dtm-hoinv commited on
Commit
3ce8e01
·
verified ·
1 Parent(s): 39a9b13

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1546
8
+ - loss:DualMarginContrastiveLoss
9
+ widget:
10
+ - source_sentence: 科目:塗装。名称:CL塗り。
11
+ sentences:
12
+ - 科目:建具。名称:SKW-#窓+扉。
13
+ - 科目:塗装。名称:VP塗り。
14
+ - 科目:建具。名称:SSD-#窓+扉。
15
+ - source_sentence: 科目:塗装。名称:EP塗り。
16
+ sentences:
17
+ - 科目:建具。名称:HAW-#窓。
18
+ - 科目:建具。名称:SLW-#間仕切。
19
+ - 科目:塗装。名称:OS塗り。
20
+ - source_sentence: 科目:塗装。名称:FSP塗り。
21
+ sentences:
22
+ - 科目:建具。名称:SP-#間仕切。
23
+ - 科目:建具。名称:XD-#扉。
24
+ - 科目:塗装。名称:WP塗り。
25
+ - source_sentence: 科目:建具。名称:ACW-#窓。
26
+ sentences:
27
+ - 科目:建具。名称:GD-#窓+扉。
28
+ - 科目:建具。名称:GD-#用窓。
29
+ - 科目:建具。名称:WAW-#扉。
30
+ - source_sentence: 科目:建具。名称:GCW-#窓。
31
+ sentences:
32
+ - 科目:建具。名称:STW-#窓。
33
+ - 科目:建具。名称:TDW-#窓+扉。
34
+ - 科目:建具。名称:AW-#窓。
35
+ pipeline_tag: sentence-similarity
36
+ library_name: sentence-transformers
37
+ ---
38
+
39
+ # SentenceTransformer
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ - **Output Dimensionality:** 768 dimensions
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
66
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ )
68
+ ```
69
+
70
+ ## Usage
71
+
72
+ ### Direct Usage (Sentence Transformers)
73
+
74
+ First install the Sentence Transformers library:
75
+
76
+ ```bash
77
+ pip install -U sentence-transformers
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+ ```python
82
+ from sentence_transformers import SentenceTransformer
83
+
84
+ # Download from the 🤗 Hub
85
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-base")
86
+ # Run inference
87
+ sentences = [
88
+ '科目:建具。名称:GCW-#窓。',
89
+ '科目:建具。名称:AW-#窓。',
90
+ '科目:建具。名称:STW-#窓。',
91
+ ]
92
+ embeddings = model.encode(sentences)
93
+ print(embeddings.shape)
94
+ # [3, 768]
95
+
96
+ # Get the similarity scores for the embeddings
97
+ similarities = model.similarity(embeddings, embeddings)
98
+ print(similarities.shape)
99
+ # [3, 3]
100
+ ```
101
+
102
+ <!--
103
+ ### Direct Usage (Transformers)
104
+
105
+ <details><summary>Click to see the direct usage in Transformers</summary>
106
+
107
+ </details>
108
+ -->
109
+
110
+ <!--
111
+ ### Downstream Usage (Sentence Transformers)
112
+
113
+ You can finetune this model on your own dataset.
