whisper-medium-en-cv-4.2
This model is a fine-tuned version of openai/whisper-medium.en on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5540
- Wer: 13.3455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 13500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2332 | 0.1667 | 2250 | 0.4139 | 12.7057 |
0.0826 | 1.1667 | 4500 | 0.4543 | 14.2596 |
0.0267 | 2.1667 | 6750 | 0.4961 | 14.5338 |
0.0066 | 3.1667 | 9000 | 0.5053 | 14.6252 |
0.0019 | 4.1667 | 11250 | 0.5349 | 13.9854 |
0.0011 | 5.1667 | 13500 | 0.5540 | 13.3455 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for xbilek25/whisper-medium-en-cv-4.2
Base model
openai/whisper-medium.en