|
--- |
|
library_name: transformers |
|
base_model: huggingface/CodeBERTa-small-v1 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: CodeBERTa-small-v1-sourcecode-detection-clf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CodeBERTa-small-v1-sourcecode-detection-clf |
|
|
|
This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0171 |
|
- F1: 0.9975 |
|
- Accuracy: 0.9975 |
|
- Precision: 0.9975 |
|
- Recall: 0.9975 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 320 |
|
- eval_batch_size: 320 |
|
- seed: 2024 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:--------:|:---------:|:------:| |
|
| No log | 0 | 0 | 0.6981 | 0.3337 | 0.5001 | 0.6162 | 0.5001 | |
|
| 0.0294 | 0.1420 | 1000 | 0.0398 | 0.9947 | 0.9947 | 0.9947 | 0.9947 | |
|
| 0.0076 | 0.2841 | 2000 | 0.0211 | 0.9968 | 0.9968 | 0.9968 | 0.9968 | |
|
| 0.0053 | 0.4261 | 3000 | 0.0188 | 0.9973 | 0.9973 | 0.9973 | 0.9973 | |
|
| 0.0056 | 0.5681 | 4000 | 0.0166 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | |
|
| 0.0044 | 0.7101 | 5000 | 0.0172 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | |
|
| 0.0009 | 0.8522 | 6000 | 0.0171 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | |
|
| 0.0052 | 0.9942 | 7000 | 0.0171 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|