carry over
n = n ^ m; // This adds up the individual bits
m = carry << 1; // Shift carry over bits so they can be added
}
return n;
}
int bitwiseAdditionRecursive(int n, int m)
{
if (m == 0)
return n;
else
{
int carry = n & m;
return bitwiseAdditionRecursive(n ^ m, carry << 1);
}
}
|
code/bit_manipulation/src/addition_using_bits/addition_using_bits.cs | using System;
namespace BitwiseAddition
{
class Program
{
static internal int bitwiseRecursiveAddition(int n, int m)
{
if(m == 0)
return n;
var carry = n & m;
return bitwiseRecursiveAddition(n ^ m, carry << 1);
}
static internal int bitwiseIterativeAddition(int n, int m)
{
while(m != 0) {
var carry = n & m;
n ^= m;
m = carry << 1;
}
return n;
}
static public void Main()
{
Console.WriteLine(bitwiseRecursiveAddition(10, 20));
Console.WriteLine(bitwiseIterativeAddition(50, 20));
}
}
} |
code/bit_manipulation/src/addition_using_bits/addition_using_bits.java | /*
Problem Statement :
Add two numbers using bitwise operators
(i.e without using arithmetic operators)
*/
import java.util.Scanner;
class Addition_Using_Bits
{
// iterative function
static int bitwiseAddition(int n, int m)
{
while (m != 0)
{
int carry = n & m;
n = n ^ m;
m = carry << 1;
}
return n;
}
// recursive function
static int bitwiseAdditionRecursive(int n, int m)
{
if (m == 0)
return n;
else
{
int carry = n & m;
return bitwiseAdditionRecursive(n ^ m, carry << 1);
}
}
public static void main(String args[])
{
Scanner in = new Scanner(System.in);
int a, b;
System.out.print("Enter two numbers : ");
a = in.nextInt();
b = in.nextInt();
System.out.println("\nBitwise addition using iterative function : " + bitwiseAddition(a, b));
System.out.println("Bitwise addition using recursive function : " + bitwiseAdditionRecursive(a, b));
}
}
/*
Enter two numbers : 3 5
Bitwise addition using iterative function : 8
Bitwise addition using recursive function : 8
*/
|
code/bit_manipulation/src/addition_using_bits/addition_using_bits.js | function bitwiseRecursiveAddition(n, m) {
if (m == 0) return n;
let carry = n & m;
return bitwiseRecursiveAddition(n ^ m, carry << 1);
}
function bitwiseIterativeAddition(n, m) {
while (m != 0) {
let carry = n & m;
n ^= m;
m = carry << 1;
}
return n;
}
console.log(bitwiseIterativeAddition(10, 20));
console.log(bitwiseRecursiveAddition(30, 20));
|
code/bit_manipulation/src/addition_using_bits/addition_using_bits.py | # Part of Cosmos by OpenGenus Foundation
# Function adds 2 numbers a and b without using + operator
def addition(a, b):
while b != 0:
c = a & b # carry contains set bits of both a and b
a = a ^ b # a ^ b is equal to 1 if, the bits of a and b are different
b = c << 1 # carry is right-shifted by 1
return a
# Driver code
if __name__ == "__main__":
print(addition(5, 9))
print(addition(4, 3))
|
code/bit_manipulation/src/bit_division/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/bit_division/bit_division.c | #include <stdio.h>
// Part of Cosmos by OpenGenus Foundation
unsigned bitDivision(unsigned numerator, unsigned denominator) {
unsigned current = 1;
unsigned answer=0;
if ( denominator > numerator)
return 0;
else if ( denominator == numerator)
return 1;
while (denominator < numerator) {
denominator <<= 1;
current <<= 1;
}
denominator >>= 1;
current >>= 1;
while (current!=0) {
if ( numerator >= denominator) {
numerator -= denominator;
answer |= current;
}
current >>= 1;
denominator >>= 1;
}
return answer;
}
void test(){
int numerator = 23, denominator = 5;
printf("%d\n", bitDivision(numerator,denominator));
}
int main() {
test();
return 0;
}
|
code/bit_manipulation/src/bit_division/bit_division.cpp | /*
Problem Statement :
Divide two numbers using bitwise operators
(i.e without using arithmetic operators)
*/
#include <iostream>
using namespace std;
int bitDivision(int numerator, int denominator)
{
int current = 1;
int answer = 0;
if (denominator > numerator)
return 0;
else if (denominator == numerator)
return 1;
while (denominator < numerator)
{
denominator <<= 1;
current <<= 1;
}
denominator >>= 1;
current >>= 1;
while (current != 0)
{
if (numerator >= denominator)
{
numerator -= denominator;
answer |= current;
}
current >>= 1;
denominator >>= 1;
}
return answer;
}
int main()
{
int numerator, denominator;
// numerator -> represents dividend
// denominator -> represents divisor
cout << "Enter numerator and denominator : ";
cin >> numerator >> denominator;
cout << "\nQuotient after bitwise division : " << bitDivision(numerator, denominator) << endl;
return 0;
}
/*
Enter numerator and denominator : 10 4
Quotient after bitwise division : 2
*/
|
code/bit_manipulation/src/bit_division/bit_division.go | package main
// Part of Cosmos by OpenGenus Foundation
import (
"fmt"
"math"
"errors"
)
func divide(dividend int, divisor int) (int, error) {
var positive bool = false
var answer int = 0
if divisor == 0 {
return 0, errors.New("cannot divide by zero")
}
if dividend > 0 && divisor > 0 {
positive = true
}
dividend = int(math.Abs(float64(dividend)))
divisor = int(math.Abs(float64(divisor)))
for dividend >= divisor {
temp, i := divisor, 1
for dividend >= temp {
dividend -= temp
answer += i
i <<= 1
temp <<= 1
}
}
if !positive {
answer = -answer
}
return answer, nil
}
|
code/bit_manipulation/src/bit_division/bit_division.java | import java.util.Scanner;
