File size: 4,247 Bytes
9d6cb8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from contextlib import contextmanager

import numpy as np
import pytest
import torch

from peft.import_utils import (
    is_aqlm_available,
    is_auto_awq_available,
    is_auto_gptq_available,
    is_eetq_available,
    is_hqq_available,
    is_optimum_available,
)


def require_torch_gpu(test_case):
    """
    Decorator marking a test that requires a GPU. Will be skipped when no GPU is available.
    """
    if not torch.cuda.is_available():
        return unittest.skip("test requires GPU")(test_case)
    else:
        return test_case


def require_torch_multi_gpu(test_case):
    """
    Decorator marking a test that requires multiple GPUs. Will be skipped when less than 2 GPUs are available.
    """
    if not torch.cuda.is_available() or torch.cuda.device_count() < 2:
        return unittest.skip("test requires multiple GPUs")(test_case)
    else:
        return test_case


def require_bitsandbytes(test_case):
    """
    Decorator marking a test that requires the bitsandbytes library. Will be skipped when the library is not installed.
    """
    try:
        import bitsandbytes  # noqa: F401

        test_case = pytest.mark.bitsandbytes(test_case)
    except ImportError:
        test_case = pytest.mark.skip(reason="test requires bitsandbytes")(test_case)
    return test_case


def require_auto_gptq(test_case):
    """
    Decorator marking a test that requires auto-gptq. These tests are skipped when auto-gptq isn't installed.
    """
    return unittest.skipUnless(is_auto_gptq_available(), "test requires auto-gptq")(test_case)


def require_aqlm(test_case):
    """
    Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed.
    """
    return unittest.skipUnless(is_aqlm_available(), "test requires aqlm")(test_case)


def require_hqq(test_case):
    """
    Decorator marking a test that requires aqlm. These tests are skipped when aqlm isn't installed.
    """
    return unittest.skipUnless(is_hqq_available(), "test requires hqq")(test_case)


def require_auto_awq(test_case):
    """
    Decorator marking a test that requires auto-awq. These tests are skipped when auto-awq isn't installed.
    """
    return unittest.skipUnless(is_auto_awq_available(), "test requires auto-awq")(test_case)


def require_eetq(test_case):
    """
    Decorator marking a test that requires eetq. These tests are skipped when eetq isn't installed.
    """
    return unittest.skipUnless(is_eetq_available(), "test requires eetq")(test_case)


def require_optimum(test_case):
    """
    Decorator marking a test that requires optimum. These tests are skipped when optimum isn't installed.
    """
    return unittest.skipUnless(is_optimum_available(), "test requires optimum")(test_case)


@contextmanager
def temp_seed(seed: int):
    """Temporarily set the random seed. This works for python numpy, pytorch."""

    np_state = np.random.get_state()
    np.random.seed(seed)

    torch_state = torch.random.get_rng_state()
    torch.random.manual_seed(seed)

    if torch.cuda.is_available():
        torch_cuda_states = torch.cuda.get_rng_state_all()
        torch.cuda.manual_seed_all(seed)

    try:
        yield
    finally:
        np.random.set_state(np_state)

        torch.random.set_rng_state(torch_state)
        if torch.cuda.is_available():
            torch.cuda.set_rng_state_all(torch_cuda_states)


def get_state_dict(model, unwrap_compiled=True):
    """
    Get the state dict of a model. If the model is compiled, unwrap it first.
    """
    if unwrap_compiled:
        model = getattr(model, "_orig_mod", model)
    return model.state_dict()