Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
Files changed (32) hide show
  1. README.md +1 -1
  2. hunyuan3d-dit-v2-0-turbo/config.yaml +0 -70
  3. hunyuan3d-dit-v2-0-turbo/model.fp16.ckpt +0 -3
  4. hunyuan3d-dit-v2-0-turbo/model.fp16.safetensors +0 -3
  5. hunyuan3d-dit-v2-0/model.fp16.ckpt +0 -3
  6. hunyuan3d-dit-v2-0/model.fp16.safetensors +0 -3
  7. hunyuan3d-paint-v2-0-turbo/.gitattributes +0 -35
  8. hunyuan3d-paint-v2-0-turbo/README.md +0 -53
  9. hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json +0 -20
  10. hunyuan3d-paint-v2-0-turbo/image_encoder/config.json +0 -23
  11. hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors +0 -3
  12. hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json +0 -27
  13. hunyuan3d-paint-v2-0-turbo/model_index.json +0 -37
  14. hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json +0 -15
  15. hunyuan3d-paint-v2-0-turbo/text_encoder/config.json +0 -25
  16. hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin +0 -3
  17. hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt +0 -0
  18. hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json +0 -24
  19. hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json +0 -34
  20. hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json +0 -0
  21. hunyuan3d-paint-v2-0-turbo/unet/config.json +0 -45
  22. hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin +0 -3
  23. hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors +0 -3
  24. hunyuan3d-paint-v2-0-turbo/unet/modules.py +0 -610
  25. hunyuan3d-paint-v2-0-turbo/vae/config.json +0 -29
  26. hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin +0 -3
  27. hunyuan3d-vae-v2-0-turbo/config.yaml +0 -15
  28. hunyuan3d-vae-v2-0-turbo/model.fp16.ckpt +0 -3
  29. hunyuan3d-vae-v2-0-turbo/model.fp16.safetensors +0 -3
  30. hunyuan3d-vae-v2-0/config.yaml +0 -15
  31. hunyuan3d-vae-v2-0/model.fp16.ckpt +0 -3
  32. hunyuan3d-vae-v2-0/model.fp16.safetensors +0 -3
README.md CHANGED
@@ -153,7 +153,7 @@ pipeline = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2')
153
  mesh = pipeline(mesh, image='assets/demo.png')
154
  ```
155
 
156
- Please visit [minimal_demo.py](https://github.com/Tencent/Hunyuan3D-2/blob/main/minimal_demo.py) for more advanced usage, such as **text to 3D** and **texture generation
157
  for handcrafted mesh**.
158
 
159
  ### Gradio App
 
153
  mesh = pipeline(mesh, image='assets/demo.png')
154
  ```
155
 
156
+ Please visit [minimal_demo.py](minimal_demo.py) for more advanced usage, such as **text to 3D** and **texture generation
157
  for handcrafted mesh**.
158
 
159
  ### Gradio App
hunyuan3d-dit-v2-0-turbo/config.yaml DELETED
@@ -1,70 +0,0 @@
1
- model:
2
- target: hy3dgen.shapegen.models.Hunyuan3DDiT
3
- params:
4
- in_channels: 64
5
- context_in_dim: 1536
6
- hidden_size: 1024
7
- mlp_ratio: 4.0
8
- num_heads: 16
9
- depth: 16
10
- depth_single_blocks: 32
11
- axes_dim: [ 64 ]
12
- theta: 10000
13
- qkv_bias: true
14
- guidance_embed: true
15
-
16
- vae:
17
- target: hy3dgen.shapegen.models.ShapeVAE
18
- params:
19
- num_latents: 3072
20
- embed_dim: 64
21
- num_freqs: 8
22
- include_pi: false
23
- heads: 16
24
- width: 1024
25
- num_decoder_layers: 16
26
- qkv_bias: false
27
- qk_norm: true
28
- scale_factor: 0.9990943042622529
29
-
30
- conditioner:
31
- target: hy3dgen.shapegen.models.SingleImageEncoder
32
- params:
33
- main_image_encoder:
34
- type: DinoImageEncoder # dino giant
35
- kwargs:
36
- config:
37
- attention_probs_dropout_prob: 0.0
38
- drop_path_rate: 0.0
39
- hidden_act: gelu
40
- hidden_dropout_prob: 0.0
41
- hidden_size: 1536
42
- image_size: 518
43
- initializer_range: 0.02
44
- layer_norm_eps: 1.e-6
45
- layerscale_value: 1.0
46
- mlp_ratio: 4
47
- model_type: dinov2
48
- num_attention_heads: 24
49
- num_channels: 3
50
- num_hidden_layers: 40
51
- patch_size: 14
52
- qkv_bias: true
53
- torch_dtype: float32
54
- use_swiglu_ffn: true
55
- image_size: 518
56
-
57
- scheduler:
58
- target: hy3dgen.shapegen.schedulers.ConsistencyFlowMatchEulerDiscreteScheduler
59
- params:
60
- num_train_timesteps: 1000
61
- pcm_timesteps: 100
62
-
63
- image_processor:
64
- target: hy3dgen.shapegen.preprocessors.ImageProcessorV2
65
- params:
66
- size: 512
67
- border_ratio: 0.15
68
-
69
- pipeline:
70
- target: hy3dgen.shapegen.pipelines.Hunyuan3DDiTFlowMatchingPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-dit-v2-0-turbo/model.fp16.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f04cecad6953ca9644f9e1d3a22cd0abb20665ce8be30fc4409451ce78d622f1
3
- size 4931245140
 
 
 
 
hunyuan3d-dit-v2-0-turbo/model.fp16.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ee5a81e4df08a1c65b79910bf5b145a90376e526794f4607a4d5d068d62f269
3
- size 4930777530
 
 
 
 
hunyuan3d-dit-v2-0/model.fp16.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:39c2a6bf54f5674f2001b763d8e15b773fbda24604b3911544d09846496bc972
3
- size 4928568095
 
 
 
 
hunyuan3d-dit-v2-0/model.fp16.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:360bc281fc956d4acac0c3d36d5ec0ebf8cdddbf4b8892e894d12419388d479b
3
- size 4928151562
 
 
 
 
hunyuan3d-paint-v2-0-turbo/.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/README.md DELETED
@@ -1,53 +0,0 @@
1
- ---
2
- license: openrail++
3
- tags:
4
- - stable-diffusion
5
- - text-to-image
6
- ---
7
-
8
- # SD v2.1-base with Zero Terminal SNR (LAION Aesthetic 6+)
9
-
10
- This model is used in [Diffusion Model with Perceptual Loss](https://arxiv.org/abs/2401.00110) paper as the MSE baseline.
