|
import os |
|
import shutil |
|
import time |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
model_path = './' |
|
device = torch.device("cuda:0") |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to(device).to(torch.bfloat16) |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)]) |
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
|
|
def load_image(image, input_size=448, max_num=6): |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
|
|
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): |
|
if bound: |
|
start, end = bound[0], bound[1] |
|
else: |
|
start, end = -100000, 100000 |
|
start_idx = max(first_idx, round(start * fps)) |
|
end_idx = min(round(end * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / num_segments |
|
frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)]) |
|
return frame_indices |
|
|
|
def get_num_frames_by_duration(duration): |
|
local_num_frames = 1 |
|
num_segments = int(duration // local_num_frames) |
|
if num_segments == 0: |
|
num_frames = local_num_frames |
|
else: |
|
num_frames = local_num_frames * num_segments |
|
|
|
num_frames = min(512, num_frames) |
|
num_frames = max(1, num_frames) |
|
|
|
return num_frames |
|
|
|
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False): |
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
max_frame = len(vr) - 1 |
|
fps = float(vr.get_avg_fps()) |
|
video_name = os.path.splitext(os.path.basename(video_path))[0] |
|
save_dir = f'./examples/frames/{video_name}' |
|
if os.path.exists(save_dir): |
|
save_flag = False |
|
else: |
|
save_flag = True |
|
os.makedirs(save_dir, exist_ok=True) |
|
destination_path = f'./examples/videos/{os.path.basename(video_path)}' |
|
os.makedirs(destination_path, exist_ok=True) |
|
shutil.copy(video_path, destination_path) |
|
print(f"Video copied to {destination_path}") |
|
pixel_values_list, num_patches_list = [], [] |
|
transform = build_transform(input_size=input_size) |
|
if get_frame_by_duration: |
|
duration = max_frame / fps |
|
num_segments = get_num_frames_by_duration(duration) |
|
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) |
|
for i in range(len(frame_indices)): |
|
img = Image.fromarray(vr[frame_indices[i]].asnumpy()).convert("RGB") |
|
if save_flag: |
|
save_path = os.path.join(save_dir, f'frame_{i+1}.png') |
|
img.save(save_path) |
|
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(tile) for tile in img] |
|
pixel_values = torch.stack(pixel_values) |
|
num_patches_list.append(pixel_values.shape[0]) |
|
pixel_values_list.append(pixel_values) |
|
pixel_values = torch.cat(pixel_values_list) |
|
return pixel_values, num_patches_list |
|
|
|
|
|
max_num_frames = 512 |
|
generation_config = dict( |
|
max_new_tokens=1024, |
|
num_beams=1, |
|
repetition_penalty = 1.05 |
|
) |
|
video_path = "./demo.mp4" |
|
|
|
temporal_questions = { |
|
2: "Where is the man lying in the video?", |
|
4: "What could be the possible relationship between him and the person next to him?", |
|
8: "What is the woman in the video doing?", |
|
10: "What is the expression of the woman in the video?", |
|
12: "What is his reaction?", |
|
13: "Is there a thermos on the table beside the hospital bed?", |
|
14: "Is there any tissue on the table?", |
|
20: "What color is the woman's clothing?", |
|
26: "How does the color of the bed differ from it?", |
|
41: "What is the girl in the video doing?", |
|
46: "What does the boy in the video say?", |
|
49: "How is his tone when he speaks?", |
|
50: "From what he said, could this woman be his mother?", |
|
64: "What is the expression in the boy's eyes?", |
|
73: "What else does the boy say?", |
|
74: "What animal is this toy?", |
|
75: "What color is the toy in the boy's memory?", |
|
78: "What's the difference between the scene with the door and the scene with the frog toy that appeared before?", |
|
79: "Is there a lock on the door?", |
|
81: "Are there any plants on the hospital room window?", |
|
87: "What's on the boy's back?", |
|
88: "What did the girl do to the scar?", |
|
92: "Does the girl have any special facial expression while wiping the scar?" |
|
} |
|
|
|
with torch.no_grad(): |
|
pixel_values, num_patches_list = load_video(video_path, max_num=1, get_frame_by_duration=True) |
|
pixel_values = pixel_values.to(torch.bfloat16).to(model.device) |
|
batch_frame = 1 |
|
start_time = time.time() |
|
chat_history = None |
|
question = '' |
|
|
|
for i in range(0, 100, batch_frame): |
|
video_frame = "".join([f"Frame-{i+j+1}: <image>\n" for j in range(batch_frame)]) |
|
question += video_frame |
|
|
|
if (i + 1) in temporal_questions: |
|
question += temporal_questions[i + 1] + "\n" |
|
output_last, chat_history = model.chat( |
|
tokenizer, |
|
pixel_values[:i+batch_frame, ...], |
|
question, |
|
generation_config, |
|
num_patches_list=num_patches_list[:i+batch_frame], |
|
history=chat_history, |
|
return_history=True |
|
) |
|
print(f"{'Frame' + str(i+1):<15} {'Q: ' + temporal_questions[i+1]:<50}") |
|
print(f"{'':<15} {'A: ' + output_last:<50}") |
|
question = '' |
|
else: |
|
print(f"{'Frame' + str(i+1):<15} {'Keep watching...':<50}") |
|
|
|
end_time = time.time() |
|
print("Program runtime:", end_time - start_time, "seconds") |