metadata
library_name: transformers
base_model: cahya/NusaBert-v1.3
tags:
- generated_from_trainer
datasets:
- grit-id/id_nergrit_corpus
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nusabert_nergrit_1.3
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: grit-id/id_nergrit_corpus ner
type: grit-id/id_nergrit_corpus
config: ner
split: validation
args: ner
metrics:
- name: Precision
type: precision
value: 0.8010483135824977
- name: Recall
type: recall
value: 0.8338275412169375
- name: F1
type: f1
value: 0.8171093159760562
- name: Accuracy
type: accuracy
value: 0.9476653696498054
pipeline_tag: token-classification
license: mit
language:
- id
NusaBert-ner-v1.3
This model is a fine-tuned version of cahya/NusaBert-v1.3 on the grit-id/id_nergrit_corpus ner dataset. It supports a context length of 8192, the same as the model cahya/NusaBert-v1.3 which was pre-trained from scratch using ModernBERT architecture. It achieves the following results on the evaluation set:
- Loss: 0.2174
- Precision: 0.8010
- Recall: 0.8338
- F1: 0.8171
- Accuracy: 0.9477
Model description
The dataset contains 19 following entities
'CRD': Cardinal
'DAT': Date
'EVT': Event
'FAC': Facility
'GPE': Geopolitical Entity
'LAW': Law Entity (such as Undang-Undang)
'LOC': Location
'MON': Money
'NOR': Political Organization
'ORD': Ordinal
'ORG': Organization
'PER': Person
'PRC': Percent
'PRD': Product
'QTY': Quantity
'REG': Religion
'TIM': Time
'WOA': Work of Art
'LAN': Language
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 2.19.2
- Tokenizers 0.21.0
Usage
from transformers import pipeline
ner = pipeline("ner", model="cahya/NusaBert-ner-v1.3", grouped_entities=True)
text = "Jakarta, April 2025 - Polisi mengungkap sosok teman pemberi uang palsu kepada artis Sekar Arum Widara. Sosok tersebut ternyata adalah Bayu Setio Aribowo (BS), pegawai nonaktif Garuda yang ditangkap Polsek Tanah Abang di kasus serupa."
result = ner(text)
print(result)