114
+
115
+ <details><summary>Click to expand</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Out-of-Scope Use
122
+
123
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
124
+ -->
125
+
126
+ <!--
127
+ ## Bias, Risks and Limitations
128
+
129
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
130
+ -->
131
+
132
+ <!--
133
+ ### Recommendations
134
+
135
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
136
+ -->
137
+
138
+ ## Training Details
139
+
140
+ ### Training Dataset
141
+
142
+ #### Unnamed Dataset
143
+
144
+ * Size: 1,546 training samples
145
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
146
+ * Approximate statistics based on the first 1000 samples:
147
+ | | sentence1 | sentence2 | label |
148
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------|
149
+ | type | string | string | int |
150
+ | details | <ul><li>min: 11 tokens</li><li>mean: 15.15 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 15.28 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>0: ~93.50%</li><li>1: ~6.50%</li></ul> |
151
+ * Samples:
152
+ | sentence1 | sentence2 | label |
153
+ |:------------------------------|:------------------------------|:---------------|
154
+ | <code>科目:塗装。名称:ANAD塗り。</code> | <code>科目:塗装。名称:CL塗り。</code> | <code>0</code> |
155
+ | <code>科目:塗装。名称:ANAD塗り。</code> | <code>科目:塗装。名称:CL塗装。</code> | <code>0</code> |
156
+ | <code>科目:塗装。名称:ANAD塗り。</code> | <code>科目:塗装。名称:DP-A塗り。</code> | <code>0</code> |
157
+ * Loss: <code>sentence_transformer_lib.dual_margin_constrastive_loss.DualMarginContrastiveLoss</code>
158
+
159
+ ### Training Hyperparameters
160
+ #### Non-Default Hyperparameters
161
+
162
+ - `per_device_train_batch_size`: 512
163
+ - `per_device_eval_batch_size`: 512
164
+ - `learning_rate`: 1e-05
165
+ - `weight_decay`: 0.01
166
+ - `num_train_epochs`: 25
167
+ - `warmup_ratio`: 0.1
168
+ - `fp16`: True
169
+
170
+ #### All Hyperparameters
171
+ <details><summary>Click to expand</summary>
172
+
173
+ - `overwrite_output_dir`: False
174
+ - `do_predict`: False
175
+ - `eval_strategy`: no
176
+ - `prediction_loss_only`: True
177
+ - `per_device_train_batch_size`: 512
178
+ - `per_device_eval_batch_size`: 512
179
+ - `per_gpu_train_batch_size`: None
180
+ - `per_gpu_eval_batch_size`: None
181
+ - `gradient_accumulation_steps`: 1
182
+ - `eval_accumulation_steps`: None
183
+ - `torch_empty_cache_steps`: None
184
+ - `learning_rate`: 1e-05
185
+ - `weight_decay`: 0.01
186
+ - `adam_beta1`: 0.9
187
+ - `adam_beta2`: 0.999
188
+ - `adam_epsilon`: 1e-08
189
+ - `max_grad_norm`: 1.0
190
+ - `num_train_epochs`: 25
191
+ - `max_steps`: -1
192
+ - `lr_scheduler_type`: linear
193
+ - `lr_scheduler_kwargs`: {}
194
+ - `warmup_ratio`: 0.1
195
+ - `warmup_steps`: 0
196
+ - `log_level`: passive
197
+ - `log_level_replica`: warning
198
+ - `log_on_each_node`: True
199
+ - `logging_nan_inf_filter`: True
200
+ - `save_safetensors`: True
201
+ - `save_on_each_node`: False
202
+ - `save_only_model`: False
203
+ - `restore_callback_states_from_checkpoint`: False
204
+ - `no_cuda`: False
205
+ - `use_cpu`: False
206
+ - `use_mps_device`: False
207
+ - `seed`: 42
208
+ - `data_seed`: None
209
+ - `jit_mode_eval`: False
210
+ - `use_ipex`: False
211
+ - `bf16`: False
212
+ - `fp16`: True
213
+ - `fp16_opt_level`: O1
214
+ - `half_precision_backend`: auto
215
+ - `bf16_full_eval`: False
216
+ - `fp16_full_eval`: False
217
+ - `tf32`: None
218
+ - `local_rank`: 0
219
+ - `ddp_backend`: None
220
+ - `tpu_num_cores`: None
221
+ - `tpu_metrics_debug`: False
222
+ - `debug`: []
223
+ - `dataloader_drop_last`: False
224
+ - `dataloader_num_workers`: 0
225
+ - `dataloader_prefetch_factor`: None
226
+ - `past_index`: -1
227
+ - `disable_tqdm`: False
228
+ - `remove_unused_columns`: True
229
+ - `label_names`: None
230
+ - `load_best_model_at_end`: False
231
+ - `ignore_data_skip`: False
232
+ - `fsdp`: []
233
+ - `fsdp_min_num_params`: 0
234
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
235
+ - `tp_size`: 0
236
