metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: what is the difference between uae and saudi arabia
sentences:
- >-
Monopoly Junior Players take turns in order, with the initial player
determined by age before the game: the youngest player goes first.
Players are dealt an initial amount Monopoly money depending on the
total number of players playing: 20 in a two-player game, 18 in a
three-player game or 16 in a four-player game. A typical turn begins
with the rolling of the die and the player advancing their token
clockwise around the board the corresponding number of spaces. When the
player lands on an unowned space they must purchase the space from the
bank for the amount indicated on the board, and places a sold sign on
the coloured band at the top of the space to denote ownership. If a
player lands on a space owned by an opponent the player pays the
opponent rent in the amount written on the board. If the opponent owns
both properties of the same colour the rent is doubled.
- >-
Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
Arabia continue to take somewhat differing stances on regional conflicts
such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
the Southern Movement, which has fought against Saudi-backed forces, and
the Syrian Civil War, where the UAE has disagreed with Saudi support for
Islamist movements.[4]
- >-
Governors of states of India The governors and lieutenant-governors are
appointed by the President for a term of five years.
- source_sentence: who came up with the seperation of powers
sentences:
- >-
Separation of powers Aristotle first mentioned the idea of a "mixed
government" or hybrid government in his work Politics where he drew upon
many of the constitutional forms in the city-states of Ancient Greece.
In the Roman Republic, the Roman Senate, Consuls and the Assemblies
showed an example of a mixed government according to Polybius
(Histories, Book 6, 11–13).
- >-
Economy of New Zealand New Zealand's diverse market economy has a
sizable service sector, accounting for 63% of all GDP activity in
2013.[17] Large scale manufacturing industries include aluminium
production, food processing, metal fabrication, wood and paper products.
Mining, manufacturing, electricity, gas, water, and waste services
accounted for 16.5% of GDP in 2013.[17] The primary sector continues to
dominate New Zealand's exports, despite accounting for 6.5% of GDP in
2013.[17]
- >-
John Dalton John Dalton FRS (/ˈdɔːltən/; 6 September 1766 – 27 July
1844) was an English chemist, physicist, and meteorologist. He is best
known for proposing the modern atomic theory and for his research into
colour blindness, sometimes referred to as Daltonism in his honour.
- source_sentence: >-
who was the first president of indian science congress meeting held in
kolkata in 1914
sentences:
- >-
Nobody to Blame "Nobody to Blame" is a song recorded by American country
music artist Chris Stapleton. The song was released in November 2015 as
the singer's third single overall. Stapleton co-wrote the song with
Barry Bales and Ronnie Bowman. It became Stapleton's first top 10 single
on the US Country Airplay chart.[2] "Nobody to Blame" won Song of the
Year at the ACM Awards.[3]
- >-
Indian Science Congress Association The first meeting of the congress
was held from 15–17 January 1914 at the premises of the Asiatic
Society, Calcutta. Honorable justice Sir Ashutosh Mukherjee, the then
Vice Chancellor of the University of Calcutta presided over the
Congress. One hundred and five scientists from different parts of India
and abroad attended it. Altogether 35 papers under 6 different sections,
namely Botany, Chemistry, Ethnography, Geology, Physics and Zoology were
presented.
- >-
New Soul "New Soul" is a song by the French-Israeli R&B/soul singer Yael
Naïm, from her self-titled second album. The song gained popularity in
the United States following its use by Apple in an advertisement for
their MacBook Air laptop. In the song Naïm sings of being a new soul who
has come into the world to learn "a bit 'bout how to give and take."
However, she finds that things are harder than they seem. The song, also
featured in the films The House Bunny and Wild Target, features a
prominent "la la la la" section as its hook. It remains Naïm's biggest
hit single in the U.S. to date, and her only one to reach the Top 40 of
the Billboard Hot 100.
- source_sentence: who wrote get over it by the eagles
sentences:
- >-
Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
as a single after a fourteen-year breakup. It was also the first song
written by bandmates Don Henley and Glenn Frey when the band reunited.
"Get Over It" was played live for the first time during their Hell
Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after
a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100
chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart.
The song was not played live by the Eagles after the "Hell Freezes Over"
tour in 1994. It remains the group's last Top 40 hit in the U.S.
