code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def _position_encoding_init(max_length, dim): """Init the sinusoid position encoding table """ position_enc = np.arange(max_length).reshape((-1, 1)) \ / (np.power(10000, (2. / dim) * np.arange(dim).reshape((1, -1)))) # Apply the cosine to even columns and sin to odds. position_enc[:, 0::2] = np.sin(position_enc[:, 0::2]) # dim 2i position_enc[:, 1::2] = np.cos(position_enc[:, 1::2]) # dim 2i+1 return position_enc
Init the sinusoid position encoding table
def get_nift_values() -> Mapping[str, str]: """Extract the list of NIFT names from the BEL resource and builds a dictionary mapping from the lowercased version to the uppercase version. """ r = get_bel_resource(NIFT) return { name.lower(): name for name in r['Values'] }
Extract the list of NIFT names from the BEL resource and builds a dictionary mapping from the lowercased version to the uppercase version.
def redo(self, channel, image): """Add an entry with image modification info.""" chname = channel.name if image is None: # shouldn't happen, but let's play it safe return imname = image.get('name', 'none') iminfo = channel.get_image_info(imname) timestamp = iminfo.time_modified if timestamp is None: reason = iminfo.get('reason_modified', None) if reason is not None: self.fv.show_error( "{0} invoked 'modified' callback to ChangeHistory with a " "reason but without a timestamp. The plugin invoking the " "callback is no longer be compatible with Ginga. " "Please contact plugin developer to update the plugin " "to use self.fv.update_image_info() like Mosaic " "plugin.".format(imname)) # Image somehow lost its history self.remove_image_info_cb(self.fv, channel, iminfo) return self.add_entry(chname, iminfo)
Add an entry with image modification info.
def attr_string(filterKeys=(), filterValues=(), **kwargs): """Build a string consisting of 'key=value' substrings for each keyword argument in :kwargs: @param filterKeys: list of key names to ignore @param filterValues: list of values to ignore (e.g. None will ignore all key=value pairs that has that value. """ return ', '.join([str(k)+'='+repr(v) for k, v in kwargs.items() if k not in filterKeys and v not in filterValues])
Build a string consisting of 'key=value' substrings for each keyword argument in :kwargs: @param filterKeys: list of key names to ignore @param filterValues: list of values to ignore (e.g. None will ignore all key=value pairs that has that value.
def purge_tokens(self, input_token_attrs=None): """ Removes all specified token_attrs that exist in instance.token_attrs :param token_attrs: list(str), list of string values of tokens to remove. If None, removes all """ if input_token_attrs is None: remove_attrs = self.token_attrs else: remove_attrs = [token_attr for token_attr in self.token_attrs if token_attr.token in input_token_attrs] self.token_attrs = [token_attr for token_attr in self.token_attrs if token_attr not in remove_attrs]
Removes all specified token_attrs that exist in instance.token_attrs :param token_attrs: list(str), list of string values of tokens to remove. If None, removes all
def fetch_and_index(self, fetch_func): "Fetch data with func, return dict indexed by ID" data, e = fetch_func() if e: raise e yield {row['id']: row for row in data}
Fetch data with func, return dict indexed by ID
def search_all(self, quota=50, format='json'): ''' Returns a single list containing up to 'limit' Result objects Will keep requesting until quota is met Will also truncate extra results to return exactly the given quota ''' quota_left = quota results = [] while quota_left > 0: more_results = self._search(quota_left, format) if not more_results: break results += more_results quota_left = quota_left - len(more_results) time.sleep(1) results = results[0:quota] return results
Returns a single list containing up to 'limit' Result objects Will keep requesting until quota is met Will also truncate extra results to return exactly the given quota
def keyPressEvent(self, event): """ Listen for the delete key and check to see if this should auto set the remove property on the object. :param event | <QKeyPressEvent> """ # tag the item for deletion if self.useDefaultKeystrokes() and self.isEditable(): if event.key() == Qt.Key_Delete: for item in self.selectedItems(): item.setRecordState(XOrbRecordItem.State.Removed) # save/commit to the database elif event.key() == Qt.Key_S and\ event.modifiers() == Qt.ControlModifier: self.commit() super(XOrbTreeWidget, self).keyPressEvent(event)
Listen for the delete key and check to see if this should auto set the remove property on the object. :param event | <QKeyPressEvent>
def _get_log_entries(self) -> List[Tuple[int, bytes, List[int], bytes]]: """ Return the log entries for this computation and its children. They are sorted in the same order they were emitted during the transaction processing, and include the sequential counter as the first element of the tuple representing every entry. """ if self.is_error: return [] else: return sorted(itertools.chain( self._log_entries, *(child._get_log_entries() for child in self.children) ))
Return the log entries for this computation and its children. They are sorted in the same order they were emitted during the transaction processing, and include the sequential counter as the first element of the tuple representing every entry.
def process_module(self, node): """Process the astroid node stream.""" if self.config.file_header: if sys.version_info[0] < 3: pattern = re.compile( '\A' + self.config.file_header, re.LOCALE | re.MULTILINE) else: # The use of re.LOCALE is discouraged in python 3 pattern = re.compile( '\A' + self.config.file_header, re.MULTILINE) content = None with node.stream() as stream: # Explicit decoding required by python 3 content = stream.read().decode('utf-8') matches = pattern.findall(content) if len(matches) != 1: self.add_message('invalid-file-header', 1, args=self.config.file_header)
Process the astroid node stream.
def validate_cmap(val): """Validate a colormap Parameters ---------- val: str or :class:`mpl.colors.Colormap` Returns ------- str or :class:`mpl.colors.Colormap` Raises ------ ValueError""" from matplotlib.colors import Colormap try: return validate_str(val) except ValueError: if not isinstance(val, Colormap): raise ValueError( "Could not find a valid colormap!") return val
Validate a colormap Parameters ---------- val: str or :class:`mpl.colors.Colormap` Returns ------- str or :class:`mpl.colors.Colormap` Raises ------ ValueError
def f(x, depth1, depth2, dim='2d', first_batch_norm=True, stride=1, training=True, bottleneck=True, padding='SAME'): """Applies residual function for RevNet. Args: x: input tensor depth1: Number of output channels for the first and second conv layers. depth2: Number of output channels for the third conv layer. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. first_batch_norm: Whether to keep the first batch norm layer or not. Typically used in the first RevNet block. stride: Stride for the first conv filter. Note that this particular RevNet architecture only varies the stride for the first conv filter. The stride for the second conv filter is always set to 1. training: True for train phase, False for eval phase. bottleneck: If true, apply bottleneck 1x1 down/up sampling. padding: Padding for each conv layer. Returns: Output tensor after applying residual function for RevNet. """ conv = CONFIG[dim]['conv'] with tf.variable_scope('f', reuse=tf.AUTO_REUSE): if first_batch_norm: net = tf.layers.batch_normalization(x, training=training) net = tf.nn.relu(net) else: net = x if bottleneck: net = conv(net, depth1, 1, strides=stride, padding=padding, activation=None) net = tf.layers.batch_normalization(net, training=training) net = tf.nn.relu(net) net = conv(net, depth1, 3, strides=1, padding=padding, activation=None) net = tf.layers.batch_normalization(net, training=training) net = tf.nn.relu(net) net = conv(net, depth2, 1, strides=1, padding=padding, activation=None) else: net = conv(net, depth2, 3, strides=stride, padding=padding, activation=None) net = tf.layers.batch_normalization(x, training=training) net = tf.nn.relu(net) net = conv(net, depth2, 3, strides=stride, padding=padding, activation=None) return net
Applies residual function for RevNet. Args: x: input tensor depth1: Number of output channels for the first and second conv layers. depth2: Number of output channels for the third conv layer. dim: '2d' if 2-dimensional, '3d' if 3-dimensional. first_batch_norm: Whether to keep the first batch norm layer or not. Typically used in the first RevNet block. stride: Stride for the first conv filter. Note that this particular RevNet architecture only varies the stride for the first conv filter. The stride for the second conv filter is always set to 1. training: True for train phase, False for eval phase. bottleneck: If true, apply bottleneck 1x1 down/up sampling. padding: Padding for each conv layer. Returns: Output tensor after applying residual function for RevNet.
def build(image, build_path, tag=None, build_args=None, fromline=None, args=[]): """ build a docker image""" if tag: image = ":".join([image, tag]) bdir = tempfile.mkdtemp() os.system('cp -r {0:s}/* {1:s}'.format(build_path, bdir)) if build_args: stdw = tempfile.NamedTemporaryFile(dir=bdir, mode='w') with open("{}/Dockerfile".format(bdir)) as std: dfile = std.readlines() for line in dfile: if fromline and line.lower().startswith('from'): stdw.write('FROM {:s}\n'.format(fromline)) elif line.lower().startswith("cmd"): for arg in build_args: stdw.write(arg+"\n") stdw.write(line) else: stdw.write(line) stdw.flush() utils.xrun("docker build", args+["--force-rm","-f", stdw.name, "-t", image, bdir]) stdw.close() else: utils.xrun("docker build", args+["--force-rm", "-t", image, bdir]) os.system('rm -rf {:s}'.format(bdir))
build a docker image
def get_initial_arguments(request, cache_id=None): 'Extract initial arguments for the dash app' if cache_id is None: return None if initial_argument_location(): return cache.get(cache_id) return request.session[cache_id]
Extract initial arguments for the dash app
def get_coord_box(centre_x, centre_y, distance): """Get the square boundary coordinates for a given centre and distance""" """Todo: return coordinates inside a circle, rather than a square""" return { 'top_left': (centre_x - distance, centre_y + distance), 'top_right': (centre_x + distance, centre_y + distance), 'bottom_left': (centre_x - distance, centre_y - distance), 'bottom_right': (centre_x + distance, centre_y - distance), }
Get the square boundary coordinates for a given centre and distance
def resolve_dependencies(self): """ evaluate each of the data dependencies of this build target, returns the resulting dict""" return dict( [((key, self.data_dependencies[key]) if type(self.data_dependencies[key]) != DeferredDependency else (key, self.data_dependencies[key].resolve())) for key in self.data_dependencies])
evaluate each of the data dependencies of this build target, returns the resulting dict
def plot_color_legend(legend, horizontal=False, ax=None): """ Plot a pandas Series with labels and colors. Parameters ---------- legend : pandas.Series Pandas Series whose values are RGB triples and whose index contains categorical labels. horizontal : bool If True, plot horizontally. ax : matplotlib.axis Axis to plot on. Returns ------- ax : matplotlib.axis Plot axis. """ import matplotlib.pyplot as plt import numpy as np t = np.array([np.array([x for x in legend])]) if ax is None: fig, ax = plt.subplots(1, 1) if horizontal: ax.imshow(t, interpolation='none') ax.set_yticks([]) ax.set_xticks(np.arange(0, legend.shape[0])) t = ax.set_xticklabels(legend.index) else: t = t.reshape([legend.shape[0], 1, 3]) ax.imshow(t, interpolation='none') ax.set_xticks([]) ax.set_yticks(np.arange(0, legend.shape[0])) t = ax.set_yticklabels(legend.index) return ax
Plot a pandas Series with labels and colors. Parameters ---------- legend : pandas.Series Pandas Series whose values are RGB triples and whose index contains categorical labels. horizontal : bool If True, plot horizontally. ax : matplotlib.axis Axis to plot on. Returns ------- ax : matplotlib.axis Plot axis.
def handle_legacy_tloc(line: str, position: int, tokens: ParseResults) -> ParseResults: """Handle translocations that lack the ``fromLoc`` and ``toLoc`` entries.""" log.log(5, 'legacy translocation statement: %s [%d]', line, position) return tokens
Handle translocations that lack the ``fromLoc`` and ``toLoc`` entries.
def check_fam_for_samples(required_samples, source, gold): """Check fam files for required_samples.""" # Checking the source panel source_samples = set() with open(source, 'r') as input_file: for line in input_file: sample = tuple(line.rstrip("\r\n").split(" ")[:2]) if sample in required_samples: source_samples.add(sample) # Checking the gold standard gold_samples = set() with open(gold, 'r') as input_file: for line in input_file: sample = tuple(line.rstrip("\r\n").split(" ")[:2]) if sample in required_samples: gold_samples.add(sample) # Checking if we got everything logger.info(" - Found {} samples in source panel".format( len(source_samples), )) logger.info(" - Found {} samples in gold standard".format( len(gold_samples), )) if len(required_samples - (source_samples | gold_samples)) != 0: return False else: return True
Check fam files for required_samples.
def pipe_privateinput(context=None, _INPUT=None, conf=None, **kwargs): """An input that prompts the user for some text and yields it forever. Not loopable. Parameters ---------- context : pipe2py.Context object _INPUT : unused conf : { 'name': {'value': 'parameter name'}, 'prompt': {'value': 'User prompt'}, 'default': {'value': 'default value'}, 'debug': {'value': 'debug value'} } Yields ------ _OUTPUT : text """ value = utils.get_input(context, conf) while True: yield value
An input that prompts the user for some text and yields it forever. Not loopable. Parameters ---------- context : pipe2py.Context object _INPUT : unused conf : { 'name': {'value': 'parameter name'}, 'prompt': {'value': 'User prompt'}, 'default': {'value': 'default value'}, 'debug': {'value': 'debug value'} } Yields ------ _OUTPUT : text
def staticEval(self): """ Recursively statistically evaluate result of this operator """ for o in self.operands: o.staticEval() self.result._val = self.evalFn()
Recursively statistically evaluate result of this operator
def match_score(self, supported: 'Language') -> int: """ Suppose that `self` is the language that the user desires, and `supported` is a language that is actually supported. This method returns a number from 0 to 100 indicating how similar the supported language is (higher numbers are better). This is not a symmetric relation. The algorithm here is described (badly) in a Unicode technical report at http://unicode.org/reports/tr35/#LanguageMatching. If you find these results bothersome, take it up with Unicode, unless it's particular tweaks we implemented such as macrolanguage matching. See :func:`tag_match_score` for a function that works on strings, instead of requiring you to instantiate Language objects first. Further documentation and examples appear with that function. """ if supported == self: return 100 desired_complete = self.prefer_macrolanguage().maximize() supported_complete = supported.prefer_macrolanguage().maximize() desired_triple = (desired_complete.language, desired_complete.script, desired_complete.region) supported_triple = (supported_complete.language, supported_complete.script, supported_complete.region) return 100 - raw_distance(desired_triple, supported_triple)
Suppose that `self` is the language that the user desires, and `supported` is a language that is actually supported. This method returns a number from 0 to 100 indicating how similar the supported language is (higher numbers are better). This is not a symmetric relation. The algorithm here is described (badly) in a Unicode technical report at http://unicode.org/reports/tr35/#LanguageMatching. If you find these results bothersome, take it up with Unicode, unless it's particular tweaks we implemented such as macrolanguage matching. See :func:`tag_match_score` for a function that works on strings, instead of requiring you to instantiate Language objects first. Further documentation and examples appear with that function.
def xyzlabel(labelx, labely, labelz): """Set all labels at once.""" xlabel(labelx) ylabel(labely) zlabel(labelz)
Set all labels at once.
def lookup(self, topic): """Returns producers for a topic.""" nsq.assert_valid_topic_name(topic) return self._request('GET', '/lookup', fields={'topic': topic})
Returns producers for a topic.
def sort(self): """Sort by detection time. .. rubric:: Example >>> family = Family( ... template=Template(name='a'), detections=[ ... Detection(template_name='a', detect_time=UTCDateTime(0) + 200, ... no_chans=8, detect_val=4.2, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0), ... Detection(template_name='a', detect_time=UTCDateTime(0), ... no_chans=8, detect_val=4.5, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0), ... Detection(template_name='a', detect_time=UTCDateTime(0) + 10, ... no_chans=8, detect_val=4.5, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0)]) >>> family[0].detect_time UTCDateTime(1970, 1, 1, 0, 3, 20) >>> family.sort()[0].detect_time UTCDateTime(1970, 1, 1, 0, 0) """ self.detections = sorted(self.detections, key=lambda d: d.detect_time) return self
Sort by detection time. .. rubric:: Example >>> family = Family( ... template=Template(name='a'), detections=[ ... Detection(template_name='a', detect_time=UTCDateTime(0) + 200, ... no_chans=8, detect_val=4.2, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0), ... Detection(template_name='a', detect_time=UTCDateTime(0), ... no_chans=8, detect_val=4.5, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0), ... Detection(template_name='a', detect_time=UTCDateTime(0) + 10, ... no_chans=8, detect_val=4.5, threshold=1.2, ... typeofdet='corr', threshold_type='MAD', ... threshold_input=8.0)]) >>> family[0].detect_time UTCDateTime(1970, 1, 1, 0, 3, 20) >>> family.sort()[0].detect_time UTCDateTime(1970, 1, 1, 0, 0)
def fill_rect(self, rect): """Fill a rectangle on the current rendering target with the drawing color. Args: rect (Rect): The destination rectangle, or None to fill the entire rendering target. Raises: SDLError: If an error is encountered. """ check_int_err(lib.SDL_RenderFillRect(self._ptr, rect._ptr))
Fill a rectangle on the current rendering target with the drawing color. Args: rect (Rect): The destination rectangle, or None to fill the entire rendering target. Raises: SDLError: If an error is encountered.
def persist_booking(booking, user): """ Ties an in-progress booking from a session to a user when the user logs in. If we don't do this, the booking will be lost, because on a login, the old session will be deleted and a new one will be created. Since the booking has a FK to the session, it would be deleted as well when the user logs in. We assume that a user can only have one booking that is in-progress. Therefore we will delete any existing in-progress bookings of this user before tying the one from the session to the user. TODO: Find a more generic solution for this, as this assumes that there is a status called inprogress and that a user can only have one such booking. :param booking: The booking that should be tied to the user. :user: The user the booking should be tied to. """ if booking is not None: existing_bookings = Booking.objects.filter( user=user, booking_status__slug='inprogress').exclude( pk=booking.pk) existing_bookings.delete() booking.session = None booking.user = user booking.save()
Ties an in-progress booking from a session to a user when the user logs in. If we don't do this, the booking will be lost, because on a login, the old session will be deleted and a new one will be created. Since the booking has a FK to the session, it would be deleted as well when the user logs in. We assume that a user can only have one booking that is in-progress. Therefore we will delete any existing in-progress bookings of this user before tying the one from the session to the user. TODO: Find a more generic solution for this, as this assumes that there is a status called inprogress and that a user can only have one such booking. :param booking: The booking that should be tied to the user. :user: The user the booking should be tied to.
def resolve_args(self, args): """ Resolve function call arguments that have object ids into instances of these objects """ def resolve(a): if isinstance(a, dict): _id = a.get('i', None) # If it's a compound type (including dict) # Check if it has id (i) to determine that it has # a reference in object storage. If it's None, then it's # a dict originated at the remote return self.objects[_id] if _id else a['v'] # if array, resolve it's elements if isinstance(a, (list, tuple)): return [resolve(i) for i in a] return a return [resolve(a) for a in args]
Resolve function call arguments that have object ids into instances of these objects
def get_uris(self, base_uri, filter_list=None): """Return a set of internal URIs.""" return { re.sub(r'^/', base_uri, link.attrib['href']) for link in self.parsedpage.get_nodes_by_selector('a') if 'href' in link.attrib and ( link.attrib['href'].startswith(base_uri) or link.attrib['href'].startswith('/') ) and not is_uri_to_be_filtered(link.attrib['href'], filter_list) }
Return a set of internal URIs.
def data(self, data=None): """ Set response data """ if data is not None: self.response_model.data = data return self.response_model.data
Set response data
def generate_field_spec(row): """ Generate a set of metadata for each field/column in the data. This is loosely based on jsontableschema. """ names = set() fields = [] for cell in row: name = column_alias(cell, names) field = { 'name': name, 'title': cell.column, 'type': unicode(cell.type).lower(), 'has_nulls': False, 'has_empty': False, 'samples': [] } if hasattr(cell.type, 'format'): field['type'] = 'date' field['format'] = cell.type.format fields.append(field) return fields
Generate a set of metadata for each field/column in the data. This is loosely based on jsontableschema.
def execute(self, eopatch): """ Execute computation of HoG features on input eopatch :param eopatch: Input eopatch :type eopatch: eolearn.core.EOPatch :return: EOPatch instance with new keys holding the HoG features and HoG image for visualisation. :rtype: eolearn.core.EOPatch """ for feature_type, feature_name, new_feature_name in self.feature: result = self._compute_hog(eopatch[feature_type][feature_name]) eopatch[feature_type][new_feature_name] = result[0] if self.visualize: eopatch[feature_type][self.visualize_name] = result[1] return eopatch
Execute computation of HoG features on input eopatch :param eopatch: Input eopatch :type eopatch: eolearn.core.EOPatch :return: EOPatch instance with new keys holding the HoG features and HoG image for visualisation. :rtype: eolearn.core.EOPatch
def findExtname(fimg, extname, extver=None): """ Returns the list number of the extension corresponding to EXTNAME given. """ i = 0 extnum = None for chip in fimg: hdr = chip.header if 'EXTNAME' in hdr: if hdr['EXTNAME'].strip() == extname.upper(): if extver is None or hdr['EXTVER'] == extver: extnum = i break i += 1 return extnum
Returns the list number of the extension corresponding to EXTNAME given.
