gemma-2b-coder-GGUF / README.md
morriszms's picture
Update README.md
1e8ba73 verified
metadata
tags:
  - generated_from_trainer
  - code
  - coding
  - gemma
  - TensorBlock
  - GGUF
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
language:
  - code
thumbnail: https://huggingface.co/mrm8488/gemma-2b-coder/resolve/main/logo.png
datasets:
  - HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
base_model: MAISAAI/gemma-2b-coder
model-index:
  - name: gemma-2b-coder
    results: []
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

MAISAAI/gemma-2b-coder - GGUF

This repo contains GGUF format model files for MAISAAI/gemma-2b-coder.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
gemma-2b-coder-Q2_K.gguf Q2_K 1.158 GB smallest, significant quality loss - not recommended for most purposes
gemma-2b-coder-Q3_K_S.gguf Q3_K_S 1.288 GB very small, high quality loss
gemma-2b-coder-Q3_K_M.gguf Q3_K_M 1.384 GB very small, high quality loss
gemma-2b-coder-Q3_K_L.gguf Q3_K_L 1.466 GB small, substantial quality loss
gemma-2b-coder-Q4_0.gguf Q4_0 1.551 GB legacy; small, very high quality loss - prefer using Q3_K_M
gemma-2b-coder-Q4_K_S.gguf Q4_K_S 1.560 GB small, greater quality loss
gemma-2b-coder-Q4_K_M.gguf Q4_K_M 1.630 GB medium, balanced quality - recommended
gemma-2b-coder-Q5_0.gguf Q5_0 1.799 GB legacy; medium, balanced quality - prefer using Q4_K_M
gemma-2b-coder-Q5_K_S.gguf Q5_K_S 1.799 GB large, low quality loss - recommended
gemma-2b-coder-Q5_K_M.gguf Q5_K_M 1.840 GB large, very low quality loss - recommended
gemma-2b-coder-Q6_K.gguf Q6_K 2.062 GB very large, extremely low quality loss
gemma-2b-coder-Q8_0.gguf Q8_0 2.669 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gemma-2b-coder-GGUF --include "gemma-2b-coder-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gemma-2b-coder-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'