roberta-fake-news-detector-TEST2

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2059
  • Accuracy: 0.9455
  • Precision: 0.9488
  • Recall: 0.9457
  • F1: 0.9472
  • Confusion Matrix: [[18379, 1063], [1130, 19688]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Confusion Matrix
0.2058 1.0 661 0.2244 0.9373 0.9356 0.9432 0.9394 [[4240, 314], [275, 4565]]
0.2149 2.0 1322 0.2037 0.9435 0.9429 0.9477 0.9453 [[4276, 278], [253, 4587]]
0.1552 3.0 1983 0.2065 0.9452 0.9487 0.9446 0.9467 [[4307, 247], [268, 4572]]
0.1791 3.9947 2640 0.2030 0.9462 0.9489 0.9467 0.9478 [[4307, 247], [258, 4582]]

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for wildgeese25/roberta-fake-news-detector

Finetuned
(1569)
this model