def _tidy2xhtml5(html): """Tidy up a html4/5 soup to a parsable valid XHTML5. Requires tidy-html5 from https://github.com/w3c/tidy-html5 Installation: http://goo.gl/FG27n """ html = _io2string(html) html = _pre_tidy(html) # Pre-process xhtml5, errors =\ tidy_document(html, options={ # do not merge nested div elements # - preserve semantic block structrues 'merge-divs': 0, # create xml output 'output-xml': 1, # Don't use indent, adds extra linespace or linefeed # which are big problems 'indent': 0, # No tidy meta tag in output 'tidy-mark': 0, # No wrapping 'wrap': 0, # Help ensure validation 'alt-text': '', # No sense in transitional for tool-generated markup 'doctype': 'strict', # May not get what you expect, # but you will get something 'force-output': 1, # remove HTML entities like e.g. nbsp 'numeric-entities': 1, # remove 'clean': 1, 'bare': 1, 'word-2000': 1, 'drop-proprietary-attributes': 1, # enclose text in body always with <p>...</p> 'enclose-text': 1, # transforms <i> and <b> to <em> and <strong> 'logical-emphasis': 1, # do not tidy all MathML elements! # List of MathML 3.0 elements from # http://www.w3.org/TR/MathML3/appendixi.html#index.elem 'new-inline-tags': 'abs, and, annotation, ' 'annotation-xml, apply, approx, arccos, arccosh, ' 'arccot, arccoth, arccsc, arccsch, arcsec, arcsech, ' 'arcsin, arcsinh, arctan, arctanh, arg, bind, bvar, ' 'card, cartesianproduct, cbytes, ceiling, cerror, ' 'ci, cn, codomain, complexes, compose, condition, ' 'conjugate, cos, cosh, cot, coth, cs, csc, csch, ' 'csymbol, curl, declare, degree, determinant, diff, ' 'divergence, divide, domain, domainofapplication, ' 'el, emptyset, eq, equivalent, eulergamma, exists, ' 'exp, exponentiale, factorial, factorof, false, ' 'floor, fn, forall, gcd, geq, grad, gt, ident, ' 'image, imaginary, imaginaryi, implies, in, ' 'infinity, int, integers, intersect, interval, ' 'inverse, lambda, laplacian, lcm, leq, limit, list, ' 'ln, log, logbase, lowlimit, lt, maction, malign, ' 'maligngroup, malignmark, malignscope, math, ' 'matrix, matrixrow, max, mean, median, menclose, ' 'merror, mfenced, mfrac, mfraction, mglyph, mi, ' 'min, minus, mlabeledtr, mlongdiv, mmultiscripts, ' 'mn, mo, mode, moment, momentabout, mover, mpadded, ' 'mphantom, mprescripts, mroot, mrow, ms, mscarries, ' 'mscarry, msgroup, msline, mspace, msqrt, msrow, ' 'mstack, mstyle, msub, msubsup, msup, mtable, mtd, ' 'mtext, mtr, munder, munderover, naturalnumbers, ' 'neq, none, not, notanumber, note, notin, ' 'notprsubset, notsubset, or, otherwise, ' 'outerproduct, partialdiff, pi, piece, piecewise, ' 'plus, power, primes, product, prsubset, quotient, ' 'rationals, real, reals, reln, rem, root, ' 'scalarproduct, sdev, sec, sech, selector, ' 'semantics, sep, set, setdiff, share, sin, sinh, ' 'subset, sum, tan, tanh, tendsto, times, transpose, ' 'true, union, uplimit, variance, vector, ' 'vectorproduct, xor', 'doctype': 'html5', }) # return xhtml5 # return the tree itself, there is another modification below to avoid # another parse return _post_tidy(xhtml5)
Tidy up a html4/5 soup to a parsable valid XHTML5. Requires tidy-html5 from https://github.com/w3c/tidy-html5 Installation: http://goo.gl/FG27n
def emboss_pepstats_parser(infile): """Get dictionary of pepstats results. Args: infile: Path to pepstats outfile Returns: dict: Parsed information from pepstats TODO: Only currently parsing the bottom of the file for percentages of properties. """ with open(infile) as f: lines = f.read().split('\n') info_dict = {} for l in lines[38:47]: info = l.split('\t') cleaninfo = list(filter(lambda x: x != '', info)) prop = cleaninfo[0] num = cleaninfo[2] percent = float(cleaninfo[-1]) / float(100) info_dict['mol_percent_' + prop.lower() + '-pepstats'] = percent return info_dict
Get dictionary of pepstats results. Args: infile: Path to pepstats outfile Returns: dict: Parsed information from pepstats TODO: Only currently parsing the bottom of the file for percentages of properties.
def _multiply(self, x1, x2, out): """Raw pointwise multiplication of two elements.""" self.tspace._multiply(x1.tensor, x2.tensor, out.tensor)
Raw pointwise multiplication of two elements.
def dropout_with_broadcast_dims(x, keep_prob, broadcast_dims=None, **kwargs): """Like tf.nn.dropout but takes broadcast_dims instead of noise_shape. Instead of specifying noise_shape, this function takes broadcast_dims - a list of dimension numbers in which noise_shape should be 1. The random keep/drop tensor has dimensionality 1 along these dimensions. Args: x: a floating point tensor. keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept. broadcast_dims: an optional list of integers the dimensions along which to broadcast the keep/drop flags. **kwargs: keyword arguments to tf.nn.dropout other than "noise_shape". Returns: Tensor of the same shape as x. """ assert "noise_shape" not in kwargs if broadcast_dims: shape = tf.shape(x) ndims = len(x.get_shape()) # Allow dimensions like "-1" as well. broadcast_dims = [dim + ndims if dim < 0 else dim for dim in broadcast_dims] kwargs["noise_shape"] = [ 1 if i in broadcast_dims else shape[i] for i in range(ndims) ] return tf.nn.dropout(x, keep_prob, **kwargs)
Like tf.nn.dropout but takes broadcast_dims instead of noise_shape. Instead of specifying noise_shape, this function takes broadcast_dims - a list of dimension numbers in which noise_shape should be 1. The random keep/drop tensor has dimensionality 1 along these dimensions. Args: x: a floating point tensor. keep_prob: A scalar Tensor with the same type as x. The probability that each element is kept. broadcast_dims: an optional list of integers the dimensions along which to broadcast the keep/drop flags. **kwargs: keyword arguments to tf.nn.dropout other than "noise_shape". Returns: Tensor of the same shape as x.
def _main(): """Display all information sysconfig detains.""" print('Platform: "%s"' % get_platform()) print('Python version: "%s"' % get_python_version()) print('Current installation scheme: "%s"' % _get_default_scheme()) print() _print_dict('Paths', get_paths()) print() _print_dict('Variables', get_config_vars())
Display all information sysconfig detains.
def extension_by_source(source, mime_type): "Return the file extension used by this plugin" # TODO: should get this information from the plugin extension = source.plugin_name if extension: return extension if mime_type: return mime_type.split("/")[-1]
Return the file extension used by this plugin
def configure(self, **configs): """Configure the consumer instance Configuration settings can be passed to constructor, otherwise defaults will be used: Keyword Arguments: bootstrap_servers (list): List of initial broker nodes the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. client_id (str): a unique name for this client. Defaults to 'kafka.consumer.kafka'. group_id (str): the name of the consumer group to join, Offsets are fetched / committed to this group name. fetch_message_max_bytes (int, optional): Maximum bytes for each topic/partition fetch request. Defaults to 1024*1024. fetch_min_bytes (int, optional): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_wait_max_ms for more data to accumulate. Defaults to 1. fetch_wait_max_ms (int, optional): Maximum time for the server to block waiting for fetch_min_bytes messages to accumulate. Defaults to 100. refresh_leader_backoff_ms (int, optional): Milliseconds to backoff when refreshing metadata on errors (subject to random jitter). Defaults to 200. socket_timeout_ms (int, optional): TCP socket timeout in milliseconds. Defaults to 30*1000. auto_offset_reset (str, optional): A policy for resetting offsets on OffsetOutOfRange errors. 'smallest' will move to the oldest available message, 'largest' will move to the most recent. Any ofther value will raise the exception. Defaults to 'largest'. deserializer_class (callable, optional): Any callable that takes a raw message value and returns a deserialized value. Defaults to lambda msg: msg. auto_commit_enable (bool, optional): Enabling auto-commit will cause the KafkaConsumer to periodically commit offsets without an explicit call to commit(). Defaults to False. auto_commit_interval_ms (int, optional): If auto_commit_enabled, the milliseconds between automatic offset commits. Defaults to 60 * 1000. auto_commit_interval_messages (int, optional): If auto_commit_enabled, a number of messages consumed between automatic offset commits. Defaults to None (disabled). consumer_timeout_ms (int, optional): number of millisecond to throw a timeout exception to the consumer if no message is available for consumption. Defaults to -1 (dont throw exception). Configuration parameters are described in more detail at http://kafka.apache.org/documentation.html#highlevelconsumerapi """ configs = self._deprecate_configs(**configs) self._config = {} for key in self.DEFAULT_CONFIG: self._config[key] = configs.pop(key, self.DEFAULT_CONFIG[key]) if configs: raise KafkaConfigurationError('Unknown configuration key(s): ' + str(list(configs.keys()))) if self._config['auto_commit_enable']: if not self._config['group_id']: raise KafkaConfigurationError( 'KafkaConsumer configured to auto-commit ' 'without required consumer group (group_id)' ) # Check auto-commit configuration if self._config['auto_commit_enable']: logger.info("Configuring consumer to auto-commit offsets") self._reset_auto_commit() if not self._config['bootstrap_servers']: raise KafkaConfigurationError( 'bootstrap_servers required to configure KafkaConsumer' ) self._client = KafkaClient( self._config['bootstrap_servers'], client_id=self._config['client_id'], timeout=(self._config['socket_timeout_ms'] / 1000.0) )
Configure the consumer instance Configuration settings can be passed to constructor, otherwise defaults will be used: Keyword Arguments: bootstrap_servers (list): List of initial broker nodes the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. client_id (str): a unique name for this client. Defaults to 'kafka.consumer.kafka'. group_id (str): the name of the consumer group to join, Offsets are fetched / committed to this group name. fetch_message_max_bytes (int, optional): Maximum bytes for each topic/partition fetch request. Defaults to 1024*1024. fetch_min_bytes (int, optional): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_wait_max_ms for more data to accumulate. Defaults to 1. fetch_wait_max_ms (int, optional): Maximum time for the server to block waiting for fetch_min_bytes messages to accumulate. Defaults to 100. refresh_leader_backoff_ms (int, optional): Milliseconds to backoff when refreshing metadata on errors (subject to random jitter). Defaults to 200. socket_timeout_ms (int, optional): TCP socket timeout in milliseconds. Defaults to 30*1000. auto_offset_reset (str, optional): A policy for resetting offsets on OffsetOutOfRange errors. 'smallest' will move to the oldest available message, 'largest' will move to the most recent. Any ofther value will raise the exception. Defaults to 'largest'. deserializer_class (callable, optional): Any callable that takes a raw message value and returns a deserialized value. Defaults to lambda msg: msg. auto_commit_enable (bool, optional): Enabling auto-commit will cause the KafkaConsumer to periodically commit offsets without an explicit call to commit(). Defaults to False. auto_commit_interval_ms (int, optional): If auto_commit_enabled, the milliseconds between automatic offset commits. Defaults to 60 * 1000. auto_commit_interval_messages (int, optional): If auto_commit_enabled, a number of messages consumed between automatic offset commits. Defaults to None (disabled). consumer_timeout_ms (int, optional): number of millisecond to throw a timeout exception to the consumer if no message is available for consumption. Defaults to -1 (dont throw exception). Configuration parameters are described in more detail at http://kafka.apache.org/documentation.html#highlevelconsumerapi
def update_datetime(value, range = None): """ Updates (drifts) a Date value within specified range defined :param value: a Date value to drift. :param range: (optional) a range in milliseconds. Default: 10 days :return: an updated DateTime value. """ range = range if range != None else 10 if range < 0: return value days = RandomFloat.next_float(-range, range) return value + datetime.timedelta(days)
Updates (drifts) a Date value within specified range defined :param value: a Date value to drift. :param range: (optional) a range in milliseconds. Default: 10 days :return: an updated DateTime value.
def _from_dict(cls, _dict): """Initialize a SpeechRecognitionResults object from a json dictionary.""" args = {} if 'results' in _dict: args['results'] = [ SpeechRecognitionResult._from_dict(x) for x in (_dict.get('results')) ] if 'result_index' in _dict: args['result_index'] = _dict.get('result_index') if 'speaker_labels' in _dict: args['speaker_labels'] = [ SpeakerLabelsResult._from_dict(x) for x in (_dict.get('speaker_labels')) ] if 'warnings' in _dict: args['warnings'] = _dict.get('warnings') return cls(**args)
Initialize a SpeechRecognitionResults object from a json dictionary.