// Part of Cosmos by OpenGenus Foundation
class BitDivision
{
static int division(int divident, int divisor)
{
int curr=1;
int result=0;
if ( divisor >divident)
return 0;
else if ( divisor ==divident)
return 1;
while (divisor <divident)
{
divisor <<= 1;
curr <<= 1;
}
divisor >>= 1;
curr >>= 1;
while (curr!=0)
{
if (divident >= divisor)
{
divident -= divisor;
result |= curr;
}
curr >>= 1;
divisor >>= 1;
}
return result;
}
public static void main(String[]args)
{
Scanner scan=new Scanner(System.in);
//a -> represents divident
int a=scan.nextInt();
//b -> represents divisor
int b=scan.nextInt();
System.out.println(division(a,b));
}
}
|
code/bit_manipulation/src/bit_division/bit_division.js | /* Part of Cosmos by OpenGenus Foundation */
function divide(dividend, divisor) {
if (divisor === 0) {
return "undefined";
}
const isPositive = dividend > 0 && divisor > 0;
dividend = Math.abs(dividend);
divisor = Math.abs(divisor);
var answer = 0;
while (dividend >= divisor) {
let temp = divisor;
let i = 1;
while (dividend >= temp) {
dividend -= temp;
answer += i;
i <<= 1;
temp <<= 1;
}
}
if (!isPositive) {
answer = -answer;
}
return answer;
}
function test() {
var testCases = [[9, 4], [-10, 3], [103, -10], [-9, -4], [0, -3], [2, 0]];
testCases.forEach(test =>
console.log(`${test[0]} / ${test[1]} = ${divide(test[0], test[1])}`)
);
}
test();
|
code/bit_manipulation/src/bit_division/bit_division.py | """ Part of Cosmos by OpenGenus Foundation """
def divide(dividend, divisor):
if divisor == 0:
return "undefined"
isPositive = (dividend > 0) is (divisor > 0)
dividend = abs(dividend)
divisor = abs(divisor)
answer = 0
while dividend >= divisor:
temp, i = divisor, 1
while dividend >= temp:
dividend -= temp
answer += i
i <<= 1
temp <<= 1
if not isPositive:
answer = -answer
return answer
def test():
testCases = [[9, 4], [-10, 3], [103, -10], [-9, -4], [0, -3], [2, 0]]
for test in testCases:
print("{:3} / {:<3} = {:<3}".format(test[0], test[1], divide(test[0], test[1])))
test()
|
code/bit_manipulation/src/byte_swapper/byte_swapper.java | // Part of Cosmos by OpenGenus Foundation
public class ByteSwapper {
private ByteSwapper() {
throw new AssertionError();
}
public static short swap (short value) {
int b1 = value & 0xFF;
int b2 = value >> 8 & 0xFF;
return (short) (b1 << 8 | b2 << 0);
}
public static int swap (int value) {
int b1 = value >> 0 & 0xff;
int b2 = value >> 8 & 0xff;
int b3 = value >> 16 & 0xff;
int b4 = value >> 24 & 0xff;
return b1 << 24 | b2 << 16 | b3 << 8 | b4 << 0;
}
public static long swap (long value) {
long b1 = value >> 0 & 0xff;
long b2 = value >> 8 & 0xff;
long b3 = value >> 16 & 0xff;
long b4 = value >> 24 & 0xff;
long b5 = value >> 32 & 0xff;
long b6 = value >> 40 & 0xff;
long b7 = value >> 48 & 0xff;
long b8 = value >> 56 & 0xff;
return b1 << 56 | b2 << 48 | b3 << 40 | b4 << 32 | b5 << 24 | b6 << 16 | b7 << 8 | b8 << 0;
}
public static float swap (float value) {
int intValue = Float.floatToIntBits(value);
intValue = swap(intValue);
return Float.intBitsToFloat(intValue);
}
public static double swap (double value) {
long longValue = Double.doubleToLongBits(value);
longValue = swap(longValue);
return Double.longBitsToDouble(longValue);
}
public static void swap (final short[] array) {
if (array == null || array.length <= 0) {
throw new IllegalArgumentException("Array can't be null or empty");
}
for (int i = 0; i < array.length; i++) {
array[i] = swap(array[i]);
}
}
public static void swap (int[] array) {
if (array == null || array.length <= 0) {
throw new IllegalArgumentException("Array can't be null or empty");
}
for (int i = 0; i < array.length; i++) {
array[i] = swap(array[i]);
}
}
public static void swap (long[] array) {
if (array == null || array.length <= 0) {
throw new IllegalArgumentException("Array can't be null or empty");
}
for (int i = 0; i < array.length; i++) {
array[i] = swap(array[i]);
}
}
public static void swap (float[] array) {
if (array == null || array.length <= 0) {
throw new IllegalArgumentException("Array can't be null or empty");
}
for (int i = 0; i < array.length; i++) {
array[i] = swap(array[i]);
}
}
public static void swap (double[] array) {
if (array == null || array.length <= 0) {
throw new IllegalArgumentException("Array can't be null or empty");
}
for (int i = 0; i < array.length; i++) {
array[i] = swap(array[i]);
}
}
}
|
code/bit_manipulation/src/clear_bits_from_msb/clear_bits_from_msb.c | /*
Problem Statement :
Clear all MSB's except for the first i LSB's of a number n.
MSB -> Most Significant Bit
LSB -> Most Significant Bit
*/
#include <stdio.h>
int clearBitsFromMsb(int n, int i)
{
int mask = (1 << i) - 1;
return n & mask;
}
int main()
{
int n, i;
printf("Enter n and i : ");
scanf("%d %d", &n, &i);
n = clearBitsFromMsb(n, i);
printf("\nResult : %d", n);
return 0;
}
/*
Enter n and i : 14 3
Result : 6
*/
|
code/bit_manipulation/src/clear_bits_from_msb/clear_bits_from_msb.cpp | // Part of Cosmos (OpenGenus)
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int clearAllBits(int n, int i){
int mask = (1 << i) - 1;
n = n & mask;
return n;
}
int main() {
int n, i;
cin >> n >> i;
cout<< clearAllBits(n, i) <<endl;
return 0;
}
|
code/bit_manipulation/src/clear_bits_from_msb/clear_bits_from_msb.java | /*
Problem Statement :
Clear all MSB's except for the first i LSB's of a number n.
