Spaces:
Paused
Paused
yusuf
commited on
Commit
·
296208e
1
Parent(s):
d08d609
aeayüz düzenleme 3
Browse files
app.py
CHANGED
@@ -9,11 +9,13 @@ from leffa_utils.densepose_predictor import DensePosePredictor
|
|
9 |
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
10 |
from preprocess.humanparsing.run_parsing import Parsing
|
11 |
from preprocess.openpose.run_openpose import OpenPose
|
|
|
12 |
import gradio as gr
|
13 |
|
14 |
# Download checkpoints
|
15 |
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
16 |
|
|
|
17 |
class LeffaPredictor(object):
|
18 |
def __init__(self):
|
19 |
self.mask_predictor = AutoMasker(
|
@@ -90,6 +92,9 @@ class LeffaPredictor(object):
|
|
90 |
mask = get_agnostic_mask_dc(
|
91 |
model_parse, keypoints, vt_garment_type)
|
92 |
mask = mask.resize((768, 1024))
|
|
|
|
|
|
|
93 |
elif control_type == "pose_transfer":
|
94 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
95 |
|
@@ -139,6 +144,7 @@ class LeffaPredictor(object):
|
|
139 |
seed=seed,
|
140 |
repaint=vt_repaint,)
|
141 |
gen_image = output["generated_image"][0]
|
|
|
142 |
return np.array(gen_image), np.array(mask), np.array(densepose)
|
143 |
|
144 |
def dehasoft(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
|
@@ -147,260 +153,203 @@ class LeffaPredictor(object):
|
|
147 |
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
|
148 |
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
|
149 |
|
|
|
150 |
if __name__ == "__main__":
|
|
|
151 |
leffa_predictor = LeffaPredictor()
|
152 |
example_dir = "./ckpts/examples"
|
153 |
person1_images = list_dir(f"{example_dir}/person1")
|
154 |
person2_images = list_dir(f"{example_dir}/person2")
|
155 |
garment_images = list_dir(f"{example_dir}/garment")
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
)
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
interactive=True,
|
215 |
-
height=400,
|
216 |
-
elem_classes=["image-upload"],
|
217 |
-
)
|
218 |
-
gr.Examples(
|
219 |
-
examples=garment_images,
|
220 |
-
inputs=vt_ref_image,
|
221 |
-
examples_per_page=5,
|
222 |
-
elem_classes=["examples"],
|
223 |
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
height=400,
|
230 |
-
elem_classes=["image-output"],
|
231 |
-
)
|
232 |
-
vt_gen_button = gr.Button(
|
233 |
-
"Generate Image",
|
234 |
-
variant="primary",
|
235 |
-
size="lg",
|
236 |
-
elem_classes=["generate-btn"],
|
237 |
)
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
value="viton_hd",
|
244 |
-
elem_classes=["radio"],
|
245 |
-
)
|
246 |
-
vt_garment_type = gr.Radio(
|
247 |
-
label="Garment Type",
|
248 |
-
choices=[("Upper", "upper_body"), ("Lower", "lower_body"), ("Dress", "dresses")],
|
249 |
-
value="upper_body",
|
250 |
-
elem_classes=["radio"],
|
251 |
-
)
|
252 |
-
vt_ref_acceleration = gr.Checkbox(
|
253 |
-
label="Accelerate Reference UNet",
|
254 |
-
value=False,
|
255 |
-
elem_classes=["checkbox"],
|
256 |
-
)
|
257 |
-
vt_repaint = gr.Checkbox(
|
258 |
-
label="Repaint Mode",
|
259 |
-
value=False,
|
260 |
-
elem_classes=["checkbox"],
|
261 |
-
)
|
262 |
-
vt_step = gr.Slider(
|
263 |
-
label="Inference Steps",
|
264 |
-
minimum=30,
|
265 |
-
maximum=100,
|
266 |
-
step=1,
|
267 |
-
value=30,
|
268 |
-
elem_classes=["slider"],
|
269 |
-
)
|
270 |
-
vt_scale = gr.Slider(
|
271 |
-
label="Guidance Scale",
|
272 |
-
minimum=0.1,
|
273 |
-
maximum=5.0,
|
274 |
-
step=0.1,
|
275 |
-
value=2.5,
|
276 |
-
elem_classes=["slider"],
|
277 |
-
)
|
278 |
-
vt_seed = gr.Number(
|
279 |
-
label="Random Seed",
|
280 |
-
minimum=-1,
|
281 |
-
maximum=2147483647,
|
282 |
-
step=1,
|
283 |
-
value=42,
|
284 |
-
elem_classes=["number"],
|
285 |
-
)
|
286 |
-
|
287 |
-
with gr.Accordion("Debug Info", open=False, elem_classes=["accordion"]):
