|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional |
|
|
|
import diffusers |
|
import torch |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from torch import nn |
|
|
|
from ..efficientvit.models.efficientvit.dc_ae import DCAE, DCAEConfig, dc_ae_f32c32, dc_ae_f64c128, dc_ae_f128c512 |
|
|
|
__all__ = ["create_dc_ae_model_cfg", "DCAE_HF", "AutoencoderKL"] |
|
|
|
|
|
REGISTERED_DCAE_MODEL: dict[str, tuple[Callable, Optional[str]]] = { |
|
"dc-ae-f32c32-in-1.0": (dc_ae_f32c32, None), |
|
"dc-ae-f64c128-in-1.0": (dc_ae_f64c128, None), |
|
"dc-ae-f128c512-in-1.0": (dc_ae_f128c512, None), |
|
|
|
"dc-ae-f32c32-mix-1.0": (dc_ae_f32c32, None), |
|
"dc-ae-f64c128-mix-1.0": (dc_ae_f64c128, None), |
|
"dc-ae-f128c512-mix-1.0": (dc_ae_f128c512, None), |
|
|
|
"dc-ae-f32c32-sana-1.0": (dc_ae_f32c32, None), |
|
} |
|
|
|
|
|
def create_dc_ae_model_cfg(name: str, pretrained_path: Optional[str] = None) -> DCAEConfig: |
|
assert name in REGISTERED_DCAE_MODEL, f"{name} is not supported" |
|
dc_ae_cls, default_pt_path = REGISTERED_DCAE_MODEL[name] |
|
pretrained_path = default_pt_path if pretrained_path is None else pretrained_path |
|
model_cfg = dc_ae_cls(name, pretrained_path) |
|
return model_cfg |
|
|
|
|
|
class DCAE_HF(DCAE, PyTorchModelHubMixin): |
|
def __init__(self, model_name: str): |
|
cfg = create_dc_ae_model_cfg(model_name) |
|
DCAE.__init__(self, cfg) |
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
def __init__(self, model_name: str): |
|
super().__init__() |
|
self.model_name = model_name |
|
if self.model_name in ["stabilityai/sd-vae-ft-ema"]: |
|
self.model = diffusers.models.AutoencoderKL.from_pretrained(self.model_name) |
|
self.spatial_compression_ratio = 8 |
|
elif self.model_name == "flux-vae": |
|
from diffusers import FluxPipeline |
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) |
|
self.model = diffusers.models.AutoencoderKL.from_pretrained(pipe.vae.config._name_or_path) |
|
self.spatial_compression_ratio = 8 |
|
else: |
|
raise ValueError(f"{self.model_name} is not supported for AutoencoderKL") |
|
|
|
def encode(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.model_name in ["stabilityai/sd-vae-ft-ema", "flux-vae"]: |
|
return self.model.encode(x).latent_dist.sample() |
|
else: |
|
raise ValueError(f"{self.model_name} is not supported for AutoencoderKL") |
|
|
|
def decode(self, latent: torch.Tensor) -> torch.Tensor: |
|
if self.model_name in ["stabilityai/sd-vae-ft-ema", "flux-vae"]: |
|
return self.model.decode(latent).sample |
|
else: |
|
raise ValueError(f"{self.model_name} is not supported for AutoencoderKL") |
|
|