MSB -> Most Significant Bit
LSB -> Most Significant Bit
*/
import java.util.*;
class ClearBitsFromMsb
{
static int clearBitsFromMsb(int n, int i)
{
int mask = (1 << i) - 1;
return n & mask;
}
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.print("Enter n and i : ");
int n = sc.nextInt();
int i = sc.nextInt();
n = clearBitsFromMsb(n, i);
System.out.println("\nResult : " + n);
}
}
/*
Enter n and i : 14 3
Result : 6
*/
|
code/bit_manipulation/src/clear_bits_from_msb/clear_bits_from_msb.py | """
Problem Statement :
Clear all MSB's except for the first i LSB's of a number n.
MSB -> Most Significant Bit
LSB -> Most Significant Bit
"""
def clear_bits_from_msb(n, i):
mask = (1 << i) - 1
return n & mask
if __name__ == "__main__":
print("Enter n and i : ")
n, i = map(int, input().split())
n = clear_bits_from_msb(n, i)
print("Result : " + str(n))
"""
Enter n and i :
14 3
Result : 6
"""
|
code/bit_manipulation/src/convert_number_binary/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
## Package: Convert number to binary
Programs in this folder are about converting numbers from `base 10`(decimal) to `base 2`(binary)
### Examples:
----------------
| Decimal | Binary |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | 10 |
| 3 | 11 |
| 4 | 100 |
| 16 | 10000 |
----------------
### Main idea:
Binary numbers have `2` permissible digits `0` **and** `1`.
### How to convert?
Let `n` be a decimal number.
Let `k` denote the `k` number of bits in the binary number `b`.
`mod` is the modulus function, divides the left operand with right operand and provides just the remainder.
`quot` is the quotient function, divides left operand by right operand and provides just the quotient.
* step 1
n `mod` 2 = b<sub>k - 1</sub>
n `quot` 2 = n<sub>1</sub>
* step 2
n<sub>1</sub> `mod` 2 = b<sub>k-2</sub>
n<sub>1</sub> `quot` 2 = n<sub>2</sub>
... (continue till final step)
* final step
n<sub>k - 1</sub> `mod` 2 = b<sub>0</sub>
n<sub>k - 1</sub> `quot` 2 = 0
Lets walk with example of converting number `5` into a `8-bit` binary number:
n = 5, k = 8
---
5 `mod` 2 = 1 -- b<sub>7</sub>
5 `quot` 2 = 2
---
2 `mod` 2 = 0 -- b<sub>6</sub>
2 `quot` 2 = 1
---
1 `mod` 2 = 1 -- b<sub>5</sub>
1 `quot` 2 = 0 -- calc ends(end), all 0s after this point
---
0 `mod` 2 = 0 -- b<sub>4</sub>
0 `quot` 2 = 0
---
0 `mod` 2 = 0 -- b<sub>3</sub>
0 `quot` 2 = 0
---
0 `mod` 2 = 0 -- b<sub>2</sub>
0 `quot` 2 = 0
---
0 `mod` 2 = 0 -- b<sub>1</sub>
0 `quot` 2 = 0
---
0 `mod` 2 = 0 -- b<sub>0</sub>
0 `quot` 2 = 0
---
b = [0, 0, 0, 0, 0, 1, 0, 1] -- "00000101"
---
<p align="center">
A massive collaborative effort by <a href="https://github.com/OpenGenus/cosmos">OpenGenus Foundation</a>
</p>
---
|
code/bit_manipulation/src/convert_number_binary/binary_to_integer.py | # Part of Cosmos by OpenGenus Foundation
def binary_to_int(binary_input):
"""
Parameters
----------
binary_input : String
Returns
-------
integer_output : Integer
"""
integer_output = 0
"""
it reads from the left most to the right most.
Eventually the left-most is going to have the largest value added
to the integer output.
"""
for digit in binary_input:
integer_output = integer_output * 2 + int(digit)
return integer_output
# test
sample_binary_input = "01111101"
print(
"Integer value of "
+ sample_binary_input
+ " is "
+ str(binary_to_int(sample_binary_input))
)
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.c | #include <stdio.h>
int main(void)
{
long num, decimal_num, remainder, base = 1, binary = 0, no_of_1s = 0;
printf("Enter a decimal integer \n");
scanf("%ld", &num);
decimal_num = num;
while (num > 0)
{
remainder = num % 2;
/* To count the number of ones */
if (remainder == 1)
{
no_of_1s++;
}
binary = binary + remainder * base;
num = num / 2;
base = base * 10;
}
printf("Input number is = %ld\n", decimal_num);
printf("Its binary equivalent is = %ld\n", binary);
printf("No.of 1's in the binary number is = %ld\n", no_of_1s);
return 0;
}
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.cpp | #include <iostream>
#include <string.h>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
string to_binary(int n)
{
string binary = "";
while (n > 0)
{
if ((n & 1) == 0)
binary = '0' + binary;
else
binary = '1' + binary;
n >>= 1;
}
return binary;
}
int to_number(string s)
{
int number = 0;
int n = s.length();
for (int i = 0; i < n; i++)
if (s[i] == '1')
number += (1 << (n - 1 - i));
return number;
}
int main()
{
//sample test
string binary = to_binary(10);
cout << binary << endl;
int number = to_number("111");
cout << number << endl;
return 0;
}
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.hs | -- convert_number_binary.hs
--
-- @author Sidharth Mishra
-- @description Program to convert Decimal numbers into Binary numbers
-- @created Thu Oct 12 2017 17:15:23 GMT-0700 (PDT)
-- @last-modified Thu Oct 12 2017 17:15:38 GMT-0700 (PDT)
module NumConv (
convDecToBin
)
where
-- Binary is used as an type alias for [Char] or String
-- [MSD......LSD]
type Binary = String
notEnoughBits :: String
notEnoughBits = "Need atleast 1 bit to represent the binary nbr :)"
needMoreBits :: String
needMoreBits = "Needs more bits to convert, partially converted"
negativeNumberNotSupported :: String
negativeNumberNotSupported = "Negative Ints not supported yet"
convDecToBin :: Int -> Int -> Binary
-- Converts a Decimal positive number to its Binary equivalent
-- first param -- number of bits in the Binary number
-- second param -- the decimal number
-- result -- the binary number
convDecToBin 0 _ = notEnoughBits
convDecToBin k n
| n >= 0 = case convDecToBin' k n "" of
Left s -> s
Right b -> b
| otherwise = negativeNumberNotSupported
convDecToBin' :: Int -> Int -> Binary -> Either String Binary
-- private helper
convDecToBin' 0 n b
| n >= 1 = Left needMoreBits
| otherwise = return b
convDecToBin' k n b = convDecToBin' (k - 1) n' b'
where n' = n `quot` 2
r' = n `mod` 2
b' = show r' ++ b
-- For testing
processInput :: [String] -> Maybe (Int, Int)
-- processes the input from the console/stdin
processInput [] = Nothing
processInput [s] = return (32, read s::Int)
processInput (s:ss) = return (k,n)
where [k,n] = map (\x -> read x :: Int) (s:ss)
assert :: String -> String -> Bool
-- asserts if expected and actual are equal
assert ex ac = ex == ac
main :: IO()
main = do
t <- getLine
let (k,n) = case processInput $ words t of
Nothing -> (32,0)
Just (x,y) -> (x,y)
b = convDecToBin k n
putStrLn $ "\"" ++ b ++ "\""
print $ assert (convDecToBin 3 3) "011"
print $ assert (convDecToBin 3 4) "100"
print $ assert (convDecToBin 32 32) "00000000000000000000000000100000"
print $ assert (convDecToBin 10 743) "1011100111"
print $ assert (convDecToBin 2 4) needMoreBits
print $ assert (convDecToBin 2 (-4)) negativeNumberNotSupported |
code/bit_manipulation/src/convert_number_binary/convert_number_binary.java | // Part of Cosmos by OpenGenus Foundation
public class ConvertNumberBinary {
public static void main(String[] args) {
String binary = toBinary(20);
System.out.println(binary);
int number = toNumber("10101");
System.out.println(number);
}
public static String toBinary(int n) {
StringBuilder binary = new StringBuilder("");
while (n > 0) {
if ((n&1) == 0)
binary.append('0');
else
binary.append('1');
n >>= 1;
}
return binary.toString();
}
public static int toNumber(String s) {
int number = 0;
int n = s.length();
for (int i = 0; i < n; i++) {
if (s.charAt(i) == '1') {
number += (1 << (n - 1 - i));
}
}
return number;
}
}
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.js | /* Part of Cosmos by OpenGenus Foundation */
//Using built in functions:
function toBinary(val) {
return val.toString(2);
}
function fromBinary(bitString) {
return parseInt(bitString, 2);
}
//Using bitshifts
function toBinary_B(val) {
let out = "";
while (val > 0) {
out = (val & 1) + out;
val >>= 1;
}
return out;
}
function fromBinary_B(bitString) {
let out = 0;
let l = bitString.length;
let i = 0;
for (; i < l; i++) {
out += +bitString[i] ? 1 << (l - i - 1) : 0;
}
return out;
}
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.php | <?php
/**
* Part of Cosmos by OpenGenus Foundation
*/
/**
* Converts binary number to decimal number
*
* @param int $bin binary number
* @return int decimal number
*/
function binary_to_decimal(int $bin)
{
$arr = array_map('intval', str_split($bin));
$cnt = count($arr);
$dec = 0;
for ($i = 1; $i < $cnt + 1; $i++) {
$dec += $arr[$i - 1] * (2 ** ($cnt - $i));
}
return $dec;
}
/**
* Converts decimal number to binary number
*
* @param int decimal number
* @return int $bin binary number
*/
function decimal_to_binary(int $dec)
{
$i = 1;
$bin = 0;
while ($dec > 0) {
$rem = $dec % 2;
$bin = $bin + ($i * $rem);
$dec = floor($dec / 2);
$i *= 10;
}
return $bin;
}
echo "binary_to_decimal\n";
$test_data = [
[0, 0],
[1, 1],
[10, 2],
[101, 5],
[1001, 9],
[1010, 10],
[1001001010100, 4692],
[1001011110100, 4852],
];
foreach ($test_data as $test_case) {
$input = $test_case[0];
$expected = $test_case[1];
$result = binary_to_decimal($input);
printf(
" input %d, expected %s, got %s: %s\n",
$input,
var_export($expected, true),
var_export($result, true),
($expected === $result) ? 'OK' : 'FAIL'
);
}
echo "decimal_to_binary\n";
$test_data = [
[0, 0],
[1, 1],
[2, 10],
[5, 101],
[9, 1001],
[10, 1010],
[4692, 1001001010100],
[4852, 1001011110100],
];
foreach ($test_data as $test_case) {
$input = $test_case[0];
$expected = $test_case[1];
$result = decimal_to_binary($input);
printf(
" input %d, expected %s, got %s: %s\n",
$input,
var_export($expected, true),
var_export($result, true),
($expected === $result) ? 'OK' : 'FAIL'
);
}
|
code/bit_manipulation/src/convert_number_binary/convert_number_binary.py | # part of Cosmos by OpenGenus Foundation
import math
def intToBinary(i):
if i == 0:
return "0"
s = ""
while i:
if i % 2 == 1:
s = "1" + s
else:
s = "0" + s
i /= 2
return s
# sample test
n = 741
print(intToBinary(n))
|
code/bit_manipulation/src/count_set_bits/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/count_set_bits/brian_kernighan_algo/brian_kernighan_algorithm.cpp | //Brian Kernighan’s Algorithm. This programme uses O(logn) to count set bits.
