Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,639 Bytes
717b269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import sys
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
#import spaces
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from pathlib import Path
import argparse
import json
from torchvision import transforms
from typing import Dict, Optional
from PIL import Image, ImageDraw
from lang_sam import LangSAM
from wilor.models import load_wilor
from wilor.utils import recursive_to
from wilor.datasets.vitdet_dataset import ViTDetDataset
from hort.models import load_hort
from hort.utils.renderer import Renderer, cam_crop_to_new
from hort.utils.img_utils import process_bbox, generate_patch_image, PerspectiveCamera
from ultralytics import YOLO
LIGHT_PURPLE=(0.25098039, 0.274117647, 0.65882353)
STEEL_BLUE=(0.2745098, 0.5098039, 0.7058824)
# Download and load checkpoints
wilor_model, wilor_model_cfg = load_wilor(checkpoint_path = './pretrained_models/wilor_final.ckpt' , cfg_path= './pretrained_models/model_config.yaml')
hand_detector = YOLO('./pretrained_models/detector.pt')
# Setup the renderer
renderer = Renderer(wilor_model_cfg, faces=wilor_model.mano.faces)
# Setup the SAM model
sam_model = LangSAM(sam_type="sam2.1_hiera_large")
# Setup the HORT model
hort_model = load_hort("./pretrained_models/hort_final.pth.tar")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
wilor_model = wilor_model.to(device)
hand_detector = hand_detector.to(device)
hort_model = hort_model.to(device)
wilor_model.eval()
hort_model.eval()
image_transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
@spaces.GPU()
def run_model(image, conf, IoU_threshold=0.5):
img_cv2 = image[..., ::-1]
img_pil = Image.fromarray(image)
pred_obj = sam_model.predict([img_pil], ["manipulated object"])
pred_hand = sam_model.predict([img_pil], ["hand"])
bbox_obj = pred_obj[0]["boxes"][0].reshape((-1, 2))
mask_obj = pred_obj[0]["masks"][0]
bbox_hand = pred_hand[0]["boxes"][0].reshape((-1, 2))
mask_hand = pred_hand[0]["masks"][0]
tl = np.min(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
br = np.max(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
box_size = br - tl
bbox = np.concatenate([tl - 10, box_size + 20], axis=0)
ho_bbox = process_bbox(bbox)
detections = hand_detector(img_cv2, conf=conf, verbose=False, iou=IoU_threshold)[0]
bboxes = []
is_right = []
for det in detections:
Bbox = det.boxes.data.cpu().detach().squeeze().numpy()
is_right.append(det.boxes.cls.cpu().detach().squeeze().item())
bboxes.append(Bbox[:4].tolist())
if len(bboxes) == 1:
boxes = np.stack(bboxes)
right = np.stack(is_right)
if not right:
new_x1 = img_cv2.shape[1] - boxes[0][2]
new_x2 = img_cv2.shape[1] - boxes[0][0]
boxes[0][0] = new_x1
boxes[0][2] = new_x2
ho_bbox[0] = img_cv2.shape[1] - (ho_bbox[0] + ho_bbox[2])
img_cv2 = cv2.flip(img_cv2, 1)
right[0] = 1.