+ - `fsdp_transformer_layer_cls_to_wrap`: None
237
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
238
+ - `deepspeed`: None
239
+ - `label_smoothing_factor`: 0.0
240
+ - `optim`: adamw_torch
241
+ - `optim_args`: None
242
+ - `adafactor`: False
243
+ - `group_by_length`: False
244
+ - `length_column_name`: length
245
+ - `ddp_find_unused_parameters`: None
246
+ - `ddp_bucket_cap_mb`: None
247
+ - `ddp_broadcast_buffers`: False
248
+ - `dataloader_pin_memory`: True
249
+ - `dataloader_persistent_workers`: False
250
+ - `skip_memory_metrics`: True
251
+ - `use_legacy_prediction_loop`: False
252
+ - `push_to_hub`: False
253
+ - `resume_from_checkpoint`: None
254
+ - `hub_model_id`: None
255
+ - `hub_strategy`: every_save
256
+ - `hub_private_repo`: None
257
+ - `hub_always_push`: False
258
+ - `gradient_checkpointing`: False
259
+ - `gradient_checkpointing_kwargs`: None
260
+ - `include_inputs_for_metrics`: False
261
+ - `include_for_metrics`: []
262
+ - `eval_do_concat_batches`: True
263
+ - `fp16_backend`: auto
264
+ - `push_to_hub_model_id`: None
265
+ - `push_to_hub_organization`: None
266
+ - `mp_parameters`:
267
+ - `auto_find_batch_size`: False
268
+ - `full_determinism`: False
269
+ - `torchdynamo`: None
270
+ - `ray_scope`: last
271
+ - `ddp_timeout`: 1800
272
+ - `torch_compile`: False
273
+ - `torch_compile_backend`: None
274
+ - `torch_compile_mode`: None
275
+ - `dispatch_batches`: None
276
+ - `split_batches`: None
277
+ - `include_tokens_per_second`: False
278
+ - `include_num_input_tokens_seen`: False
279
+ - `neftune_noise_alpha`: None
280
+ - `optim_target_modules`: None
281
+ - `batch_eval_metrics`: False
282
+ - `eval_on_start`: False
283
+ - `use_liger_kernel`: False
284
+ - `eval_use_gather_object`: False
285
+ - `average_tokens_across_devices`: False
286
+ - `prompts`: None
287
+ - `batch_sampler`: batch_sampler
288
+ - `multi_dataset_batch_sampler`: proportional
289
+
290
+ </details>
291
+
292
+ ### Training Logs
293
+ | Epoch | Step | Training Loss |
294
+ |:-----:|:----:|:-------------:|
295
+ | 2.5 | 10 | 34.4458 |
296
+ | 5.0 | 20 | 9.5341 |
297
+ | 7.5 | 30 | 2.0511 |
298
+ | 10.0 | 40 | 1.5025 |
299
+ | 12.5 | 50 | 1.4347 |
300
+ | 15.0 | 60 | 1.1549 |
301
+ | 17.5 | 70 | 1.2308 |
302
+ | 20.0 | 80 | 1.0908 |
303
+ | 22.5 | 90 | 1.1238 |
304
+ | 25.0 | 100 | 0.9793 |
305
+ | 2.5 | 10 | 1.1269 |
306
+ | 5.0 | 20 | 0.8895 |
307
+ | 7.5 | 30 | 0.8496 |
308
+ | 10.0 | 40 | 0.6124 |
309
+ | 12.5 | 50 | 0.5591 |
310
+ | 15.0 | 60 | 0.4262 |
311
+ | 17.5 | 70 | 0.3892 |
312
+ | 20.0 | 80 | 0.3309 |
313
+ | 22.5 | 90 | 0.3195 |
314
+ | 25.0 | 100 | 0.2609 |
315
+
316
+
317
+ ### Framework Versions
318
+ - Python: 3.11.11
319
+ - Sentence Transformers: 3.4.1
320
+ - Transformers: 4.50.3
321
+ - PyTorch: 2.6.0+cu124
322
+ - Accelerate: 1.5.2
323
+ - Datasets: 3.5.0
324
+ - Tokenizers: 0.21.1
325
+
326
+ ## Citation
327
+
328
+ ### BibTeX
329
+
330
+ #### Sentence Transformers
331
+ ```bibtex
332
+ @inproceedings{reimers-2019-sentence-bert,
333
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
334
+ author = "Reimers, Nils and Gurevych, Iryna",
335
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
336
+ month = "11",
337
+ year = "2019",
338
+ publisher = "Association for Computational Linguistics",
339
+ url = "https://arxiv.org/abs/1908.10084",
340
+ }
341
+ ```
342
+
343
+ <!--
344
+ ## Glossary
345
+
346
+ *Clearly define terms in order to be accessible across audiences.*
347
+ -->
348
+
349
+ <!--
350
+ ## Model Card Authors
351
+
352
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
353
+ -->
354
+
355
+ <!--
356
+ ## Model Card Contact
357
+
358
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
359
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.50.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 32768
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe9b51ad66eaf4aa79383c28e62c0192a960760441090d50a0e1e9789e999aa8
3
+ size 444851048
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff