mtasic85's picture
readme
416edd2
metadata
license: mit
pipeline_tag: text-generation
library_name: transformers
language:
  - en
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - eo
  - es
  - et
  - eu
  - fa
  - ff
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gn
  - gu
  - ha
  - he
  - hi
  - hr
  - ht
  - hu
  - hy
  - id
  - ig
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lg
  - li
  - ln
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - ns
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - qu
  - rm
  - ro
  - ru
  - sa
  - si
  - sc
  - sd
  - sk
  - sl
  - so
  - sq
  - sr
  - ss
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tn
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - wo
  - xh
  - yi
  - yo
  - zu
datasets:
  - ontocord/fineweb-permissive-multilingual-2m
  - distily/c4_multilingual_1M
  - data-silence/sumnews
  - xu-song/cc100-samples
  - badrex/llm-emoji-dataset
  - fblgit/simple-math
  - Gusarich/math-expressions-1m
  - neuralwork/arxiver
  - christopher/rosetta-code
  - nampdn-ai/tiny-codes
  - JeanKaddour/minipile
  - NousResearch/hermes-function-calling-v1
  - simplescaling/s1K-1.1
  - mlabonne/open-perfectblend
  - allenai/tulu-3-sft-mixture
  - rombodawg/Everything_Instruct_Multilingual
  - open-r1/OpenR1-Math-220k
  - open-thoughts/OpenThoughts-114k
  - cognitivecomputations/dolphin-r1
  - simplescaling/s1K-1.1
tags:
  - chat
  - core
  - base
  - instruct
  - reason

tangled-alpha-0.3-core

logo

time python -B prepare_core_datasets.py
i=0, min_len=0, max_len=1048576, block_size=2049, chunk_size=16392000, len(dataset)=3134311, len(dataset) * block_size=6422203239
Total number of tokens in the optimized dataset '../core-data-0-0-1048576-2049-8000' is 6422203239

i=1, min_len=2049, max_len=8193, block_size=8193, chunk_size=16386000, len(dataset)=179944, len(dataset) * block_size=1474281192
Total number of tokens in the optimized dataset '../core-data-1-2049-8193-8193-2000' is 1474281192

