roberta-fake-news-detector-2

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2056
  • Accuracy: 0.9439
  • Precision: 0.9444
  • Recall: 0.9473
  • F1: 0.9459
  • Confusion Matrix: [[18282, 1160], [1097, 19721]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Confusion Matrix
0.2294 1.0 661 0.2232 0.9331 0.9239 0.9483 0.9360 [[4176, 378], [250, 4590]]
0.2292 2.0 1322 0.2074 0.9415 0.9339 0.9539 0.9438 [[4227, 327], [223, 4617]]
0.1617 3.0 1983 0.2132 0.9437 0.9478 0.9426 0.9452 [[4303, 251], [278, 4562]]
0.1948 4.0 2644 0.2052 0.9439 0.9435 0.9479 0.9457 [[4279, 275], [252, 4588]]
0.1469 5.0 3305 0.2212 0.9418 0.9490 0.9374 0.9431 [[4310, 244], [303, 4537]]
0.1413 6.0 3966 0.2179 0.9412 0.9457 0.9399 0.9428 [[4293, 261], [291, 4549]]
0.162 7.0 4627 0.2229 0.9437 0.9431 0.9479 0.9455 [[4277, 277], [252, 4588]]

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for wildgeese25/roberta-fake-news-detector-2

Finetuned
(1569)
this model