Model Card for Doge-20M-Medical-SFT
This model is a fine-tuned version of wubingheng/Doge-20M-Chinese. It has been trained using TRL.
Quick start
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("wubingheng/Doge-20M-Medical-SFT")
model = AutoModelForCausalLM.from_pretrained("wubingheng/Doge-20M-Medical-SFT", trust_remote_code=True)
generation_config = GenerationConfig(
max_new_tokens=40,
min_new_tokens=1,
num_beams=1,
eos_token_id=[tokenizer.eos_token_id],
stop_strings=[tokenizer.eos_token],
early_stopping=False,
use_cache=True,
do_sample=True,
temperature=0.95,
repetition_penalty=1.0,
)
steamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
system_prompt = """
你是一个医学助手,能够回答用户提出的医学问题。请根据用户的问题,给出准确的医学建议和解答。
""".strip()
prompt = "肝癌术后饮食注意事项有哪些"
conversation = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
inputs = tokenizer.apply_chat_template(
conversation=conversation,
tokenize=True,
return_tensors="pt",
)
print(prompt)
output = model.generate(
inputs,
tokenizer=tokenizer,
generation_config=generation_config,
streamer=steamer
)
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.15.2
- Transformers: 4.51.2
- Pytorch: 2.6.0+cu126
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citations
@misc{smalldoges,
title={SmallDoges: A Family of Dynamic UltraFast Small Language Models},
author={Jingze, Shi and Yifan, Wu and Bingheng, Wu and Yuyu, Luo},
year={2025},
month={March},
url={https://github.com/SmallDoges/small-doge}
}
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wubingheng/Doge-20M-Medical-SFT
Base model
wubingheng/Doge-20M-Chinese