HORT / app.py
zerchen's picture
init test without models
717b269
raw
history blame
9.64 kB
import os
import sys
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
#import spaces
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from pathlib import Path
import argparse
import json
from torchvision import transforms
from typing import Dict, Optional
from PIL import Image, ImageDraw
from lang_sam import LangSAM
from wilor.models import load_wilor
from wilor.utils import recursive_to
from wilor.datasets.vitdet_dataset import ViTDetDataset
from hort.models import load_hort
from hort.utils.renderer import Renderer, cam_crop_to_new
from hort.utils.img_utils import process_bbox, generate_patch_image, PerspectiveCamera
from ultralytics import YOLO
LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
STEEL_BLUE=(0.2745098, 0.5098039, 0.7058824)
# Download and load checkpoints
wilor_model, wilor_model_cfg = load_wilor(checkpoint_path = './pretrained_models/wilor_final.ckpt' , cfg_path= './pretrained_models/model_config.yaml')
hand_detector = YOLO('./pretrained_models/detector.pt')
# Setup the renderer
renderer = Renderer(wilor_model_cfg, faces=wilor_model.mano.faces)
# Setup the SAM model
sam_model = LangSAM(sam_type="sam2.1_hiera_large")
# Setup the HORT model
hort_model = load_hort("./pretrained_models/hort_final.pth.tar")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
wilor_model = wilor_model.to(device)
hand_detector = hand_detector.to(device)
hort_model = hort_model.to(device)
wilor_model.eval()
hort_model.eval()
image_transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
@spaces.GPU()
def run_model(image, conf, IoU_threshold=0.5):
img_cv2 = image[..., ::-1]
img_pil = Image.fromarray(image)
pred_obj = sam_model.predict([img_pil], ["manipulated object"])
pred_hand = sam_model.predict([img_pil], ["hand"])
bbox_obj = pred_obj[0]["boxes"][0].reshape((-1, 2))
mask_obj = pred_obj[0]["masks"][0]
bbox_hand = pred_hand[0]["boxes"][0].reshape((-1, 2))
mask_hand = pred_hand[0]["masks"][0]
tl = np.min(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
br = np.max(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
box_size = br - tl
bbox = np.concatenate([tl - 10, box_size + 20], axis=0)
ho_bbox = process_bbox(bbox)
detections = hand_detector(img_cv2, conf=conf, verbose=False, iou=IoU_threshold)[0]
bboxes = []
is_right = []
for det in detections:
Bbox = det.boxes.data.cpu().detach().squeeze().numpy()
is_right.append(det.boxes.cls.cpu().detach().squeeze().item())
bboxes.append(Bbox[:4].tolist())
if len(bboxes) == 1:
boxes = np.stack(bboxes)
right = np.stack(is_right)
if not right:
new_x1 = img_cv2.shape[1] - boxes[0][2]
new_x2 = img_cv2.shape[1] - boxes[0][0]
boxes[0][0] = new_x1
boxes[0][2] = new_x2
ho_bbox[0] = img_cv2.shape[1] - (ho_bbox[0] + ho_bbox[2])
img_cv2 = cv2.flip(img_cv2, 1)
right[0] = 1.