|
288 |
-
vt_mask = gr.Image(label="Generated Mask", height=200)
|
289 |
-
vt_densepose = gr.Image(label="Generated DensePose", height=200)
|
290 |
-
|
291 |
-
vt_gen_button.click(
|
292 |
-
fn=leffa_predictor.dehasoft,
|
293 |
-
inputs=[vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint],
|
294 |
-
outputs=[vt_gen_image, vt_mask, vt_densepose],
|
295 |
-
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
296 |
-
)
|
297 |
-
|
298 |
-
with gr.TabItem("Pose Transfer", elem_id="pt_tab"):
|
299 |
-
with gr.Row(equal_height=True):
|
300 |
-
with gr.Column(scale=1):
|
301 |
-
gr.Markdown("### Source Person Image", elem_classes=["section-title"])
|
302 |
-
pt_ref_image = gr.Image(
|
303 |
-
sources=["upload"],
|
304 |
-
type="filepath",
|
305 |
-
label="Person Image",
|
306 |
-
interactive=True,
|
307 |
-
height=400,
|
308 |
-
elem_classes=["image-upload"],
|
309 |
)
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
)
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
type="filepath",
|
322 |
-
label="Target Pose Person Image",
|
323 |
-
interactive=True,
|
324 |
-
height=400,
|
325 |
-
elem_classes=["image-upload"],
|
326 |
)
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
)
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
)
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
label="Inference Steps",
|
356 |
-
minimum=30,
|
357 |
-
maximum=100,
|
358 |
-
step=1,
|
359 |
-
value=30,
|
360 |
-
elem_classes=["slider"],
|
361 |
-
)
|
362 |
-
pt_scale = gr.Slider(
|
363 |
-
label="Guidance Scale",
|
364 |
-
minimum=0.1,
|
365 |
-
maximum=5.0,
|
366 |
-
step=0.1,
|
367 |
-
value=2.5,
|
368 |
-
elem_classes=["slider"],
|
369 |
-
)
|
370 |
-
pt_seed = gr.Number(
|
371 |
-
label="Random Seed",
|
372 |
-
minimum=-1,
|
373 |
-
maximum=2147483647,
|
374 |
-
step=1,
|
375 |
-
value=42,
|
376 |
-
elem_classes=["number"],
|
377 |
-
)
|
378 |
-
|
379 |
-
with gr.Accordion("Debug Info", open=False, elem_classes=["accordion"]):
|
380 |
-
pt_mask = gr.Image(label="Generated Mask", height=200)
|
381 |
-
pt_densepose = gr.Image(label="Generated DensePose", height=200)
|
382 |
-
|
383 |
-
pt_gen_button.click(
|
384 |
-
fn=leffa_predictor.leffa_predict_pt,
|
385 |
-
inputs=[pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed],
|
386 |
-
outputs=[pt_gen_image, pt_mask, pt_densepose],
|
387 |
-
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
388 |
-
)
|
389 |
-
|
390 |
-
gr.Markdown(footer_note, elem_classes=["footer"])
|
391 |
-
|
392 |
-
demo.css = """
|
393 |
-
.title { text-align: center; font-size: 2.5em; margin-bottom: 10px; color: #4f46e5; }
|
394 |
-
.description { text-align: center; font-size: 1.2em; margin-bottom: 20px; color: #374151; }
|
395 |
-
.section-title { font-size: 1.5em; color: #6b7280; margin-bottom: 10px; }
|
396 |
-
.image-upload, .image-output { border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); }
|
397 |
-
.generate-btn { transition: all 0.3s ease; }
|
398 |
-
.generate-btn:hover { transform: scale(1.05); }
|
399 |
-
.generate-btn.loading { opacity: 0.7; cursor: not-allowed; }
|
400 |
-
.accordion { background-color: #f9fafb; border-radius: 8px; }
|
401 |
-
.radio, .checkbox, .slider, .number { margin: 5px 0; }
|
402 |
-
.examples { margin-top: 10px; }
|
403 |
-
.footer { text-align: center; margin-top: 20px; font-size: 0.9em; color: #6b7280; }
|
404 |
-
"""
|
405 |
-
|
406 |
-
demo.launch(share=True, server_port=7860, allowed_paths=["./ckpts/examples"])
|
|
|
9 |
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
10 |
from preprocess.humanparsing.run_parsing import Parsing
|
11 |
from preprocess.openpose.run_openpose import OpenPose
|
12 |
+
|
13 |
import gradio as gr
|
14 |
|
15 |
# Download checkpoints
|
