# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from contextlib import contextmanager import numpy as np import pytest import torch from peft.import_utils import ( is_aqlm_available, is_auto_awq_available, is_auto_gptq_available, is_eetq_available, is_hqq_available, is_optimum_available, ) def require_torch_gpu(test_case): """ Decorator marking a test that requires a GPU. Will be skipped when no GPU is available. """ if not torch.cuda.is_available(): return unittest.skip("test requires GPU")(test_case) else: return test_case def require_torch_multi_gpu(test_case): """ Decorator marking a test that requires multiple GPUs. Will be skipped when less than 2 GPUs are available. """ if not torch.cuda.is_available() or torch.cuda.device_count() < 2: return unittest.skip("test requires multiple GPUs")(test_case) else: return test_case def require_bitsandbytes(test_case): """ Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed. """ try: import bitsandbytes # noqa: F401 test_case = pytest.mark.bitsandbytes(test_case) except ImportError: test_case = pytest.mark.skip(reason="test requires bitsandbytes")(test_case) return test_case def require_auto_gptq(test_case): """ Decorator marking a test that requires auto-gptq. These tests are skipped when auto-gptq isn't installed. """ return unittest.skipUnless(is_auto_gptq_available(), "test requires auto-gptq")(test_case) def require_aqlm(test_case): """ Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed. """ return unittest.skipUnless(is_aqlm_available(), "test requires aqlm")(test_case) def require_hqq(test_case): """ Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed. """ return unittest.skipUnless(is_hqq_available(), "test requires hqq")(test_case) def require_auto_awq(test_case): """ Decorator marking a test that requires auto-awq. These tests are skipped when auto-awq isn't installed. """ return unittest.skipUnless(is_auto_awq_available(), "test requires auto-awq")(test_case) def require_eetq(test_case): """ Decorator marking a test that requires eetq. These tests are skipped when eetq isn't installed. """ return unittest.skipUnless(is_eetq_available(), "test requires eetq")(test_case) def require_optimum(test_case): """ Decorator marking a test that requires optimum. These tests are skipped when optimum isn't installed. """ return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case) @contextmanager def temp_seed(seed: int): """Temporarily set the random seed. This works for python numpy, pytorch.""" np_state = np.random.get_state() np.random.seed(seed) torch_state = torch.random.get_rng_state() torch.random.manual_seed(seed) if torch.cuda.is_available(): torch_cuda_states = torch.cuda.get_rng_state_all() torch.cuda.manual_seed_all(seed) try: yield finally: np.random.set_state(np_state) torch.random.set_rng_state(torch_state) if torch.cuda.is_available(): torch.cuda.set_rng_state_all(torch_cuda_states) def get_state_dict(model, unwrap_compiled=True): """ Get the state dict of a model. If the model is compiled, unwrap it first. """ if unwrap_compiled: model = getattr(model, "_orig_mod", model) return model.state_dict()