def match_value_to_text(self, text): """ this is going to be the tricky bit - probably not possible to get the 'exact' rating for a value. Will need to do sentiment analysis of the text to see how it matches the rating. Even that sounds like it wont work - maybe a ML algorithm would do it, but that requires a large body of text already matched to values - and values aren't even defined as far as I have found. UPDATE - this could work if we assume values can be single words, eg tax=0.3, freedom=0.7, healthcare=0.3, welfare=0.3 etc """ if self.nme in text: res = 0.8 else: res = 0.2 return self.nme + ' = ' + str(res) + ' match against ' + text
this is going to be the tricky bit - probably not possible to get the 'exact' rating for a value. Will need to do sentiment analysis of the text to see how it matches the rating. Even that sounds like it wont work - maybe a ML algorithm would do it, but that requires a large body of text already matched to values - and values aren't even defined as far as I have found. UPDATE - this could work if we assume values can be single words, eg tax=0.3, freedom=0.7, healthcare=0.3, welfare=0.3 etc
def match(record, config=None): """Given a record, yield the records in INSPIRE most similar to it. This method can be used to detect if a record that we are ingesting as a submission or as an harvest is already present in the system, or to find out which record a reference should be pointing to. """ if config is None: current_app.logger.debug('No configuration provided. Falling back to the default configuration.') config = current_app.config['MATCHER_DEFAULT_CONFIGURATION'] try: algorithm, doc_type, index = config['algorithm'], config['doc_type'], config['index'] except KeyError as e: raise KeyError('Malformed configuration: %s.' % repr(e)) source = config.get('source', []) match_deleted = config.get('match_deleted', False) collections = config.get('collections') if not (collections is None or ( isinstance(collections, (list, tuple)) and all(isinstance(collection, string_types) for collection in collections) )): raise ValueError('Malformed collections. Expected a list of strings bug got: %s' % repr(collections)) for i, step in enumerate(algorithm): try: queries = step['queries'] except KeyError: raise KeyError('Malformed algorithm: step %d has no queries.' % i) validator = _get_validator(step.get('validator')) for j, query in enumerate(queries): try: body = compile(query, record, collections=collections, match_deleted=match_deleted) except Exception as e: raise ValueError('Malformed query. Query %d of step %d does not compile: %s.' % (j, i, repr(e))) if not body: continue current_app.logger.debug('Sending ES query: %s' % repr(body)) if source: result = es.search(index=index, doc_type=doc_type, body=body, _source=source) else: result = es.search(index=index, doc_type=doc_type, body=body) for hit in result['hits']['hits']: if validator(record, hit): yield hit
Given a record, yield the records in INSPIRE most similar to it. This method can be used to detect if a record that we are ingesting as a submission or as an harvest is already present in the system, or to find out which record a reference should be pointing to.
def bool_assignment(arg, patterns=None): """ Summary: Enforces correct bool argment assignment Arg: :arg (*): arg which must be interpreted as either bool True or False Returns: bool assignment | TYPE: bool """ arg = str(arg) # only eval type str try: if patterns is None: patterns = ( (re.compile(r'^(true|false)$', flags=re.IGNORECASE), lambda x: x.lower() == 'true'), (re.compile(r'^(yes|no)$', flags=re.IGNORECASE), lambda x: x.lower() == 'yes'), (re.compile(r'^(y|n)$', flags=re.IGNORECASE), lambda x: x.lower() == 'y') ) if not arg: return '' # default selected else: for pattern, func in patterns: if pattern.match(arg): return func(arg) except Exception as e: raise e
Summary: Enforces correct bool argment assignment Arg: :arg (*): arg which must be interpreted as either bool True or False Returns: bool assignment | TYPE: bool
def fix_reference_url(url): """Used to parse an incorect url to try to fix it with the most common ocurrences for errors. If the fixed url is still incorrect, it returns ``None``. Returns: String containing the fixed url or the original one if it could not be fixed. """ new_url = url new_url = fix_url_bars_instead_of_slashes(new_url) new_url = fix_url_add_http_if_missing(new_url) new_url = fix_url_replace_tilde(new_url) try: rfc3987.parse(new_url, rule="URI") return new_url except ValueError: return url
Used to parse an incorect url to try to fix it with the most common ocurrences for errors. If the fixed url is still incorrect, it returns ``None``. Returns: String containing the fixed url or the original one if it could not be fixed.
def _browse(c): """ Open build target's index.html in a browser (using 'open'). """ index = join(c.sphinx.target, c.sphinx.target_file) c.run("open {0}".format(index))
Open build target's index.html in a browser (using 'open').
def _prepare_script(self, dest_dir, program): """Copy the script into the destination directory. :param dest_dir: The target directory where the script will be saved. :param program: The script text to be saved. :return: The name of the script file. :rtype: str """ script_name = ExecutorFiles.PROCESS_SCRIPT dest_file = os.path.join(dest_dir, script_name) with open(dest_file, 'wt') as dest_file_obj: dest_file_obj.write(program) os.chmod(dest_file, 0o700) return script_name
Copy the script into the destination directory. :param dest_dir: The target directory where the script will be saved. :param program: The script text to be saved. :return: The name of the script file. :rtype: str
def mclennan_tourky(g, init=None, epsilon=1e-3, max_iter=200, full_output=False): r""" Find one mixed-action epsilon-Nash equilibrium of an N-player normal form game by the fixed point computation algorithm by McLennan and Tourky [1]_. Parameters ---------- g : NormalFormGame NormalFormGame instance. init : array_like(int or array_like(float, ndim=1)), optional Initial action profile, an array of N objects, where each object must be an iteger (pure action) or an array of floats (mixed action). If None, default to an array of zeros (the zero-th action for each player). epsilon : scalar(float), optional(default=1e-3) Value of epsilon-optimality. max_iter : scalar(int), optional(default=100) Maximum number of iterations. full_output : bool, optional(default=False) If False, only the computed Nash equilibrium is returned. If True, the return value is `(NE, res)`, where `NE` is the Nash equilibrium and `res` is a `NashResult` object. Returns ------- NE : tuple(ndarray(float, ndim=1)) Tuple of computed Nash equilibrium mixed actions. res : NashResult Object containing information about the computation. Returned only when `full_output` is True. See `NashResult` for details. Examples -------- Consider the following version of 3-player "anti-coordination" game, where action 0 is a safe action which yields payoff 1, while action 1 yields payoff :math:`v` if no other player plays 1 and payoff 0 otherwise: >>> N = 3 >>> v = 2 >>> payoff_array = np.empty((2,)*n) >>> payoff_array[0, :] = 1 >>> payoff_array[1, :] = 0 >>> payoff_array[1].flat[0] = v >>> g = NormalFormGame((Player(payoff_array),)*N) >>> print(g) 3-player NormalFormGame with payoff profile array: [[[[ 1., 1., 1.], [ 1., 1., 2.]], [[ 1., 2., 1.], [ 1., 0., 0.]]], [[[ 2., 1., 1.], [ 0., 1., 0.]], [[ 0., 0., 1.], [ 0., 0., 0.]]]] This game has a unique symmetric Nash equilibrium, where the equilibrium action is given by :math:`(p^*, 1-p^*)` with :math:`p^* = 1/v^{1/(N-1)}`: >>> p_star = 1/(v**(1/(N-1))) >>> [p_star, 1 - p_star] [0.7071067811865475, 0.29289321881345254] Obtain an approximate Nash equilibrium of this game by `mclennan_tourky`: >>> epsilon = 1e-5 # Value of epsilon-optimality >>> NE = mclennan_tourky(g, epsilon=epsilon) >>> print(NE[0], NE[1], NE[2], sep='\n') [ 0.70710754 0.29289246] [ 0.70710754 0.29289246] [ 0.70710754 0.29289246] >>> g.is_nash(NE, tol=epsilon) True Additional information is returned if `full_output` is set True: >>> NE, res = mclennan_tourky(g, epsilon=epsilon, full_output=True) >>> res.converged True >>> res.num_iter 18 References ---------- .. [1] A. McLennan and R. Tourky, "From Imitation Games to Kakutani," 2006. """ try: N = g.N except: raise TypeError('g must be a NormalFormGame') if N < 2: raise NotImplementedError('Not implemented for 1-player games') if init is None: init = (0,) * N try: l = len(init) except TypeError: raise TypeError('init must be array_like') if l != N: raise ValueError( 'init must be of length {N}'.format(N=N) ) indptr = np.empty(N+1, dtype=int) indptr[0] = 0 indptr[1:] = np.cumsum(g.nums_actions) x_init = _flatten_action_profile(init, indptr) is_approx_fp = lambda x: _is_epsilon_nash(x, g, epsilon, indptr) x_star, converged, num_iter = \ _compute_fixed_point_ig(_best_response_selection, x_init, max_iter, verbose=0, print_skip=1, is_approx_fp=is_approx_fp, g=g, indptr=indptr) NE = _get_action_profile(x_star, indptr) if not full_output: return NE res = NashResult(NE=NE, converged=converged, num_iter=num_iter, max_iter=max_iter, init=init, epsilon=epsilon) return NE, res
r""" Find one mixed-action epsilon-Nash equilibrium of an N-player normal form game by the fixed point computation algorithm by McLennan and Tourky [1]_. Parameters ---------- g : NormalFormGame NormalFormGame instance. init : array_like(int or array_like(float, ndim=1)), optional Initial action profile, an array of N objects, where each object must be an iteger (pure action) or an array of floats (mixed action). If None, default to an array of zeros (the zero-th action for each player). epsilon : scalar(float), optional(default=1e-3) Value of epsilon-optimality. max_iter : scalar(int), optional(default=100) Maximum number of iterations. full_output : bool, optional(default=False) If False, only the computed Nash equilibrium is returned. If True, the return value is `(NE, res)`, where `NE` is the Nash equilibrium and `res` is a `NashResult` object. Returns ------- NE : tuple(ndarray(float, ndim=1)) Tuple of computed Nash equilibrium mixed actions. res : NashResult Object containing information about the computation. Returned only when `full_output` is True. See `NashResult` for details. Examples -------- Consider the following version of 3-player "anti-coordination" game, where action 0 is a safe action which yields payoff 1, while action 1 yields payoff :math:`v` if no other player plays 1 and payoff 0 otherwise: >>> N = 3 >>> v = 2 >>> payoff_array = np.empty((2,)*n) >>> payoff_array[0, :] = 1 >>> payoff_array[1, :] = 0 >>> payoff_array[1].flat[0] = v >>> g = NormalFormGame((Player(payoff_array),)*N) >>> print(g) 3-player NormalFormGame with payoff profile array: [[[[ 1., 1., 1.], [ 1., 1., 2.]], [[ 1., 2., 1.], [ 1., 0., 0.]]], [[[ 2., 1., 1.], [ 0., 1., 0.]], [[ 0., 0., 1.], [ 0., 0., 0.]]]] This game has a unique symmetric Nash equilibrium, where the equilibrium action is given by :math:`(p^*, 1-p^*)` with :math:`p^* = 1/v^{1/(N-1)}`: >>> p_star = 1/(v**(1/(N-1))) >>> [p_star, 1 - p_star] [0.7071067811865475, 0.29289321881345254] Obtain an approximate Nash equilibrium of this game by `mclennan_tourky`: >>> epsilon = 1e-5 # Value of epsilon-optimality >>> NE = mclennan_tourky(g, epsilon=epsilon) >>> print(NE[0], NE[1], NE[2], sep='\n') [ 0.70710754 0.29289246] [ 0.70710754 0.29289246] [ 0.70710754 0.29289246] >>> g.is_nash(NE, tol=epsilon) True Additional information is returned if `full_output` is set True: >>> NE, res = mclennan_tourky(g, epsilon=epsilon, full_output=True) >>> res.converged True >>> res.num_iter 18 References ---------- .. [1] A. McLennan and R. Tourky, "From Imitation Games to Kakutani," 2006.
