File size: 8,691 Bytes
c404510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import shutil
import time
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

# model setting
model_path = './'
device = torch.device("cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to(device).to(torch.bfloat16)

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image, input_size=448, max_num=6):
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)])
    return frame_indices

def get_num_frames_by_duration(duration):
        local_num_frames = 1  
        num_segments = int(duration // local_num_frames)
        if num_segments == 0:
            num_frames = local_num_frames
        else:
            num_frames = local_num_frames * num_segments
        
        num_frames = min(512, num_frames)
        num_frames = max(1, num_frames)
        
        return num_frames

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())
    video_name = os.path.splitext(os.path.basename(video_path))[0]
    save_dir = f'./examples/frames/{video_name}'
    if os.path.exists(save_dir):
        save_flag = False
    else:
        save_flag = True
        os.makedirs(save_dir, exist_ok=True)
        destination_path = f'./examples/videos/{os.path.basename(video_path)}'
        os.makedirs(destination_path, exist_ok=True)
        shutil.copy(video_path, destination_path)
        print(f"Video copied to {destination_path}")
    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    if get_frame_by_duration:
        duration = max_frame / fps
        num_segments = get_num_frames_by_duration(duration)
    frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
    for i in range(len(frame_indices)):
        img = Image.fromarray(vr[frame_indices[i]].asnumpy()).convert("RGB")
        if save_flag:
            save_path = os.path.join(save_dir, f'frame_{i+1}.png')
            img.save(save_path)
        img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list

# evaluation setting
max_num_frames = 512
generation_config = dict(
    max_new_tokens=1024,
    num_beams=1,
    repetition_penalty = 1.05
)
video_path = "./demo.mp4"

temporal_questions = {
    2: "Where is the man lying in the video?",
    4: "What could be the possible relationship between him and the person next to him?",
    8: "What is the woman in the video doing?",
    10: "What is the expression of the woman in the video?",
    12: "What is his reaction?",
    13: "Is there a thermos on the table beside the hospital bed?",
    14: "Is there any tissue on the table?",
    20: "What color is the woman's clothing?",
    26: "How does the color of the bed differ from it?",
    41: "What is the girl in the video doing?",
    46: "What does the boy in the video say?",
    49: "How is his tone when he speaks?",
    50: "From what he said, could this woman be his mother?",
    64: "What is the expression in the boy's eyes?",
    73: "What else does the boy say?",
    74: "What animal is this toy?",
    75: "What color is the toy in the boy's memory?",
    78: "What's the difference between the scene with the door and the scene with the frog toy that appeared before?",
    79: "Is there a lock on the door?",
    81: "Are there any plants on the hospital room window?",
    87: "What's on the boy's back?",
    88: "What did the girl do to the scar?",
    92: "Does the girl have any special facial expression while wiping the scar?"
}

with torch.no_grad():
    pixel_values, num_patches_list = load_video(video_path, max_num=1, get_frame_by_duration=True)
    pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
    batch_frame = 1
    start_time = time.time()
    chat_history = None
    question = ''
    
    for i in range(0, 100, batch_frame):
        video_frame = "".join([f"Frame-{i+j+1}: <image>\n" for j in range(batch_frame)])
        question += video_frame
        
        if (i + 1) in temporal_questions:
            question += temporal_questions[i + 1] + "\n"
            output_last, chat_history = model.chat(
                tokenizer, 
                pixel_values[:i+batch_frame, ...], 
                question, 
                generation_config, 
                num_patches_list=num_patches_list[:i+batch_frame], 
                history=chat_history, 
                return_history=True
            )
            print(f"{'Frame' + str(i+1):<15} {'Q: ' + temporal_questions[i+1]:<50}")
            print(f"{'':<15} {'A: ' + output_last:<50}")
            question = ''
        else:
            print(f"{'Frame' + str(i+1):<15} {'Keep watching...':<50}")
                
end_time = time.time()
print("Program runtime:", end_time - start_time, "seconds")