code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def ko_data(queryset, field_names=None, name=None, safe=False, return_json=False): """ Given a QuerySet, return just the serialized representation based on the knockout_fields as JavaScript. """ try: try: # Get an inital instance of the QS. queryset_instance = queryset[0] except TypeError as e: # We are being passed an object rather than a QuerySet. # That's naughty, but we'll survive. queryset_instance = queryset queryset = [queryset] except IndexError as e: if not isinstance(queryset, list): # This is an empty QS - get the model directly. queryset_instance = queryset.model else: # We have been given an empty list. # Return nothing. return '[]' modelName = queryset_instance.__class__.__name__ modelNameData = [] if field_names is not None: fields = field_names else: fields = get_fields(queryset_instance) for obj in queryset: object_data = get_object_data(obj, fields, safe) modelNameData.append(object_data) if name: modelNameString = name else: modelNameString = modelName + "Data" dthandler = lambda obj: obj.isoformat() if isinstance(obj, (datetime.date, datetime.datetime)) else None dumped_json = json.dumps(modelNameData, default=dthandler) if return_json: return dumped_json return "var " + modelNameString + " = " + dumped_json + ';' except Exception as e: logger.exception(e) return '[]'
Given a QuerySet, return just the serialized representation based on the knockout_fields as JavaScript.
def _matrix_integration(q, h, t): ''' Returns the dp metric for a single horsetail curve at a given value of the epistemic uncertainties''' N = len(q) # correction if CDF has gone out of trapezium range if h[-1] < 0.9: h[-1] = 1.0 W = np.zeros([N, N]) for i in range(N): W[i, i] = 0.5*(h[min(i+1, N-1)] - h[max(i-1, 0)]) dp = (q - t).T.dot(W).dot(q - t) return dp
Returns the dp metric for a single horsetail curve at a given value of the epistemic uncertainties
def set_lock(key, value=None, expiry_time=60): """Force to set a distribute lock""" from uliweb.utils.common import get_uuid redis = get_redis() value = value or get_uuid() return redis.set(key, value, ex=expiry_time, xx=True)
Force to set a distribute lock
def write_lst(self): """ Dump the variable name lst file :return: succeed flag """ ret = False out = '' system = self.system dae = self.system.dae varname = self.system.varname template = '{:>6g}, {:>25s}, {:>35s}\n' # header line out += template.format(0, 'Time [s]', '$Time\\ [s]$') # include line flow variables in algebraic variables nflows = 0 if self.system.tds.config.compute_flows: nflows = 2 * self.system.Bus.n + \ 8 * self.system.Line.n + \ 2 * self.system.Area.n_combination # output variable indices if system.Recorder.n == 0: state_idx = list(range(dae.n)) algeb_idx = list(range(dae.n, dae.n + dae.m + nflows)) idx = state_idx + algeb_idx else: idx = system.Recorder.varout_idx # variable names concatenated uname = varname.unamex + varname.unamey fname = varname.fnamex + varname.fnamey for e, i in enumerate(idx): out += template.format(e + 1, uname[i], fname[i]) try: with open(self.system.files.lst, 'w') as f: f.write(out) ret = True except IOError: logger.error('I/O Error while writing the lst file.') return ret
Dump the variable name lst file :return: succeed flag
def get_impls(interfaces): """Get impls from their interfaces.""" if interfaces is None: return None elif isinstance(interfaces, Mapping): return {name: interfaces[name]._impl for name in interfaces} elif isinstance(interfaces, Sequence): return [interfaces._impl for interfaces in interfaces] else: return interfaces._impl
Get impls from their interfaces.
def log_pdf(self, y, mu, weights=None): """ computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n """ if weights is None: weights = np.ones_like(mu) scale = self.scale / weights return sp.stats.norm.logpdf(y, loc=mu, scale=scale)
computes the log of the pdf or pmf of the values under the current distribution Parameters ---------- y : array-like of length n target values mu : array-like of length n expected values weights : array-like shape (n,) or None, default: None sample weights if None, defaults to array of ones Returns ------- pdf/pmf : np.array of length n
def get_absolute_url(self, endpoint): """Get absolute for secret link (using https scheme). The endpoint is passed to ``url_for`` with ``token`` and ``extra_data`` as keyword arguments. E.g.:: >>> link.extra_data dict(recid=1) >>> link.get_absolute_url('record.metadata') translates into:: >>> url_for('record.metadata', token="...", recid=1, ) """ copy = deepcopy(self.extra_data) if 'recid' in copy: copy['pid_value'] = copy.pop('recid') return url_for( endpoint, token=self.token, _external=True, **(copy or {}) )
Get absolute for secret link (using https scheme). The endpoint is passed to ``url_for`` with ``token`` and ``extra_data`` as keyword arguments. E.g.:: >>> link.extra_data dict(recid=1) >>> link.get_absolute_url('record.metadata') translates into:: >>> url_for('record.metadata', token="...", recid=1, )
def substitute_variables(command, level, name, value, target=None, **kwargs): """Substitute variables in command fragments by values e.g. ${level} => 'warning'.""" rule = kwargs.get('rule', {}) rule_value = rule.get('value', '') if rule else '' substitutes = { '${level}': str(level), '${target}': str(target), '${name}': '"' + str(name) + '"', '${value}': str(value), '${limit_value}': str(rule_value), } result = command for pattern, value in substitutes.items(): result = result.replace(pattern, value) return result
Substitute variables in command fragments by values e.g. ${level} => 'warning'.
def catalog(self): """Primary registered catalog for the wrapped portal type """ if self._catalog is None: logger.debug("SuperModel::catalog: *Fetch catalog*") self._catalog = self.get_catalog_for(self.brain) return self._catalog
Primary registered catalog for the wrapped portal type
def find_previous_siblings(self, *args, **kwargs): """ Like :meth:`find_all`, but searches through :attr:`previous_siblings` """ op = operator.methodcaller('find_previous_siblings', *args, **kwargs) return self._wrap_multi(op)
Like :meth:`find_all`, but searches through :attr:`previous_siblings`
def aggregate_in(Data, On=None, AggFuncDict=None, AggFunc=None, AggList=None, interspersed=True): """ Aggregate a ndarray with structured dtype or recarray and include original data in the result. Take aggregate of data set on specified columns, then add the resulting rows back into data set to make a composite object containing both original non-aggregate data rows as well as the aggregate rows. First read comments for :func:`tabular.spreadsheet.aggregate`. This function returns a numpy ndarray, with the number of rows equaling:: len(Data) + len(A) where `A` is the the result of:: Data.aggregate(On,AggFuncDict) `A` represents the aggregate rows; the other rows were the original data rows. This function supports _multiple_ aggregation, meaning that one can first aggregate on one set of factors, then repeat aggregation on the result for another set of factors, without the results of the first aggregation interfering the second. To achieve this, the method adds two new columns: * a column called "__aggregates__" specifying on which factors the rows that are aggregate rows were aggregated. Rows added by aggregating on factor `A` (a column in the original data set) will have `A` in the "__aggregates__" column. When multiple factors `A1`, `A2` , ... are aggregated on, the notation is a comma-separated list: `A1,A2,...`. This way, when you call `aggregate_in` again, the function only aggregates on the columns that have the empty char '' in their "__aggregates__" column. * a column called '__color__', specifying Gray-Scale colors for aggregated rows that will be used by the Data Environment system browser for colorizing the data. When there are multiple levels of aggregation, the coarser aggregate groups (e.g. on fewer factors) get darker gray color then those on finer aggregate groups (e.g. more factors). Implemented by the tabarray method :func:`tabular.tab.tabarray.aggregate_in`. **Parameters** **Data** : numpy ndarray with structured dtype or recarray The data set to aggregate in. **On** : list of strings, optional List of column names in `X`. **AggFuncDict** : dictionary, optional Dictionary where * keys are some (all) column names of `X` that are NOT in `On` * values are functions that can be applied to lists or numpy arrays. This specifies how to aggregate the factors _not_ listed in `On`, e.g. the so-called `Off` columns. **AggFunc** : function, optional Function that can be applied to lists or numpy arrays, specifying how to aggregate factors not listed in either `On` or the keys of `AggFuncDict`, e.g. a "default" aggregation function for the `Off` columns not explicitly listed in `AggFuncDict`. **interspersed** : boolean, optional * If `True`, aggregate rows are interleaved with the data of which they are aggregates. * If `False`, all aggregate rows placed at the end of the array. **Returns** **agg** : numpy ndarray with structured dtype Composite aggregated data set plus original data set. **See also:** :func:`tabular.spreadsheet.aggregate` """ # See if there's an '__aggregates__ column'. # If so, strip off all those that are nontrivial. Data = deletecols(Data,'__color__') if '__aggregates__' in Data.dtype.names: X = Data[Data['__aggregates__'] == ''][:] OldAggregates = Data[Data['__aggregates__'] != ''][:] AggVars = utils.uniqify(utils.listunion([x.split(',') for x in OldAggregates['__aggregates__']])) else: X = Data OldAggregates = Data[0:0] AggVars = [] if On == None: On = [] NewAggregates = aggregate(X, On, AggFuncDict=AggFuncDict, AggFunc=AggFunc, AggList=AggList, KeepOthers=True) on = ','.join(On) NewAggregates = addcols(NewAggregates, utils.fromarrays([[on]*len(NewAggregates)], type=np.ndarray, names=['__aggregates__'])) AggVars = utils.uniqify(AggVars + On) Aggregates = rowstack([OldAggregates,NewAggregates],mode='nulls') ANLen = np.array([len(x.split(',')) for x in Aggregates['__aggregates__']]) U = np.array(utils.uniqify(ANLen)); U.sort() [A,B] = fast.equalspairs(ANLen,U) Grays = np.array(grayspec(len(U))) AggColor = utils.fromarrays([Grays[A]], type=np.ndarray, names = ['__color__']) Aggregates = addcols(Aggregates,AggColor) if not interspersed or len(AggVars) == 0: return rowstack([X,Aggregates],mode='nulls') else: s = ANLen.argsort() Aggregates = Aggregates[s[range(len(Aggregates) - 1, -1, -1)]] X.sort(order = AggVars) Diffs = np.append(np.append([0], 1 + (X[AggVars][1:] != X[AggVars][:-1]).nonzero()[0]), [len(X)]) DiffAtts = ([[t for t in AggVars if X[t][Diffs[i]] != X[t][Diffs[i+1]]] for i in range(len(Diffs) - 2)] if len(Diffs) > 2 else []) + [AggVars] HH = {} for l in utils.uniqify(Aggregates['__aggregates__']): Avars = l.split(',') HH[l] = fast.recarrayequalspairs(X[Avars][Diffs[:-1]], Aggregates[Avars]) Order = [] for i in range(len(Diffs)-1): Order.extend(range(Diffs[i], Diffs[i+1])) Get = [] for l in HH.keys(): Get += [len(X) + j for j in HH[l][2][range(HH[l][0][i], HH[l][1][i])] if len(set(DiffAtts[i]).intersection( Aggregates['__aggregates__'][j].split(','))) > 0 and set(Aggregates['__aggregates__'][j].split(',')) == set(l.split(','))] Order.extend(Get) return rowstack([X, Aggregates], mode='nulls')[Order]