def stage_all(self): """ Stages all changed and untracked files """ LOGGER.info('Staging all files') self.repo.git.add(A=True)
Stages all changed and untracked files
def init(): """ Initialize synchronously. """ loop = asyncio.get_event_loop() if loop.is_running(): raise Exception("You must initialize the Ray async API by calling " "async_api.init() or async_api.as_future(obj) before " "the event loop starts.") else: asyncio.get_event_loop().run_until_complete(_async_init())
Initialize synchronously.
def from_api(cls, api): """ create an application description for the todo app, that based on the api can use either tha api or the ux for interaction """ ux = TodoUX(api) from .pseudorpc import PseudoRpc rpc = PseudoRpc(api) return cls({ViaAPI: api, ViaUX: ux, ViaRPC: rpc})
create an application description for the todo app, that based on the api can use either tha api or the ux for interaction
def describe_field(k, v, timestamp_parser=default_timestamp_parser): """Given a key representing a column name and value representing the value stored in the column, return a representation of the BigQuery schema element describing that field. Raise errors if invalid value types are provided. Parameters ---------- k : Union[str, unicode] Key representing the column v : Union[str, unicode, int, float, datetime, object] Value mapped to by `k` Returns ------- object Describing the field Raises ------ Exception If invalid value types are provided. Examples -------- >>> describe_field("username", "Bob") {"name": "username", "type": "string", "mode": "nullable"} >>> describe_field("users", [{"username": "Bob"}]) {"name": "users", "type": "record", "mode": "repeated", "fields": [{"name":"username","type":"string","mode":"nullable"}]} """ def bq_schema_field(name, bq_type, mode): return {"name": name, "type": bq_type, "mode": mode} if isinstance(v, list): if len(v) == 0: raise Exception( "Can't describe schema because of empty list {0}:[]".format(k)) v = v[0] mode = "repeated" else: mode = "nullable" bq_type = bigquery_type(v, timestamp_parser=timestamp_parser) if not bq_type: raise InvalidTypeException(k, v) field = bq_schema_field(k, bq_type, mode) if bq_type == "record": try: field['fields'] = schema_from_record(v, timestamp_parser) except InvalidTypeException as e: # recursively construct the key causing the error raise InvalidTypeException("%s.%s" % (k, e.key), e.value) return field
Given a key representing a column name and value representing the value stored in the column, return a representation of the BigQuery schema element describing that field. Raise errors if invalid value types are provided. Parameters ---------- k : Union[str, unicode] Key representing the column v : Union[str, unicode, int, float, datetime, object] Value mapped to by `k` Returns ------- object Describing the field Raises ------ Exception If invalid value types are provided. Examples -------- >>> describe_field("username", "Bob") {"name": "username", "type": "string", "mode": "nullable"} >>> describe_field("users", [{"username": "Bob"}]) {"name": "users", "type": "record", "mode": "repeated", "fields": [{"name":"username","type":"string","mode":"nullable"}]}
def urlretrieve(url, filename=None, reporthook=None, data=None): """ Retrieve a URL into a temporary location on disk. Requires a URL argument. If a filename is passed, it is used as the temporary file location. The reporthook argument should be a callable that accepts a block number, a read size, and the total file size of the URL target. The data argument should be valid URL encoded data. If a filename is passed and the URL points to a local resource, the result is a copy from local file to new file. Returns a tuple containing the path to the newly created data file as well as the resulting HTTPMessage object. """ url_type, path = splittype(url) with contextlib.closing(urlopen(url, data)) as fp: headers = fp.info() # Just return the local path and the "headers" for file:// # URLs. No sense in performing a copy unless requested. if url_type == "file" and not filename: return os.path.normpath(path), headers # Handle temporary file setup. if filename: tfp = open(filename, 'wb') else: tfp = tempfile.NamedTemporaryFile(delete=False) filename = tfp.name _url_tempfiles.append(filename) with tfp: result = filename, headers bs = 1024*8 size = -1 read = 0 blocknum = 0 if "content-length" in headers: size = int(headers["Content-Length"]) if reporthook: reporthook(blocknum, bs, size) while True: block = fp.read(bs) if not block: break read += len(block) tfp.write(block) blocknum += 1 if reporthook: reporthook(blocknum, bs, size) if size >= 0 and read < size: raise ContentTooShortError( "retrieval incomplete: got only %i out of %i bytes" % (read, size), result) return result
Retrieve a URL into a temporary location on disk. Requires a URL argument. If a filename is passed, it is used as the temporary file location. The reporthook argument should be a callable that accepts a block number, a read size, and the total file size of the URL target. The data argument should be valid URL encoded data. If a filename is passed and the URL points to a local resource, the result is a copy from local file to new file. Returns a tuple containing the path to the newly created data file as well as the resulting HTTPMessage object.
def restore(self): """Restore snapshotted state.""" if not self._snapshot: return yield from self.set_muted(self._snapshot['muted']) yield from self.set_volume(self._snapshot['volume']) yield from self.set_stream(self._snapshot['stream']) self.callback() _LOGGER.info('restored snapshot of state of %s', self.friendly_name)
Restore snapshotted state.
def to_XML(self, xml_declaration=True, xmlns=True): """ Dumps object fields to an XML-formatted string. The 'xml_declaration' switch enables printing of a leading standard XML line containing XML version and encoding. The 'xmlns' switch enables printing of qualified XMLNS prefixes. :param XML_declaration: if ``True`` (default) prints a leading XML declaration line :type XML_declaration: bool :param xmlns: if ``True`` (default) prints full XMLNS prefixes :type xmlns: bool :returns: an XML-formatted string """ root_node = self._to_DOM() if xmlns: xmlutils.annotate_with_XMLNS(root_node, OBSERVATION_XMLNS_PREFIX, OBSERVATION_XMLNS_URL) return xmlutils.DOM_node_to_XML(root_node, xml_declaration)
Dumps object fields to an XML-formatted string. The 'xml_declaration' switch enables printing of a leading standard XML line containing XML version and encoding. The 'xmlns' switch enables printing of qualified XMLNS prefixes. :param XML_declaration: if ``True`` (default) prints a leading XML declaration line :type XML_declaration: bool :param xmlns: if ``True`` (default) prints full XMLNS prefixes :type xmlns: bool :returns: an XML-formatted string
def include(self, spec, *, basePath=None, operationId_mapping=None, name=None): """ Adds a new specification to a router :param spec: path to specification :param basePath: override base path specify in specification :param operationId_mapping: mapping for handlers :param name: name to access original spec """ data = self._file_loader.load(spec) if basePath is None: basePath = data.get('basePath', '') if name is not None: d = dict(data) d['basePath'] = basePath self._swagger_data[name] = d # TODO clear d swagger_data = {k: v for k, v in data.items() if k != 'paths'} swagger_data['basePath'] = basePath for url, methods in data.get('paths', {}).items(): url = basePath + url methods = dict(methods) location_name = methods.pop(self.NAME, None) parameters = methods.pop('parameters', []) for method, body in methods.items(): if method == self.VIEW: view = utils.import_obj(body) view.add_routes(self, prefix=url, encoding=self._encoding) continue body = dict(body) if parameters: body['parameters'] = parameters + \ body.get('parameters', []) handler = body.pop(self.HANDLER, None) name = location_name or handler if not handler: op_id = body.get('operationId') if op_id and operationId_mapping: handler = operationId_mapping.get(op_id) if handler: name = location_name or op_id if handler: validate = body.pop(self.VALIDATE, self._default_validate) self.add_route( method.upper(), utils.url_normolize(url), handler=handler, name=name, swagger_data=body, validate=validate, ) self._swagger_data[basePath] = swagger_data for route in self.routes(): if isinstance(route, SwaggerRoute) and not route.is_built: route.build_swagger_data(self._file_loader)
Adds a new specification to a router :param spec: path to specification :param basePath: override base path specify in specification :param operationId_mapping: mapping for handlers :param name: name to access original spec
def _get_u16(self, msb, lsb): """ Convert 2 bytes into an unsigned int. """ buf = struct.pack('>BB', self._get_u8(msb), self._get_u8(lsb)) return int(struct.unpack('>H', buf)[0])
Convert 2 bytes into an unsigned int.
def validate_param_name(name, param_type): """Validate that the name follows posix conventions for env variables.""" # http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_235 # # 3.235 Name # In the shell command language, a word consisting solely of underscores, # digits, and alphabetics from the portable character set. if not re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', name): raise ValueError('Invalid %s: %s' % (param_type, name))
Validate that the name follows posix conventions for env variables.
def _set_adj_type(self, v, load=False): """ Setter method for adj_type, mapped from YANG variable /adj_neighbor_entries_state/adj_neighbor/adj_type (isis-adj-type) If this variable is read-only (config: false) in the source YANG file, then _set_adj_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_adj_type() directly. YANG Description: Type of ISIS Adjacency """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'is-adj-ptpt': {'value': 8}, u'is-adj-l1': {'value': 2}, u'is-adj-l2': {'value': 4}, u'is-adj-es': {'value': 1}, u'is-adj-unknown': {'value': 0}, u'is-adj-stct': {'value': 16}},), is_leaf=True, yang_name="adj-type", rest_name="adj-type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-isis-operational', defining_module='brocade-isis-operational', yang_type='isis-adj-type', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """adj_type must be of a type compatible with isis-adj-type""", 'defined-type': "brocade-isis-operational:isis-adj-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u'is-adj-ptpt': {'value': 8}, u'is-adj-l1': {'value': 2}, u'is-adj-l2': {'value': 4}, u'is-adj-es': {'value': 1}, u'is-adj-unknown': {'value': 0}, u'is-adj-stct': {'value': 16}},), is_leaf=True, yang_name="adj-type", rest_name="adj-type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-isis-operational', defining_module='brocade-isis-operational', yang_type='isis-adj-type', is_config=False)""", }) self.__adj_type = t if hasattr(self, '_set'): self._set()
Setter method for adj_type, mapped from YANG variable /adj_neighbor_entries_state/adj_neighbor/adj_type (isis-adj-type) If this variable is read-only (config: false) in the source YANG file, then _set_adj_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_adj_type() directly. YANG Description: Type of ISIS Adjacency
def purge(self): """ Clean old transactions """ while not self.stopped.isSet(): self.stopped.wait(timeout=defines.EXCHANGE_LIFETIME) self._messageLayer.purge()
Clean old transactions
def build_authorization_arg(authdict): """ Create an "Authorization" header value from an authdict (created by generate_response()). """ vallist = [] for k in authdict.keys(): vallist += ['%s=%s' % (k,authdict[k])] return 'Digest '+', '.join(vallist)
Create an "Authorization" header value from an authdict (created by generate_response()).