11
-
12
- This model is trained using zero terminal SNR schedule following [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891) paper on LAION aesthetic 6+ data.
13
-
14
- This model is finetuned from [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base).
15
-
16
- This model is meant for research demonstration, not for production use.
17
-
18
- ## Usage
19
-
20
- ```python
21
- from diffusers import StableDiffusionPipeline
22
- prompt = "A young girl smiling"
23
- pipe = StableDiffusionPipeline.from_pretrained("ByteDance/sd2.1-base-zsnr-laionaes6").to("cuda")
24
- pipe(prompt, guidance_scale=7.5, guidance_rescale=0.7).images[0].save("out.jpg")
25
- ```
26
-
27
- ## Related Models
28
-
29
- * [bytedance/sd2.1-base-zsnr-laionaes5](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes5)
30
- * [bytedance/sd2.1-base-zsnr-laionaes6](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6)
31
- * [bytedance/sd2.1-base-zsnr-laionaes6-perceptual](https://huggingface.co/ByteDance/sd2.1-base-zsnr-laionaes6-perceptual)
32
-
33
-
34
- ## Cite as
35
- ```
36
- @misc{lin2024diffusion,
37
- title={Diffusion Model with Perceptual Loss},
38
- author={Shanchuan Lin and Xiao Yang},
39
- year={2024},
40
- eprint={2401.00110},
41
- archivePrefix={arXiv},
42
- primaryClass={cs.CV}
43
- }
44
-
45
- @misc{lin2023common,
46
- title={Common Diffusion Noise Schedules and Sample Steps are Flawed},
47
- author={Shanchuan Lin and Bingchen Liu and Jiashi Li and Xiao Yang},
48
- year={2023},
49
- eprint={2305.08891},
50
- archivePrefix={arXiv},
51
- primaryClass={cs.CV}
52
- }
53
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/feature_extractor/preprocessor_config.json DELETED
@@ -1,20 +0,0 @@
1
- {
2
- "crop_size": 224,
3
- "do_center_crop": true,
4
- "do_convert_rgb": true,
5
- "do_normalize": true,
6
- "do_resize": true,
7
- "feature_extractor_type": "CLIPFeatureExtractor",
8
- "image_mean": [
9
- 0.48145466,
10
- 0.4578275,
11
- 0.40821073
12
- ],
13
- "image_std": [
14
- 0.26862954,
15
- 0.26130258,
16
- 0.27577711
17
- ],
18
- "resample": 3,
19
- "size": 224
20
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/image_encoder/config.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "_name_or_path": "D:\\.cache\\huggingface\\hub\\models--sudo-ai--zero123plus-v1.1\\snapshots\\36df7de980afd15f80b2e1a4e9a920d7020e2654\\vision_encoder",
3
- "architectures": [
4
- "CLIPVisionModelWithProjection"
5
- ],
6
- "attention_dropout": 0.0,
7
- "dropout": 0.0,
8
- "hidden_act": "gelu",
9
- "hidden_size": 1280,
10
- "image_size": 224,
11
- "initializer_factor": 1.0,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 5120,
14
- "layer_norm_eps": 1e-05,
15
- "model_type": "clip_vision_model",
16
- "num_attention_heads": 16,
17
- "num_channels": 3,
18
- "num_hidden_layers": 32,
19
- "patch_size": 14,
20
- "projection_dim": 1024,
21
- "torch_dtype": "float16",
22
- "transformers_version": "4.36.0"
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/image_encoder/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ae616c24393dd1854372b0639e5541666f7521cbe219669255e865cb7f89466a
3
- size 1264217240
 
 
 
 
hunyuan3d-paint-v2-0-turbo/image_encoder/preprocessor_config.json DELETED
@@ -1,27 +0,0 @@
1
- {
2
- "crop_size": {
3
- "height": 224,
4
- "width": 224
5
- },
6
- "do_center_crop": true,
7
- "do_convert_rgb": true,
8
- "do_normalize": true,
9
- "do_rescale": true,
10
- "do_resize": true,
11
- "image_mean": [
12
- 0.48145466,
13
- 0.4578275,
14
- 0.40821073
15
- ],
16
- "image_processor_type": "CLIPImageProcessor",
17
- "image_std": [
18
- 0.26862954,
19
- 0.26130258,
20
- 0.27577711
21
- ],
22
- "resample": 3,
23
- "rescale_factor": 0.00392156862745098,
24
- "size": {
25
- "shortest_edge": 224
26
- }
27
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/model_index.json DELETED
@@ -1,37 +0,0 @@
1
- {
2
- "_class_name": "StableDiffusionPipeline",
3
- "_diffusers_version": "0.23.1",
4
- "feature_extractor": [
5
- "transformers",
6
- "CLIPImageProcessor"
7
- ],
8
- "requires_safety_checker": false,
9
- "safety_checker": [
10
- null,
11
- null
12
- ],
13
- "scheduler": [
14
- "diffusers",
15
- "DDIMScheduler"
16
- ],
17
- "text_encoder": [
18
- "transformers",
19
- "CLIPTextModel"
20
- ],
21
- "tokenizer": [
22
- "transformers",
23
- "CLIPTokenizer"
24
- ],
25
- "image_encoder": [
26
- "transformers",
27
- "CLIPVisionModelWithProjection"
28
- ],
29
- "unet": [
30
- "modules",
31
- "UNet2p5DConditionModel"
32
- ],
33
- "vae": [
34
- "diffusers",
35
- "AutoencoderKL"
36
- ]
37
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/scheduler/scheduler_config.json DELETED