Aggregate a ndarray with structured dtype or recarray and include original data in the result. Take aggregate of data set on specified columns, then add the resulting rows back into data set to make a composite object containing both original non-aggregate data rows as well as the aggregate rows. First read comments for :func:`tabular.spreadsheet.aggregate`. This function returns a numpy ndarray, with the number of rows equaling:: len(Data) + len(A) where `A` is the the result of:: Data.aggregate(On,AggFuncDict) `A` represents the aggregate rows; the other rows were the original data rows. This function supports _multiple_ aggregation, meaning that one can first aggregate on one set of factors, then repeat aggregation on the result for another set of factors, without the results of the first aggregation interfering the second. To achieve this, the method adds two new columns: * a column called "__aggregates__" specifying on which factors the rows that are aggregate rows were aggregated. Rows added by aggregating on factor `A` (a column in the original data set) will have `A` in the "__aggregates__" column. When multiple factors `A1`, `A2` , ... are aggregated on, the notation is a comma-separated list: `A1,A2,...`. This way, when you call `aggregate_in` again, the function only aggregates on the columns that have the empty char '' in their "__aggregates__" column. * a column called '__color__', specifying Gray-Scale colors for aggregated rows that will be used by the Data Environment system browser for colorizing the data. When there are multiple levels of aggregation, the coarser aggregate groups (e.g. on fewer factors) get darker gray color then those on finer aggregate groups (e.g. more factors). Implemented by the tabarray method :func:`tabular.tab.tabarray.aggregate_in`. **Parameters** **Data** : numpy ndarray with structured dtype or recarray The data set to aggregate in. **On** : list of strings, optional List of column names in `X`. **AggFuncDict** : dictionary, optional Dictionary where * keys are some (all) column names of `X` that are NOT in `On` * values are functions that can be applied to lists or numpy arrays. This specifies how to aggregate the factors _not_ listed in `On`, e.g. the so-called `Off` columns. **AggFunc** : function, optional Function that can be applied to lists or numpy arrays, specifying how to aggregate factors not listed in either `On` or the keys of `AggFuncDict`, e.g. a "default" aggregation function for the `Off` columns not explicitly listed in `AggFuncDict`. **interspersed** : boolean, optional * If `True`, aggregate rows are interleaved with the data of which they are aggregates. * If `False`, all aggregate rows placed at the end of the array. **Returns** **agg** : numpy ndarray with structured dtype Composite aggregated data set plus original data set. **See also:** :func:`tabular.spreadsheet.aggregate`
def force_type(cls, response, environ=None): """Enforce that the WSGI response is a response object of the current type. Werkzeug will use the :class:`BaseResponse` internally in many situations like the exceptions. If you call :meth:`get_response` on an exception you will get back a regular :class:`BaseResponse` object, even if you are using a custom subclass. This method can enforce a given response type, and it will also convert arbitrary WSGI callables into response objects if an environ is provided:: # convert a Werkzeug response object into an instance of the # MyResponseClass subclass. response = MyResponseClass.force_type(response) # convert any WSGI application into a response object response = MyResponseClass.force_type(response, environ) This is especially useful if you want to post-process responses in the main dispatcher and use functionality provided by your subclass. Keep in mind that this will modify response objects in place if possible! :param response: a response object or wsgi application. :param environ: a WSGI environment object. :return: a response object. """ if not isinstance(response, BaseResponse): if environ is None: raise TypeError( "cannot convert WSGI application into response" " objects without an environ" ) response = BaseResponse(*_run_wsgi_app(response, environ)) response.__class__ = cls return response
Enforce that the WSGI response is a response object of the current type. Werkzeug will use the :class:`BaseResponse` internally in many situations like the exceptions. If you call :meth:`get_response` on an exception you will get back a regular :class:`BaseResponse` object, even if you are using a custom subclass. This method can enforce a given response type, and it will also convert arbitrary WSGI callables into response objects if an environ is provided:: # convert a Werkzeug response object into an instance of the # MyResponseClass subclass. response = MyResponseClass.force_type(response) # convert any WSGI application into a response object response = MyResponseClass.force_type(response, environ) This is especially useful if you want to post-process responses in the main dispatcher and use functionality provided by your subclass. Keep in mind that this will modify response objects in place if possible! :param response: a response object or wsgi application. :param environ: a WSGI environment object. :return: a response object.
def update_history(self) -> None: """ Update messaging history on disk. :returns: None """ self.log.debug(f"Saving history. History is: \n{self.history}") jsons = [] for item in self.history: json_item = item.__dict__ # Convert sub-entries into JSON as well. json_item["output_records"] = self._parse_output_records(item) jsons.append(json_item) if not path.isfile(self.history_filename): open(self.history_filename, "a+").close() with open(self.history_filename, "w") as f: json.dump(jsons, f, default=lambda x: x.__dict__.copy(), sort_keys=True, indent=4) f.write("\n")
Update messaging history on disk. :returns: None
def create(self, session): """ caches the session and caches an entry to associate the cached session with the subject """ sessionid = super().create(session) # calls _do_create and verify self._cache(session, sessionid) return sessionid
caches the session and caches an entry to associate the cached session with the subject
def trim(self): """ Trim leading and trailing whitespace. @return: self @rtype: L{Element} """ if self.hasText(): self.text = self.text.trim() return self
Trim leading and trailing whitespace. @return: self @rtype: L{Element}
def get_value(self, subsystem, option): """ Read the given value from the given subsystem. Do not include the subsystem name in the option name. Only call this method if the given subsystem is available. """ assert subsystem in self, 'Subsystem {} is missing'.format(subsystem) return util.read_file(self.per_subsystem[subsystem], subsystem + '.' + option)
Read the given value from the given subsystem. Do not include the subsystem name in the option name. Only call this method if the given subsystem is available.
def query_status(self): '''Query the hub for the status of this command''' try: data = self.api_iface._api_get(self.link) self._update_details(data) except APIError as e: print("API error: ") for key,value in e.data.iteritems: print(str(key) + ": " + str(value))
Query the hub for the status of this command
def ef_plugin(service_name): """ Decorator for ef plugin classes. Any wrapped classes should contain a run() method which executes the plugin code. Args: service_name (str): The name of the service being extended. Example: @ef_plugin('ef-generate') class NewRelicPlugin(object): def run(self): exec_code() """ def class_rebuilder(cls): class EFPlugin(cls): """ Base class of ef-plugins. Defines which service is extended and provides access to the current instance of EFContext to the plugin. Args: context (obj:EFContext): Instance of EFContext created by ef-open command line tool clients (dict): Dictionary of boto3 clients created by ef_utils.create_aws_clients() """ def __init__(self, context, clients): self.service = service_name self.context = context self.clients = clients self.oInstance = cls() def __getattribute__(self, s): """ This is called whenever any attribute of a EFPlugin object is accessed. This function first tries to get the attribute off EFPlugin. If it fails then it tries to fetch the attribute from self.oInstance (an instance of the decorated class). """ try: x = super(EFPlugin, self).__getattribute__(s) except AttributeError: pass else: return x return self.oInstance.__getattribute__(s) return EFPlugin return class_rebuilder
Decorator for ef plugin classes. Any wrapped classes should contain a run() method which executes the plugin code. Args: service_name (str): The name of the service being extended. Example: @ef_plugin('ef-generate') class NewRelicPlugin(object): def run(self): exec_code()
def clusters(points, radius): """ Find clusters of points which have neighbours closer than radius Parameters --------- points : (n, d) float Points of dimension d radius : float Max distance between points in a cluster Returns ---------- groups : (m,) sequence of int Indices of points in a cluster """ from . import graph tree = cKDTree(points) # some versions return pairs as a set of tuples pairs = tree.query_pairs(r=radius, output_type='ndarray') # group connected components groups = graph.connected_components(pairs) return groups
Find clusters of points which have neighbours closer than radius Parameters --------- points : (n, d) float Points of dimension d radius : float Max distance between points in a cluster Returns ---------- groups : (m,) sequence of int Indices of points in a cluster
def czdivide(a, b, null=0): ''' czdivide(a, b) returns the quotient a / b as a numpy array object. Like numpy's divide function or a/b syntax, czdivide will thread over the latest dimension possible. Unlike numpy's divide, czdivide works with sparse matrices. Additionally, czdivide multiplies a by the zinv of b, so divide-by-zero entries are replaced with 0 in the result. The optional argument null (default: 0) may be given to specify that zeros in the arary b should instead be replaced with the given value in the result. Note that if this value is not equal to 0, then any sparse array passed as argument b must be reified. The czdivide function never raises an error due to divide-by-zero; if you desire this behavior, use the cdivide function instead. ''' if null == 0: return a.multiply(zinv(b)) if sps.issparse(a) else a * zinv(b) elif sps.issparse(b): b = b.toarray() else: b = np.asarray(b) z = np.isclose(b, 0) q = np.logical_not(z) zi = q / (b + z) if sps.issparse(a): r = a.multiply(zi).tocsr() else: r = np.asarray(a) * zi r[np.ones(a.shape, dtype=np.bool)*z] = null return r
czdivide(a, b) returns the quotient a / b as a numpy array object. Like numpy's divide function or a/b syntax, czdivide will thread over the latest dimension possible. Unlike numpy's divide, czdivide works with sparse matrices. Additionally, czdivide multiplies a by the zinv of b, so divide-by-zero entries are replaced with 0 in the result. The optional argument null (default: 0) may be given to specify that zeros in the arary b should instead be replaced with the given value in the result. Note that if this value is not equal to 0, then any sparse array passed as argument b must be reified. The czdivide function never raises an error due to divide-by-zero; if you desire this behavior, use the cdivide function instead.
