Text Generation
Transformers
PyTorch
chatts
feature-extraction
conversational
custom_code

Add metadata and link to paper/Github

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +16 -2
README.md CHANGED
@@ -1,3 +1,9 @@
 
 
 
 
 
 
1
  # ChatTS-14B Model
2
  `ChatTS` focuses on **Understanding and Reasoning** about time series, much like what vision/video/audio-MLLMs do.
3
  This repo provides code, datasets and model for `ChatTS`: [ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning](https://arxiv.org/pdf/2412.03104).
@@ -22,7 +28,10 @@ timeseries = np.sin(np.arange(256) / 10) * 5.0
22
  timeseries[100:] -= 10.0
23
  prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
24
  # Apply Chat Template
25
- prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|><|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
 
 
 
26
  # Convert to tensor
27
  inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
28
  # Model Generate
@@ -35,6 +44,11 @@ print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_to
35
  - transformers (https://github.com/huggingface/transformers.git)
36
  - [ChatTS Paper](https://arxiv.org/pdf/2412.03104)
37
 
 
 
 
 
 
38
  ## License
39
  This model is licensed under the [Apache License 2.0](LICENSE).
40
 
@@ -46,4 +60,4 @@ This model is licensed under the [Apache License 2.0](LICENSE).
46
  journal={arXiv preprint arXiv:2412.03104},
47
  year={2024}
48
  }
49
- ```
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ ---
6
+
7
  # ChatTS-14B Model
8
  `ChatTS` focuses on **Understanding and Reasoning** about time series, much like what vision/video/audio-MLLMs do.
9
  This repo provides code, datasets and model for `ChatTS`: [ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning](https://arxiv.org/pdf/2412.03104).
 
28
  timeseries[100:] -= 10.0
29
  prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
30
  # Apply Chat Template
31
+ prompt = f"<|im_start|>system
32
+ You are a helpful assistant.<|im_end|><|im_start|>user
33
+ {prompt}<|im_end|><|im_start|>assistant
34
+ "
35
  # Convert to tensor
36
  inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
37
  # Model Generate
 
44
  - transformers (https://github.com/huggingface/transformers.git)
45
  - [ChatTS Paper](https://arxiv.org/pdf/2412.03104)
46
 
47
+ [Link to the paper](https://arxiv.org/pdf/2412.03104)
48
+
49
+ [Link to the Github repository](https://github.com/NetManAIOps/ChatTS)
50
+
51
+
52
  ## License
53
  This model is licensed under the [Apache License 2.0](LICENSE).
54
 
 
60
  journal={arXiv preprint arXiv:2412.03104},
61
  year={2024}
62
  }
63
+ ```