roberta-fake-news-detector-2
This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2056
- Accuracy: 0.9439
- Precision: 0.9444
- Recall: 0.9473
- F1: 0.9459
- Confusion Matrix: [[18282, 1160], [1097, 19721]]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Confusion Matrix |
---|---|---|---|---|---|---|---|---|
0.2294 | 1.0 | 661 | 0.2232 | 0.9331 | 0.9239 | 0.9483 | 0.9360 | [[4176, 378], [250, 4590]] |
0.2292 | 2.0 | 1322 | 0.2074 | 0.9415 | 0.9339 | 0.9539 | 0.9438 | [[4227, 327], [223, 4617]] |
0.1617 | 3.0 | 1983 | 0.2132 | 0.9437 | 0.9478 | 0.9426 | 0.9452 | [[4303, 251], [278, 4562]] |
0.1948 | 4.0 | 2644 | 0.2052 | 0.9439 | 0.9435 | 0.9479 | 0.9457 | [[4279, 275], [252, 4588]] |
0.1469 | 5.0 | 3305 | 0.2212 | 0.9418 | 0.9490 | 0.9374 | 0.9431 | [[4310, 244], [303, 4537]] |
0.1413 | 6.0 | 3966 | 0.2179 | 0.9412 | 0.9457 | 0.9399 | 0.9428 | [[4293, 261], [291, 4549]] |
0.162 | 7.0 | 4627 | 0.2229 | 0.9437 | 0.9431 | 0.9479 | 0.9455 | [[4277, 277], [252, 4588]] |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for wildgeese25/roberta-fake-news-detector-2
Base model
FacebookAI/roberta-base