# Copyright 2024 MIT Han Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 from typing import Callable, Optional import diffusers import torch from huggingface_hub import PyTorchModelHubMixin from torch import nn from ..efficientvit.models.efficientvit.dc_ae import DCAE, DCAEConfig, dc_ae_f32c32, dc_ae_f64c128, dc_ae_f128c512 __all__ = ["create_dc_ae_model_cfg", "DCAE_HF", "AutoencoderKL"] REGISTERED_DCAE_MODEL: dict[str, tuple[Callable, Optional[str]]] = { "dc-ae-f32c32-in-1.0": (dc_ae_f32c32, None), "dc-ae-f64c128-in-1.0": (dc_ae_f64c128, None), "dc-ae-f128c512-in-1.0": (dc_ae_f128c512, None), ################################################################################################# "dc-ae-f32c32-mix-1.0": (dc_ae_f32c32, None), "dc-ae-f64c128-mix-1.0": (dc_ae_f64c128, None), "dc-ae-f128c512-mix-1.0": (dc_ae_f128c512, None), ################################################################################################# "dc-ae-f32c32-sana-1.0": (dc_ae_f32c32, None), } def create_dc_ae_model_cfg(name: str, pretrained_path: Optional[str] = None) -> DCAEConfig: assert name in REGISTERED_DCAE_MODEL, f"{name} is not supported" dc_ae_cls, default_pt_path = REGISTERED_DCAE_MODEL[name] pretrained_path = default_pt_path if pretrained_path is None else pretrained_path model_cfg = dc_ae_cls(name, pretrained_path) return model_cfg class DCAE_HF(DCAE, PyTorchModelHubMixin): def __init__(self, model_name: str): cfg = create_dc_ae_model_cfg(model_name) DCAE.__init__(self, cfg) class AutoencoderKL(nn.Module): def __init__(self, model_name: str): super().__init__() self.model_name = model_name if self.model_name in ["stabilityai/sd-vae-ft-ema"]: self.model = diffusers.models.AutoencoderKL.from_pretrained(self.model_name) self.spatial_compression_ratio = 8 elif self.model_name == "flux-vae": from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) self.model = diffusers.models.AutoencoderKL.from_pretrained(pipe.vae.config._name_or_path) self.spatial_compression_ratio = 8 else: raise ValueError(f"{self.model_name} is not supported for AutoencoderKL") def encode(self, x: torch.Tensor) -> torch.Tensor: if self.model_name in ["stabilityai/sd-vae-ft-ema", "flux-vae"]: return self.model.encode(x).latent_dist.sample() else: raise ValueError(f"{self.model_name} is not supported for AutoencoderKL") def decode(self, latent: torch.Tensor) -> torch.Tensor: if self.model_name in ["stabilityai/sd-vae-ft-ema", "flux-vae"]: return self.model.decode(latent).sample else: raise ValueError(f"{self.model_name} is not supported for AutoencoderKL")