def create_message(self, params={}): """ Creates a message http://dev.wheniwork.com/#create/update-message """ url = "/2/messages/" body = params data = self._post_resource(url, body) return self.message_from_json(data["message"])
Creates a message http://dev.wheniwork.com/#create/update-message
def _manipulate(self, *args, **kwargs): """ This is a semi-private method. It's current use is to manipulate memory file system objects so that you can create certain conditions, to provoke errors that otherwise won't occur. """ self.connection._manipulate(self, *args, **kwargs)
This is a semi-private method. It's current use is to manipulate memory file system objects so that you can create certain conditions, to provoke errors that otherwise won't occur.
def create(self, to, from_, parameters=values.unset): """ Create a new ExecutionInstance :param unicode to: The Contact phone number to start a Studio Flow Execution. :param unicode from_: The Twilio phone number to send messages or initiate calls from during the Flow Execution. :param dict parameters: JSON data that will be added to your flow's context and can accessed as variables inside your flow. :returns: Newly created ExecutionInstance :rtype: twilio.rest.studio.v1.flow.execution.ExecutionInstance """ data = values.of({'To': to, 'From': from_, 'Parameters': serialize.object(parameters), }) payload = self._version.create( 'POST', self._uri, data=data, ) return ExecutionInstance(self._version, payload, flow_sid=self._solution['flow_sid'], )
Create a new ExecutionInstance :param unicode to: The Contact phone number to start a Studio Flow Execution. :param unicode from_: The Twilio phone number to send messages or initiate calls from during the Flow Execution. :param dict parameters: JSON data that will be added to your flow's context and can accessed as variables inside your flow. :returns: Newly created ExecutionInstance :rtype: twilio.rest.studio.v1.flow.execution.ExecutionInstance
def multipointm(self, points): """Creates a MULTIPOINTM shape. Points is a list of xym values. If the m (measure) value is not included, it defaults to None (NoData).""" shapeType = MULTIPOINTM points = [points] # nest the points inside a list to be compatible with the generic shapeparts method self._shapeparts(parts=points, shapeType=shapeType)
Creates a MULTIPOINTM shape. Points is a list of xym values. If the m (measure) value is not included, it defaults to None (NoData).
def parse_issues(raw_page): """Parse a JIRA API raw response. The method parses the API response retrieving the issues from the received items :param items: items from where to parse the issues :returns: a generator of issues """ raw_issues = json.loads(raw_page) issues = raw_issues['issues'] for issue in issues: yield issue
Parse a JIRA API raw response. The method parses the API response retrieving the issues from the received items :param items: items from where to parse the issues :returns: a generator of issues
def main(argv=None): """Run a Tensorflow model on the Iris dataset.""" args = parse_arguments(sys.argv if argv is None else argv) tf.logging.set_verbosity(tf.logging.INFO) learn_runner.run( experiment_fn=get_experiment_fn(args), output_dir=args.job_dir)
Run a Tensorflow model on the Iris dataset.
def underline(self, msg): """Underline the input""" return click.style(msg, underline=True) if self.colorize else msg
Underline the input
def setup_logger(): """Return a logger with a default ColoredFormatter.""" formatter = ColoredFormatter( "%(log_color)s%(levelname)-8s%(reset)s %(blue)s%(message)s", datefmt=None, reset=True, log_colors={ 'DEBUG': 'cyan', 'INFO': 'green', 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'red', } ) logger = logging.getLogger('example') handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) return logger
Return a logger with a default ColoredFormatter.
def _extract_field_with_regex(self, field): """ extract field from response content with regex. requests.Response body could be json or html text. Args: field (str): regex string that matched r".*\(.*\).*" Returns: str: matched content. Raises: exceptions.ExtractFailure: If no content matched with regex. Examples: >>> # self.text: "LB123abcRB789" >>> filed = "LB[\d]*(.*)RB[\d]*" >>> _extract_field_with_regex(field) abc """ matched = re.search(field, self.text) if not matched: err_msg = u"Failed to extract data with regex! => {}\n".format(field) err_msg += u"response body: {}\n".format(self.text) logger.log_error(err_msg) raise exceptions.ExtractFailure(err_msg) return matched.group(1)
extract field from response content with regex. requests.Response body could be json or html text. Args: field (str): regex string that matched r".*\(.*\).*" Returns: str: matched content. Raises: exceptions.ExtractFailure: If no content matched with regex. Examples: >>> # self.text: "LB123abcRB789" >>> filed = "LB[\d]*(.*)RB[\d]*" >>> _extract_field_with_regex(field) abc
def wrap_targets(self, targets, topological_order=False): """Wrap targets and their computed cache keys in VersionedTargets. If the FingerprintStrategy opted out of providing a fingerprint for a target, that target will not have an associated VersionedTarget returned. Returns a list of VersionedTargets, each representing one input target. """ def vt_iter(): if topological_order: target_set = set(targets) sorted_targets = [t for t in reversed(sort_targets(targets)) if t in target_set] else: sorted_targets = sorted(targets) for target in sorted_targets: target_key = self._key_for(target) if target_key is not None: yield VersionedTarget(self, target, target_key) return list(vt_iter())
Wrap targets and their computed cache keys in VersionedTargets. If the FingerprintStrategy opted out of providing a fingerprint for a target, that target will not have an associated VersionedTarget returned. Returns a list of VersionedTargets, each representing one input target.
def run_actor(self, actor): '''Start running the ``actor``. ''' set_actor(actor) if not actor.mailbox.address: address = ('127.0.0.1', 0) actor._loop.create_task( actor.mailbox.start_serving(address=address) ) actor._loop.run_forever()
Start running the ``actor``.
def add_arg(self, arg): """ Add an argument """ if not isinstance(arg, File): arg = str(arg) self._args += [arg]
Add an argument
def split_from_df(self, col:IntsOrStrs=2): "Split the data from the `col` in the dataframe in `self.inner_df`." valid_idx = np.where(self.inner_df.iloc[:,df_names_to_idx(col, self.inner_df)])[0] return self.split_by_idx(valid_idx)
Split the data from the `col` in the dataframe in `self.inner_df`.
def _to_dict(self): """Return a json dictionary representing this model.""" _dict = {} if hasattr(self, 'key') and self.key is not None: _dict['key'] = self.key._to_dict() if hasattr(self, 'value') and self.value is not None: _dict['value'] = self.value._to_dict() return _dict
Return a json dictionary representing this model.
def get_detail(self): """ 个人信息,同时会把返回值保存在self.detail中 :return: information of student :rtype: dict """ response = self._post("http://bkjws.sdu.edu.cn/b/grxx/xs/xjxx/detail", data=None) if response['result'] == 'success': self._detail = response['object'] return self._detail else: self._unexpected(response)
个人信息,同时会把返回值保存在self.detail中 :return: information of student :rtype: dict
def lms(args): """ %prog lms ALLMAPS cartoon to illustrate LMS metric. """ from random import randint from jcvi.graphics.chromosome import HorizontalChromosome p = OptionParser(lms.__doc__) opts, args, iopts = p.set_image_options(args, figsize="6x6", dpi=300) fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) # Panel A w, h = .7, .35 ax = fig.add_axes([.15, .6, w, h]) xdata = [x + randint(-3, 3) for x in range(10, 110, 10)] ydata = [x + randint(-3, 3) for x in range(10, 110, 10)] ydata[3:7] = ydata[3:7][::-1] xydata = zip(xdata, ydata) lis = xydata[:3] + [xydata[4]] + xydata[7:] lds = xydata[3:7] xlis, ylis = zip(*lis) xlds, ylds = zip(*lds) ax.plot(xlis, ylis, "r-", lw=12, alpha=.3, solid_capstyle="round", solid_joinstyle="round") ax.plot(xlds, ylds, "g-", lw=12, alpha=.3, solid_capstyle="round", solid_joinstyle="round") ax.plot(xdata, ydata, "k.", mec="k", mfc="w", mew=3, ms=12) HorizontalChromosome(root, .15, .15 + w, .57, height=.02, lw=2) root.text(.15 + w / 2, .55, "Chromosome location (bp)", ha="center", va="top") ax.text(80, 30, "LIS = 7", color="r", ha="center", va="center") ax.text(80, 20, "LDS = 4", color="g", ha="center", va="center") ax.text(80, 10, "LMS = $max$(LIS, LDS) = 7", ha="center", va="center") normalize_lms_axis(ax, xlim=110, ylim=110) # Panel B w = .37 p = (0, 45, 75, 110) ax = fig.add_axes([.1, .12, w, h]) xdata = [x for x in range(10, 110, 10)] ydata = ydata_orig = [x for x in range(10, 110, 10)] ydata = ydata[:4] + ydata[7:] + ydata[4:7][::-1] xydata = zip(xdata, ydata) lis = xydata[:7] xlis, ylis = zip(*lis) ax.plot(xlis, ylis, "r-", lw=12, alpha=.3, solid_capstyle="round", solid_joinstyle="round") ax.plot(xdata, ydata, "k.", mec="k", mfc="w", mew=3, ms=12) ax.vlines(p, 0, 110, colors="beige", lw=3) normalize_lms_axis(ax, xlim=110, ylim=110) patch = [.1 + w * x / 110. for x in p] HorizontalChromosome(root, .1, .1 + w, .09, patch=patch, height=.02, lw=2) scaffolds = ("a", "b", "c") for i, s in enumerate(scaffolds): xx = (patch[i] + patch[i + 1]) / 2 root.text(xx, .09, s, va="center", ha="center") root.text(.1 + w / 2, .04, "LMS($a||b||c$) = 7", ha="center") # Panel C ax = fig.add_axes([.6, .12, w, h]) patch = [.6 + w * x / 110. for x in p] ydata = ydata_orig ax.plot(xdata, ydata, "r-", lw=12, alpha=.3, solid_capstyle="round", solid_joinstyle="round") ax.plot(xdata, ydata, "k.", mec="k", mfc="w", mew=3, ms=12) ax.vlines(p, [0], [110], colors="beige", lw=3) normalize_lms_axis(ax, xlim=110, ylim=110) HorizontalChromosome(root, .6, .6 + w, .09, patch=patch, height=.02, lw=2) scaffolds = ("a", "-c", "b") for i, s in enumerate(scaffolds): xx = (patch[i] + patch[i + 1]) / 2 root.text(xx, .09, s, va="center", ha="center") root.text(.6 + w / 2, .04, "LMS($a||-c||b$) = 10", ha="center") labels = ((.05, .95, 'A'), (.05, .48, 'B'), (.55, .48, 'C')) panel_labels(root, labels) normalize_axes(root) pf = "lms" image_name = pf + "." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
%prog lms ALLMAPS cartoon to illustrate LMS metric.