crop_img_cv2, _ = generate_patch_image(img_cv2, ho_bbox, (224, 224), 0, 1.0, 0)
dataset = ViTDetDataset(wilor_model_cfg, img_cv2, boxes, right, rescale_factor=2.0)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=False, num_workers=0)
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = wilor_model(batch)
pred_cam = out['pred_cam']
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
scaled_focal_length = wilor_model_cfg.EXTRA.FOCAL_LENGTH / wilor_model_cfg.MODEL.IMAGE_SIZE * 224
pred_cam_t_full = cam_crop_to_new(pred_cam, box_center, box_size, img_size, torch.from_numpy(np.array(ho_bbox, dtype=np.float32))[None, :].to(img_size.device), scaled_focal_length).detach().cpu().numpy()
batch_size = batch['img'].shape[0]
for n in range(batch_size):
verts = out['pred_vertices'][n].detach().cpu().numpy()
joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
palm = (verts[95] + verts[22]) / 2
cam_t = pred_cam_t_full[n]
img_input = image_transform(crop_img_cv2[:, :, ::-1]).unsqueeze(0).cuda()
camera = PerspectiveCamera(5000 / 256 * 224, 5000 / 256 * 224, 112, 112)
cam_intr = camera.intrinsics
metas = dict()
metas["right_hand_verts_3d"] = torch.from_numpy((verts + cam_t)[None]).cuda()
metas["right_hand_joints_3d"] = torch.from_numpy((joints + cam_t)[None]).cuda()
metas["right_hand_palm"] = torch.from_numpy((palm + cam_t)[None]).cuda()
metas["cam_intr"] = torch.from_numpy(cam_intr[None]).cuda()
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
pc_results = hort_model(img_input, metas)
objtrans = pc_results["objtrans"][0].detach().cpu().numpy()
pointclouds_up = pc_results["pointclouds_up"][0].detach().cpu().numpy() * 0.3
reconstructions = {'verts': verts, 'palm': palm, 'objtrans': objtrans, 'objpcs': pointclouds_up, 'cam_t': cam_t, 'right': is_right, 'img_size': 224, 'focal': scaled_focal_length}
return crop_img_cv2[..., ::-1].astype(np.float32) / 255.0, len(detections), reconstructions
else:
return crop_img_cv2[..., ::-1].astype(np.float32) / 255.0, len(detections), None
def render_reconstruction(image, conf, IoU_threshold=0.3):
input_img, num_dets, reconstructions = run_model(image, conf, IoU_threshold=0.5)
if num_dets == 1:
# Render front view
misc_args = dict(mesh_base_color=LIGHT_PURPLE, point_base_color=STEEL_BLUE, scene_bg_color=(1, 1, 1), focal_length=reconstructions['focal'])
cam_view = renderer.render_rgba(reconstructions['verts'], reconstructions['objpcs'] + reconstructions['palm'] + reconstructions['objtrans'], cam_t=reconstructions['cam_t'], render_res=(224, 224), is_right=True, **misc_args)
# Overlay image
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
return input_img_overlay, f'{num_dets} hands detected'
else:
return input_img, f'{num_dets} hands detected'
header = ('''
<div class="embed_hidden" style="text-align: center;">
<h1> <b>HORT</b>: Monocular Hand-held Objects Reconstruction with Transformers</h1>
<h3>
<a href="https://zerchen.github.io/" target="_blank" rel="noopener noreferrer">Zerui Chen</a><sup>1</sup>,
<a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>,
<br>
<a href="https://cshizhe.github.io/" target="_blank" rel="noopener noreferrer">Shizhe Chen</a><sup>1</sup>,
<a href="https://cordeliaschmid.github.io/" target="_blank" rel="noopener noreferrer">Cordelia Schmid</a><sup>1</sup>
</h3>
<h3>
<sup>1</sup>Inria, Ecole normale supérieure, CNRS, PSL Research University;
<sup>2</sup>Imperial College London
</h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2503.21313'><img src='https://img.shields.io/badge/Arxiv-2503.21313-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
<a href='https://arxiv.org/pdf/2503.21313'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a>
<a href='https://zerchen.github.io/projects/hort.html'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
<a href='https://github.com/zerchen/hort'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a>
''')
with gr.Blocks(title="HORT: Monocular Hand-held Objects Reconstruction with Transformers", css=".gradio-container") as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="numpy")
threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
submit = gr.Button("Submit", variant="primary")
with gr.Column():
reconstruction = gr.Image(label="Reconstructions", type="numpy")
hands_detected = gr.Textbox(label="Hands Detected")
submit.click(fn=render_reconstruction, inputs=[input_image, threshold], outputs=[reconstruction, hands_detected])
with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/test1.png'],
['./demo_img/app/assets/test2.png'],
['./demo_img/app/assets/test3.jpg'],
['./demo_img/app/assets/test4.jpeg'],
['./demo_img/app/assets/test5.jpeg']
],
inputs=input_image)
demo.launch(debug=True)