- >-
Pokhran-II In 1980, the general elections marked the return of Indira
Gandhi and the nuclear program began to gain momentum under Ramanna in
1981. Requests for additional nuclear tests were continued to be denied
by the government when Prime Minister Indira Gandhi saw Pakistan began
exercising the brinkmanship, though the nuclear program continued to
advance.[7] Initiation towards hydrogen bomb began as well as the launch
of the missile programme began under Late president Dr. Abdul Kalam, who
was then an aerospace engineer.[7]
- "R. Budd Dwyer Robert Budd Dwyer (November 21, 1939\_– January 22, 1987) was the 30th State Treasurer of the Commonwealth of Pennsylvania. He served from 1971 to 1981 as a Republican member of the Pennsylvania State Senate representing the state's 50th district. He then served as the 30th Treasurer of Pennsylvania from January 20, 1981, until his death. On January 22, 1987, Dwyer called a news conference in the Pennsylvania state capital of Harrisburg where he killed himself in front of the gathered reporters, by shooting himself in the mouth with a .357 Magnum revolver.[4] Dwyer's suicide was broadcast later that day to a wide television audience across Pennsylvania."
- source_sentence: who is cornelius in the book of acts
sentences:
- >-
Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric
Clapton. It was included on Clapton's 1977 album Slowhand. Clapton wrote
the song about Pattie Boyd.[1] The female vocal harmonies on the song
are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.
- >-
Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in
1991 as their head of story.[1] There he worked on all of their films
produced up to 2006; this included Toy Story (for which he received an
Academy Award nomination) and A Bug's Life, as the co-story writer and
others as story supervisor. His final film was Cars. He also voiced
characters in many of the films, including Heimlich the caterpillar in A
Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in
Finding Nemo.[1]
- >-
Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman
centurion who is considered by Christians to be one of the first
Gentiles to convert to the faith, as related in Acts of the Apostles.
datasets:
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 113.44094173179047
energy_consumed: 0.29184553136281904
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.773
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SparseEncoder based on microsoft/mpnet-base
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 16
type: NanoMSMARCO_16
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05000000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.26
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.272077335852507
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.20234920634920633
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.21758364304569
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 16
type: NanoNFCorpus_16
metrics:
- type: cosine_accuracy@1
value: 0.08
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.24
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.32
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.08
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.005993249911183041
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.009403252754209558
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.013285393478414642
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.01646720008819819
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.06095056479011788
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.14072222222222222
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.015310893897400863
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 16
type: NanoNQ_16
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.64
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13999999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10800000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3867151912670764
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3266904761904762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3250246379519026
name: Cosine Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 16
type: NanoBEIR_mean_16
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2733333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.38000000000000006
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.48666666666666664
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09555555555555555
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08666666666666668
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05466666666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.09533108330372768
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2231344175847365
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.29109513115947155
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3721557333627327
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2399143639699004
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.22325396825396826
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.18597305829833113
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 32
type: NanoMSMARCO_32
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.36
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.56