def error(code, message, **kwargs): """Call this to raise an exception and have it stored in the journal""" assert code in Logger._error_code_to_exception exc_type, domain = Logger._error_code_to_exception[code] exc = exc_type(message, **kwargs) Logger._log(code, exc.message, ERROR, domain) raise exc
Call this to raise an exception and have it stored in the journal
def register_view(self, view): """Called when the View was registered""" super(TopToolBarUndockedWindowController, self).register_view(view) view['redock_button'].connect('clicked', self.on_redock_button_clicked)
Called when the View was registered
def _render_content(self, content, **settings): """ Perform widget rendering, but do not print anything. """ result = [] columns = settings[self.SETTING_COLUMNS] # Format each table cell into string. (columns, content) = self.table_format(columns, content) # Enumerate each table row. if settings[self.SETTING_FLAG_ENUMERATE]: (columns, content) = self.table_enumerate(columns, content) # Calculate the dimensions of each table column. dimensions = self.table_measure(columns, content) # Display table header. sb = {k: settings[k] for k in (self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} result.append(self.fmt_border(dimensions, 't', **sb)) if settings[self.SETTING_FLAG_HEADER]: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_HEADER_FORMATING] result.append(self.fmt_row_header(columns, dimensions, **s)) result.append(self.fmt_border(dimensions, 'm', **sb)) # Display table body. for row in content: s = {k: settings[k] for k in (self.SETTING_FLAG_PLAIN, self.SETTING_BORDER_STYLE, self.SETTING_BORDER_FORMATING)} s[self.SETTING_TEXT_FORMATING] = settings[self.SETTING_TEXT_FORMATING] result.append(self.fmt_row(columns, dimensions, row, **s)) # Display table footer result.append(self.fmt_border(dimensions, 'b', **sb)) return result
Perform widget rendering, but do not print anything.
def to_cell_table(self, merged=True): """Returns a list of lists of Cells with the cooked value and note for each cell.""" new_rows = [] for row_index, row in enumerate(self.rows(CellMode.cooked)): new_row = [] for col_index, cell_value in enumerate(row): new_row.append(Cell(cell_value, self.get_note((col_index, row_index)))) new_rows.append(new_row) if merged: for cell_low, cell_high in self.merged_cell_ranges(): anchor_cell = new_rows[cell_low[1]][cell_low[0]] for row_index in range(cell_low[1], cell_high[1]): for col_index in range(cell_low[0], cell_high[0]): # NOTE: xlrd occassionally returns ranges that don't have cells. try: new_rows[row_index][col_index] = anchor_cell.copy() except IndexError: pass return new_rows
Returns a list of lists of Cells with the cooked value and note for each cell.
def convert_dcm2nii(input_dir, output_dir, filename): """ Call MRICron's `dcm2nii` to convert the DICOM files inside `input_dir` to Nifti and save the Nifti file in `output_dir` with a `filename` prefix. Parameters ---------- input_dir: str Path to the folder that contains the DICOM files output_dir: str Path to the folder where to save the NifTI file filename: str Output file basename Returns ------- filepaths: list of str List of file paths created in `output_dir`. """ # a few checks before doing the job if not op.exists(input_dir): raise IOError('Expected an existing folder in {}.'.format(input_dir)) if not op.exists(output_dir): raise IOError('Expected an existing output folder in {}.'.format(output_dir)) # create a temporary folder for dcm2nii export tmpdir = tempfile.TemporaryDirectory(prefix='dcm2nii_') # call dcm2nii arguments = '-o "{}" -i y'.format(tmpdir.name) try: call_out = call_dcm2nii(input_dir, arguments) except: raise else: log.info('Converted "{}" to nifti.'.format(input_dir)) # get the filenames of the files that dcm2nii produced filenames = glob(op.join(tmpdir.name, '*.nii*')) # cleanup `filenames`, using only the post-processed (reoriented, cropped, etc.) images by dcm2nii cleaned_filenames = remove_dcm2nii_underprocessed(filenames) # copy files to the output_dir filepaths = [] for srcpath in cleaned_filenames: dstpath = op.join(output_dir, filename) realpath = copy_w_plus(srcpath, dstpath) filepaths.append(realpath) # copy any other file produced by dcm2nii that is not a NifTI file, e.g., *.bvals, *.bvecs, etc. basename = op.basename(remove_ext(srcpath)) aux_files = set(glob(op.join(tmpdir.name, '{}.*' .format(basename)))) - \ set(glob(op.join(tmpdir.name, '{}.nii*'.format(basename)))) for aux_file in aux_files: aux_dstpath = copy_w_ext(aux_file, output_dir, remove_ext(op.basename(realpath))) filepaths.append(aux_dstpath) return filepaths
Call MRICron's `dcm2nii` to convert the DICOM files inside `input_dir` to Nifti and save the Nifti file in `output_dir` with a `filename` prefix. Parameters ---------- input_dir: str Path to the folder that contains the DICOM files output_dir: str Path to the folder where to save the NifTI file filename: str Output file basename Returns ------- filepaths: list of str List of file paths created in `output_dir`.
def main(**options): """Spline loc tool.""" application = Application(**options) # fails application when your defined threshold is higher than your ratio of com/loc. if not application.run(): sys.exit(1) return application
Spline loc tool.
def list(context, sort, limit, where, verbose): """list(context, sort, limit, where, verbose) List all products. >>> dcictl product list :param string sort: Field to apply sort :param integer limit: Max number of rows to return :param string where: An optional filter criteria :param boolean verbose: Display verbose output """ result = product.list(context, sort=sort, limit=limit, where=where) utils.format_output(result, context.format, verbose=verbose)
list(context, sort, limit, where, verbose) List all products. >>> dcictl product list :param string sort: Field to apply sort :param integer limit: Max number of rows to return :param string where: An optional filter criteria :param boolean verbose: Display verbose output
def write_block_data(self, addr, cmd, vals): """write_block_data(addr, cmd, vals) Perform SMBus Write Block Data transaction. """ self._set_addr(addr) data = ffi.new("union i2c_smbus_data *") list_to_smbus_data(data, vals) if SMBUS.i2c_smbus_access(self._fd, int2byte(SMBUS.I2C_SMBUS_WRITE), ffi.cast("__u8", cmd), SMBUS.I2C_SMBUS_BLOCK_DATA, data): raise IOError(ffi.errno)
write_block_data(addr, cmd, vals) Perform SMBus Write Block Data transaction.
def _direct_set(self, key, value): ''' _direct_set - INTERNAL USE ONLY!!!! Directly sets a value on the underlying dict, without running through the setitem logic ''' dict.__setitem__(self, key, value) return value
_direct_set - INTERNAL USE ONLY!!!! Directly sets a value on the underlying dict, without running through the setitem logic
def shuffle_into_deck(self): """ Shuffle the card into the controller's deck """ return self.game.cheat_action(self, [actions.Shuffle(self.controller, self)])
Shuffle the card into the controller's deck
def to_json(data): """Return data as a JSON string.""" return json.dumps(data, default=lambda x: x.__dict__, sort_keys=True, indent=4)
Return data as a JSON string.
def metadata_updated_on(item): """Extracts and coverts the update time from a Bugzilla item. The timestamp is extracted from 'delta_ts' field. This date is converted to UNIX timestamp format. Due Bugzilla servers ignore the timezone on HTTP requests, it will be ignored during the conversion, too. :param item: item generated by the backend :returns: a UNIX timestamp """ ts = item['delta_ts'][0]['__text__'] ts = str_to_datetime(ts) ts = ts.replace(tzinfo=dateutil.tz.tzutc()) return ts.timestamp()
Extracts and coverts the update time from a Bugzilla item. The timestamp is extracted from 'delta_ts' field. This date is converted to UNIX timestamp format. Due Bugzilla servers ignore the timezone on HTTP requests, it will be ignored during the conversion, too. :param item: item generated by the backend :returns: a UNIX timestamp
def private_method(func): """Decorator for making an instance method private.""" def func_wrapper(*args, **kwargs): """Decorator wrapper function.""" outer_frame = inspect.stack()[1][0] if 'self' not in outer_frame.f_locals or outer_frame.f_locals['self'] is not args[0]: raise RuntimeError('%s.%s is a private method' % (args[0].__class__.__name__, func.__name__)) return func(*args, **kwargs) return func_wrapper
Decorator for making an instance method private.
def _add_versions(samples): """Add tool and data versions to the summary. """ samples[0]["versions"] = {"tools": programs.write_versions(samples[0]["dirs"], samples[0]["config"]), "data": provenancedata.write_versions(samples[0]["dirs"], samples)} return samples
Add tool and data versions to the summary.
def _sibpath(path, sibling): """ Return the path to a sibling of a file in the filesystem. This is useful in conjunction with the special C{__file__} attribute that Python provides for modules, so modules can load associated resource files. (Stolen from twisted.python.util) """ return os.path.join(os.path.dirname(os.path.abspath(path)), sibling)
Return the path to a sibling of a file in the filesystem. This is useful in conjunction with the special C{__file__} attribute that Python provides for modules, so modules can load associated resource files. (Stolen from twisted.python.util)
def convert_concat(params, w_name, scope_name, inputs, layers, weights, names): """ Convert concatenation. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers """ print('Converting concat ...') concat_nodes = [layers[i] for i in inputs] if len(concat_nodes) == 1: # no-op layers[scope_name] = concat_nodes[0] return if names == 'short': tf_name = 'CAT' + random_string(5) elif names == 'keep': tf_name = w_name else: tf_name = w_name + str(random.random()) cat = keras.layers.Concatenate(name=tf_name, axis=params['axis']) layers[scope_name] = cat(concat_nodes)
Convert concatenation. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) y : Ignored not used, present here for API consistency by convention. sample_weight : array-like, shape (n_samples,), optional The weights for each observation in X. If None, all observations are assigned equal weight (default: None) """ if self.normalize: X = normalize(X) random_state = check_random_state(self.random_state) # TODO: add check that all data is unit-normalized self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = spherical_k_means( X, n_clusters=self.n_clusters, sample_weight=sample_weight, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, return_n_iter=True, ) return self
Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) y : Ignored not used, present here for API consistency by convention. sample_weight : array-like, shape (n_samples,), optional The weights for each observation in X. If None, all observations are assigned equal weight (default: None)
def get_lines(self): """Gets lines in file :return: Lines in file """ with open(self.path, "r") as data: self.lines = data.readlines() # store data in arrays return self.lines
Gets lines in file :return: Lines in file
def reset(self, total_size=None): """Remove all file system contents and reset the root.""" self.root = FakeDirectory(self.path_separator, filesystem=self) self.cwd = self.root.name self.open_files = [] self._free_fd_heap = [] self._last_ino = 0 self._last_dev = 0 self.mount_points = {} self.add_mount_point(self.root.name, total_size) self._add_standard_streams()
Remove all file system contents and reset the root.
