Indonesian NER
Collection
Language Models fine-tuned on Indonesian NER
โข
5 items
โข
Updated
This model is a fine-tuned version of cahya/NusaBert-v1.3 on the grit-id/id_nergrit_corpus ner dataset. It supports a context length of 8192, the same as the model cahya/NusaBert-v1.3 which was pre-trained from scratch using ModernBERT architecture. It achieves the following results on the evaluation set:
The dataset contains 19 following entities
'CRD': Cardinal
'DAT': Date
'EVT': Event
'FAC': Facility
'GPE': Geopolitical Entity
'LAW': Law Entity (such as Undang-Undang)
'LOC': Location
'MON': Money
'NOR': Political Organization
'ORD': Ordinal
'ORG': Organization
'PER': Person
'PRC': Percent
'PRD': Product
'QTY': Quantity
'REG': Religion
'TIM': Time
'WOA': Work of Art
'LAN': Language
More information needed
More information needed
The following hyperparameters were used during training:
from transformers import pipeline
ner = pipeline("ner", model="cahya/NusaBert-ner-v1.3", grouped_entities=True)
text = "Jakarta, April 2025 - Polisi mengungkap sosok teman pemberi uang palsu kepada artis Sekar Arum Widara. Sosok tersebut ternyata adalah Bayu Setio Aribowo (BS), pegawai nonaktif Garuda yang ditangkap Polsek Tanah Abang di kasus serupa."
result = ner(text)
print(result)
Base model
cahya/NusaBert-v1.3