Usage (HuggingFace Transformers)

Without ChineseErrorCorrector, you can use the model like this:

First, you pass your input through the transformer model, then you get the generated sentence.

Install package:

pip install transformers 
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "twnlp/ChineseErrorCorrector2-7B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "你是一个文本纠错专家,纠正输入句子中的语法错误,并输出正确的句子,输入句子为:"
text_input = "对待每一项工作都要一丝不够。"
messages = [
    {"role": "user", "content": prompt + text_input}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

output:

对待每一项工作都要一丝不苟。
Downloads last month
321
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 2 Ask for provider support

Model tree for twnlp/ChineseErrorCorrector2-7B

Quantizations
1 model