jaleah-ai-model / README.md
teckmill's picture
Update README.md
35e8939 verified
metadata
language:
  - code
tags:
  - code-generation
  - ai-assistant
  - code-completion
  - python
  - machine-learning
  - transformer
  - gpt
license: mit
datasets:
  - github-code
  - stackoverflow
  - synthetic-code
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: Jaleah AI Code Generator
    results:
      - task:
          type: text-generation
          name: Code Generation
        dataset:
          name: Multi-Source Python Code Corpus
          type: mixed
        metrics:
          - type: code-generation
            name: Code Generation Score
            value: experimental
          - type: syntax-correctness
            name: Syntax Correctness Rate
            value: high
          - type: contextual-relevance
            name: Contextual Relevance
            value: moderate
    parameters:
      max_length:
        default: 200
        range:
          - 50
          - 500
      temperature:
        default: 0.7
        range:
          - 0.1
          - 1
      top_k:
        default: 50
        range:
          - 1
          - 100
      top_p:
        default: 0.95
        range:
          - 0.1
          - 1
model_type: causal
architectures:
  - GPTNeoForCausalLM
training_config:
  base_model: microsoft/CodeGPT-small-py
  training_objective: causal-language-modeling
  compute_environment:
    - gpu
    - cloud
  training_time: ~3 hours
  hardware:
    - cuda
    - t4-gpu

Jaleah AI Code Generation Model

Model Description

Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

Model Details

  • Developed by: TeckMill AI Research Team
  • Base Model: microsoft/CodeGPT-small-py
  • Language: Python
  • Version: 1.0

Jaleah AI Code Generation Model

Model Description

Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

Model Details

  • Developed by: TeckMill AI Research Team
  • Base Model: microsoft/CodeGPT-small-py
  • Language: Python
  • Version: 1.0

Jaleah AI Code Generation Model

Model Description

Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

Model Details

  • Developed by: TeckMill AI Research Team
  • Base Model: microsoft/CodeGPT-small-py
  • Language: Python
  • Version: 1.0

Intended Uses & Limitations

Intended Uses

  • Code snippet generation
  • Assisting developers with Python programming
  • Providing intelligent code suggestions
  • Rapid prototyping of Python functions and classes

Limitations

  • May generate syntactically incorrect code
  • Requires human review and validation
  • Performance may vary across different coding domains
  • Not suitable for complete project generation

Training Data

Data Sources

The model was trained on a diverse dataset including:

  • GitHub trending repositories
  • Stack Overflow top-rated code answers
  • Open-source Python project codebases
  • Synthetic code generation
  • Complex algorithmic implementations

Data Preprocessing

  • Syntax validation
  • Comment and docstring removal
  • Length and complexity filtering

Training Procedure

Training Hyperparameters

  • Learning Rate: 5e-05
  • Batch Size: 4
  • Epochs: 12
  • Optimizer: AdamW
  • Learning Rate Scheduler: Linear
  • Weight Decay: 0.01

Training Process

  • Fine-tuning of pre-trained CodeGPT model
  • Multi-source code collection
  • Advanced synthetic code generation
  • Rigorous code validation

Evaluation

Detailed evaluation metrics to be added in future versions.

Ethical Considerations

  • Designed to assist, not replace, human developers
  • Encourages learning and code understanding

How to Use

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("teckmill/jaleah-ai-model")
tokenizer = AutoTokenizer.from_pretrained("teckmill/jaleah-ai-model")

def generate_code(prompt, max_length=200):
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
    return tokenizer.decode(output[0], skip_special_tokens=True)