@@ -1,15 +0,0 @@
1
- {
2
- "_class_name": "DDIMScheduler",
3
- "_diffusers_version": "0.23.1",
4
- "beta_end": 0.012,
5
- "beta_schedule": "scaled_linear",
6
- "beta_start": 0.00085,
7
- "clip_sample": false,
8
- "num_train_timesteps": 1000,
9
- "prediction_type": "v_prediction",
10
- "set_alpha_to_one": true,
11
- "steps_offset": 1,
12
- "trained_betas": null,
13
- "timestep_spacing": "trailing",
14
- "rescale_betas_zero_snr": true
15
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/text_encoder/config.json DELETED
@@ -1,25 +0,0 @@
1
- {
2
- "_name_or_path": "stabilityai/stable-diffusion-2",
3
- "architectures": [
4
- "CLIPTextModel"
5
- ],
6
- "attention_dropout": 0.0,
7
- "bos_token_id": 0,
8
- "dropout": 0.0,
9
- "eos_token_id": 2,
10
- "hidden_act": "gelu",
11
- "hidden_size": 1024,
12
- "initializer_factor": 1.0,
13
- "initializer_range": 0.02,
14
- "intermediate_size": 4096,
15
- "layer_norm_eps": 1e-05,
16
- "max_position_embeddings": 77,
17
- "model_type": "clip_text_model",
18
- "num_attention_heads": 16,
19
- "num_hidden_layers": 23,
20
- "pad_token_id": 1,
21
- "projection_dim": 512,
22
- "torch_dtype": "float32",
23
- "transformers_version": "4.25.0.dev0",
24
- "vocab_size": 49408
25
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/text_encoder/pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3e254d7b61353497ea0be2c4013df4ea8f739ee88cffa0ba58cd085459ed565
3
- size 1361671895
 
 
 
 
hunyuan3d-paint-v2-0-turbo/tokenizer/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
hunyuan3d-paint-v2-0-turbo/tokenizer/special_tokens_map.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<|startoftext|>",
4
- "lstrip": false,
5
- "normalized": true,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "<|endoftext|>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": "!",
17
- "unk_token": {
18
- "content": "<|endoftext|>",
19
- "lstrip": false,
20
- "normalized": true,
21
- "rstrip": false,
22
- "single_word": false
23
- }
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/tokenizer/tokenizer_config.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "add_prefix_space": false,
3
- "bos_token": {
4
- "__type": "AddedToken",
5
- "content": "<|startoftext|>",
6
- "lstrip": false,
7
- "normalized": true,
8
- "rstrip": false,
9
- "single_word": false
10
- },
11
- "do_lower_case": true,
12
- "eos_token": {
13
- "__type": "AddedToken",
14
- "content": "<|endoftext|>",
15
- "lstrip": false,
16
- "normalized": true,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
- "errors": "replace",
21
- "model_max_length": 77,
22
- "name_or_path": "stabilityai/stable-diffusion-2",
23
- "pad_token": "<|endoftext|>",
24
- "special_tokens_map_file": "./special_tokens_map.json",
25
- "tokenizer_class": "CLIPTokenizer",
26
- "unk_token": {
27
- "__type": "AddedToken",
28
- "content": "<|endoftext|>",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false
33
- }
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/tokenizer/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
hunyuan3d-paint-v2-0-turbo/unet/config.json DELETED
@@ -1,45 +0,0 @@
1
- {
2
- "_class_name": "UNet2DConditionModel",
3
- "_diffusers_version": "0.10.0.dev0",
4
- "act_fn": "silu",
5
- "attention_head_dim": [
6
- 5,
7
- 10,
8
- 20,
9
- 20
10
- ],
11
- "block_out_channels": [
12
- 320,
13
- 640,
14
- 1280,
15
- 1280
16
- ],
17
- "center_input_sample": false,
18
- "cross_attention_dim": 1024,
19
- "down_block_types": [
20
- "CrossAttnDownBlock2D",
21
- "CrossAttnDownBlock2D",
22
- "CrossAttnDownBlock2D",
23
- "DownBlock2D"
24
- ],
25
- "downsample_padding": 1,
26
- "dual_cross_attention": false,
27
- "flip_sin_to_cos": true,
28
- "freq_shift": 0,
29
- "in_channels": 4,
30
- "layers_per_block": 2,
31
- "mid_block_scale_factor": 1,
32
- "norm_eps": 1e-05,
33
- "norm_num_groups": 32,
34
- "num_class_embeds": null,
35
- "only_cross_attention": false,
36
- "out_channels": 4,
37
- "sample_size": 64,
38
- "up_block_types": [
39
- "UpBlock2D",
40
- "CrossAttnUpBlock2D",
41
- "CrossAttnUpBlock2D",
42
- "CrossAttnUpBlock2D"
43
- ],
44
- "use_linear_projection": true
45
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:24e7f1aea8a7c94cee627eb06f5265f19eeff4e19568636c5eaef050cc19ba3d
3
- size 7325432923
 
 
 
 
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d6acffa4a22f4da61d87f446bfa83e7ac245481c1535fbf25b200fe4462d0b22
3
- size 3722161032
 
 
 
 
hunyuan3d-paint-v2-0-turbo/unet/modules.py DELETED
@@ -1,610 +0,0 @@
1
- # Open Source Model Licensed under the Apache License Version 2.0
2
- # and Other Licenses of the Third-Party Components therein:
3