def read_cell(self, x, y): """ Reads the cell at position x+1 and y+1; return value :param x: line index :param y: coll index :return: {header: value} """ if isinstance(self.header[y], tuple): header = self.header[y][0] else: header = self.header[y] x += 1 y += 1 if self.strip: self._sheet.cell(x, y).value = self._sheet.cell(x, y).value.strip() else: return {header: self._sheet.cell(x, y).value}
Reads the cell at position x+1 and y+1; return value :param x: line index :param y: coll index :return: {header: value}
def get_app_template(name): """ Getter function of templates for each applications. Argument `name` will be interpreted as colon separated, the left value means application name, right value means a template name. get_app_template('blog:dashboarb.mako') It will return a template for dashboard page of `blog` application. """ app_name, template_name = name.split(':') return get_lookups()[app_name].get_template(template_name)
Getter function of templates for each applications. Argument `name` will be interpreted as colon separated, the left value means application name, right value means a template name. get_app_template('blog:dashboarb.mako') It will return a template for dashboard page of `blog` application.
def typeseq(types): """ Returns an escape for a terminal text formatting type, or a list of types. Valid types are: * 'i' for 'italic' * 'b' for 'bold' * 'u' for 'underline' * 'r' for 'reverse' """ ret = "" for t in types: ret += termcap.get(fmttypes[t]) return ret
Returns an escape for a terminal text formatting type, or a list of types. Valid types are: * 'i' for 'italic' * 'b' for 'bold' * 'u' for 'underline' * 'r' for 'reverse'
def clear_cache(): """Remove all cached objects""" del Cache._keys for k in list(Cache._cache.keys()): it = Cache._cache.pop(k) del it del Cache._cache Cache._keys = [] Cache._cache = {} gc.collect()
Remove all cached objects
def delete_asset(self): """ Delete asset from the release. :rtype: bool """ headers, data = self._requester.requestJsonAndCheck( "DELETE", self.url ) return True
Delete asset from the release. :rtype: bool
def finalize(self): """ finalize simulation for consumer """ # todo sort self.result by path_num if self.result: self.result = sorted(self.result, key=lambda x: x[0]) p, r = map(list, zip(*self.result)) self.result = r
finalize simulation for consumer
def stream_header(self, f): """Stream the block header in the standard way to the file-like object f.""" stream_struct("L##LLL", f, self.version, self.previous_block_hash, self.merkle_root, self.timestamp, self.difficulty, self.nonce)
Stream the block header in the standard way to the file-like object f.
def auth(self, user, pwd): """ Perform a login with the given Skype username and its password. This emulates a login to Skype for Web on ``api.skype.com``. Args: user (str): username of the connecting account pwd (str): password of the connecting account Returns: (str, datetime.datetime) tuple: Skype token, and associated expiry if known Raises: .SkypeAuthException: if the login request is rejected .SkypeApiException: if the login form can't be processed """ # Wrap up the credentials ready to send. pwdHash = base64.b64encode(hashlib.md5((user + "\nskyper\n" + pwd).encode("utf-8")).digest()).decode("utf-8") json = self.conn("POST", "{0}/login/skypetoken".format(SkypeConnection.API_USER), json={"username": user, "passwordHash": pwdHash, "scopes": "client"}).json() if "skypetoken" not in json: raise SkypeAuthException("Couldn't retrieve Skype token from response") expiry = None if "expiresIn" in json: expiry = datetime.fromtimestamp(int(time.time()) + int(json["expiresIn"])) return json["skypetoken"], expiry
Perform a login with the given Skype username and its password. This emulates a login to Skype for Web on ``api.skype.com``. Args: user (str): username of the connecting account pwd (str): password of the connecting account Returns: (str, datetime.datetime) tuple: Skype token, and associated expiry if known Raises: .SkypeAuthException: if the login request is rejected .SkypeApiException: if the login form can't be processed
def set_project_pid(project, old_pid, new_pid): """ Project's PID was changed. """ for datastore in _get_datastores(): datastore.save_project(project) datastore.set_project_pid(project, old_pid, new_pid)
Project's PID was changed.
def draw_on_image(self, image, color=(0, 255, 0), alpha=1.0, size=1, copy=True, raise_if_out_of_image=False, thickness=None): """ Draw all bounding boxes onto a given image. Parameters ---------- image : (H,W,3) ndarray The image onto which to draw the bounding boxes. This image should usually have the same shape as set in BoundingBoxesOnImage.shape. color : int or list of int or tuple of int or (3,) ndarray, optional The RGB color of all bounding boxes. If a single int ``C``, then that is equivalent to ``(C,C,C)``. alpha : float, optional Alpha/transparency of the bounding box. size : int, optional Thickness in pixels. copy : bool, optional Whether to copy the image before drawing the bounding boxes. raise_if_out_of_image : bool, optional Whether to raise an exception if any bounding box is outside of the image. thickness : None or int, optional Deprecated. Returns ------- image : (H,W,3) ndarray Image with drawn bounding boxes. """ image = np.copy(image) if copy else image for bb in self.bounding_boxes: image = bb.draw_on_image( image, color=color, alpha=alpha, size=size, copy=False, raise_if_out_of_image=raise_if_out_of_image, thickness=thickness ) return image
Draw all bounding boxes onto a given image. Parameters ---------- image : (H,W,3) ndarray The image onto which to draw the bounding boxes. This image should usually have the same shape as set in BoundingBoxesOnImage.shape. color : int or list of int or tuple of int or (3,) ndarray, optional The RGB color of all bounding boxes. If a single int ``C``, then that is equivalent to ``(C,C,C)``. alpha : float, optional Alpha/transparency of the bounding box. size : int, optional Thickness in pixels. copy : bool, optional Whether to copy the image before drawing the bounding boxes. raise_if_out_of_image : bool, optional Whether to raise an exception if any bounding box is outside of the image. thickness : None or int, optional Deprecated. Returns ------- image : (H,W,3) ndarray Image with drawn bounding boxes.
def zero_disk(self, disk_xml=None): """ Collector and publish not zeroed disk metrics """ troubled_disks = 0 for filer_disk in disk_xml: raid_state = filer_disk.find('raid-state').text if not raid_state == 'spare': continue is_zeroed = filer_disk.find('is-zeroed').text if is_zeroed == 'false': troubled_disks += 1 self.push('not_zeroed', 'disk', troubled_disks)
Collector and publish not zeroed disk metrics
def close(self): """ Stop overwriting display, or update parent. """ if self.parent: self.parent.update(self.parent.offset + self.offset) return self.output.write("\n") self.output.flush()
Stop overwriting display, or update parent.
def get_version(): """ Read version from __init__.py """ version_regex = re.compile( '__version__\\s*=\\s*(?P<q>[\'"])(?P<version>\\d+(\\.\\d+)*(-(alpha|beta|rc)(\\.\\d+)?)?)(?P=q)' ) here = path.abspath(path.dirname(__file__)) init_location = path.join(here, "CHAID/__init__.py") with open(init_location) as init_file: for line in init_file: match = version_regex.search(line) if not match: raise Exception( "Couldn't read version information from '{0}'".format(init_location) ) return match.group('version')
Read version from __init__.py
def get_assets_by_query(self, asset_query=None): """Gets a list of ``Assets`` matching the given asset query. arg: asset_query (osid.repository.AssetQuery): the asset query return: (osid.repository.AssetList) - the returned ``AssetList`` raise: NullArgument - ``asset_query`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - the ``asset_query`` is not of this service *compliance: mandatory -- This method must be implemented.* """ return AssetList(self._provider_session.get_assets_by_query(asset_query), self._config_map)
Gets a list of ``Assets`` matching the given asset query. arg: asset_query (osid.repository.AssetQuery): the asset query return: (osid.repository.AssetList) - the returned ``AssetList`` raise: NullArgument - ``asset_query`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - the ``asset_query`` is not of this service *compliance: mandatory -- This method must be implemented.*
def default(self, obj): # pylint: disable=method-hidden """Use the default behavior unless the object to be encoded has a `strftime` attribute.""" if hasattr(obj, 'strftime'): return obj.strftime("%Y-%m-%dT%H:%M:%SZ") elif hasattr(obj, 'get_public_dict'): return obj.get_public_dict() else: return json.JSONEncoder.default(self, obj)
Use the default behavior unless the object to be encoded has a `strftime` attribute.