crop_img_cv2, _ = generate_patch_image(img_cv2, ho_bbox, (224, 224), 0, 1.0, 0)
dataset = ViTDetDataset(wilor_model_cfg, img_cv2, boxes, right, rescale_factor=2.0)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=False, num_workers=0)
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = wilor_model(batch)
pred_cam = out['pred_cam']
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
scaled_focal_length = wilor_model_cfg.EXTRA.FOCAL_LENGTH / wilor_model_cfg.MODEL.IMAGE_SIZE * 224
pred_cam_t_full = cam_crop_to_new(pred_cam, box_center, box_size, img_size, torch.from_numpy(np.array(ho_bbox, dtype=np.float32))[None, :].to(img_size.device), scaled_focal_length).detach().cpu().numpy()
batch_size = batch['img'].shape[0]
for n in range(batch_size):
verts = out['pred_vertices'][n].detach().cpu().numpy()
joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
is_right = batch['right'][n].cpu().numpy()
palm = (verts[95] + verts[22]) / 2
cam_t = pred_cam_t_full[n]
img_input = image_transform(crop_img_cv2[:, :, ::-1]).unsqueeze(0).cuda()
camera = PerspectiveCamera(5000 / 256 * 224, 5000 / 256 * 224, 112, 112)
cam_intr = camera.intrinsics
metas = dict()
metas["right_hand_verts_3d"] = torch.from_numpy((verts + cam_t)[None]).cuda()
metas["right_hand_joints_3d"] = torch.from_numpy((joints + cam_t)[None]).cuda()
metas["right_hand_palm"] = torch.from_numpy((palm + cam_t)[None]).cuda()
metas["cam_intr"] = torch.from_numpy(cam_intr[None]).cuda()
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
pc_results = hort_model(img_input, metas)
objtrans = pc_results["objtrans"][0].detach().cpu().numpy()
pointclouds_up = pc_results["pointclouds_up"][0].detach().cpu().numpy() * 0.3
reconstructions = {'verts': verts, 'palm': palm, 'objtrans': objtrans, 'objpcs': pointclouds_up, 'cam_t': cam_t, 'right': is_right, 'img_size': 224, 'focal': scaled_focal_length}
return crop_img_cv2[..., ::-1].astype(np.float32) / 255.0, len(detections), reconstructions
else:
return crop_img_cv2[..., ::-1].astype(np.float32) / 255.0, len(detections), None
def render_reconstruction(image, conf, IoU_threshold=0.3):
input_img, num_dets, reconstructions = run_model(image, conf, IoU_threshold=0.5)
if num_dets == 1:
# Render front view
misc_args = dict(mesh_base_color=LIGHT_PURPLE, point_base_color=STEEL_BLUE, scene_bg_color=(1, 1, 1), focal_length=reconstructions['focal'])
cam_view = renderer.render_rgba(reconstructions['verts'], reconstructions['objpcs'] + reconstructions['palm'] + reconstructions['objtrans'], cam_t=reconstructions['cam_t'], render_res=(224, 224), is_right=True, **misc_args)
# Overlay image
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
return input_img_overlay, f'{num_dets} hands detected'
else:
return input_img, f'{num_dets} hands detected'
header = ('''
<div class="embed_hidden" style="text-align: center;">
<h1> <b>HORT</b>: Monocular Hand-held Objects Reconstruction with Transformers</h1>
<h3>
<a href="https://zerchen.github.io/" target="_blank" rel="noopener noreferrer">Zerui Chen</a><sup>1</sup>,
<a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>,
<br>
<a href="https://cshizhe.github.io/" target="_blank" rel="noopener noreferrer">Shizhe Chen</a><sup>1</sup>,
<a href="https://cordeliaschmid.github.io/" target="_blank" rel="noopener noreferrer">Cordelia Schmid</a><sup>1</sup>
</h3>
<h3>
<sup>1</sup>Inria, Ecole normale supérieure, CNRS, PSL Research University;
<sup>2</sup>Imperial College London
</h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2503.21313'><img src='https://img.shields.io/badge/Arxiv-2503.21313-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
<a href='https://arxiv.org/pdf/2503.21313'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a>
<a href='https://zerchen.github.io/projects/hort.html'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
<a href='https://github.com/zerchen/hort'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a>
''')
with gr.Blocks(title="HORT: Monocular Hand-held Objects Reconstruction with Transformers", css=".gradio-container") as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="numpy")
threshold = gr.Slider(value=0.3, minimum=0.05, maximum=0.95, step=0.05, label='Detection Confidence Threshold')
submit = gr.Button("Submit", variant="primary")
with gr.Column():
reconstruction = gr.Image(label="Reconstructions", type="numpy")
hands_detected = gr.Textbox(label="Hands Detected")
submit.click(fn=render_reconstruction, inputs=[input_image, threshold], outputs=[reconstruction, hands_detected])
with gr.Row():
example_images = gr.Examples([
['/home/user/app/assets/test1.png'],
['./demo_img/app/assets/test2.png'],
['./demo_img/app/assets/test3.jpg'],
['./demo_img/app/assets/test4.jpeg'],
['./demo_img/app/assets/test5.jpeg']
],
inputs=input_image)
demo.launch(debug=True)
|