16 |
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
17 |
|
18 |
+
|
19 |
class LeffaPredictor(object):
|
20 |
def __init__(self):
|
21 |
self.mask_predictor = AutoMasker(
|
|
|
92 |
mask = get_agnostic_mask_dc(
|
93 |
model_parse, keypoints, vt_garment_type)
|
94 |
mask = mask.resize((768, 1024))
|
95 |
+
# garment_type_hd = "upper" if vt_garment_type in [
|
96 |
+
# "upper_body", "dresses"] else "lower"
|
97 |
+
# mask = self.mask_predictor(src_image, garment_type_hd)["mask"]
|
98 |
elif control_type == "pose_transfer":
|
99 |
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
100 |
|
|
|
144 |
seed=seed,
|
145 |
repaint=vt_repaint,)
|
146 |
gen_image = output["generated_image"][0]
|
147 |
+
# gen_image.save("gen_image.png")
|
148 |
return np.array(gen_image), np.array(mask), np.array(densepose)
|
149 |
|
150 |
def dehasoft(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
|
|
|
153 |
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
|
154 |
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
|
155 |
|
156 |
+
|
157 |
if __name__ == "__main__":
|
158 |
+
|
159 |
leffa_predictor = LeffaPredictor()
|
160 |
example_dir = "./ckpts/examples"
|
161 |
person1_images = list_dir(f"{example_dir}/person1")
|
162 |
person2_images = list_dir(f"{example_dir}/person2")
|
163 |
garment_images = list_dir(f"{example_dir}/garment")
|
164 |
|
165 |
+
title = "## Dehasoft"
|
166 |
+
link = """Dehasoft"""
|
167 |
+
news = """Dehasoft"""
|
168 |
+
description = "Dehasoft"
|
169 |
+
note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD/DressCode, and pose transfer uses DeepFashion."
|
170 |
+
|
171 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
|
172 |
+
gr.Markdown(title)
|
173 |
+
gr.Markdown(link)
|
174 |
+
gr.Markdown(news)
|
175 |
+
gr.Markdown(description)
|
176 |
+
|
177 |
+
with gr.Tab("Control Appearance (Virtual Try-on)"):
|
178 |
+
with gr.Row():
|
179 |
+
with gr.Column():
|
180 |
+
gr.Markdown("#### Person Image")
|
181 |
+
vt_src_image = gr.Image(
|
182 |
+
sources=["upload"],
|
183 |
+
type="filepath",
|
184 |
+
label="Person Image",
|
185 |
+
width=512,
|
186 |
+
height=512,
|
187 |
+
)
|
188 |
+
|
189 |
+
gr.Examples(
|
190 |
+
inputs=vt_src_image,
|
191 |
+
examples_per_page=10,
|
192 |
+
examples=person1_images,
|
193 |
+
)
|
194 |
+
|
195 |
+
with gr.Column():
|
196 |
+
gr.Markdown("#### Garment Image")
|
197 |
+
vt_ref_image = gr.Image(
|
198 |
+
sources=["upload"],
|
199 |
+
type="filepath",
|
200 |
+
label="Garment Image",
|
201 |
+
width=512,
|
202 |
+
height=512,
|
203 |
+
)
|
204 |
+
|
205 |
+
gr.Examples(
|
206 |
+
inputs=vt_ref_image,
|
207 |
+
examples_per_page=10,
|
208 |
+
examples=garment_images,
|
209 |
+
)
|
210 |
+
|
211 |
+
with gr.Column():
|
212 |
+
gr.Markdown("#### Generated Image")
|
213 |
+
vt_gen_image = gr.Image(
|
214 |
+
label="Generated Image",
|
215 |
+
width=512,
|
216 |
+
height=512,
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
vt_gen_button = gr.Button("Generate")
|
221 |
+
|
222 |
+
with gr.Accordion("Advanced Options", open=False):
|
223 |
+
vt_model_type = gr.Radio(
|
224 |
+
label="Model Type",
|
225 |
+
choices=[("VITON-HD (Recommended)", "viton_hd"),
|
226 |
+
("DressCode (Experimental)", "dress_code")],
|
227 |
+
value="viton_hd",
|
228 |
)
|
229 |
|
230 |
+
vt_garment_type = gr.Radio(
|
231 |
+
label="Garment Type",
|
232 |
+
choices=[("Upper", "upper_body"),
|
233 |
+
("Lower", "lower_body"),
|
234 |
+
("Dress", "dresses")],
|
235 |
+
value="upper_body",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
|
238 |
+
vt_ref_acceleration = gr.Radio(
|
239 |
+
label="Accelerate Reference UNet (may slightly reduce performance)",
|
240 |
+
choices=[("True", True), ("False", False)],
|
241 |