#include <iostream>
int countSetBits(int n)
{
// base case
if (n == 0)
{
return 0;
}
else
{
// if last bit is set, add 1 else add 0
return (n & 1) + countSetBits(n >> 1);
}
}
int main()
{
int n;
std::cout << "Enter a positive integer : ";
std::cin >> n;
std::cout << countSetBits(n);
return 0;
}
|
code/bit_manipulation/src/count_set_bits/count_set_bits.c | #include <stdio.h>
// Part of Cosmos by OpenGenus Foundation
int count_set_bits(int n){
int c = 0;
while (n) {
c++;
n&=(n-1);
}
return c;
}
int main() {
int n;
scanf("%d", &n);
printf("%d\n", count_set_bits(n));
return 0;
}
|
code/bit_manipulation/src/count_set_bits/count_set_bits.cpp | #include <iostream>
using namespace std;
// Part of Cosmos by OpenGenus Foundation
int count(int n)
{
int c = 0;
while (n)
{
c++;
n &= (n - 1);
}
return c;
}
int main()
{
int n;
cin >> n;
#ifdef BUILTIN
cout << __builtin_popcount(n); // use builtin popcount
#else
cout << count(n); // manual
#endif
return 0;
}
|
code/bit_manipulation/src/count_set_bits/count_set_bits.cs | using System;
namespace CountSetBits
{
class Program
{
static internal int countSetBits(int number)
{
string bin = Convert.ToString(number, 2); // getting binary number
int count = 0;
foreach (char bit in bin)
{
if(bit == '1')
count++;
}
return count;
}
static public void Main()
{
Console.WriteLine(countSetBits(13));
}
}
} |
code/bit_manipulation/src/count_set_bits/count_set_bits.java | // Part of Cosmos by OpenGenus Foundation
/*
**
** @AUTHOR: VINAY BADHAN
** @GREEDY PROBLEM: COUNT SET BITS
** @GITHUB LINK: https://github.com/vinayb21
*/
import java.util.*;
import java.io.*;
class CountSetBits {
public static int countSetBits(int n)
{
int count = 0,bit;
while(n>0)
{
bit = n&1;
if(bit==1)
count++;
n >>= 1;
}
return count;
}
/**
* Counts the number of set bits in parallel.
* @param n 32-bit integer whose set bits are to be counted
* @return the number of set bits in (n)
* @see <a href="https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel">Bit Twiddling Hacks</a>
*/
public static int countSetBitsParallel(int n)
{
final int[] S = {
1,
2,
4,
8,
16
};
final int[] B = {
0x55555555,
0x33333333,
0x0F0F0F0F,
0x00FF00FF,
0x0000FFFF
};
int C = n - ((n >>> 1) & B[0]);
C = ((C >>> S[1]) & B[1]) + (C & B[1]);
C = ((C >>> S[2]) + C) & B[2];
C = ((C >>> S[3]) + C) & B[3];
C = ((C >>> S[4]) + C) & B[4];
return C;
}
public static void main(String[] args) throws IOException {
int n;
InputStreamReader in = new InputStreamReader(System.in);
BufferedReader buffer = new BufferedReader(in);
PrintWriter out = new PrintWriter(System.out, true);
String line = buffer.readLine().trim();
n = Integer.parseInt(line);
int ans = countSetBitsParallel(n);
out.println("No. of set bits in "+n+" is "+ans);
}
}
|
code/bit_manipulation/src/count_set_bits/count_set_bits.js | // Part of Cosmos by OpenGenus Foundation
export default function countSetBits(n) {
n = +n;
if (!(n >= 0 || n < 0)) {
return 0;
} else if (n < 0) {
throw new Error("negtive numbers are not supported");
}
let cnt = 0;
while (n) {
cnt++;
n &= n - 1;
}
return cnt;
}
|
code/bit_manipulation/src/count_set_bits/count_set_bits.py | # Part of Cosmos by OpenGenus Foundation
def count_set_bit(number):
count = 0
while number:
count = count + (number & 1)
number = number >> 1
return count
print(count_set_bit(9))
|
code/bit_manipulation/src/count_set_bits/count_set_bits_lookup_table.cpp | // Part of Cosmos by OpenGenus Foundation
#include <vector>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <random>
#include <chrono>
// I'm not crazy, I generated this lookup table with a Ruby script ;)
const unsigned bits[] = {
0, // 0
1, // 1
1, // 10
2, // 11
1, // 100
2, // 101
2, // 110
3, // 111
1, // 1000
2, // 1001
2, // 1010
3, // 1011
2, // 1100
3, // 1101
3, // 1110
4, // 1111
1, // 10000
2, // 10001
2, // 10010