- # The below Model in this distribution may have been modified by THL A29 Limited
4
- # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
-
6
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
7
- # The below software and/or models in this distribution may have been
8
- # modified by THL A29 Limited ("Tencent Modifications").
9
- # All Tencent Modifications are Copyright (C) THL A29 Limited.
10
-
11
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
12
- # except for the third-party components listed below.
13
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
14
- # in the repsective licenses of these third-party components.
15
- # Users must comply with all terms and conditions of original licenses of these third-party
16
- # components and must ensure that the usage of the third party components adheres to
17
- # all relevant laws and regulations.
18
-
19
- # For avoidance of doubts, Hunyuan 3D means the large language models and
20
- # their software and algorithms, including trained model weights, parameters (including
21
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
22
- # fine-tuning enabling code and other elements of the foregoing made publicly available
23
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
24
-
25
- import copy
26
- import json
27
- import os
28
- from typing import Any, Dict, List, Optional, Tuple, Union
29
-
30
- import torch
31
- import torch.nn as nn
32
- import torch.nn.functional as F
33
- from diffusers.models import UNet2DConditionModel
34
- from diffusers.models.attention_processor import Attention
35
- from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
36
- from einops import rearrange
37
-
38
-
39
- def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
40
- # "feed_forward_chunk_size" can be used to save memory
41
- if hidden_states.shape[chunk_dim] % chunk_size != 0:
42
- raise ValueError(
43
- f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]}"
44
- f"has to be divisible by chunk size: {chunk_size}."
45
- f" Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
46
- )
47
-
48
- num_chunks = hidden_states.shape[chunk_dim] // chunk_size
49
- ff_output = torch.cat(
50
- [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
51
- dim=chunk_dim,
52
- )
53
- return ff_output
54
-
55
-
56
- class Basic2p5DTransformerBlock(torch.nn.Module):
57
- def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True, is_turbo=False) -> None:
58
- super().__init__()
59
- self.transformer = transformer
60
- self.layer_name = layer_name
61
- self.use_ma = use_ma
62
- self.use_ra = use_ra
63
- self.is_turbo = is_turbo
64
-
65
- # multiview attn
66
- if self.use_ma:
67
- self.attn_multiview = Attention(
68
- query_dim=self.dim,
69
- heads=self.num_attention_heads,
70
- dim_head=self.attention_head_dim,
71
- dropout=self.dropout,
72
- bias=self.attention_bias,
73
- cross_attention_dim=None,
74
- upcast_attention=self.attn1.upcast_attention,
75
- out_bias=True,
76
- )
77
-
78
- # ref attn
79
- if self.use_ra:
80
- self.attn_refview = Attention(
81
- query_dim=self.dim,
82
- heads=self.num_attention_heads,
83
- dim_head=self.attention_head_dim,
84
- dropout=self.dropout,
85
- bias=self.attention_bias,
86
- cross_attention_dim=None,
87
- upcast_attention=self.attn1.upcast_attention,
88
- out_bias=True,
89
- )
90
- if self.is_turbo:
91
- self._initialize_attn_weights()
92
-
93
- def _initialize_attn_weights(self):
94
-
95
- if self.use_ma:
96
- self.attn_multiview.load_state_dict(self.attn1.state_dict())
97
- with torch.no_grad():
98
- for layer in self.attn_multiview.to_out:
99
- for param in layer.parameters():
100
- param.zero_()
101
- if self.use_ra:
102
- self.attn_refview.load_state_dict(self.attn1.state_dict())
103
- with torch.no_grad():
104
- for layer in self.attn_refview.to_out:
105
- for param in layer.parameters():
106
- param.zero_()
107
-
108
- def __getattr__(self, name: str):
109
- try:
110
- return super().__getattr__(name)
111
- except AttributeError:
112
- return getattr(self.transformer, name)
113
-
114
- def forward(
115
- self,
116
- hidden_states: torch.Tensor,
117
- attention_mask: Optional[torch.Tensor] = None,
118
- encoder_hidden_states: Optional[torch.Tensor] = None,
119
- encoder_attention_mask: Optional[torch.Tensor] = None,
120
- timestep: Optional[torch.LongTensor] = None,
121
- cross_attention_kwargs: Dict[str, Any] = None,
122
- class_labels: Optional[torch.LongTensor] = None,
123
- added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
124
- ) -> torch.Tensor:
125
-
126
- # Notice that normalization is always applied before the real computation in the following blocks.
