File size: 8,691 Bytes
c404510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
import shutil
import time
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
# model setting
model_path = './'
device = torch.device("cuda:0")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to(device).to(torch.bfloat16)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image, input_size=448, max_num=6):
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)])
return frame_indices
def get_num_frames_by_duration(duration):
local_num_frames = 1
num_segments = int(duration // local_num_frames)
if num_segments == 0:
num_frames = local_num_frames
else:
num_frames = local_num_frames * num_segments
num_frames = min(512, num_frames)
num_frames = max(1, num_frames)
return num_frames
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32, get_frame_by_duration = False):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
video_name = os.path.splitext(os.path.basename(video_path))[0]
save_dir = f'./examples/frames/{video_name}'
if os.path.exists(save_dir):
save_flag = False
else:
save_flag = True
os.makedirs(save_dir, exist_ok=True)
destination_path = f'./examples/videos/{os.path.basename(video_path)}'
os.makedirs(destination_path, exist_ok=True)
shutil.copy(video_path, destination_path)
print(f"Video copied to {destination_path}")
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
if get_frame_by_duration:
duration = max_frame / fps
num_segments = get_num_frames_by_duration(duration)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for i in range(len(frame_indices)):
img = Image.fromarray(vr[frame_indices[i]].asnumpy()).convert("RGB")
if save_flag:
save_path = os.path.join(save_dir, f'frame_{i+1}.png')
img.save(save_path)
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
# evaluation setting
max_num_frames = 512
generation_config = dict(
max_new_tokens=1024,
num_beams=1,
repetition_penalty = 1.05
)
video_path = "./demo.mp4"
temporal_questions = {
2: "Where is the man lying in the video?",
4: "What could be the possible relationship between him and the person next to him?",
8: "What is the woman in the video doing?",
10: "What is the expression of the woman in the video?",
12: "What is his reaction?",
13: "Is there a thermos on the table beside the hospital bed?",
14: "Is there any tissue on the table?",
20: "What color is the woman's clothing?",
26: "How does the color of the bed differ from it?",
41: "What is the girl in the video doing?",
46: "What does the boy in the video say?",
49: "How is his tone when he speaks?",
50: "From what he said, could this woman be his mother?",
64: "What is the expression in the boy's eyes?",
73: "What else does the boy say?",
74: "What animal is this toy?",
75: "What color is the toy in the boy's memory?",
78: "What's the difference between the scene with the door and the scene with the frog toy that appeared before?",
79: "Is there a lock on the door?",
81: "Are there any plants on the hospital room window?",
87: "What's on the boy's back?",
88: "What did the girl do to the scar?",
92: "Does the girl have any special facial expression while wiping the scar?"
}
with torch.no_grad():
pixel_values, num_patches_list = load_video(video_path, max_num=1, get_frame_by_duration=True)
pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
batch_frame = 1
start_time = time.time()
chat_history = None
question = ''
for i in range(0, 100, batch_frame):
video_frame = "".join([f"Frame-{i+j+1}: <image>\n" for j in range(batch_frame)])
question += video_frame
if (i + 1) in temporal_questions:
question += temporal_questions[i + 1] + "\n"
output_last, chat_history = model.chat(
tokenizer,
pixel_values[:i+batch_frame, ...],
question,
generation_config,
num_patches_list=num_patches_list[:i+batch_frame],
history=chat_history,
return_history=True
)
print(f"{'Frame' + str(i+1):<15} {'Q: ' + temporal_questions[i+1]:<50}")
print(f"{'':<15} {'A: ' + output_last:<50}")
question = ''
else:
print(f"{'Frame' + str(i+1):<15} {'Keep watching...':<50}")
end_time = time.time()
print("Program runtime:", end_time - start_time, "seconds") |