def build_path(G, node, endpoints, path): """ Recursively build a path of nodes until you hit an endpoint node. Parameters ---------- G : networkx multidigraph node : int the current node to start from endpoints : set the set of all nodes in the graph that are endpoints path : list the list of nodes in order in the path so far Returns ------- paths_to_simplify : list """ # for each successor in the passed-in node for successor in G.successors(node): if successor not in path: # if this successor is already in the path, ignore it, otherwise add # it to the path path.append(successor) if successor not in endpoints: # if this successor is not an endpoint, recursively call # build_path until you find an endpoint path = build_path(G, successor, endpoints, path) else: # if this successor is an endpoint, we've completed the path, # so return it return path if (path[-1] not in endpoints) and (path[0] in G.successors(path[-1])): # if the end of the path is not actually an endpoint and the path's # first node is a successor of the path's final node, then this is # actually a self loop, so add path's first node to end of path to # close it path.append(path[0]) return path
Recursively build a path of nodes until you hit an endpoint node. Parameters ---------- G : networkx multidigraph node : int the current node to start from endpoints : set the set of all nodes in the graph that are endpoints path : list the list of nodes in order in the path so far Returns ------- paths_to_simplify : list
def operates_on(self, qubits: Iterable[raw_types.Qid]) -> bool: """Determines if the moment has operations touching the given qubits. Args: qubits: The qubits that may or may not be touched by operations. Returns: Whether this moment has operations involving the qubits. """ return any(q in qubits for q in self.qubits)
Determines if the moment has operations touching the given qubits. Args: qubits: The qubits that may or may not be touched by operations. Returns: Whether this moment has operations involving the qubits.
def nested_genobject(self, metadata, attr, datastore): """ Allow for the printing of nested GenObjects :param metadata: Nested dictionary containing the metadata. Will be further populated by this method :param attr: Current attribute being evaluated. Must be a GenObject e.g. sample.general :param datastore: The dictionary of the current attribute. Will be converted to nested dictionaries :return: Updated nested metadata dictionary with all GenObjects safely converted to dictionaries """ # Iterate through all the key: value pairs of the current datastore[attr] datastore # e.g. reverse_reads <accessoryFunctions.accessoryFunctions.GenObject object at 0x7fe153b725f8> for key, value in sorted(datastore[attr].datastore.items()): # If the type(value) is a GenObject, then JSON serialization will not work if 'GenObject' in str(type(value)): # Initialise the nested attribute: key nested dictionary within the metadata dictionary # e.g. attr: 100_100, key: reverse_reads metadata[attr][key] = dict() # Iterate through the nested keys and nested values within the value datastore # e.g. nested_key: length, nested_value: 100 for nested_key, nested_datastore in sorted(value.datastore.items()): # Create an additional dictionary layer within the metadata dictionary metadata[attr][key][nested_key] = dict() # If the type(nested_datastore) is a GenObject, recursively run this method to update the # metadata dictionary, supply the newly created nested dictionary: metadata[attr][key] as # the input metadata dictionary, the nested key as the input attribute, and the datastore of # value as the input datastore # e.g. key: 100_100, # datastore: <accessoryFunctions.accessoryFunctions.GenObject object at 0x7fc526001e80> if 'GenObject' in str(type(nested_datastore)): metadata[attr][key].update( self.nested_genobject(metadata[attr][key], nested_key, value.datastore)) # If the nested datastore is not a GenObject, populate the nested metadata dictionary with # the attribute, key, nested key, and nested datastore # e.g. attr: 100_100, key: reverse_reads, nested_key: length, nested_datastore: 100 else: metadata[attr][key][nested_key] = nested_datastore # Non-GenObjects can (usually) be added to the metadata dictionary without issues else: try: if key not in self.unwanted_keys: metadata[attr][key] = value except AttributeError: print('dumperror', attr) # Return the metadata return metadata
Allow for the printing of nested GenObjects :param metadata: Nested dictionary containing the metadata. Will be further populated by this method :param attr: Current attribute being evaluated. Must be a GenObject e.g. sample.general :param datastore: The dictionary of the current attribute. Will be converted to nested dictionaries :return: Updated nested metadata dictionary with all GenObjects safely converted to dictionaries
def truncate(s, max_len=20, ellipsis='...'): r"""Return string at most `max_len` characters or sequence elments appended with the `ellipsis` characters >>> truncate(OrderedDict(zip(list('ABCDEFGH'), range(8))), 1) "{'A': 0..." >>> truncate(list(range(5)), 3) '[0, 1, 2...' >>> truncate(np.arange(5), 3) '[0, 1, 2...' >>> truncate('Too verbose for its own good.', 11) 'Too verbose...' """ if s is None: return None elif isinstance(s, basestring): return s[:min(len(s), max_len)] + ellipsis if len(s) > max_len else '' elif isinstance(s, Mapping): truncated_str = str(dict(islice(viewitems(s), max_len))) else: truncated_str = str(list(islice(s, max_len))) return truncated_str[:-1] + '...' if len(s) > max_len else truncated_str
r"""Return string at most `max_len` characters or sequence elments appended with the `ellipsis` characters >>> truncate(OrderedDict(zip(list('ABCDEFGH'), range(8))), 1) "{'A': 0..." >>> truncate(list(range(5)), 3) '[0, 1, 2...' >>> truncate(np.arange(5), 3) '[0, 1, 2...' >>> truncate('Too verbose for its own good.', 11) 'Too verbose...'
def dependent_hosted_number_orders(self): """ Access the dependent_hosted_number_orders :returns: twilio.rest.preview.hosted_numbers.authorization_document.dependent_hosted_number_order.DependentHostedNumberOrderList :rtype: twilio.rest.preview.hosted_numbers.authorization_document.dependent_hosted_number_order.DependentHostedNumberOrderList """ if self._dependent_hosted_number_orders is None: self._dependent_hosted_number_orders = DependentHostedNumberOrderList( self._version, signing_document_sid=self._solution['sid'], ) return self._dependent_hosted_number_orders
Access the dependent_hosted_number_orders :returns: twilio.rest.preview.hosted_numbers.authorization_document.dependent_hosted_number_order.DependentHostedNumberOrderList :rtype: twilio.rest.preview.hosted_numbers.authorization_document.dependent_hosted_number_order.DependentHostedNumberOrderList
def check_if_ok_to_update(self): """Check if it is ok to perform an http request.""" current_time = int(time.time()) last_refresh = self.last_refresh if last_refresh is None: last_refresh = 0 if current_time >= (last_refresh + self.refresh_rate): return True return False
Check if it is ok to perform an http request.
def multiplication_circuit(nbit, vartype=dimod.BINARY): """Multiplication circuit constraint satisfaction problem. A constraint satisfaction problem that represents the binary multiplication :math:`ab=p`, where the multiplicands are binary variables of length `nbit`; for example, :math:`a_0 + 2a_1 + 4a_2 +... +2^ma_{nbit}`. The square below shows a graphic representation of the circuit:: ________________________________________________________________________________ | and20 and10 and00 | | | | | | | and21 add11──and11 add01──and01 | | | |β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜|β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | and22 add12──and12 add02──and02 | | | | |β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜|β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | | add13─────────add03 | | | | | β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | | | | p5 p4 p3 p2 p1 p0 | -------------------------------------------------------------------------------- Args: nbit (int): Number of bits in the multiplicands. vartype (Vartype, optional, default='BINARY'): Variable type. Accepted input values: * Vartype.SPIN, 'SPIN', {-1, 1} * Vartype.BINARY, 'BINARY', {0, 1} Returns: CSP (:obj:`.ConstraintSatisfactionProblem`): CSP that is satisfied when variables :math:`a,b,p` are assigned values that correctly solve binary multiplication :math:`ab=p`. Examples: This example creates a multiplication circuit CSP that multiplies two 3-bit numbers, which is then formulated as a binary quadratic model (BQM). It fixes the multiplacands as :math:`a=5, b=6` (:math:`101` and :math:`110`) and uses a simulated annealing sampler to find the product, :math:`p=30` (:math:`111100`). >>> import dwavebinarycsp >>> from dwavebinarycsp.factories.csp.circuits import multiplication_circuit >>> import neal >>> csp = multiplication_circuit(3) >>> bqm = dwavebinarycsp.stitch(csp) >>> bqm.fix_variable('a0', 1); bqm.fix_variable('a1', 0); bqm.fix_variable('a2', 1) >>> bqm.fix_variable('b0', 1); bqm.fix_variable('b1', 1); bqm.fix_variable('b2', 0) >>> sampler = neal.SimulatedAnnealingSampler() >>> response = sampler.sample(bqm) >>> p = next(response.samples(n=1, sorted_by='energy')) >>> print(p['p0'], p['p1'], p['p2'], p['p3'], p['p4'], p['p5']) # doctest: +SKIP 1 1 1 1 0 0 """ if nbit < 1: raise ValueError("num_multiplier_bits, num_multiplicand_bits must be positive integers") num_multiplier_bits = num_multiplicand_bits = nbit # also checks the vartype argument csp = ConstraintSatisfactionProblem(vartype) # throughout, we will use the following convention: # i to refer to the bits of the multiplier # j to refer to the bits of the multiplicand # k to refer to the bits of the product # create the variables corresponding to the input and output wires for the circuit a = {i: 'a%d' % i for i in range(nbit)} b = {j: 'b%d' % j for j in range(nbit)} p = {k: 'p%d' % k for k in range(nbit + nbit)} # we will want to store the internal variables somewhere AND = defaultdict(dict) # the output of the AND gate associated with ai, bj is stored in AND[i][j] SUM = defaultdict(dict) # the sum of the ADDER gate associated with ai, bj is stored in SUM[i][j] CARRY = defaultdict(dict) # the carry of the ADDER gate associated with ai, bj is stored in CARRY[i][j] # we follow a shift adder for i in range(num_multiplier_bits): for j in range(num_multiplicand_bits): ai = a[i] bj = b[j] if i == 0 and j == 0: # in this case there are no inputs from lower bits, so our only input is the AND # gate. And since we only have one bit to add, we don't need an adder, no have a # carry out andij = AND[i][j] = p[0] gate = and_gate([ai, bj, andij], vartype=vartype, name='AND(%s, %s) = %s' % (ai, bj, andij)) csp.add_constraint(gate) continue # we always need an AND gate andij = AND[i][j] = 'and%s,%s' % (i, j) gate = and_gate([ai, bj, andij], vartype=vartype, name='AND(%s, %s) = %s' % (ai, bj, andij)) csp.add_constraint(gate) # the number of inputs will determine the type of adder inputs = [andij] # determine if there is a carry in if i - 1 in CARRY and j in CARRY[i - 1]: inputs.append(CARRY[i - 1][j]) # determine if there is a sum in if i - 1 in SUM and j + 1 in SUM[i - 1]: inputs.append(SUM[i - 1][j + 1]) # ok, add create adders if necessary if len(inputs) == 1: # we don't need an adder and we don't have a carry SUM[i][j] = andij elif len(inputs) == 2: # we need a HALFADDER so we have a sum and a carry if j == 0: sumij = SUM[i][j] = p[i] else: sumij = SUM[i][j] = 'sum%d,%d' % (i, j) carryij = CARRY[i][j] = 'carry%d,%d' % (i, j) name = 'HALFADDER(%s, %s) = %s, %s' % (inputs[0], inputs[1], sumij, carryij) gate = halfadder_gate([inputs[0], inputs[1], sumij, carryij], vartype=vartype, name=name) csp.add_constraint(gate) else: assert len(inputs) == 3, 'unexpected number of inputs' # we need a FULLADDER so we have a sum and a carry if j == 0: sumij = SUM[i][j] = p[i] else: sumij = SUM[i][j] = 'sum%d,%d' % (i, j) carryij = CARRY[i][j] = 'carry%d,%d' % (i, j) name = 'FULLADDER(%s, %s, %s) = %s, %s' % (inputs[0], inputs[1], inputs[2], sumij, carryij) gate = fulladder_gate([inputs[0], inputs[1], inputs[2], sumij, carryij], vartype=vartype, name=name) csp.add_constraint(gate) # now we have a final row of full adders for col in range(nbit - 1): inputs = [CARRY[nbit - 1][col], SUM[nbit - 1][col + 1]] if col == 0: sumout = p[nbit + col] carryout = CARRY[nbit][col] = 'carry%d,%d' % (nbit, col) name = 'HALFADDER(%s, %s) = %s, %s' % (inputs[0], inputs[1], sumout, carryout) gate = halfadder_gate([inputs[0], inputs[1], sumout, carryout], vartype=vartype, name=name) csp.add_constraint(gate) continue inputs.append(CARRY[nbit][col - 1]) sumout = p[nbit + col] if col < nbit - 2: carryout = CARRY[nbit][col] = 'carry%d,%d' % (nbit, col) else: carryout = p[2 * nbit - 1] name = 'FULLADDER(%s, %s, %s) = %s, %s' % (inputs[0], inputs[1], inputs[2], sumout, carryout) gate = fulladder_gate([inputs[0], inputs[1], inputs[2], sumout, carryout], vartype=vartype, name=name) csp.add_constraint(gate) return csp