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.08666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05600000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.26
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.36
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.56
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.33109644128066057
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2634444444444444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.27935469743863556
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 32
type: NanoNFCorpus_32
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.28
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.34
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09600000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.007695869325666863
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.012313937822266688
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.01702903494334016
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.024165659145052122
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.10225707780728845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2055238095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.022577551502700435
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 32
type: NanoNQ_32
metrics:
- type: cosine_accuracy@1
value: 0.32
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.46
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.58
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11600000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.31
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.53
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.63
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4603957123337682
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4211904761904762
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.41127594932176303
name: Cosine Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 32
type: NanoBEIR_mean_32
metrics:
- type: cosine_accuracy@1
value: 0.21333333333333335
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32666666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4066666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5266666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.21333333333333335
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11777777777777776
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09466666666666668
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07133333333333335
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16589862310855563
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.23077131260742223
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.30234301164778005
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4047218863816841
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.29791641047390577
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2967195767195767
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23773606608769968
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 64
type: NanoMSMARCO_64
metrics:
- type: cosine_accuracy@1
value: 0.16
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.38
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.38
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.46
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3545165496884908
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.27796031746031746
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.29572845389453484
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 64
type: NanoNFCorpus_64
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.26
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.32
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.088
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.009483451025013268
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.012904129822135095
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.036867855927155205
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.04756198673273659
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.11496239522394665
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.24210317460317454
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.0318282871881163
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 64
type: NanoNQ_64
metrics:
- type: cosine_accuracy@1
value: 0.44
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.44
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.42
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.58
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.64
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.561884513825323
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5395555555555555
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5268055680783221
name: Cosine Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 64
type: NanoBEIR_mean_64
metrics:
- type: cosine_accuracy@1
value: 0.26
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.48666666666666664
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5733333333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11733333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.074
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19649448367500444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.32430137660737834
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3789559519757184
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4425206622442455
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3437878195792535
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35320634920634914
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2847874363869911
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 128
type: NanoMSMARCO_128
metrics:
- type: cosine_accuracy@1
value: 0.2
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.34
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09200000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.34
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.46
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4022072447482653
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.31815873015873014
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.33230553462724927
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 128
type: NanoNFCorpus_128
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.34
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.38
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.52
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.128
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.11399999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0036955722371344803
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.021194355136532755
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.024553995602026958
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.043293677887263404
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.12666378888376595
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2537936507936508
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.03330968914510828
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 128
type: NanoNQ_128
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.56
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.35
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.53
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.66
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.76
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5527057053472701
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5072460317460317
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4846991157483792
name: Cosine Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 128
type: NanoBEIR_mean_128
metrics:
- type: cosine_accuracy@1
value: 0.24
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4133333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5133333333333333
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6666666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.24
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15555555555555553
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12133333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08800000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1845651907457115
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2970647850455109
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.381517998534009
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4944312259624211
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3605255796597671
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35973280423280424
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2834381131735789
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: cosine_accuracy@1
value: 0.26
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15999999999999998
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10400000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.48
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.52
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4651758219790261
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.39804761904761904
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.412474140043243
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 256
type: NanoNFCorpus_256
metrics:
- type: cosine_accuracy@1
value: 0.18
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.38
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.114
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.005516710448516594
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.011401609103753301
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.021271103372355084
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.0347182833647384
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.12628863554710404
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2575
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.033728487141126466
name: Cosine Map@100
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 256
type: NanoNQ_256
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.76
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.64
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.73
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5611650669716552
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5226904761904763
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5086922580864135
name: Cosine Map@100
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: cosine_accuracy@1
value: 0.2866666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4466666666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5266666666666667
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6466666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2866666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.128
