dtm-hoinv's picture
Add new SentenceTransformer model
3ce8e01 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1546
  - loss:DualMarginContrastiveLoss
widget:
  - source_sentence: 科目:塗装。名称:CL塗り。
    sentences:
      - 科目:建具。名称:SKW-#窓+扉。
      - 科目:塗装。名称:VP塗り。
      - 科目:建具。名称:SSD-#窓+扉。
  - source_sentence: 科目:塗装。名称:EP塗り。
    sentences:
      - 科目:建具。名称:HAW-#窓。
      - 科目:建具。名称:SLW-#間仕切。
      - 科目:塗装。名称:OS塗り。
  - source_sentence: 科目:塗装。名称:FSP塗り。
    sentences:
      - 科目:建具。名称:SP-#間仕切。
      - 科目:建具。名称:XD-#扉。
      - 科目:塗装。名称:WP塗り。
  - source_sentence: 科目:建具。名称:ACW-#窓。
    sentences:
      - 科目:建具。名称:GD-#窓+扉。
      - 科目:建具。名称:GD-#用窓。
      - 科目:建具。名称:WAW-#扉。
  - source_sentence: 科目:建具。名称:GCW-#窓。
    sentences:
      - 科目:建具。名称:STW-#窓。
      - 科目:建具。名称:TDW-#窓+扉。
      - 科目:建具。名称:AW-#窓。
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-base")
# Run inference
sentences = [
    '科目:建具。名称:GCW-#窓。',
    '科目:建具。名称:AW-#窓。',
    '科目:建具。名称:STW-#窓。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,546 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 11 tokens
    • mean: 15.15 tokens
    • max: 21 tokens
    • min: 11 tokens
    • mean: 15.28 tokens
    • max: 21 tokens
    • 0: ~93.50%
    • 1: ~6.50%
  • Samples:
    sentence1 sentence2 label
    科目:塗装。名称:ANAD塗り。 科目:塗装。名称:CL塗り。 0
    科目:塗装。名称:ANAD塗り。 科目:塗装。名称:CL塗装。 0
    科目:塗装。名称:ANAD塗り。 科目:塗装。名称:DP-A塗り。 0
  • Loss: sentence_transformer_lib.dual_margin_constrastive_loss.DualMarginContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • num_train_epochs: 25
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
2.5 10 34.4458
5.0 20 9.5341
7.5 30 2.0511
10.0 40 1.5025
12.5 50 1.4347
15.0 60 1.1549
17.5 70 1.2308
20.0 80 1.0908
22.5 90 1.1238
25.0 100 0.9793
2.5 10 1.1269
5.0 20 0.8895
7.5 30 0.8496
10.0 40 0.6124
12.5 50 0.5591
15.0 60 0.4262
17.5 70 0.3892
20.0 80 0.3309
22.5 90 0.3195
25.0 100 0.2609

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.50.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}