127
- # 0. Self-Attention
128
- batch_size = hidden_states.shape[0]
129
-
130
- cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
131
- num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
132
- mode = cross_attention_kwargs.pop('mode', None)
133
- if not self.is_turbo:
134
- mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
135
- ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
136
- else:
137
- position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
138
- position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
139
- mva_scale = 1.0
140
- ref_scale = 1.0
141
-
142
- condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
143
-
144
- if self.norm_type == "ada_norm":
145
- norm_hidden_states = self.norm1(hidden_states, timestep)
146
- elif self.norm_type == "ada_norm_zero":
147
- norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
148
- hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
149
- )
150
- elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
151
- norm_hidden_states = self.norm1(hidden_states)
152
- elif self.norm_type == "ada_norm_continuous":
153
- norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
154
- elif self.norm_type == "ada_norm_single":
155
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
156
- self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
157
- ).chunk(6, dim=1)
158
- norm_hidden_states = self.norm1(hidden_states)
159
- norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
160
- else:
161
- raise ValueError("Incorrect norm used")
162
-
163
- if self.pos_embed is not None:
164
- norm_hidden_states = self.pos_embed(norm_hidden_states)
165
-
166
- # 1. Prepare GLIGEN inputs
167
- cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
168
- gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
169
-
170
- attn_output = self.attn1(
171
- norm_hidden_states,
172
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
173
- attention_mask=attention_mask,
174
- **cross_attention_kwargs,
175
- )
176
-
177
- if self.norm_type == "ada_norm_zero":
178
- attn_output = gate_msa.unsqueeze(1) * attn_output
179
- elif self.norm_type == "ada_norm_single":
180
- attn_output = gate_msa * attn_output
181
-
182
- hidden_states = attn_output + hidden_states
183
- if hidden_states.ndim == 4:
184
- hidden_states = hidden_states.squeeze(1)
185
-
186
- # 1.2 Reference Attention
187
- if 'w' in mode:
188
- condition_embed_dict[self.layer_name] = rearrange(
189
- norm_hidden_states, '(b n) l c -> b (n l) c',
190
- n=num_in_batch
191
- ) # B, (N L), C
192
-
193
- if 'r' in mode and self.use_ra:
194
- condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1,
195
- 1) # B N L C
196
- condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
197
-
198
- attn_output = self.attn_refview(
199
- norm_hidden_states,
200
- encoder_hidden_states=condition_embed,
201
- attention_mask=None,
202
- **cross_attention_kwargs
203
- )
204
- if not self.is_turbo:
205
- ref_scale_timing = ref_scale
206
- if isinstance(ref_scale, torch.Tensor):
207
- ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
208
- for _ in range(attn_output.ndim - 1):
209
- ref_scale_timing = ref_scale_timing.unsqueeze(-1)
210
-
211
- hidden_states = ref_scale_timing * attn_output + hidden_states
212
-
213
- if hidden_states.ndim == 4:
214
- hidden_states = hidden_states.squeeze(1)
215
-
216
- # 1.3 Multiview Attention
217
- if num_in_batch > 1 and self.use_ma:
218
- multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
219
-
220
- if self.is_turbo:
221
- position_mask = None
222
- if position_attn_mask is not None:
223
- if multivew_hidden_states.shape[1] in position_attn_mask:
224
- position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
225
- position_indices = None
226
- if position_voxel_indices is not None:
227
- if multivew_hidden_states.shape[1] in position_voxel_indices:
228
- position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
229
- attn_output = self.attn_multiview(
230
- multivew_hidden_states,
231
- encoder_hidden_states=multivew_hidden_states,
232
- attention_mask=position_mask,
233
- position_indices=position_indices,
234
- **cross_attention_kwargs
235
- )
236
- else:
237
- attn_output = self.attn_multiview(
238
- multivew_hidden_states,
239
- encoder_hidden_states=multivew_hidden_states,
240
- **cross_attention_kwargs
241
- )
242
-
243
- attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
244
-
245
- hidden_states = mva_scale * attn_output + hidden_states
246
- if hidden_states.ndim == 4:
247
- hidden_states = hidden_states.squeeze(1)
248
-
249
- # 1.2 GLIGEN Control
250
- if gligen_kwargs is not None:
251
- hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
252
-
253
- # 3. Cross-Attention
254
- if self.attn2 is not None:
255
- if self.norm_type == "ada_norm":
256
- norm_hidden_states = self.norm2(hidden_states, timestep)
257
- elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
258
- norm_hidden_states = self.norm2(hidden_states)
259
- elif self.norm_type == "ada_norm_single":
260
- # For PixArt norm2 isn't applied here:
261
- # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
262
- norm_hidden_states = hidden_states
263
- elif self.norm_type == "ada_norm_continuous":
264
- norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
265
- else:
266
- raise ValueError("Incorrect norm")
267
-
268
- if self.pos_embed is not None and self.norm_type != "ada_norm_single":
269
- norm_hidden_states = self.pos_embed(norm_hidden_states)
270
-
271
- attn_output = self.attn2(
272
- norm_hidden_states,
273
- encoder_hidden_states=encoder_hidden_states,
274
- attention_mask=encoder_attention_mask,
275
- **cross_attention_kwargs,
276
- )
277
-
278
- hidden_states = attn_output + hidden_states
279
-
280
- # 4. Feed-forward
281
- # i2vgen doesn't have this norm 🤷‍♂️
282
- if self.norm_type == "ada_norm_continuous":
283
- norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
284
- elif not self.norm_type == "ada_norm_single":
285
- norm_hidden_states = self.norm3(hidden_states)
286
-
287
- if self.norm_type == "ada_norm_zero":
288
- norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
289
-
290
- if self.norm_type == "ada_norm_single":
291
- norm_hidden_states = self.norm2(hidden_states)
292
- norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
293
-
294
- if self._chunk_size is not None:
295
- # "feed_forward_chunk_size" can be used to save memory
296
- ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
297
- else:
298
- ff_output = self.ff(norm_hidden_states)
299
-
300
- if self.norm_type == "ada_norm_zero":
301
- ff_output = gate_mlp.unsqueeze(1) * ff_output
302
- elif self.norm_type == "ada_norm_single":
303
- ff_output = gate_mlp * ff_output
304
-
305
- hidden_states = ff_output + hidden_states
306
- if hidden_states.ndim == 4:
307
- hidden_states = hidden_states.squeeze(1)
308
-
309
- return hidden_states
310
-
311
- @torch.no_grad()
312
- def compute_voxel_grid_mask(position, grid_resolution=8):
313
-
314
- position = position.half()
315
- B,N,_,H,W = position.shape
316
- assert H%grid_resolution==0 and W%grid_resolution==0
317
-
318
- valid_mask = (position != 1).all(dim=2, keepdim=True)
319
- valid_mask = valid_mask.expand_as(position)
320
- position[valid_mask==False] = 0
321
-
322
-
323
- position = rearrange(
324
- position,
325
- 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
326
- num_h=grid_resolution, num_w=grid_resolution
327
- )
328
- valid_mask = rearrange(
329
- valid_mask,
330
- 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
331
- num_h=grid_resolution, num_w=grid_resolution
332
- )
333
-
334
- grid_position = position.sum(dim=(-2, -1))
335
- count_masked = valid_mask.sum(dim=(-2, -1))
336
-
337
- grid_position = grid_position / count_masked.clamp(min=1)
338
- grid_position[count_masked<5] = 0
339
-
340
- grid_position = grid_position.permute(0,1,4,2,3)
341
- grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')
342
-
343
- grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3
344
- grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3
345
-
346
- # 计算欧氏距离
347
- distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L
348
-
349
- weights = distances
350
- grid_distance = 1.73/grid_resolution
351
-
352
- #weights = weights*-32
353
- #weights = weights.clamp(min=-10000.0)
354
-
355
- weights = weights< grid_distance
356
-
357
- return weights
358
-
359
- def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
360
- position_attn_mask = {}
361
- with torch.no_grad():
362
- for grid_resolution in grid_resolutions:
363
- position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
364
- position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
365
- position_attn_mask[position_mask.shape[1]] = position_mask
366
- return position_attn_mask
367
-
368
- @torch.no_grad()
369
- def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):
370
-
371
- position = position.half()
372
- B,N,_,H,W = position.shape
373
- assert H%grid_resolution==0 and W%grid_resolution==0
374
-
375
- valid_mask = (position != 1).all(dim=2, keepdim=True)
376
- valid_mask = valid_mask.expand_as(position)
377
- position[valid_mask==False] = 0
378
-
379
- position = rearrange(
380
- position,
381
- 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
382
- num_h=grid_resolution, num_w=grid_resolution
383
- )
384
- valid_mask = rearrange(
385
- valid_mask,
386
- 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
387
- num_h=grid_resolution, num_w=grid_resolution
388
- )
389
-
390
- grid_position = position.sum(dim=(-2, -1))
391
- count_masked = valid_mask.sum(dim=(-2, -1))
392
-
393
- grid_position = grid_position / count_masked.clamp(min=1)
394
- grid_position[count_masked<5] = 0
395
-
396
- grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
397
- voxel_indices = grid_position * (voxel_resolution - 1)
398
- voxel_indices = torch.round(voxel_indices).long()
399
- return voxel_indices
400
-
401
- def compute_multi_resolution_discrete_voxel_indice(
402
- position_maps,
403
- grid_resolutions=[64, 32, 16, 8],
404
- voxel_resolutions=[512, 256, 128, 64]
405
- ):
406
- voxel_indices = {}