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08733333333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.22183890348283888
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3438005363679178
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3937570344574517
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.48157276112157943
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3842098414992618
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3927460317460318
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.31829829509026103
name: Cosine Map@100
SparseEncoder based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the natural-questions dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
See train_nq.py for the training script used for this model.
Warning:
Sparse models in Sentence Transformers are still quite experimental.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 768, 'hidden_dim': 3072, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/sparse-mpnet-base-nq-fresh")
sentences = [
'who is cornelius in the book of acts',
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Sparse Information Retrieval
Metric |
NanoMSMARCO_16 |
NanoNFCorpus_16 |
NanoNQ_16 |
cosine_accuracy@1 |
0.1 |
0.08 |
0.18 |
cosine_accuracy@3 |
0.26 |
0.14 |
0.42 |
cosine_accuracy@5 |
0.36 |
0.24 |
0.54 |
cosine_accuracy@10 |
0.5 |
0.32 |
0.64 |
cosine_precision@1 |
0.1 |
0.08 |
0.18 |
cosine_precision@3 |
0.0867 |
0.06 |
0.14 |
cosine_precision@5 |
0.072 |
0.08 |
0.108 |
cosine_precision@10 |
0.05 |
0.05 |
0.064 |
cosine_recall@1 |
0.1 |
0.006 |
0.18 |
cosine_recall@3 |
0.26 |
0.0094 |
0.4 |
cosine_recall@5 |
0.36 |
0.0133 |
0.5 |
cosine_recall@10 |
0.5 |
0.0165 |
0.6 |
cosine_ndcg@10 |
0.2721 |
0.061 |
0.3867 |
cosine_mrr@10 |
0.2023 |
0.1407 |
0.3267 |
cosine_map@100 |
0.2176 |
0.0153 |
0.325 |
Sparse Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.12 |
cosine_accuracy@3 |
0.2733 |
cosine_accuracy@5 |
0.38 |
cosine_accuracy@10 |
0.4867 |
cosine_precision@1 |
0.12 |
cosine_precision@3 |
0.0956 |
cosine_precision@5 |
0.0867 |
cosine_precision@10 |
0.0547 |
cosine_recall@1 |
0.0953 |
cosine_recall@3 |
0.2231 |
cosine_recall@5 |
0.2911 |
cosine_recall@10 |
0.3722 |
cosine_ndcg@10 |
0.2399 |
cosine_mrr@10 |
0.2233 |
cosine_map@100 |
0.186 |
Sparse Information Retrieval
Metric |
NanoMSMARCO_32 |
NanoNFCorpus_32 |
NanoNQ_32 |
cosine_accuracy@1 |
0.18 |
0.14 |
0.32 |
cosine_accuracy@3 |
0.26 |
0.26 |
0.46 |
cosine_accuracy@5 |
0.36 |
0.28 |
0.58 |
cosine_accuracy@10 |
0.56 |
0.34 |
0.68 |
cosine_precision@1 |
0.18 |
0.14 |
0.32 |
cosine_precision@3 |
0.0867 |
0.1133 |
0.1533 |
cosine_precision@5 |
0.072 |
0.096 |
0.116 |
cosine_precision@10 |
0.056 |
0.09 |
0.068 |
cosine_recall@1 |
0.18 |
0.0077 |
0.31 |
cosine_recall@3 |
0.26 |
0.0123 |
0.42 |
cosine_recall@5 |
0.36 |
0.017 |
0.53 |
cosine_recall@10 |
0.56 |
0.0242 |
0.63 |
cosine_ndcg@10 |
0.3311 |
0.1023 |
0.4604 |
cosine_mrr@10 |
0.2634 |
0.2055 |
0.4212 |
cosine_map@100 |
0.2794 |
0.0226 |
0.4113 |
Sparse Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.2133 |
cosine_accuracy@3 |
0.3267 |
cosine_accuracy@5 |
0.4067 |
cosine_accuracy@10 |
0.5267 |
cosine_precision@1 |
0.2133 |
cosine_precision@3 |
0.1178 |
cosine_precision@5 |
0.0947 |
cosine_precision@10 |
0.0713 |
cosine_recall@1 |
0.1659 |
cosine_recall@3 |
0.2308 |
cosine_recall@5 |
0.3023 |
cosine_recall@10 |
0.4047 |
cosine_ndcg@10 |
0.2979 |
cosine_mrr@10 |
0.2967 |
cosine_map@100 |
0.2377 |
Sparse Information Retrieval
Metric |
NanoMSMARCO_64 |
NanoNFCorpus_64 |
NanoNQ_64 |
cosine_accuracy@1 |
0.16 |
0.18 |
0.44 |
cosine_accuracy@3 |
0.38 |
0.26 |
0.62 |
cosine_accuracy@5 |
0.46 |
0.32 |
0.68 |
cosine_accuracy@10 |
0.6 |
0.4 |
0.72 |
cosine_precision@1 |
0.16 |
0.18 |
0.44 |
cosine_precision@3 |
0.1267 |
0.1267 |
0.2067 |
cosine_precision@5 |
0.092 |
0.12 |
0.14 |
cosine_precision@10 |
0.06 |
0.088 |
0.074 |
cosine_recall@1 |
0.16 |
0.0095 |
0.42 |
cosine_recall@3 |
0.38 |
0.0129 |
0.58 |
cosine_recall@5 |
0.46 |
0.0369 |
0.64 |
cosine_recall@10 |
0.6 |
0.0476 |
0.68 |
cosine_ndcg@10 |
0.3545 |
0.115 |
0.5619 |
cosine_mrr@10 |
0.278 |
0.2421 |
0.5396 |
cosine_map@100 |
0.2957 |
0.0318 |
0.5268 |
Sparse Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.26 |
cosine_accuracy@3 |
0.42 |
cosine_accuracy@5 |
0.4867 |
cosine_accuracy@10 |
0.5733 |
cosine_precision@1 |
0.26 |
cosine_precision@3 |
0.1533 |
cosine_precision@5 |
0.1173 |
cosine_precision@10 |
0.074 |
cosine_recall@1 |
0.1965 |
cosine_recall@3 |
0.3243 |
cosine_recall@5 |
0.379 |
cosine_recall@10 |
0.4425 |
cosine_ndcg@10 |
0.3438 |
cosine_mrr@10 |
0.3532 |
cosine_map@100 |
0.2848 |
Sparse Information Retrieval
Metric |
NanoMSMARCO_128 |
NanoNFCorpus_128 |
NanoNQ_128 |
cosine_accuracy@1 |
0.2 |
0.14 |
0.38 |
cosine_accuracy@3 |
0.34 |
0.34 |
0.56 |
cosine_accuracy@5 |
0.46 |
0.38 |
0.7 |
cosine_accuracy@10 |
0.68 |
0.52 |
0.8 |
cosine_precision@1 |
0.2 |
0.14 |
0.38 |
cosine_precision@3 |
0.1133 |
0.1667 |
0.1867 |
cosine_precision@5 |
0.092 |
0.128 |
0.144 |
cosine_precision@10 |
0.068 |
0.114 |
0.082 |
cosine_recall@1 |
0.2 |
0.0037 |
0.35 |
cosine_recall@3 |
0.34 |
0.0212 |
0.53 |
cosine_recall@5 |
0.46 |
0.0246 |
0.66 |
cosine_recall@10 |
0.68 |
0.0433 |
0.76 |
cosine_ndcg@10 |
0.4022 |
0.1267 |
0.5527 |
cosine_mrr@10 |
0.3182 |
0.2538 |
0.5072 |
cosine_map@100 |
0.3323 |