i=2, min_len=8193, max_len=1048577, block_size=32769, chunk_size=16384500, len(dataset)=48261, len(dataset) * block_size=1581464709
Total number of tokens in the optimized dataset '../core-data-2-8193-1048577-32769-500' is 1581464709
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain-core-model-0.yaml
Seed set to 23
Time to instantiate model: 0.30 seconds.
Total parameters: 185,631,232
Verifying settings ...
Measured TFLOPs: 14094.64
Epoch 1 | iter 128 step 1 | loss train: 11.709, val: n/a | iter time: 341.75 ms (step) remaining time: 3 days, 20:04:36
Epoch 1 | iter 256 step 2 | loss train: 11.716, val: n/a | iter time: 287.55 ms (step) remaining time: 3 days, 3:29:34
Epoch 1 | iter 384 step 3 | loss train: 11.711, val: n/a | iter time: 290.88 ms (step) remaining time: 2 days, 22:16:53
Epoch 1 | iter 512 step 4 | loss train: 11.706, val: n/a | iter time: 291.81 ms (step) remaining time: 2 days, 19:34:34
Epoch 1 | iter 640 step 5 | loss train: 11.696, val: n/a | iter time: 291.37 ms (step) remaining time: 2 days, 17:59:17
Epoch 1 | iter 768 step 6 | loss train: 11.687, val: n/a | iter time: 290.50 ms (step) remaining time: 2 days, 16:55:49
Epoch 1 | iter 896 step 7 | loss train: 11.675, val: n/a | iter time: 291.08 ms (step) remaining time: 2 days, 16:10:38
Epoch 1 | iter 1024 step 8 | loss train: 11.660, val: n/a | iter time: 294.46 ms (step) remaining time: 2 days, 15:36:26
Epoch 1 | iter 1152 step 9 | loss train: 11.640, val: n/a | iter time: 292.26 ms (step) remaining time: 2 days, 15:09:28
Epoch 1 | iter 1280 step 10 | loss train: 11.626, val: n/a | iter time: 289.93 ms (step) remaining time: 2 days, 14:47:34
Epoch 1 | iter 1408 step 11 | loss train: 11.584, val: n/a | iter time: 292.15 ms (step) remaining time: 2 days, 14:29:19
Epoch 1 | iter 1536 step 12 | loss train: 11.526, val: n/a | iter time: 291.24 ms (step) remaining time: 2 days, 14:13:54
Epoch 1 | iter 1664 step 13 | loss train: 11.483, val: n/a | iter time: 291.11 ms (step) remaining time: 2 days, 14:00:48
Epoch 1 | iter 1792 step 14 | loss train: 11.430, val: n/a | iter time: 290.68 ms (step) remaining time: 2 days, 13:49:24
Epoch 1 | iter 1920 step 15 | loss train: 11.392, val: n/a | iter time: 290.37 ms (step) remaining time: 2 days, 13:39:22
Epoch 1 | iter 2048 step 16 | loss train: 11.326, val: n/a | iter time: 290.31 ms (step) remaining time: 2 days, 13:30:34
Epoch 1 | iter 2176 step 17 | loss train: 11.279, val: n/a | iter time: 290.33 ms (step) remaining time: 2 days, 13:22:34
Epoch 1 | iter 2304 step 18 | loss train: 11.222, val: n/a | iter time: 290.50 ms (step) remaining time: 2 days, 13:15:27
Epoch 1 | iter 2432 step 19 | loss train: 11.163, val: n/a | iter time: 290.39 ms (step) remaining time: 2 days, 13:09:11
Epoch 1 | iter 2560 step 20 | loss train: 11.094, val: n/a | iter time: 290.00 ms (step) remaining time: 2 days, 13:03:21
# ...
Epoch 1 | iter 782592 step 6114 | loss train: 3.080, val: 3.255 | iter time: 288.91 ms (step) remaining time: 0:06:14
Epoch 1 | iter 782720 step 6115 | loss train: 3.096, val: 3.255 | iter time: 289.11 ms (step) remaining time: 0:05:39
Epoch 1 | iter 782848 step 6116 | loss train: 2.977, val: 3.255 | iter time: 289.28 ms (step) remaining time: 0:05:04
Epoch 1 | iter 782976 step 6117 | loss train: 3.040, val: 3.255 | iter time: 289.24 ms (step) remaining time: 0:04:29
Epoch 1 | iter 783104 step 6118 | loss train: 3.062, val: 3.255 | iter time: 290.49 ms (step) remaining time: 0:03:54
Epoch 1 | iter 783232 step 6119 | loss train: 3.037, val: 3.255 | iter time: 289.91 ms (step) remaining time: 0:03:19
Epoch 1 | iter 783360 step 6120 | loss train: 3.028, val: 3.255 | iter time: 289.49 ms (step) remaining time: 0:02:44
Epoch 1 | iter 783488 step 6121 | loss train: 3.007, val: 3.255 | iter time: 289.81 ms (step) remaining time: 0:02:09
Epoch 2 | iter 783616 step 6122 | loss train: 3.007, val: 3.255 | iter time: 289.34 ms (step) remaining time: 0:01:34
Epoch 2 | iter 783744 step 6123 | loss train: 3.046, val: 3.255 | iter time: 288.52 ms (step) remaining time: 0:00:59
Epoch 2 | iter 783872 step 6124 | loss train: 3.140, val: 3.255 | iter time: 288.66 ms (step) remaining time: 0:00:24
Validating ...
Final evaluation | val loss: 3.254 | val ppl: 25.904
Saving checkpoint to '../out/pretrain-core-0/final/lit_model.pth'
----------------------------------------
| Performance
| - Total tokens  : 6,422,200,320
| - Training Time : 214857.29 s
| - Tok/sec       : 109674.70 tok/s
| ----------------------------------------
| Memory Usage
| - Memory Used   : 17.30 GB
----------------------------------------

Backup wandb:

mv wandb wandb-pretrain-core

Chat with model:

CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core-0/final
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core-0/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core-0/final'
# ...