407
- with torch.no_grad():
408
- for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
409
- voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
410
- voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
411
- voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
412
- return voxel_indices
413
-
414
- class UNet2p5DConditionModel(torch.nn.Module):
415
- def __init__(self, unet: UNet2DConditionModel) -> None:
416
- super().__init__()
417
- self.unet = unet
418
-
419
- self.use_ma = True
420
- self.use_ra = True
421
- self.use_camera_embedding = True
422
- self.use_dual_stream = True
423
- self.is_turbo = False
424
-
425
- if self.use_dual_stream:
426
- self.unet_dual = copy.deepcopy(unet)
427
- self.init_attention(self.unet_dual)
428
- self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra, is_turbo=self.is_turbo)
429
- self.init_condition()
430
- self.init_camera_embedding()
431
-
432
- @staticmethod
433
- def from_pretrained(pretrained_model_name_or_path, **kwargs):
434
- torch_dtype = kwargs.pop('torch_dtype', torch.float32)
435
- config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
436
- unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
437
- with open(config_path, 'r', encoding='utf-8') as file:
438
- config = json.load(file)
439
- unet = UNet2DConditionModel(**config)
440
- unet = UNet2p5DConditionModel(unet)
441
- unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
442
- unet.load_state_dict(unet_ckpt, strict=True)
443
- unet = unet.to(torch_dtype)
444
- return unet
445
-
446
- def init_condition(self):
447
- self.unet.conv_in = torch.nn.Conv2d(
448
- 12,
449
- self.unet.conv_in.out_channels,
450
- kernel_size=self.unet.conv_in.kernel_size,
451
- stride=self.unet.conv_in.stride,
452
- padding=self.unet.conv_in.padding,
453
- dilation=self.unet.conv_in.dilation,
454
- groups=self.unet.conv_in.groups,
455
- bias=self.unet.conv_in.bias is not None)
456
-
457
- self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024))
458
- self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024))
459
-
460
- def init_camera_embedding(self):
461
-
462
- if self.use_camera_embedding:
463
- time_embed_dim = 1280
464
- self.max_num_ref_image = 5
465
- self.max_num_gen_image = 12 * 3 + 4 * 2
466
- self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim)
467
-
468
- def init_attention(self, unet, use_ma=False, use_ra=False, is_turbo=False):
469
-
470
- for down_block_i, down_block in enumerate(unet.down_blocks):
471
- if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
472
- for attn_i, attn in enumerate(down_block.attentions):
473
- for transformer_i, transformer in enumerate(attn.transformer_blocks):
474
- if isinstance(transformer, BasicTransformerBlock):
475
- attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
476
- transformer,
477
- f'down_{down_block_i}_{attn_i}_{transformer_i}',
478
- use_ma, use_ra, is_turbo
479
- )
480
-
481
- if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
482
- for attn_i, attn in enumerate(unet.mid_block.attentions):
483
- for transformer_i, transformer in enumerate(attn.transformer_blocks):
484
- if isinstance(transformer, BasicTransformerBlock):
485
- attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
486
- transformer,
487
- f'mid_{attn_i}_{transformer_i}',
488
- use_ma, use_ra, is_turbo
489
- )
490
-
491
- for up_block_i, up_block in enumerate(unet.up_blocks):
492
- if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
493
- for attn_i, attn in enumerate(up_block.attentions):
494
- for transformer_i, transformer in enumerate(attn.transformer_blocks):
495
- if isinstance(transformer, BasicTransformerBlock):
496
- attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
497
- transformer,
498
- f'up_{up_block_i}_{attn_i}_{transformer_i}',
499
- use_ma, use_ra, is_turbo
500
- )
501
-
502
- def __getattr__(self, name: str):
503
- try:
504
- return super().__getattr__(name)
505
- except AttributeError:
506
- return getattr(self.unet, name)
507
-
508
- def forward(
509
- self, sample, timestep, encoder_hidden_states,
510
- *args, down_intrablock_additional_residuals=None,
511
- down_block_res_samples=None, mid_block_res_sample=None,
512
- **cached_condition,
513
- ):
514
- B, N_gen, _, H, W = sample.shape
515
- assert H == W
516
-
517
- if self.use_camera_embedding:
518
- camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
519
- camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
520
- else:
521
- camera_info_gen = None
522
-
523
- sample = [sample]
524
- if 'normal_imgs' in cached_condition:
525
- sample.append(cached_condition["normal_imgs"])
526
- if 'position_imgs' in cached_condition:
527
- sample.append(cached_condition["position_imgs"])
528
- sample = torch.cat(sample, dim=2)
529
-
530
- sample = rearrange(sample, 'b n c h w -> (b n) c h w')
531
-
532
- encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
533
- encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
534
-
535
- if self.use_ra:
536
- if 'condition_embed_dict' in cached_condition:
537
- condition_embed_dict = cached_condition['condition_embed_dict']