def install_service(instance, dbhost, dbname, port): """Install systemd service configuration""" _check_root() log("Installing systemd service") launcher = os.path.realpath(__file__).replace('manage', 'launcher') executable = sys.executable + " " + launcher executable += " --instance " + instance executable += " --dbname " + dbname + " --dbhost " + dbhost executable += " --port " + port executable += " --dolog --logfile /var/log/hfos-" + instance + ".log" executable += " --logfileverbosity 30 -q" definitions = { 'instance': instance, 'executable': executable } service_name = 'hfos-' + instance + '.service' write_template_file(os.path.join('dev/templates', service_template), os.path.join('/etc/systemd/system/', service_name), definitions) Popen([ 'systemctl', 'enable', service_name ]) log('Launching service') Popen([ 'systemctl', 'start', service_name ]) log("Done: Install Service")
Install systemd service configuration
def synchronise_signals(in_signal_1, in_signal_2): """ ----- Brief ----- This function synchronises the input signals using the full cross correlation function between the signals. ----------- Description ----------- Signals acquired with two devices may be dephased. It is possible to synchronise the two signals by multiple methods. Here, it is implemented a method that uses the calculus of the cross-correlation between those signals and identifies the correct instant of synchrony. This function synchronises the two input signals and returns the dephasing between them, and the resulting synchronised signals. ---------- Parameters ---------- in_signal_1 : list or numpy.array One of the input signals. in_signal_2 : list or numpy.array The other input signal. Returns ------- phase : int The dephasing between signals in data points. result_signal_1: list or numpy.array The first signal synchronised. result_signal_2: list or numpy.array The second signal synchronised. """ mean_1, std_1, mean_2, std_2 = [np.mean(in_signal_1), np.std(in_signal_1), np.mean(in_signal_2), np.std(in_signal_2)] signal_1 = in_signal_1 - mean_1 signal_1 /= std_1 signal_2 = in_signal_2 - mean_2 signal_2 /= std_2 # Calculate the full cross-correlation between the two signals. correlation = np.correlate(signal_1, signal_2, 'full') # Finding the edge of the correct correlation signal center = len(correlation) - len(signal_1) if len(signal_1) < len(signal_2) else len(correlation) - len(signal_2) # Finding the position of the maximum value of the correlation signal max_position = correlation.argmax() # Calculating the difference between the center and the position of the maximum value phase_straight = center - max_position # Finding the position of the maximum value of the reversed signal (corr[::-1]) max_position_reversed = correlation[::-1].argmax() # Calculating the difference between the center and the position of the maximum value in the reversed correlation # signal phase_reversed = center - max_position_reversed # Calculate the dephasing between the signals. Maximum value of both results guarantees that we find the true # dephasing of the signals phases_aux = [phase_straight, phase_reversed] phase = np.abs(phases_aux).argmax() true_phase = np.abs(phases_aux[phase]) if phases_aux[0] < phases_aux[1]: signal_1 = signal_1[true_phase:] else: signal_2 = signal_2[true_phase:] result_signal_1 = signal_1 * std_1 + mean_1 result_signal_2 = signal_2 * std_2 + mean_2 return true_phase, result_signal_1, result_signal_2
----- Brief ----- This function synchronises the input signals using the full cross correlation function between the signals. ----------- Description ----------- Signals acquired with two devices may be dephased. It is possible to synchronise the two signals by multiple methods. Here, it is implemented a method that uses the calculus of the cross-correlation between those signals and identifies the correct instant of synchrony. This function synchronises the two input signals and returns the dephasing between them, and the resulting synchronised signals. ---------- Parameters ---------- in_signal_1 : list or numpy.array One of the input signals. in_signal_2 : list or numpy.array The other input signal. Returns ------- phase : int The dephasing between signals in data points. result_signal_1: list or numpy.array The first signal synchronised. result_signal_2: list or numpy.array The second signal synchronised.
def _advance_to_next_stage(self, config_ids, losses): """ SuccessiveHalving simply continues the best based on the current loss. """ ranks = np.argsort(np.argsort(losses)) return(ranks < self.num_configs[self.stage])
SuccessiveHalving simply continues the best based on the current loss.
def _parse_incval(incunit, incval): ''' Parse a non-day increment value. Should be an integer or a comma-separated integer list. ''' try: retn = [int(val) for val in incval.split(',')] except ValueError: return None return retn[0] if len(retn) == 1 else retn
Parse a non-day increment value. Should be an integer or a comma-separated integer list.
def change_state(self, item, state): """ Replace the current state of the item. i.e. replace the current state tag but keeps the other tags. :param item: item id :type item: str :param state: "checked", "unchecked" or "tristate": new state of the item :type state: str """ tags = self.item(item, "tags") states = ("checked", "unchecked", "tristate") new_tags = [t for t in tags if t not in states] new_tags.append(state) self.item(item, tags=tuple(new_tags))
Replace the current state of the item. i.e. replace the current state tag but keeps the other tags. :param item: item id :type item: str :param state: "checked", "unchecked" or "tristate": new state of the item :type state: str
def npd_to_pmf(nodal_plane_dist, use_default=False): """ Returns the nodal plane distribution as an instance of the PMF class """ if isinstance(nodal_plane_dist, PMF): # Aready in PMF format - return return nodal_plane_dist else: if use_default: return PMF([(1.0, NodalPlane(0.0, 90.0, 0.0))]) else: raise ValueError('Nodal Plane distribution not defined')
Returns the nodal plane distribution as an instance of the PMF class
def from_command_line(): """ Run CGI var to gVCF conversion from the command line. """ # Parse options parser = argparse.ArgumentParser( description='Convert Complete Genomics var files to gVCF format.') parser.add_argument( '-d', '--refseqdir', metavar='REFSEQDIR', required=True, dest='refseqdir', help='Directory twobit reference genomes files are stored.') parser.add_argument( '-i', '--input', metavar='INPUTVARFILE', dest='cgivarfile', help='Path to Complete Genomics var file to convert. If omitted, data ' ' also be piped in as standard input.') parser.add_argument( '-o', '--output', metavar='OUTPUTVCFFILE', dest='vcfoutfile', help='Path to where to save output VCF file.') parser.add_argument( '-D', '--download', action='store_true', dest='downloadrefseq', help='Download the 2bit file from UCSC to REFSEQDIR, if needed.') parser.add_argument( '-v', '--var-only', action='store_true', dest='varonly', help='Only report variant lines (i.e. VCF, but not gVCF)') args = parser.parse_args() # Get local twobit file from its directory. Download and store if needed. twobit_path, twobit_name = get_reference_genome_file( args.refseqdir, build='b37') # Handle input if sys.stdin.isatty(): # false if data is piped in var_input = args.cgivarfile else: var_input = sys.stdin # Handle output if args.vcfoutfile: convert_to_file(var_input, args.vcfoutfile, twobit_path, twobit_name, args.varonly) else: for line in convert( cgi_input=var_input, twobit_ref=twobit_path, twobit_name=twobit_name, var_only=args.varonly): print(line)
Run CGI var to gVCF conversion from the command line.
def apply_T4(word): # OPTIMIZE '''An agglutination diphthong that ends in /u, y/ usually contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].''' WORD = _split_consonants_and_vowels(word) for k, v in WORD.iteritems(): if len(v) == 2 and v.endswith(('u', 'y')): if WORD.get(k + 2, 0): if not WORD.get(k + 3, 0): if len(WORD[k + 2]) == 1 and is_consonant(WORD[k + 2]): WORD[k] = v[0] + '.' + v[1] elif len(WORD[k + 1]) == 1 and WORD.get(k + 3, 0): if is_consonant(WORD[k + 3][0]): WORD[k] = v[0] + '.' + v[1] elif len(WORD[k + 2]) == 2: WORD[k] = v[0] + '.' + v[1] word = _compile_dict_into_word(WORD) return word
An agglutination diphthong that ends in /u, y/ usually contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].
def get_exported(self): """Get a new dict with the exported variables.""" return dict((k, self.vars[k]) for k in self.exported_vars)
Get a new dict with the exported variables.
def process(self, block=True): '''process and display graph''' self.msg_types = set() self.multiplier = [] self.field_types = [] # work out msg types we are interested in self.x = [] self.y = [] self.modes = [] self.axes = [] self.first_only = [] re_caps = re.compile('[A-Z_][A-Z0-9_]+') for f in self.fields: caps = set(re.findall(re_caps, f)) self.msg_types = self.msg_types.union(caps) self.field_types.append(caps) self.y.append([]) self.x.append([]) self.axes.append(1) self.first_only.append(False) if self.labels is not None: labels = self.labels.split(',') if len(labels) != len(fields)*len(self.mav_list): print("Number of labels (%u) must match number of fields (%u)" % ( len(labels), len(fields)*len(self.mav_list))) return else: labels = None timeshift = self.timeshift for fi in range(0, len(self.mav_list)): mlog = self.mav_list[fi] self.process_mav(mlog, timeshift) timeshift = 0 for i in range(0, len(self.x)): if self.first_only[i] and fi != 0: self.x[i] = [] self.y[i] = [] if labels: lab = labels[fi*len(self.fields):(fi+1)*len(self.fields)] else: lab = self.fields[:] if self.multi: col = colors[:] else: col = colors[fi*len(self.fields):] self.plotit(self.x, self.y, lab, colors=col) for i in range(0, len(self.x)): self.x[i] = [] self.y[i] = [] pylab.draw()
process and display graph
def disabledPenColor(self): """ Returns the disabled pen color for this node. :return <QColor> """ palette = self.palette() return palette.color(palette.Disabled, palette.NodeForeground)
Returns the disabled pen color for this node. :return <QColor>
def convert_to_btc_on(self, amount, currency, date_obj): """ Convert X amount to BTC based on given date rate """ if isinstance(amount, Decimal): use_decimal = True else: use_decimal = self._force_decimal start = date_obj.strftime('%Y-%m-%d') end = date_obj.strftime('%Y-%m-%d') url = ( 'https://api.coindesk.com/v1/bpi/historical/close.json' '?start={}&end={}&currency={}'.format( start, end, currency ) ) response = requests.get(url) if response.status_code == 200: data = response.json() price = data.get('bpi', {}).get(start, None) if price: if use_decimal: price = Decimal(price) try: converted_btc = amount/price return converted_btc except TypeError: raise DecimalFloatMismatchError("convert_to_btc_on requires amount parameter is of type Decimal when force_decimal=True") raise RatesNotAvailableError("BitCoin Rates Source Not Ready For Given Date")
Convert X amount to BTC based on given date rate
def get_word_at(self, index: int) -> Union[int, BitVec]: """Access a word from a specified memory index. :param index: integer representing the index to access :return: 32 byte word at the specified index """ try: return symbol_factory.BitVecVal( util.concrete_int_from_bytes( bytes([util.get_concrete_int(b) for b in self[index : index + 32]]), 0, ), 256, ) except TypeError: result = simplify( Concat( [ b if isinstance(b, BitVec) else symbol_factory.BitVecVal(b, 8) for b in cast( List[Union[int, BitVec]], self[index : index + 32] ) ] ) ) assert result.size() == 256 return result
Access a word from a specified memory index. :param index: integer representing the index to access :return: 32 byte word at the specified index
def port_has_listener(address, port): """ Returns True if the address:port is open and being listened to, else False. @param address: an IP address or hostname @param port: integer port Note calls 'zc' via a subprocess shell """ cmd = ['nc', '-z', address, str(port)] result = subprocess.call(cmd) return not(bool(result))
Returns True if the address:port is open and being listened to, else False. @param address: an IP address or hostname @param port: integer port Note calls 'zc' via a subprocess shell
def service( state, host, *args, **kwargs ): ''' Manage the state of services. This command checks for the presence of all the init systems pyinfra can handle and executes the relevant operation. See init system sepcific operation for arguments. ''' if host.fact.which('systemctl'): yield systemd(state, host, *args, **kwargs) return if host.fact.which('initctl'): yield upstart(state, host, *args, **kwargs) return if host.fact.directory('/etc/init.d'): yield d(state, host, *args, **kwargs) return if host.fact.directory('/etc/rc.d'): yield rc(state, host, *args, **kwargs) return raise OperationError(( 'No init system found ' '(no systemctl, initctl, /etc/init.d or /etc/rc.d found)' ))
Manage the state of services. This command checks for the presence of all the init systems pyinfra can handle and executes the relevant operation. See init system sepcific operation for arguments.