Multiplication circuit constraint satisfaction problem. A constraint satisfaction problem that represents the binary multiplication :math:`ab=p`, where the multiplicands are binary variables of length `nbit`; for example, :math:`a_0 + 2a_1 + 4a_2 +... +2^ma_{nbit}`. The square below shows a graphic representation of the circuit:: ________________________________________________________________________________ | and20 and10 and00 | | | | | | | and21 add11──and11 add01──and01 | | | |β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜|β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | and22 add12──and12 add02──and02 | | | | |β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜|β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | | add13─────────add03 | | | | | β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜| | | | | | | p5 p4 p3 p2 p1 p0 | -------------------------------------------------------------------------------- Args: nbit (int): Number of bits in the multiplicands. vartype (Vartype, optional, default='BINARY'): Variable type. Accepted input values: * Vartype.SPIN, 'SPIN', {-1, 1} * Vartype.BINARY, 'BINARY', {0, 1} Returns: CSP (:obj:`.ConstraintSatisfactionProblem`): CSP that is satisfied when variables :math:`a,b,p` are assigned values that correctly solve binary multiplication :math:`ab=p`. Examples: This example creates a multiplication circuit CSP that multiplies two 3-bit numbers, which is then formulated as a binary quadratic model (BQM). It fixes the multiplacands as :math:`a=5, b=6` (:math:`101` and :math:`110`) and uses a simulated annealing sampler to find the product, :math:`p=30` (:math:`111100`). >>> import dwavebinarycsp >>> from dwavebinarycsp.factories.csp.circuits import multiplication_circuit >>> import neal >>> csp = multiplication_circuit(3) >>> bqm = dwavebinarycsp.stitch(csp) >>> bqm.fix_variable('a0', 1); bqm.fix_variable('a1', 0); bqm.fix_variable('a2', 1) >>> bqm.fix_variable('b0', 1); bqm.fix_variable('b1', 1); bqm.fix_variable('b2', 0) >>> sampler = neal.SimulatedAnnealingSampler() >>> response = sampler.sample(bqm) >>> p = next(response.samples(n=1, sorted_by='energy')) >>> print(p['p0'], p['p1'], p['p2'], p['p3'], p['p4'], p['p5']) # doctest: +SKIP 1 1 1 1 0 0
def _construct_deutsch_jozsa_circuit(self): """ Builds the Deutsch-Jozsa circuit. Which can determine whether a function f mapping :math:`\{0,1\}^n \to \{0,1\}` is constant or balanced, provided that it is one of them. :return: A program corresponding to the desired instance of Deutsch Jozsa's Algorithm. :rtype: Program """ dj_prog = Program() # Put the first ancilla qubit (query qubit) into minus state dj_prog.inst(X(self.ancillas[0]), H(self.ancillas[0])) # Apply Hadamard, Oracle, and Hadamard again dj_prog.inst([H(qubit) for qubit in self.computational_qubits]) # Build the oracle oracle_prog = Program() oracle_prog.defgate(ORACLE_GATE_NAME, self.unitary_matrix) scratch_bit = self.ancillas[1] qubits_for_funct = [scratch_bit] + self.computational_qubits oracle_prog.inst(tuple([ORACLE_GATE_NAME] + qubits_for_funct)) dj_prog += oracle_prog # Here the oracle does not leave the computational qubits unchanged, so we use a CNOT to # to move the result to the query qubit, and then we uncompute with the dagger. dj_prog.inst(CNOT(self._qubits[0], self.ancillas[0])) dj_prog += oracle_prog.dagger() dj_prog.inst([H(qubit) for qubit in self.computational_qubits]) return dj_prog
Builds the Deutsch-Jozsa circuit. Which can determine whether a function f mapping :math:`\{0,1\}^n \to \{0,1\}` is constant or balanced, provided that it is one of them. :return: A program corresponding to the desired instance of Deutsch Jozsa's Algorithm. :rtype: Program
def get_ambient_sensor_data(self): """Refresh ambient sensor history""" resource = 'cameras/{}/ambientSensors/history'.format(self.device_id) history_event = self.publish_and_get_event(resource) if history_event is None: return None properties = history_event.get('properties') self._ambient_sensor_data = \ ArloBaseStation._decode_sensor_data(properties) return self._ambient_sensor_data
Refresh ambient sensor history
def clean(self): """ Final validations of model fields. 1. Validate that selected site for enterprise customer matches with the selected identity provider's site. """ super(EnterpriseCustomerIdentityProviderAdminForm, self).clean() provider_id = self.cleaned_data.get('provider_id', None) enterprise_customer = self.cleaned_data.get('enterprise_customer', None) if provider_id is None or enterprise_customer is None: # field validation for either provider_id or enterprise_customer has already raised # a validation error. return identity_provider = utils.get_identity_provider(provider_id) if not identity_provider: # This should not happen, as identity providers displayed in drop down are fetched dynamically. message = _( "The specified Identity Provider does not exist. For more " "information, contact a system administrator.", ) # Log message for debugging logger.exception(message) raise ValidationError(message) if identity_provider and identity_provider.site != enterprise_customer.site: raise ValidationError( _( "The site for the selected identity provider " "({identity_provider_site}) does not match the site for " "this enterprise customer ({enterprise_customer_site}). " "To correct this problem, select a site that has a domain " "of '{identity_provider_site}', or update the identity " "provider to '{enterprise_customer_site}'." ).format( enterprise_customer_site=enterprise_customer.site, identity_provider_site=identity_provider.site, ), )
Final validations of model fields. 1. Validate that selected site for enterprise customer matches with the selected identity provider's site.
def process_directory_statements_sorted_by_pmid(directory_name): """Processes a directory filled with CSXML files, first normalizing the character encoding to utf-8, and then processing into INDRA statements sorted by pmid. Parameters ---------- directory_name : str The name of a directory filled with csxml files to process Returns ------- pmid_dict : dict A dictionary mapping pmids to a list of statements corresponding to that pmid """ s_dict = defaultdict(list) mp = process_directory(directory_name, lazy=True) for statement in mp.iter_statements(): s_dict[statement.evidence[0].pmid].append(statement) return s_dict
Processes a directory filled with CSXML files, first normalizing the character encoding to utf-8, and then processing into INDRA statements sorted by pmid. Parameters ---------- directory_name : str The name of a directory filled with csxml files to process Returns ------- pmid_dict : dict A dictionary mapping pmids to a list of statements corresponding to that pmid
def get_lowest_numeric_score_metadata(self): """Gets the metadata for the lowest numeric score. return: (osid.Metadata) - metadata for the lowest numeric score *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for osid.resource.ResourceForm.get_group_metadata_template metadata = dict(self._mdata['lowest_numeric_score']) metadata.update({'existing_decimal_values': self._my_map['lowestNumericScore']}) return Metadata(**metadata)
Gets the metadata for the lowest numeric score. return: (osid.Metadata) - metadata for the lowest numeric score *compliance: mandatory -- This method must be implemented.*
def unpickle(self, parent): """Sets the parent pointer references for the module *and* all of its child classes that also have pointer references.""" self.parent = parent self._unpickle_collection(self.members) self._unpickle_collection(self.dependencies) self._unpickle_collection(self.types) self._unpickle_collection(self.executables) self._unpickle_collection(self._parameters) self.unpickle_docs()
Sets the parent pointer references for the module *and* all of its child classes that also have pointer references.
def parse_log_entry(text): """This function does all real job on log line parsing. it setup two cases for restart parsing if a line with wrong format was found. Restarts: - use_value: just retuns an object it was passed. This can be any value. - reparse: calls `parse_log_entry` again with other text value. Beware, this call can lead to infinite recursion. """ text = text.strip() if well_formed_log_entry_p(text): return LogEntry(text) else: def use_value(obj): return obj def reparse(text): return parse_log_entry(text) with restarts(use_value, reparse) as call: return call(signal, MalformedLogEntryError(text))
This function does all real job on log line parsing. it setup two cases for restart parsing if a line with wrong format was found. Restarts: - use_value: just retuns an object it was passed. This can be any value. - reparse: calls `parse_log_entry` again with other text value. Beware, this call can lead to infinite recursion.
def _to_reddit_list(arg): """Return an argument converted to a reddit-formatted list. The returned format is a comma deliminated list. Each element is a string representation of an object. Either given as a string or as an object that is then converted to its string representation. """ if (isinstance(arg, six.string_types) or not ( hasattr(arg, "__getitem__") or hasattr(arg, "__iter__"))): return six.text_type(arg) else: return ','.join(six.text_type(a) for a in arg)
Return an argument converted to a reddit-formatted list. The returned format is a comma deliminated list. Each element is a string representation of an object. Either given as a string or as an object that is then converted to its string representation.
def flg(self, name, help, abbrev=None): """Describe a flag""" abbrev = abbrev or '-' + name[0] longname = '--' + name.replace('_', '-') self._add(name, abbrev, longname, action='store_true', help=help)
Describe a flag
def _client_properties(): """AMQPStorm Client Properties. :rtype: dict """ return { 'product': 'AMQPStorm', 'platform': 'Python %s (%s)' % (platform.python_version(), platform.python_implementation()), 'capabilities': { 'basic.nack': True, 'connection.blocked': True, 'publisher_confirms': True, 'consumer_cancel_notify': True, 'authentication_failure_close': True, }, 'information': 'See https://github.com/eandersson/amqpstorm', 'version': __version__ }
AMQPStorm Client Properties. :rtype: dict
def update(self): """Update RAID stats using the input method.""" # Init new stats stats = self.get_init_value() if import_error_tag: return self.stats if self.input_method == 'local': # Update stats using the PyMDstat lib (https://github.com/nicolargo/pymdstat) try: # Just for test # mds = MdStat(path='/home/nicolargo/dev/pymdstat/tests/mdstat.10') mds = MdStat() stats = mds.get_stats()['arrays'] except Exception as e: logger.debug("Can not grab RAID stats (%s)" % e) return self.stats elif self.input_method == 'snmp': # Update stats using SNMP # No standard way for the moment... pass # Update the stats self.stats = stats return self.stats
Update RAID stats using the input method.
def get_songs()->Iterator: """ Return songs that have the fingerprinted flag set TRUE (1). """ with session_withcommit() as session: val = session.query(songs).all() for row in val: yield row
Return songs that have the fingerprinted flag set TRUE (1).