0.0333 |
0.4847 |
Sparse Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.24 |
cosine_accuracy@3 |
0.4133 |
cosine_accuracy@5 |
0.5133 |
cosine_accuracy@10 |
0.6667 |
cosine_precision@1 |
0.24 |
cosine_precision@3 |
0.1556 |
cosine_precision@5 |
0.1213 |
cosine_precision@10 |
0.088 |
cosine_recall@1 |
0.1846 |
cosine_recall@3 |
0.2971 |
cosine_recall@5 |
0.3815 |
cosine_recall@10 |
0.4944 |
cosine_ndcg@10 |
0.3605 |
cosine_mrr@10 |
0.3597 |
cosine_map@100 |
0.2834 |
Sparse Information Retrieval
Metric |
NanoMSMARCO_256 |
NanoNFCorpus_256 |
NanoNQ_256 |
cosine_accuracy@1 |
0.26 |
0.18 |
0.42 |
cosine_accuracy@3 |
0.48 |
0.28 |
0.58 |
cosine_accuracy@5 |
0.52 |
0.38 |
0.68 |
cosine_accuracy@10 |
0.68 |
0.5 |
0.76 |
cosine_precision@1 |
0.26 |
0.18 |
0.42 |
cosine_precision@3 |
0.16 |
0.1467 |
0.1933 |
cosine_precision@5 |
0.104 |
0.14 |
0.14 |
cosine_precision@10 |
0.068 |
0.114 |
0.08 |
cosine_recall@1 |
0.26 |
0.0055 |
0.4 |
cosine_recall@3 |
0.48 |
0.0114 |
0.54 |
cosine_recall@5 |
0.52 |
0.0213 |
0.64 |
cosine_recall@10 |
0.68 |
0.0347 |
0.73 |
cosine_ndcg@10 |
0.4652 |
0.1263 |
0.5612 |
cosine_mrr@10 |
0.398 |
0.2575 |
0.5227 |
cosine_map@100 |
0.4125 |
0.0337 |
0.5087 |
Sparse Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.2867 |
cosine_accuracy@3 |
0.4467 |
cosine_accuracy@5 |
0.5267 |
cosine_accuracy@10 |
0.6467 |
cosine_precision@1 |
0.2867 |
cosine_precision@3 |
0.1667 |
cosine_precision@5 |
0.128 |
cosine_precision@10 |
0.0873 |
cosine_recall@1 |
0.2218 |
cosine_recall@3 |
0.3438 |
cosine_recall@5 |
0.3938 |
cosine_recall@10 |
0.4816 |
cosine_ndcg@10 |
0.3842 |
cosine_mrr@10 |
0.3927 |
cosine_map@100 |
0.3183 |
Training Details
Training Dataset
natural-questions
Evaluation Dataset
natural-questions
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 4e-05
weight_decay
: 0.0001
adam_epsilon
: 6.25e-10
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 4e-05
weight_decay
: 0.0001
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 6.25e-10
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
NanoMSMARCO_16_cosine_ndcg@10 |
NanoNFCorpus_16_cosine_ndcg@10 |
NanoNQ_16_cosine_ndcg@10 |
NanoBEIR_mean_16_cosine_ndcg@10 |
NanoMSMARCO_32_cosine_ndcg@10 |
NanoNFCorpus_32_cosine_ndcg@10 |
NanoNQ_32_cosine_ndcg@10 |
NanoBEIR_mean_32_cosine_ndcg@10 |
NanoMSMARCO_64_cosine_ndcg@10 |
NanoNFCorpus_64_cosine_ndcg@10 |
NanoNQ_64_cosine_ndcg@10 |
NanoBEIR_mean_64_cosine_ndcg@10 |
NanoMSMARCO_128_cosine_ndcg@10 |
NanoNFCorpus_128_cosine_ndcg@10 |
NanoNQ_128_cosine_ndcg@10 |
NanoBEIR_mean_128_cosine_ndcg@10 |
NanoMSMARCO_256_cosine_ndcg@10 |
NanoNFCorpus_256_cosine_ndcg@10 |
NanoNQ_256_cosine_ndcg@10 |
NanoBEIR_mean_256_cosine_ndcg@10 |
-1 |
-1 |
- |
- |
0.0318 |
0.0148 |
0.0149 |
0.0205 |
0.0794 |
0.0234 |
0.0102 |
0.0377 |
0.0855 |
0.0195 |
0.0508 |
0.0519 |
0.1081 |
0.0246 |
0.0264 |
0.0530 |
0.1006 |
0.0249 |
0.0388 |
0.0547 |
0.0646 |
200 |
0.7332 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.1293 |
400 |
0.2606 |
0.1970 |
0.2845 |
0.0970 |
0.3546 |
0.2454 |
0.3778 |
0.1358 |
0.3455 |
0.2864 |
0.3868 |
0.1563 |
0.3806 |
0.3079 |
0.3988 |
0.1664 |
0.4035 |
0.3229 |
0.4020 |
0.1782 |
0.4181 |
0.3327 |
0.1939 |
600 |
0.2247 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.2586 |
800 |
0.1983 |
0.1750 |
0.2908 |
0.0866 |
0.3730 |
0.2502 |
0.3324 |
0.1155 |
0.4275 |
0.2918 |
0.3511 |
0.1621 |
0.4998 |
0.3377 |
0.3920 |
0.1563 |
0.5174 |
0.3553 |
0.4152 |
0.1555 |
0.5153 |
0.3620 |
0.3232 |
1000 |
0.1822 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.3878 |
1200 |
0.1846 |
0.1594 |
0.2775 |
0.0785 |
0.3723 |
0.2428 |
0.2642 |
0.1076 |
0.4389 |
0.2702 |
0.3865 |
0.1328 |
0.4329 |
0.3174 |
0.3883 |
0.1446 |
0.5040 |
0.3456 |
0.3638 |
0.1529 |
0.4939 |
0.3369 |
0.4525 |
1400 |
0.1669 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.5171 |
1600 |
0.1573 |
0.1452 |
0.2740 |
0.0624 |
0.3670 |
0.2345 |
0.3557 |
0.0855 |
0.4188 |
0.2867 |
0.4094 |
0.1099 |
0.5027 |
0.3407 |
0.3885 |
0.1340 |
0.4990 |
0.3405 |
0.4820 |
0.1577 |
0.5453 |
0.3950 |
0.5818 |
1800 |
0.1502 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.6464 |
2000 |
0.1375 |
0.1255 |
0.2307 |
0.0685 |
0.3801 |
0.2264 |
0.2529 |
0.0815 |
0.4335 |
0.2560 |
0.3509 |
0.0955 |
0.4611 |
0.3025 |
0.3932 |
0.1339 |
0.4875 |
0.3382 |
0.4184 |
0.1483 |
0.4904 |
0.3523 |
0.7111 |
2200 |
0.1359 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.7757 |
2400 |
0.1288 |
0.1184 |
0.2737 |
0.0703 |
0.3419 |
0.2286 |
0.3765 |
0.0843 |
0.4440 |
0.3016 |
0.3927 |
0.1247 |
0.5285 |
0.3486 |
0.3726 |
0.1203 |
0.5153 |
0.3361 |
0.4676 |
0.1343 |
0.5523 |
0.3847 |
0.8403 |
2600 |
0.1235 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.9050 |
2800 |
0.1168 |
0.1094 |
0.2751 |
0.0710 |
0.3602 |
0.2354 |
0.3227 |
0.0966 |
0.5046 |
0.3080 |
0.4112 |
0.1129 |
0.5268 |
0.3503 |
0.4077 |
0.1259 |
0.5253 |
0.3530 |
0.4642 |
0.1238 |
0.5726 |
0.3869 |
0.9696 |
3000 |
0.1187 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
-1 |
-1 |
- |
- |
0.2721 |
0.0610 |
0.3867 |
0.2399 |
0.3311 |
0.1023 |
0.4604 |
0.2979 |
0.3545 |
0.1150 |
0.5619 |
0.3438 |
0.4022 |
0.1267 |
0.5527 |
0.3605 |
0.4652 |
0.1263 |
0.5612 |
0.3842 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.292 kWh
- Carbon Emitted: 0.113 kg of CO2
- Hours Used: 0.773 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.1.0.dev0
- Transformers: 4.52.0.dev0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}