+
value=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
)
|
243 |
|
244 |
+
vt_repaint = gr.Radio(
|
245 |
+
label="Repaint Mode",
|
246 |
+
choices=[("True", True), ("False", False)],
|
247 |
+
value=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
)
|
249 |
+
|
250 |
+
vt_step = gr.Number(
|
251 |
+
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
252 |
+
|
253 |
+
vt_scale = gr.Number(
|
254 |
+
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
255 |
+
|
256 |
+
vt_seed = gr.Number(
|
257 |
+
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
258 |
+
|
259 |
+
with gr.Accordion("Debug", open=False):
|
260 |
+
vt_mask = gr.Image(
|
261 |
+
label="Generated Mask",
|
262 |
+
width=256,
|
263 |
+
height=256,
|
264 |
)
|
265 |
|
266 |
+
vt_densepose = gr.Image(
|
267 |
+
label="Generated DensePose",
|
268 |
+
width=256,
|
269 |
+
height=256,
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
+
|
272 |
+
vt_gen_button.click(fn=leffa_predictor.dehasoft, inputs=[
|
273 |
+
vt_src_image, vt_ref_image, vt_ref_acceleration, vt_step, vt_scale, vt_seed, vt_model_type, vt_garment_type, vt_repaint], outputs=[vt_gen_image, vt_mask, vt_densepose])
|
274 |
+
|
275 |
+
with gr.Tab("Control Pose (Pose Transfer)"):
|
276 |
+
with gr.Row():
|
277 |
+
with gr.Column():
|
278 |
+
gr.Markdown("#### Person Image")
|
279 |
+
pt_ref_image = gr.Image(
|
280 |
+
sources=["upload"],
|
281 |
+
type="filepath",
|
282 |
+
label="Person Image",
|
283 |
+
width=512,
|
284 |
+
height=512,
|
285 |
+
)
|
286 |
+
|
287 |
+
gr.Examples(
|
288 |
+
inputs=pt_ref_image,
|
289 |
+
examples_per_page=10,
|
290 |
+
examples=person1_images,
|
291 |
+
)
|
292 |
+
|
293 |
+
with gr.Column():
|
294 |
+
gr.Markdown("#### Target Pose Person Image")
|
295 |
+
pt_src_image = gr.Image(
|
296 |
+
sources=["upload"],
|
297 |
+
type="filepath",
|
298 |
+
label="Target Pose Person Image",
|
299 |
+
width=512,
|
300 |
+
height=512,
|
301 |
+
)
|
302 |
+
|
303 |
+
gr.Examples(
|
304 |
+
inputs=pt_src_image,
|
305 |
+
examples_per_page=10,
|
306 |
+
examples=person2_images,
|
307 |
+
)
|
308 |
+
|
309 |
+
with gr.Column():
|
310 |
+
gr.Markdown("#### Generated Image")
|
311 |
+
pt_gen_image = gr.Image(
|
312 |
+
label="Generated Image",
|
313 |
+
width=512,
|
314 |
+
height=512,
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
pose_transfer_gen_button = gr.Button("Generate")
|
319 |
+
|
320 |
+
with gr.Accordion("Advanced Options", open=False):
|
321 |
+
pt_ref_acceleration = gr.Radio(
|
322 |
+
label="Accelerate Reference UNet",
|
323 |
+
choices=[("True", True), ("False", False)],
|
324 |
+
value=False,
|
325 |
)
|
326 |
|
327 |
+
pt_step = gr.Number(
|
328 |
+
label="Inference Steps", minimum=30, maximum=100, step=1, value=30)
|
329 |
+
|
330 |
+
pt_scale = gr.Number(
|
331 |
+
label="Guidance Scale", minimum=0.1, maximum=5.0, step=0.1, value=2.5)
|
332 |
+
|
333 |
+
pt_seed = gr.Number(
|
334 |
+
label="Random Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
335 |
+
|
336 |
+
with gr.Accordion("Debug", open=False):
|
337 |
+
pt_mask = gr.Image(
|
338 |
+
label="Generated Mask",
|
339 |
+
width=256,
|
340 |
+
height=256,
|
341 |
)
|
342 |
+
|
343 |
+
pt_densepose = gr.Image(
|
344 |
+
label="Generated DensePose",
|
345 |
+
width=256,
|
346 |
+
height=256,
|
347 |
)
|
348 |
|
349 |
+
pose_transfer_gen_button.click(fn=leffa_predictor.leffa_predict_pt, inputs=[
|
350 |
+
pt_src_image, pt_ref_image, pt_ref_acceleration, pt_step, pt_scale, pt_seed], outputs=[pt_gen_image, pt_mask, pt_densepose])
|
351 |
+
|
352 |
+
gr.Markdown(note)
|
353 |
+
|
354 |
+
demo.launch(share=True, server_port=7860,
|
355 |
+
allowed_paths=["./ckpts/examples"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|