3, // 10011
2, // 10100
3, // 10101
3, // 10110
4, // 10111
2, // 11000
3, // 11001
3, // 11010
4, // 11011
3, // 11100
4, // 11101
4, // 11110
5, // 11111
1, // 100000
2, // 100001
2, // 100010
3, // 100011
2, // 100100
3, // 100101
3, // 100110
4, // 100111
2, // 101000
3, // 101001
3, // 101010
4, // 101011
3, // 101100
4, // 101101
4, // 101110
5, // 101111
2, // 110000
3, // 110001
3, // 110010
4, // 110011
3, // 110100
4, // 110101
4, // 110110
5, // 110111
3, // 111000
4, // 111001
4, // 111010
5, // 111011
4, // 111100
5, // 111101
5, // 111110
6, // 111111
1, // 1000000
2, // 1000001
2, // 1000010
3, // 1000011
2, // 1000100
3, // 1000101
3, // 1000110
4, // 1000111
2, // 1001000
3, // 1001001
3, // 1001010
4, // 1001011
3, // 1001100
4, // 1001101
4, // 1001110
5, // 1001111
2, // 1010000
3, // 1010001
3, // 1010010
4, // 1010011
3, // 1010100
4, // 1010101
4, // 1010110
5, // 1010111
3, // 1011000
4, // 1011001
4, // 1011010
5, // 1011011
4, // 1011100
5, // 1011101
5, // 1011110
6, // 1011111
2, // 1100000
3, // 1100001
3, // 1100010
4, // 1100011
3, // 1100100
4, // 1100101
4, // 1100110
5, // 1100111
3, // 1101000
4, // 1101001
4, // 1101010
5, // 1101011
4, // 1101100
5, // 1101101
5, // 1101110
6, // 1101111
3, // 1110000
4, // 1110001
4, // 1110010
5, // 1110011
4, // 1110100
5, // 1110101
5, // 1110110
6, // 1110111
4, // 1111000
5, // 1111001
5, // 1111010
6, // 1111011
5, // 1111100
6, // 1111101
6, // 1111110
7, // 1111111
1, // 10000000
2, // 10000001
2, // 10000010
3, // 10000011
2, // 10000100
3, // 10000101
3, // 10000110
4, // 10000111
2, // 10001000
3, // 10001001
3, // 10001010
4, // 10001011
3, // 10001100
4, // 10001101
4, // 10001110
5, // 10001111
2, // 10010000
3, // 10010001
3, // 10010010
4, // 10010011
3, // 10010100
4, // 10010101
4, // 10010110
5, // 10010111
3, // 10011000
4, // 10011001
4, // 10011010
5, // 10011011
4, // 10011100
5, // 10011101
5, // 10011110
6, // 10011111
2, // 10100000
3, // 10100001
3, // 10100010
4, // 10100011
3, // 10100100
4, // 10100101
4, // 10100110
5, // 10100111
3, // 10101000
4, // 10101001
4, // 10101010
5, // 10101011
4, // 10101100
5, // 10101101
5, // 10101110
6, // 10101111
3, // 10110000
4, // 10110001
4, // 10110010
5, // 10110011
4, // 10110100
5, // 10110101
5, // 10110110
6, // 10110111
4, // 10111000
5, // 10111001
5, // 10111010
6, // 10111011
5, // 10111100
6, // 10111101
6, // 10111110
7, // 10111111
2, // 11000000
3, // 11000001
3, // 11000010
4, // 11000011
3, // 11000100
4, // 11000101
4, // 11000110
5, // 11000111
3, // 11001000
4, // 11001001
4, // 11001010
5, // 11001011
4, // 11001100
5, // 11001101
5, // 11001110
6, // 11001111
3, // 11010000
4, // 11010001
4, // 11010010
5, // 11010011
4, // 11010100
5, // 11010101
5, // 11010110
6, // 11010111
4, // 11011000
5, // 11011001
5, // 11011010
6, // 11011011
5, // 11011100
6, // 11011101
6, // 11011110
7, // 11011111
3, // 11100000
4, // 11100001
4, // 11100010
5, // 11100011
4, // 11100100
5, // 11100101
5, // 11100110
6, // 11100111
4, // 11101000
5, // 11101001
5, // 11101010
6, // 11101011
5, // 11101100
6, // 11101101
6, // 11101110
7, // 11101111
4, // 11110000
5, // 11110001
5, // 11110010
6, // 11110011
5, // 11110100
6, // 11110101
6, // 11110110
7, // 11110111
5, // 11111000
6, // 11111001
6, // 11111010
7, // 11111011
6, // 11111100
7, // 11111101
7, // 11111110
8, // 11111111
};
unsigned long long popcount_naive(unsigned size, uint16_t* data)
{
unsigned long long acc = 0;
for (unsigned i = 0; i < size; ++i)
{
uint16_t num = data[i];
while (num)
{
// Naive approach: Get the last bit and shift the number
acc += num & 1;
num = num >> 1;
}
}
return acc;
}
unsigned long long popcount_lookup_table(unsigned size, uint8_t* data)
{
unsigned long long acc = 0;
for (unsigned i = 0; i < size; ++i)
// Look it up!
acc += bits[data[i]];
return acc;
}
unsigned long long popcount_builtin(unsigned size, uint64_t* data)
{
unsigned long long acc = 0;
for (unsigned i = 0; i < size; ++i)
// https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
// This is really fast if your CPU has a dedicated instruction (and it should)
acc += __builtin_popcountll(data[i]);
return acc;
}
// Usage:
// ./count_set_bits_lookup_table <amount of random numbers>, e.g:
// ./count_set_bits_lookup_table 2017
// -> Naive approach: 7962 in 107μs
// -> Lookup table: 7962 in 20μs
// -> GCC builtin: 7962 in 5μs
int main(int argc, char* argv[])
{
if (argc < 2)
return -1;
unsigned amount;
std::stringstream ss;
ss << argv[1];
ss >> amount;
// we want length divisible by 4
unsigned length = amount + (-amount) % 4;
uint16_t* numbers = new uint16_t[length];
std::default_random_engine generator;
std::uniform_int_distribution<uint16_t> dist(0, 255);
for (unsigned n = 0; n < amount; ++n)
numbers[n] = dist(generator);
// pad with zeros
for (unsigned n = amount; n < length; ++n)
numbers[n] = 0;
unsigned long long count;
std::chrono::high_resolution_clock a_clock;
auto start = a_clock.now();
count = popcount_naive(amount, numbers);
auto end = a_clock.now();
std::cout << "Naive approach: " << count << " in " <<
std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "μs" <<
std::endl;
start = a_clock.now();
count = popcount_lookup_table(2 * amount, (uint8_t*)(numbers));
end = a_clock.now();
std::cout << "Lookup table: " << count << " in " <<
std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "μs" <<
std::endl;
start = a_clock.now();
count = popcount_builtin(length / 4, (uint64_t*)(numbers));
end = a_clock.now();
std::cout << "GCC builtin: " << count << " in " <<
std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "μs" <<
std::endl;
}
|
code/bit_manipulation/src/first_set_bit/first_set_bit.cpp | // Part of Cosmos (OpenGenus)
#include <bits/stdc++.h>
using namespace std;
int returnFirstSetBit(int n)
{
if(n == 0)
return 0;
int position = 1;
int m = 1;
while (!(n & m))
{
m = m << 1;
position++;
}
return (1 << (position - 1));
}
int main()
{
int n;
cin >> n;
cout << returnFirstSetBit(n) << endl;
return 0;
}
|
code/bit_manipulation/src/flip_bits/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/flip_bits/flipbits.java | // Part of Cosmos by OpenGenus Foundation
/*
**
** @AUTHOR: VINAY BADHAN
** @BIT MANIPULATION PROBLEM: FLIP BITS
** @GITHUB LINK: https://github.com/vinayb21
*/
import java.util.*;
import java.io.*;
class FlipBits {
public static int flipBits(int n)
{
int flipN = 0;
int pow = 0;
while(n>0)
{
if(n%2==0)
flipN += (1 << pow);
n/=2;
pow++;
}
return flipN;
}
public static void main(String[] args) throws IOException {
InputStreamReader in = new InputStreamReader(System.in);
BufferedReader buffer = new BufferedReader(in);
String line = buffer.readLine().trim();
int n = Integer.parseInt(line);
int ans = flipBits(n);
System.out.println("Number obtained by flipping bits of "+n +" is "+ans);
}
}
|
code/bit_manipulation/src/flip_bits/flippingbits.c | #include <stdio.h>
// Part of Cosmos by OpenGenus Foundation
int main() {
int count;
unsigned int to_flip;
unsigned int flipped;
printf("How many flips? ");
scanf("%d", &count);
while(count--) {
printf("To flip: ");
scanf("%d", &to_flip);
flipped = ~to_flip;
printf("Flipped: %d\n", flipped);
}
}
|
code/bit_manipulation/src/flip_bits/flippingbits.cpp | #include <iostream>
// Part of Cosmos by OpenGenus Foundation
using namespace std;
int main()
{
int T;
unsigned int n;
cin >> T;
while (T--)
{
cin >> n;
cout << ~n << endl;
}
return 0;
}
|
code/bit_manipulation/src/flip_bits/flippingbits.py | #! /usr/bin/env python3
# Part of Cosmos by OpenGenus Foundation
def main():
count = int(input("How many flips? "))
while count > 0:
to_flip = int(input("To flip: "))
flipped = ~to_flip
print("Flipped:", flipped)
count -= 1
if __name__ == "__main__":
main()
|
code/bit_manipulation/src/hamming_distance/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/hamming_distance/hamming_distance.c | #include<stdio.h>
#define BITS 8
void hamming(int ar1[],int ar2[]);
void input(int ar1[]);
int count_ham(int ar[]);
int n;
int main(){
int ar1[BITS],ar2[BITS];
printf("Enter the number of bits(max 8-bits):");
scanf("%d",&n);
printf("Enter a binary number(space between each bit and MAX 8-bit):");
input(ar1);
printf("Enter a binary number(space between each bit and MAX 8-bit):");
input(ar2);
hamming(ar1,ar2);
return 0;
}
void input(int ar1[]){
int i;
for(i=0;i<n;i++){
scanf("%d",&ar1[i]);
}
}
int count_ham(int ar[]){
int i,count=0;
for(i=0;i<n;i++){
if(ar[i]==1)
count++;
}
return count;
}
void hamming(int ar1[],int ar2[]){
int i,count;
int res[BITS];
for(i=0;i<n;i++){
if((ar1[i]==1 && ar2[i]==0)||(ar1[i]==0 && ar2[i]==1)){
res[i] = 1;
}
else{
res[i] = 0;
}
}
count = count_ham(res);
printf("Hamming distance will be: %d",count);
printf("\n");
}
|
code/bit_manipulation/src/hamming_distance/hamming_distance.cpp | /*
*
* Part of Cosmos by OpenGenus Foundation
*
* The Hamming distance between two integers is the number of positions
* at which the corresponding bits are different.
*
* Given two integers x and y, calculate the Hamming distance.
*/
int hammingDistance(int x, int y)
{
int temp = x ^ y;
int count = 0;
//count the number of set bits in the xor of two numbers
while (temp)
{
temp = temp & (temp - 1);
count++;
}
return count;
}
|
code/bit_manipulation/src/hamming_distance/hamming_distance.go | package main
import "fmt"
// Hamming distance between two integers is the number of positions
// at which the corresponding bits are different.
func HammingDistance(x, y int) (count int) {
t := x ^ y
//count the number of set bits in the xor of two numbers
for t != 0 {
t = t & (t - 1)
count++
}
return
}
func main() {
fmt.Printf("Hamming distance beetwen (%d) and (%d) is (%d)\n", 1, 2, HammingDistance(1, 2))
}
|
code/bit_manipulation/src/hamming_distance/hamming_distance.java | // Part of Cosmos by OpenGenus Foundation
// The Hamming distance between two integers is the number of positions
// at which the corresponding bits are different.
import java.io.*;
import java.lang.*;
import java.math.*;
import java.util.*;
class HammingDistance {
private int hammingDistance(int x, int y) {
int temp = x^y;
int count = 0;
//count the number of set bits in the xor of two numbers
while(temp != 0){
temp = temp&(temp-1);
count++;
}
return count;
}
public static void main(String args[]) {
HammingDistance ob = new HammingDistance();
int testHammingDistance = ob.hammingDistance(2,5);
System.out.println(testHammingDistance);
}
} |
code/bit_manipulation/src/hamming_distance/hamming_distance.py | # Part of Cosmos by OpenGenus Foundation
# The Hamming distance between two integers is the number of positions
# at which the corresponding bits are different.
def hammingDistance(x, y):
res = x ^ y
ans = 0
while res:
ans += 1
res = res & (res - 1)
return ans
print(hammingDistance(2, 1))
|
code/bit_manipulation/src/hamming_distance/hamming_distance2.py | def main():
num = input("enter a number")
return ("{0:08b}".format(x)).count("1")
if __name__ == "__main__":
main()
|
code/bit_manipulation/src/invert_bit/invert_bit.c | #include <stdio.h>
//Part of Cosmos by OpenGenus Foundation
int
invert_bit(int n, int number_bit)
{
n ^= 1 << number_bit;
return (n);
}
int
main()
{
int numeric, number_bit, res;
printf("Enter numeric: ");
scanf("%d", &numeric);
printf("Enter number bit: ");
scanf("%d", &number_bit);
res = invert_bit(numeric, number_bit);
printf("Result: %d\n", res);
return (0);
}
|
code/bit_manipulation/src/invert_bit/invert_bit.cpp | #include <iostream>
#include <bitset>
//Part of Cosmos by OpenGenus Foundation
int invertBit(int n, int numBit)
{
n ^= 1 << numBit;
return n;
}
int main()
{
int numeric, numberBit, res;
std::cout << "Enter numeric: " << std::endl;
std::cin >> numeric;
std::bitset<32> bs(numeric);
std::cout << bs << '\n';
std::cout << "Enter number bit: " << std::endl;
std::cin >> numberBit;
res = invertBit(numeric, numberBit);
std::bitset<32> bsRes(res);
std::cout << res << std::endl;
std::cout << bsRes << std::endl;
return 0;
}
|
code/bit_manipulation/src/invert_bit/invert_bit.js | const invertBit = (num, bit) => num ^ (1 << bit);
console.log(invertBit(10, 5)); // 42
|
code/bit_manipulation/src/invert_bit/invert_bit.py | # Part of Cosmos by OpenGenus Foundation
def invert_bit(digit, number_bit):
digit ^= 1 << number_bit
return digit
number = int(input("Enter numeric: "))
num_bit = int(input("Enter number bit: "))
res = invert_bit(number, num_bit)
print(res)
|
code/bit_manipulation/src/invert_bit/invert_bit.rs | // Part of Cosmos by OpenGenus Foundation
use std::{io::{self, Write}, process};
/// Invert a bit at a given place
///
/// # Arguments
///
/// * `bits` - The value/bits you want to modify
///
/// * `place` - The position of the bit you want to invert
///
/// # Examples
/// ```
/// let value = 50; // 110010
/// let place = 2; // ^ 000100
/// let new_value = invert_bit(value, place); // = 110110
/// ```
fn invert_bit(bits: u32, place: u8) -> u32 {
bits ^ 1 << place
}
fn main() {
// Get value
print!("enter a value: ");
io::stdout().flush().unwrap();
let mut value = String::new();
io::stdin().read_line(&mut value).unwrap_or_else(|_| {
eprintln!("error: unable to read input (value)");
process::exit(1);
});
let value = value.trim();
let value = value.parse::<u32>().unwrap_or_else(|_| {
eprintln!("error: invalid input (value must be unsigned 32-bit integer)");
process::exit(1);
});
// Get place
print!("enter a place: ");
io::stdout().flush().unwrap();
let mut place = String::new();
io::stdin().read_line(&mut place).unwrap_or_else(|_| {
eprintln!("error: unable to read input (place)");
process::exit(1);
});
let place = place.trim();
let place = place.parse::<u8>().unwrap_or_else(|_| {
eprintln!("error: invalid input (place must be unsigned 8-bit integer)");
process::exit(1);
});
if place > 31 {
eprintln!("error: left bit shift overflow (place must be between 0 inclusive and 31 inclusive)");
process::exit(1);
}
// Invert bit
let new_value = invert_bit(value, place);
println!("{:>8}: {:032b}", "input", value);
println!("{:>8}: {:032b}", "output", new_value);
}
|
code/bit_manipulation/src/lonely_integer/README.md | # cosmos
Your personal library of every algorithm and data structure code that you will ever encounter
|
code/bit_manipulation/src/lonely_integer/lonely_integer.c | /*
*Part of Cosmos by OpenGenus Foundation
*The Lonely Integer Problem
*Given an array in which all the no. are present twice except one, find that lonely integer.
*/
#include <stdio.h>
int a[7] = {0,0,1,1,3,3,2};
int
lonely(int n) {
int no=0;
for(int i=0;i<n;i++) {
no^=a[i];
}
return (no);
}
int
main()
{
int n=sizeof(a)/sizeof(int);
printf("Lonely Integer is %d\n",lonely(n));
return (0);
} |
code/bit_manipulation/src/lonely_integer/lonely_integer.cpp | /*
* Part of Cosmos by OpenGenus Foundation
* The Lonely Integer Problem
* Given an array in which all the no. are present twice except one, find that lonely integer.
*/
#include <iostream>
using namespace std;
int LonelyInteger(int *a, int n)
{
int lonely = 0;
//finds the xor sum of the array.
for (int i = 0; i < n; i++)
lonely ^= a[i];
return lonely;
}
int main()
{
int a[] = {2, 3, 4, 5, 3, 2, 4};
cout << LonelyInteger(a, sizeof(a) / sizeof(a[0]));
return 0;
}
|
code/bit_manipulation/src/lonely_integer/lonely_integer.go | /*
Part of Cosmos by OpenGenus Foundation
The Lonely Integer Problem
Given an array in which all the no. are present twice except one, find that lonely integer.
*/
package main
import "fmt"
func LonelyInteger(a []int) int{
lonely := 0
for i := 0; i < len(a); i++ {
lonely ^= a[i]
}
return lonely
}
func main() {
a := []int{2,3,4,5,3,2,4}
fmt.Println(LonelyInteger(a))
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.