538
- else:
539
- condition_embed_dict = {}
540
- ref_latents = cached_condition['ref_latents']
541
- N_ref = ref_latents.shape[1]
542
- if self.use_camera_embedding:
543
- camera_info_ref = cached_condition['camera_info_ref']
544
- camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
545
- else:
546
- camera_info_ref = None
547
-
548
- ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
549
-
550
- encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
551
- encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
552
-
553
- noisy_ref_latents = ref_latents
554
- timestep_ref = 0
555
-
556
- if self.use_dual_stream:
557
- unet_ref = self.unet_dual
558
- else:
559
- unet_ref = self.unet
560
- unet_ref(
561
- noisy_ref_latents, timestep_ref,
562
- encoder_hidden_states=encoder_hidden_states_ref,
563
- class_labels=camera_info_ref,
564
- # **kwargs
565
- return_dict=False,
566
- cross_attention_kwargs={
567
- 'mode': 'w', 'num_in_batch': N_ref,
568
- 'condition_embed_dict': condition_embed_dict},
569
- )
570
- cached_condition['condition_embed_dict'] = condition_embed_dict
571
- else:
572
- condition_embed_dict = None
573
-
574
- mva_scale = cached_condition.get('mva_scale', 1.0)
575
- ref_scale = cached_condition.get('ref_scale', 1.0)
576
-
577
- if self.is_turbo:
578
- cross_attention_kwargs_ = {
579
- 'mode': 'r', 'num_in_batch': N_gen,
580
- 'condition_embed_dict': condition_embed_dict,
581
- 'position_attn_mask':position_attn_mask,
582
- 'position_voxel_indices':position_voxel_indices,
583
- 'mva_scale': mva_scale,
584
- 'ref_scale': ref_scale,
585
- }
586
- else:
587
- cross_attention_kwargs_ = {
588
- 'mode': 'r', 'num_in_batch': N_gen,
589
- 'condition_embed_dict': condition_embed_dict,
590
- 'mva_scale': mva_scale,
591
- 'ref_scale': ref_scale,
592
- }
593
- return self.unet(
594
- sample, timestep,
595
- encoder_hidden_states_gen, *args,
596
- class_labels=camera_info_gen,
597
- down_intrablock_additional_residuals=[
598
- sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
599
- ] if down_intrablock_additional_residuals is not None else None,
600
- down_block_additional_residuals=[
601
- sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
602
- ] if down_block_res_samples is not None else None,
603
- mid_block_additional_residual=(
604
- mid_block_res_sample.to(dtype=self.unet.dtype)
605
- if mid_block_res_sample is not None else None
606
- ),
607
- return_dict=False,
608
- cross_attention_kwargs=cross_attention_kwargs_,
609
- )
610
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/vae/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_class_name": "AutoencoderKL",
3
- "_diffusers_version": "0.10.0.dev0",
4
- "act_fn": "silu",
5
- "block_out_channels": [
6
- 128,
7
- 256,
8
- 512,
9
- 512
10
- ],
11
- "down_block_types": [
12
- "DownEncoderBlock2D",
13
- "DownEncoderBlock2D",
14
- "DownEncoderBlock2D",
15
- "DownEncoderBlock2D"
16
- ],
17
- "in_channels": 3,
18
- "latent_channels": 4,
19
- "layers_per_block": 2,
20
- "norm_num_groups": 32,
21
- "out_channels": 3,
22
- "sample_size": 768,
23
- "up_block_types": [
24
- "UpDecoderBlock2D",
25
- "UpDecoderBlock2D",
26
- "UpDecoderBlock2D",
27
- "UpDecoderBlock2D"
28
- ]
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-paint-v2-0-turbo/vae/diffusion_pytorch_model.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
3
- size 334707217
 
 
 
 
hunyuan3d-vae-v2-0-turbo/config.yaml DELETED
@@ -1,15 +0,0 @@
1
- target: hy3dgen.shapegen.models.ShapeVAE
2
- params:
3
- num_latents: 3072
4
- embed_dim: 64
5
- num_freqs: 8
6
- include_pi: false
7
- heads: 16
8
- width: 1024
9
- num_decoder_layers: 16
10
- qkv_bias: false
11
- qk_norm: true
12
- scale_factor: 0.9990943042622529
13
- geo_decoder_mlp_expand_ratio: 1
14
- geo_decoder_downsample_ratio: 2
15
- geo_decoder_ln_post: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-vae-v2-0-turbo/model.fp16.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:bea74b1d912e245510b062ac62d938e5312760c07b122eadd0199e325e3d5343
3
- size 407480196
 
 
 
 
hunyuan3d-vae-v2-0-turbo/model.fp16.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:66b7af697118db2de00c22f63a385c75f9049709739281971837af9e4ce31cb4
3
- size 407410402
 
 
 
 
hunyuan3d-vae-v2-0/config.yaml DELETED
@@ -1,15 +0,0 @@
1
- target: hy3dgen.shapegen.models.ShapeVAE
2
- params:
3
- num_latents: 3072
4
- embed_dim: 64
5
- num_freqs: 8
6
- include_pi: false
7
- heads: 16
8
- width: 1024
9
- num_decoder_layers: 16
10
- qkv_bias: false
11
- qk_norm: true
12
- scale_factor: 0.9990943042622529
13
- geo_decoder_mlp_expand_ratio: 4
14
- geo_decoder_downsample_ratio: 1
15
- geo_decoder_ln_post: true
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hunyuan3d-vae-v2-0/model.fp16.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5fc24dcac763a28d09f49dfe5ef71cf129f2e7193e75a8753d5f8b1e4bd526e2
3
- size 428526216
 
 
 
 
hunyuan3d-vae-v2-0/model.fp16.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:abbad221083fbde12d7e8afc69243de7cee85abc806368ba2338fc5736be7341
3
- size 428455666