def intword(value, format='%.1f'): """Converts a large integer to a friendly text representation. Works best for numbers over 1 million. For example, 1000000 becomes '1.0 million', 1200000 becomes '1.2 million' and '1200000000' becomes '1.2 billion'. Supports up to decillion (33 digits) and googol (100 digits). You can pass format to change the number of decimal or general format of the number portion. This function returns a string unless the value passed was unable to be coaxed into an int.""" try: value = int(value) except (TypeError, ValueError): return value if value < powers[0]: return str(value) for ordinal, power in enumerate(powers[1:], 1): if value < power: chopped = value / float(powers[ordinal - 1]) return (' '.join([format, _(human_powers[ordinal - 1])])) % chopped return str(value)
Converts a large integer to a friendly text representation. Works best for numbers over 1 million. For example, 1000000 becomes '1.0 million', 1200000 becomes '1.2 million' and '1200000000' becomes '1.2 billion'. Supports up to decillion (33 digits) and googol (100 digits). You can pass format to change the number of decimal or general format of the number portion. This function returns a string unless the value passed was unable to be coaxed into an int.
def execute(self, source, splitting_stream, sinks, interval, meta_data_id, output_plate_values): """ Execute the tool over the given time interval. :param source: The source stream :param splitting_stream: The stream over which to split :param sinks: The sink streams :param interval: The time interval :param meta_data_id: The meta data id of the output plate :param output_plate_values: The values of the plate where data is put onto :type source: Stream :type sinks: list[Stream] | tuple[Stream] :type interval: TimeInterval :type meta_data_id: str :type output_plate_values: list | tuple :return: None """ if not isinstance(interval, TimeInterval): raise TypeError('Expected TimeInterval, got {}'.format(type(interval))) # logging.info(self.message(interval)) calculated_intervals = None for sink in sinks: if interval.end > sink.channel.up_to_timestamp: raise ValueError( 'The stream is not available after {} and cannot be calculated'.format( sink.channel.up_to_timestamp)) if calculated_intervals is None: calculated_intervals = sink.calculated_intervals continue if sink.calculated_intervals != calculated_intervals: # TODO: What we actually want to do here is find any parts of the sinks that haven't been calculated, # and recompute all of the sinks for that time period. This would only happen if computation of one of # the sinks failed for some reason. For now we will just assume that all sinks have been computed the # same amount, and we will raise an exception if this is not the case raise RuntimeError("Partially executed sinks not yet supported") required_intervals = TimeIntervals([interval]) - calculated_intervals if not required_intervals.is_empty: document_count = 0 for interval in required_intervals: for item in self._execute( source=source, splitting_stream=splitting_stream, interval=interval, meta_data_id=meta_data_id, output_plate_values=output_plate_values): # Join the output meta data with the parent plate meta data # meta_data = input_plate_value + (item.meta_data,) if input_plate_value else (item.meta_data, ) meta_data = item.meta_data if isinstance(item.meta_data[0], tuple) else (item.meta_data,) try: # sink = next(s for s in sinks if set(s.stream_id.meta_data) == set(meta_data)) sink = next(s for s in sinks if all(m in s.stream_id.meta_data for m in meta_data)) sink.writer(item.stream_instance) document_count += 1 except StopIteration: logging.warn("A multi-output tool has produced a value {} " "which does not belong to the output plate".format(meta_data)) continue except TypeError: logging.error("A multi-output tool has produced a value {} " "which cannot be hashed and does not belong to the output plate" .format(meta_data)) if not document_count: logging.debug("{} did not produce any data for time interval {} on stream {}".format( self.name, required_intervals, source)) self.write_to_history( interval=interval, tool=self.name, document_count=document_count )
Execute the tool over the given time interval. :param source: The source stream :param splitting_stream: The stream over which to split :param sinks: The sink streams :param interval: The time interval :param meta_data_id: The meta data id of the output plate :param output_plate_values: The values of the plate where data is put onto :type source: Stream :type sinks: list[Stream] | tuple[Stream] :type interval: TimeInterval :type meta_data_id: str :type output_plate_values: list | tuple :return: None
def kill_mprocess(process): """kill process Args: process - Popen object for process """ if process and proc_alive(process): process.terminate() process.communicate() return not proc_alive(process)
kill process Args: process - Popen object for process
def get_operator_output_port(self): """Get the output port of this exported stream. Returns: OperatorOutputPort: Output port of this exported stream. """ return OperatorOutputPort(self.rest_client.make_request(self.operatorOutputPort), self.rest_client)
Get the output port of this exported stream. Returns: OperatorOutputPort: Output port of this exported stream.
def pyramid( input_raster, output_dir, pyramid_type=None, output_format=None, resampling_method=None, scale_method=None, zoom=None, bounds=None, overwrite=False, debug=False ): """Create tile pyramid out of input raster.""" bounds = bounds if bounds else None options = dict( pyramid_type=pyramid_type, scale_method=scale_method, output_format=output_format, resampling=resampling_method, zoom=zoom, bounds=bounds, overwrite=overwrite ) raster2pyramid(input_raster, output_dir, options)
Create tile pyramid out of input raster.
def _move_end_to_cxn(self, shape, cxn_pt_idx): """ Move the end point of this connector to the coordinates of the connection point of *shape* specified by *cxn_pt_idx*. """ x, y, cx, cy = shape.left, shape.top, shape.width, shape.height self.end_x, self.end_y = { 0: (int(x + cx/2), y), 1: (x, int(y + cy/2)), 2: (int(x + cx/2), y + cy), 3: (x + cx, int(y + cy/2)), }[cxn_pt_idx]
Move the end point of this connector to the coordinates of the connection point of *shape* specified by *cxn_pt_idx*.
def init0(self, dae): """ Set initial voltage and reactive power for PQ. Overwrites Bus.voltage values """ dae.y[self.v] = self.v0 dae.y[self.q] = mul(self.u, self.qg)
Set initial voltage and reactive power for PQ. Overwrites Bus.voltage values
def verify_event_source_current(self, event_uuid, resource_name, service_name, function_arn): # type: (str, str, str, str) -> bool """Check if the uuid matches the resource and function arn provided. Given a uuid representing an event source mapping for a lambda function, verify that the associated source arn and function arn match up to the parameters passed in. Instead of providing the event source arn, the resource name is provided along with the service name. For example, if we're checking an SQS queue event source, the resource name would be the queue name (e.g. ``myqueue``) and the service would be ``sqs``. """ client = self._client('lambda') try: attributes = client.get_event_source_mapping(UUID=event_uuid) actual_arn = attributes['EventSourceArn'] arn_start, actual_name = actual_arn.rsplit(':', 1) return ( actual_name == resource_name and arn_start.startswith('arn:aws:%s' % service_name) and attributes['FunctionArn'] == function_arn ) except client.exceptions.ResourceNotFoundException: return False
Check if the uuid matches the resource and function arn provided. Given a uuid representing an event source mapping for a lambda function, verify that the associated source arn and function arn match up to the parameters passed in. Instead of providing the event source arn, the resource name is provided along with the service name. For example, if we're checking an SQS queue event source, the resource name would be the queue name (e.g. ``myqueue``) and the service would be ``sqs``.
def _check_split_list_validity(self): """ See _temporal_split_list above. This function checks if the current split lists are still valid. """ # FIXME: Currently very primitive, but needs to be fast if not (hasattr(self,"_splitListsSet") and (self._splitListsSet)): return False elif len(self) != self._splitListsLength: return False else: return True
See _temporal_split_list above. This function checks if the current split lists are still valid.
def json(self): """Get the result of simplejson.loads if possible.""" if 'json' not in self.environ.get('CONTENT_TYPE', ''): raise BadRequest('Not a JSON request') try: return loads(self.data) except Exception: raise BadRequest('Unable to read JSON request')
Get the result of simplejson.loads if possible.
