|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
from contextlib import contextmanager |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from peft.import_utils import ( |
|
is_aqlm_available, |
|
is_auto_awq_available, |
|
is_auto_gptq_available, |
|
is_eetq_available, |
|
is_hqq_available, |
|
is_optimum_available, |
|
) |
|
|
|
|
|
def require_torch_gpu(test_case): |
|
""" |
|
Decorator marking a test that requires a GPU. Will be skipped when no GPU is available. |
|
""" |
|
if not torch.cuda.is_available(): |
|
return unittest.skip("test requires GPU")(test_case) |
|
else: |
|
return test_case |
|
|
|
|
|
def require_torch_multi_gpu(test_case): |
|
""" |
|
Decorator marking a test that requires multiple GPUs. Will be skipped when less than 2 GPUs are available. |
|
""" |
|
if not torch.cuda.is_available() or torch.cuda.device_count() < 2: |
|
return unittest.skip("test requires multiple GPUs")(test_case) |
|
else: |
|
return test_case |
|
|
|
|
|
def require_bitsandbytes(test_case): |
|
""" |
|
Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed. |
|
""" |
|
try: |
|
import bitsandbytes |
|
|
|
test_case = pytest.mark.bitsandbytes(test_case) |
|
except ImportError: |
|
test_case = pytest.mark.skip(reason="test requires bitsandbytes")(test_case) |
|
return test_case |
|
|
|
|
|
def require_auto_gptq(test_case): |
|
""" |
|
Decorator marking a test that requires auto-gptq. These tests are skipped when auto-gptq isn't installed. |
|
""" |
|
return unittest.skipUnless(is_auto_gptq_available(), "test requires auto-gptq")(test_case) |
|
|
|
|
|
def require_aqlm(test_case): |
|
""" |
|
Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed. |
|
""" |
|
return unittest.skipUnless(is_aqlm_available(), "test requires aqlm")(test_case) |
|
|
|
|
|
def require_hqq(test_case): |
|
""" |
|
Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed. |
|
""" |
|
return unittest.skipUnless(is_hqq_available(), "test requires hqq")(test_case) |
|
|
|
|
|
def require_auto_awq(test_case): |
|
""" |
|
Decorator marking a test that requires auto-awq. These tests are skipped when auto-awq isn't installed. |
|
""" |
|
return unittest.skipUnless(is_auto_awq_available(), "test requires auto-awq")(test_case) |
|
|
|
|
|
def require_eetq(test_case): |
|
""" |
|
Decorator marking a test that requires eetq. These tests are skipped when eetq isn't installed. |
|
""" |
|
return unittest.skipUnless(is_eetq_available(), "test requires eetq")(test_case) |
|
|
|
|
|
def require_optimum(test_case): |
|
""" |
|
Decorator marking a test that requires optimum. These tests are skipped when optimum isn't installed. |
|
""" |
|
return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case) |
|
|
|
|
|
@contextmanager |
|
def temp_seed(seed: int): |
|
"""Temporarily set the random seed. This works for python numpy, pytorch.""" |
|
|
|
np_state = np.random.get_state() |
|
np.random.seed(seed) |
|
|
|
torch_state = torch.random.get_rng_state() |
|
torch.random.manual_seed(seed) |
|
|
|
if torch.cuda.is_available(): |
|
torch_cuda_states = torch.cuda.get_rng_state_all() |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
try: |
|
yield |
|
finally: |
|
np.random.set_state(np_state) |
|
|
|
torch.random.set_rng_state(torch_state) |
|
if torch.cuda.is_available(): |
|
torch.cuda.set_rng_state_all(torch_cuda_states) |
|
|
|
|
|
def get_state_dict(model, unwrap_compiled=True): |
|
""" |
|
Get the state dict of a model. If the model is compiled, unwrap it first. |
|
""" |
|
if unwrap_compiled: |
|
model = getattr(model, "_orig_mod", model) |
|
return model.state_dict() |
|
|