def rec_setattr(obj, attr, value): """Set object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> rec_setattr(a, 'b.c', 2) >>> a.b.c 2 """ attrs = attr.split('.') setattr(reduce(getattr, attrs[:-1], obj), attrs[-1], value)
Set object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> rec_setattr(a, 'b.c', 2) >>> a.b.c 2
def get_volume(self, datacenter_id, volume_id): """ Retrieves a single volume by ID. :param datacenter_id: The unique ID of the data center. :type datacenter_id: ``str`` :param volume_id: The unique ID of the volume. :type volume_id: ``str`` """ response = self._perform_request( '/datacenters/%s/volumes/%s' % (datacenter_id, volume_id)) return response
Retrieves a single volume by ID. :param datacenter_id: The unique ID of the data center. :type datacenter_id: ``str`` :param volume_id: The unique ID of the volume. :type volume_id: ``str``
def get(self, path_segment="", owner=None, app=None, sharing=None, **query): """Performs a GET operation on the path segment relative to this endpoint. This method is named to match the HTTP method. This method makes at least one roundtrip to the server, one additional round trip for each 303 status returned, plus at most two additional round trips if the ``autologin`` field of :func:`connect` is set to ``True``. If *owner*, *app*, and *sharing* are omitted, this method takes a default namespace from the :class:`Service` object for this :class:`Endpoint`. All other keyword arguments are included in the URL as query parameters. :raises AuthenticationError: Raised when the ``Service`` is not logged in. :raises HTTPError: Raised when an error in the request occurs. :param path_segment: A path segment relative to this endpoint. :type path_segment: ``string`` :param owner: The owner context of the namespace (optional). :type owner: ``string`` :param app: The app context of the namespace (optional). :type app: ``string`` :param sharing: The sharing mode for the namespace (optional). :type sharing: "global", "system", "app", or "user" :param query: All other keyword arguments, which are used as query parameters. :type query: ``string`` :return: The response from the server. :rtype: ``dict`` with keys ``body``, ``headers``, ``reason``, and ``status`` **Example**:: import splunklib.client s = client.service(...) apps = s.apps apps.get() == \\ {'body': ...a response reader object..., 'headers': [('content-length', '26208'), ('expires', 'Fri, 30 Oct 1998 00:00:00 GMT'), ('server', 'Splunkd'), ('connection', 'close'), ('cache-control', 'no-store, max-age=0, must-revalidate, no-cache'), ('date', 'Fri, 11 May 2012 16:30:35 GMT'), ('content-type', 'text/xml; charset=utf-8')], 'reason': 'OK', 'status': 200} apps.get('nonexistant/path') # raises HTTPError s.logout() apps.get() # raises AuthenticationError """ # self.path to the Endpoint is relative in the SDK, so passing # owner, app, sharing, etc. along will produce the correct # namespace in the final request. if path_segment.startswith('/'): path = path_segment else: path = self.service._abspath(self.path + path_segment, owner=owner, app=app, sharing=sharing) # ^-- This was "%s%s" % (self.path, path_segment). # That doesn't work, because self.path may be UrlEncoded. return self.service.get(path, owner=owner, app=app, sharing=sharing, **query)
Performs a GET operation on the path segment relative to this endpoint. This method is named to match the HTTP method. This method makes at least one roundtrip to the server, one additional round trip for each 303 status returned, plus at most two additional round trips if the ``autologin`` field of :func:`connect` is set to ``True``. If *owner*, *app*, and *sharing* are omitted, this method takes a default namespace from the :class:`Service` object for this :class:`Endpoint`. All other keyword arguments are included in the URL as query parameters. :raises AuthenticationError: Raised when the ``Service`` is not logged in. :raises HTTPError: Raised when an error in the request occurs. :param path_segment: A path segment relative to this endpoint. :type path_segment: ``string`` :param owner: The owner context of the namespace (optional). :type owner: ``string`` :param app: The app context of the namespace (optional). :type app: ``string`` :param sharing: The sharing mode for the namespace (optional). :type sharing: "global", "system", "app", or "user" :param query: All other keyword arguments, which are used as query parameters. :type query: ``string`` :return: The response from the server. :rtype: ``dict`` with keys ``body``, ``headers``, ``reason``, and ``status`` **Example**:: import splunklib.client s = client.service(...) apps = s.apps apps.get() == \\ {'body': ...a response reader object..., 'headers': [('content-length', '26208'), ('expires', 'Fri, 30 Oct 1998 00:00:00 GMT'), ('server', 'Splunkd'), ('connection', 'close'), ('cache-control', 'no-store, max-age=0, must-revalidate, no-cache'), ('date', 'Fri, 11 May 2012 16:30:35 GMT'), ('content-type', 'text/xml; charset=utf-8')], 'reason': 'OK', 'status': 200} apps.get('nonexistant/path') # raises HTTPError s.logout() apps.get() # raises AuthenticationError
def _check_edgemap_registers(self, edge_map, keyregs, valregs, valreg=True): """Check that wiremap neither fragments nor leaves duplicate registers. 1. There are no fragmented registers. A register in keyregs is fragmented if not all of its (qu)bits are renamed by edge_map. 2. There are no duplicate registers. A register is duplicate if it appears in both self and keyregs but not in edge_map. Args: edge_map (dict): map from (reg,idx) in keyregs to (reg,idx) in valregs keyregs (dict): a map from register names to Register objects valregs (dict): a map from register names to Register objects valreg (bool): if False the method ignores valregs and does not add regs for bits in the edge_map image that don't appear in valregs Returns: set(Register): the set of regs to add to self Raises: DAGCircuitError: if the wiremap fragments, or duplicates exist """ # FIXME: some mixing of objects and strings here are awkward (due to # self.qregs/self.cregs still keying on string. add_regs = set() reg_frag_chk = {} for v in keyregs.values(): reg_frag_chk[v] = {j: False for j in range(len(v))} for k in edge_map.keys(): if k[0].name in keyregs: reg_frag_chk[k[0]][k[1]] = True for k, v in reg_frag_chk.items(): s = set(v.values()) if len(s) == 2: raise DAGCircuitError("edge_map fragments reg %s" % k) elif s == set([False]): if k in self.qregs.values() or k in self.cregs.values(): raise DAGCircuitError("unmapped duplicate reg %s" % k) else: # Add registers that appear only in keyregs add_regs.add(k) else: if valreg: # If mapping to a register not in valregs, add it. # (k,0) exists in edge_map because edge_map doesn't # fragment k if not edge_map[(k, 0)][0].name in valregs: size = max(map(lambda x: x[1], filter(lambda x: x[0] == edge_map[(k, 0)][0], edge_map.values()))) qreg = QuantumRegister(size + 1, edge_map[(k, 0)][0].name) add_regs.add(qreg) return add_regs
Check that wiremap neither fragments nor leaves duplicate registers. 1. There are no fragmented registers. A register in keyregs is fragmented if not all of its (qu)bits are renamed by edge_map. 2. There are no duplicate registers. A register is duplicate if it appears in both self and keyregs but not in edge_map. Args: edge_map (dict): map from (reg,idx) in keyregs to (reg,idx) in valregs keyregs (dict): a map from register names to Register objects valregs (dict): a map from register names to Register objects valreg (bool): if False the method ignores valregs and does not add regs for bits in the edge_map image that don't appear in valregs Returns: set(Register): the set of regs to add to self Raises: DAGCircuitError: if the wiremap fragments, or duplicates exist
def info2lists(info, in_place=False): """ Return info with: 1) `packages` dict replaced by a 'packages' list with indexes removed 2) `releases` dict replaced by a 'releases' list with indexes removed info2list(info2dicts(info)) == info """ if 'packages' not in info and 'releases' not in info: return info if in_place: info_lists = info else: info_lists = info.copy() packages = info.get('packages') if packages: info_lists['packages'] = list(packages.values()) releases = info.get('releases') if releases: info_lists['releases'] = list(releases.values()) return info_lists
Return info with: 1) `packages` dict replaced by a 'packages' list with indexes removed 2) `releases` dict replaced by a 'releases' list with indexes removed info2list(info2dicts(info)) == info
def send_async( self, queue_identifier: QueueIdentifier, message: Message, ): """Queue the message for sending to recipient in the queue_identifier It may be called before transport is started, to initialize message queues The actual sending is started only when the transport is started """ # even if transport is not started, can run to enqueue messages to send when it starts receiver_address = queue_identifier.recipient if not is_binary_address(receiver_address): raise ValueError('Invalid address {}'.format(pex(receiver_address))) # These are not protocol messages, but transport specific messages if isinstance(message, (Delivered, Ping, Pong)): raise ValueError( 'Do not use send_async for {} messages'.format(message.__class__.__name__), ) self.log.debug( 'Send async', receiver_address=pex(receiver_address), message=message, queue_identifier=queue_identifier, ) self._send_with_retry(queue_identifier, message)
Queue the message for sending to recipient in the queue_identifier It may be called before transport is started, to initialize message queues The actual sending is started only when the transport is started
def plot_one_day(x, y, xlabel=None, ylabel=None, title=None, ylim=None): """时间跨度为一天。 major tick = every hours minor tick = every 15 minutes """ plt.close("all") fig = plt.figure(figsize=(20, 10)) ax = fig.add_subplot(111) ax.plot(x, y) hours = HourLocator(range(24)) hoursFmt = DateFormatter("%H:%M") minutes = MinuteLocator([30,]) minutesFmt = DateFormatter("%M") ax.xaxis.set_major_locator(hours) ax.xaxis.set_major_formatter(hoursFmt) ax.xaxis.set_minor_locator(minutes) ax.xaxis.set_minor_formatter(minutesFmt) ax.autoscale_view() ax.grid() plt.setp( ax.xaxis.get_majorticklabels(), rotation=90 ) plt.setp( ax.xaxis.get_minorticklabels(), rotation=90 ) if xlabel: plt.xlabel(xlabel) else: plt.xlabel("Time") if ylabel: plt.ylabel(ylabel) else: plt.ylabel("Value") if title: plt.title(title) else: plt.title(str(x[0].date())) if ylim: plt.ylim(ylim) else: plt.ylim([min(y) - (max(y) - min(y) ) * 0.05, max(y) + (max(y) - min(y) ) * 0.05]) return plt, ax
时间跨度为一天。 major tick = every hours minor tick = every 15 minutes
def critical_path(self, print_cp=True, cp_limit=100): """ Takes a timing map and returns the critical paths of the system. :param print_cp: Whether to print the critical path to the terminal after calculation :return: a list containing tuples with the 'first' wire as the first value and the critical paths (which themselves are lists of nets) as the second """ critical_paths = [] # storage of all completed critical paths wire_src_map, dst_map = self.block.net_connections() def critical_path_pass(old_critical_path, first_wire): if isinstance(first_wire, (Input, Const, Register)): critical_paths.append((first_wire, old_critical_path)) return if len(critical_paths) >= cp_limit: raise self._TooManyCPsError() source = wire_src_map[first_wire] critical_path = [source] critical_path.extend(old_critical_path) arg_max_time = max(self.timing_map[arg_wire] for arg_wire in source.args) for arg_wire in source.args: # if the time for both items are the max, both will be on a critical path if self.timing_map[arg_wire] == arg_max_time: critical_path_pass(critical_path, arg_wire) max_time = self.max_length() try: for wire_pair in self.timing_map.items(): if wire_pair[1] == max_time: critical_path_pass([], wire_pair[0]) except self._TooManyCPsError: print("Critical path count limit reached") if print_cp: self.print_critical_paths(critical_paths) return critical_paths
Takes a timing map and returns the critical paths of the system. :param print_cp: Whether to print the critical path to the terminal after calculation :return: a list containing tuples with the 'first' wire as the first value and the critical paths (which themselves are lists of nets) as the second
def write_length_and_key(fp, value): """ Helper to write descriptor key. """ written = write_fmt(fp, 'I', 0 if value in _TERMS else len(value)) written += write_bytes(fp, value) return written
Helper to write descriptor key.
def get(self, uuid): """Workaround: missing get entry point""" for token in self.list(): if token.get('uuid') == uuid: return token raise LinShareException(-1, "Can find uuid:" + uuid)
Workaround: missing get entry point
def set(self, option, value): """ Sets an option to a value. """ if self.config is None: self.config = {} self.config[option] = value
Sets an option to a value.
def demo(quiet, shell, speed, prompt, commentecho): """Run a demo doitlive session.""" run( DEMO, shell=shell, speed=speed, test_mode=TESTING, prompt_template=prompt, quiet=quiet, commentecho=commentecho, )
Run a demo doitlive session.
def get_diplomacy(self): """Compute diplomacy.""" if not self._cache['teams']: self.get_teams() player_num = 0 computer_num = 0 for player in self._header.scenario.game_settings.player_info: if player.type == 'human': player_num += 1 elif player.type == 'computer': computer_num += 1 total_num = player_num + computer_num diplomacy = { 'FFA': (len(self._cache['teams']) == total_num) and total_num > 2, 'TG': len(self._cache['teams']) == 2 and total_num > 2, '1v1': total_num == 2, } diplomacy['type'] = 'Other' team_sizes = sorted([len(team) for team in self._cache['teams']]) diplomacy['team_size'] = 'v'.join([str(size) for size in team_sizes]) if diplomacy['FFA']: diplomacy['type'] = 'FFA' diplomacy['team_size'] = 'FFA' elif diplomacy['TG']: diplomacy['type'] = 'TG' elif diplomacy['1v1']: diplomacy['type'] = '1v1' return diplomacy
Compute diplomacy.
def basic_clean_str(string): """Tokenization/string cleaning for a datasets.""" string = re.sub(r"\n", " ", string) # '\n' --> ' ' string = re.sub(r"\'s", " \'s", string) # it's --> it 's string = re.sub(r"\’s", " \'s", string) string = re.sub(r"\'ve", " have", string) # they've --> they have string = re.sub(r"\’ve", " have", string) string = re.sub(r"\'t", " not", string) # can't --> can not string = re.sub(r"\’t", " not", string) string = re.sub(r"\'re", " are", string) # they're --> they are string = re.sub(r"\’re", " are", string) string = re.sub(r"\'d", "", string) # I'd (I had, I would) --> I string = re.sub(r"\’d", "", string) string = re.sub(r"\'ll", " will", string) # I'll --> I will string = re.sub(r"\’ll", " will", string) string = re.sub(r"\“", " ", string) # “a” --> “ a ” string = re.sub(r"\”", " ", string) string = re.sub(r"\"", " ", string) # "a" --> " a " string = re.sub(r"\'", " ", string) # they' --> they ' string = re.sub(r"\’", " ", string) # they’ --> they ’ string = re.sub(r"\.", " . ", string) # they. --> they . string = re.sub(r"\,", " , ", string) # they, --> they , string = re.sub(r"\!", " ! ", string) string = re.sub(r"\-", " ", string) # "low-cost"--> lost cost string = re.sub(r"\(", " ", string) # (they) --> ( they) string = re.sub(r"\)", " ", string) # ( they) --> ( they ) string = re.sub(r"\]", " ", string) # they] --> they ] string = re.sub(r"\[", " ", string) # they[ --> they [ string = re.sub(r"\?", " ", string) # they? --> they ? string = re.sub(r"\>", " ", string) # they> --> they > string = re.sub(r"\<", " ", string) # they< --> they < string = re.sub(r"\=", " ", string) # easier= --> easier = string = re.sub(r"\;", " ", string) # easier; --> easier ; string = re.sub(r"\;", " ", string) string = re.sub(r"\:", " ", string) # easier: --> easier : string = re.sub(r"\"", " ", string) # easier" --> easier " string = re.sub(r"\$", " ", string) # $380 --> $ 380 string = re.sub(r"\_", " ", string) # _100 --> _ 100 string = re.sub(r"\s{2,}", " ", string) # Akara is handsome --> Akara is handsome return string.strip().lower()
Tokenization/string cleaning for a datasets.
def log_to_syslog(): """ Configure logging to syslog. """ # Get root logger rl = logging.getLogger() rl.setLevel('INFO') # Stderr gets critical messages (mostly config/setup issues) # only when not daemonized stderr = logging.StreamHandler(stream=sys.stderr) stderr.setLevel(logging.CRITICAL) stderr.setFormatter(logging.Formatter( '%(asctime)s %(name)s: %(levelname)s %(message)s')) rl.addHandler(stderr) # All interesting data goes to syslog, using root logger's loglevel syslog = SysLogHandler(address='/dev/log', facility=SysLogHandler.LOG_MAIL) syslog.setFormatter(logging.Formatter( '%(name)s[%(process)d]: %(levelname)s %(message)s')) rl.addHandler(syslog)
Configure logging to syslog.
def _recv_ack(self, method_frame): '''Receive an ack from the broker.''' if self._ack_listener: delivery_tag = method_frame.args.read_longlong() multiple = method_frame.args.read_bit() if multiple: while self._last_ack_id < delivery_tag: self._last_ack_id += 1 self._ack_listener(self._last_ack_id) else: self._last_ack_id = delivery_tag self._ack_listener(self._last_ack_id)
Receive an ack from the broker.
def allow(self, role, method, resource, with_children=True): """Add allowing rules. :param role: Role of this rule. :param method: Method to allow in rule, include GET, POST, PUT etc. :param resource: Resource also view function. :param with_children: Allow role's children in rule as well if with_children is `True` """ if with_children: for r in role.get_children(): permission = (r.get_name(), method, resource) if permission not in self._allowed: self._allowed.append(permission) if role == 'anonymous': permission = (role, method, resource) else: permission = (role.get_name(), method, resource) if permission not in self._allowed: self._allowed.append(permission)
Add allowing rules. :param role: Role of this rule. :param method: Method to allow in rule, include GET, POST, PUT etc. :param resource: Resource also view function. :param with_children: Allow role's children in rule as well if with_children is `True`
def to_float(option,value): ''' Converts string values to floats when appropriate ''' if type(value) is str: try: value=float(value) except ValueError: pass return (option,value)
Converts string values to floats when appropriate
def _skip_spaces_and_peek(self): """ Skips all spaces and comments. :return: The first character that follows the skipped spaces and comments or None if the end of the json string has been reached. """ while 1: # skipping spaces self.skip_chars(self.end, lambda x: x in self.spaces) c = self.peek() if not self.params.allow_comments: return c if c != '/': return c d = self.peek(1) if d == '/': self.skip_to(self.pos + 2) self._skip_singleline_comment() elif d == '*': self.skip_to(self.pos + 2) self._skip_multiline_comment() else: return c
Skips all spaces and comments. :return: The first character that follows the skipped spaces and comments or None if the end of the json string has been reached.
def features_properties_null_remove(obj): """ Remove any properties of features in the collection that have entries mapping to a null (i.e., None) value """ features = obj['features'] for i in tqdm(range(len(features))): if 'properties' in features[i]: properties = features[i]['properties'] features[i]['properties'] = {p:properties[p] for p in properties if properties[p] is not None} return obj
Remove any properties of features in the collection that have entries mapping to a null (i.e., None) value
def main(): """ NAME gobing.py DESCRIPTION calculates Bingham parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gobing.py [options] OPTIONS -f FILE to read from FILE -F, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N """ if len(sys.argv) > 0: if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-f' in sys.argv: # ask for filename ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() else: data=sys.stdin.readlines() # read in data from standard input DIs= [] # set up list for dec inc data ofile = "" if '-F' in sys.argv: # set up output file ind = sys.argv.index('-F') ofile= sys.argv[ind+1] out = open(ofile, 'w + a') for line in data: # read in the data from standard input if '\t' in line: rec=line.split('\t') # split each line on space to get records else: rec=line.split() # split each line on space to get records DIs.append((float(rec[0]),float(rec[1]))) # bpars=pmag.dobingham(DIs) output = '%7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %7.1f %i' % (bpars["dec"],bpars["inc"],bpars["Eta"],bpars["Edec"],bpars["Einc"],bpars["Zeta"],bpars["Zdec"],bpars["Zinc"],bpars["n"]) if ofile == "": print(output) else: out.write(output+'\n')
NAME gobing.py DESCRIPTION calculates Bingham parameters from dec inc data INPUT FORMAT takes dec/inc as first two columns in space delimited file SYNTAX gobing.py [options] OPTIONS -f FILE to read from FILE -F, specifies output file name < filename for reading from standard input OUTPUT mean dec, mean inc, Eta, Deta, Ieta, Zeta, Zdec, Zinc, N
def itemmeta(self): """Returns metadata for members of the collection. Makes a single roundtrip to the server, plus two more at most if the ``autologin`` field of :func:`connect` is set to ``True``. :return: A :class:`splunklib.data.Record` object containing the metadata. **Example**:: import splunklib.client as client import pprint s = client.connect(...) pprint.pprint(s.apps.itemmeta()) {'access': {'app': 'search', 'can_change_perms': '1', 'can_list': '1', 'can_share_app': '1', 'can_share_global': '1', 'can_share_user': '1', 'can_write': '1', 'modifiable': '1', 'owner': 'admin', 'perms': {'read': ['*'], 'write': ['admin']}, 'removable': '0', 'sharing': 'user'}, 'fields': {'optional': ['author', 'configured', 'description', 'label', 'manageable', 'template', 'visible'], 'required': ['name'], 'wildcard': []}} """ response = self.get("_new") content = _load_atom(response, MATCH_ENTRY_CONTENT) return _parse_atom_metadata(content)
Returns metadata for members of the collection. Makes a single roundtrip to the server, plus two more at most if the ``autologin`` field of :func:`connect` is set to ``True``. :return: A :class:`splunklib.data.Record` object containing the metadata. **Example**:: import splunklib.client as client import pprint s = client.connect(...) pprint.pprint(s.apps.itemmeta()) {'access': {'app': 'search', 'can_change_perms': '1', 'can_list': '1', 'can_share_app': '1', 'can_share_global': '1', 'can_share_user': '1', 'can_write': '1', 'modifiable': '1', 'owner': 'admin', 'perms': {'read': ['*'], 'write': ['admin']}, 'removable': '0', 'sharing': 'user'}, 'fields': {'optional': ['author', 'configured', 'description', 'label', 'manageable', 'template', 'visible'], 'required': ['name'], 'wildcard': []}}
def _censor_with(x, range, value=None): """ Censor any values outside of range with ``None`` """ return [val if range[0] <= val <= range[1] else value for val in x]
Censor any values outside of range with ``None``
def _check_state_value(cls): """Check initial state value - if is proper and translate it. Initial state is required. """ state_value = cls.context.get_config('initial_state', None) state_value = state_value or getattr( cls.context.new_class, cls.context.state_name, None ) if not state_value: raise ValueError( "Empty state is disallowed, yet no initial state is given!" ) state_value = ( cls.context .new_meta['translator'] .translate(state_value) ) cls.context.state_value = state_value
Check initial state value - if is proper and translate it. Initial state is required.