Spaces:
Paused
Paused
yusuf
commited on
Commit
·
d08d609
1
Parent(s):
5e53a08
aeayüz düzenleme 2
Browse files
app.py
CHANGED
@@ -9,9 +9,144 @@ from leffa_utils.densepose_predictor import DensePosePredictor
|
|
9 |
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
10 |
from preprocess.humanparsing.run_parsing import Parsing
|
11 |
from preprocess.openpose.run_openpose import OpenPose
|
12 |
-
|
13 |
import gradio as gr
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if __name__ == "__main__":
|
16 |
leffa_predictor = LeffaPredictor()
|
17 |
example_dir = "./ckpts/examples"
|
@@ -47,13 +182,10 @@ if __name__ == "__main__":
|
|
47 |
"""
|
48 |
|
49 |
with gr.Blocks(theme=theme, title="Dehasoft AI Studio") as demo:
|
50 |
-
# Başlık ve Açıklama
|
51 |
gr.Markdown(title, elem_classes=["title"])
|
52 |
gr.Markdown(description, elem_classes=["description"])
|
53 |
|
54 |
-
# Sekmeler
|
55 |
with gr.Tabs(elem_classes=["tabs"]):
|
56 |
-
# Virtual Try-on Sekmesi
|
57 |
with gr.TabItem("Virtual Try-On", elem_id="vt_tab"):
|
58 |
with gr.Row(equal_height=True):
|
59 |
with gr.Column(scale=1):
|
@@ -163,7 +295,6 @@ if __name__ == "__main__":
|
|
163 |
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
164 |
)
|
165 |
|
166 |
-
# Pose Transfer Sekmesi
|
167 |
with gr.TabItem("Pose Transfer", elem_id="pt_tab"):
|
168 |
with gr.Row(equal_height=True):
|
169 |
with gr.Column(scale=1):
|
@@ -256,10 +387,8 @@ if __name__ == "__main__":
|
|
256 |
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
257 |
)
|
258 |
|
259 |
-
# Altbilgi
|
260 |
gr.Markdown(footer_note, elem_classes=["footer"])
|
261 |
|
262 |
-
# Özel CSS
|
263 |
demo.css = """
|
264 |
.title { text-align: center; font-size: 2.5em; margin-bottom: 10px; color: #4f46e5; }
|
265 |
.description { text-align: center; font-size: 1.2em; margin-bottom: 20px; color: #374151; }
|
|
|
9 |
from leffa_utils.utils import resize_and_center, list_dir, get_agnostic_mask_hd, get_agnostic_mask_dc
|
10 |
from preprocess.humanparsing.run_parsing import Parsing
|
11 |
from preprocess.openpose.run_openpose import OpenPose
|
|
|
12 |
import gradio as gr
|
13 |
|
14 |
+
# Download checkpoints
|
15 |
+
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
16 |
+
|
17 |
+
class LeffaPredictor(object):
|
18 |
+
def __init__(self):
|
19 |
+
self.mask_predictor = AutoMasker(
|
20 |
+
densepose_path="./ckpts/densepose",
|
21 |
+
schp_path="./ckpts/schp",
|
22 |
+
)
|
23 |
+
|
24 |
+
self.densepose_predictor = DensePosePredictor(
|
25 |
+
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
26 |
+
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
27 |
+
)
|
28 |
+
|
29 |
+
self.parsing = Parsing(
|
30 |
+
atr_path="./ckpts/humanparsing/parsing_atr.onnx",
|
31 |
+
lip_path="./ckpts/humanparsing/parsing_lip.onnx",
|
32 |
+
)
|
33 |
+
|
34 |
+
self.openpose = OpenPose(
|
35 |
+
body_model_path="./ckpts/openpose/body_pose_model.pth",
|
36 |
+
)
|
37 |
+
|
38 |
+
vt_model_hd = LeffaModel(
|
39 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
40 |
+
pretrained_model="./ckpts/virtual_tryon.pth",
|
41 |
+
dtype="float16",
|
42 |
+
)
|
43 |
+
self.vt_inference_hd = LeffaInference(model=vt_model_hd)
|
44 |
+
|
45 |
+
vt_model_dc = LeffaModel(
|
46 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
47 |
+
pretrained_model="./ckpts/virtual_tryon_dc.pth",
|
48 |
+
dtype="float16",
|
49 |
+
)
|
50 |
+
self.vt_inference_dc = LeffaInference(model=vt_model_dc)
|
51 |
+
|
52 |
+
pt_model = LeffaModel(
|
53 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
54 |
+
pretrained_model="./ckpts/pose_transfer.pth",
|
55 |
+
dtype="float16",
|
56 |
+
)
|
57 |
+
self.pt_inference = LeffaInference(model=pt_model)
|
58 |
+
|
59 |
+
def leffa_predict(
|
60 |
+
self,
|
61 |
+
src_image_path,
|
62 |
+
ref_image_path,
|
63 |
+
control_type,
|
64 |
+
ref_acceleration=False,
|
65 |
+
step=50,
|
66 |
+
scale=2.5,
|
67 |
+
seed=42,
|
68 |
+
vt_model_type="viton_hd",
|
69 |
+
vt_garment_type="upper_body",
|
70 |
+
vt_repaint=False
|
71 |
+
):
|
72 |
+
assert control_type in [
|
73 |
+
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
74 |
+
src_image = Image.open(src_image_path)
|
75 |
+
ref_image = Image.open(ref_image_path)
|
76 |
+
src_image = resize_and_center(src_image, 768, 1024)
|
77 |
+
ref_image = resize_and_center(ref_image, 768, 1024)
|
78 |
+
|
79 |
+
src_image_array = np.array(src_image)
|
80 |
+
|
81 |
+
# Mask
|
82 |
+
if control_type == "virtual_tryon":
|
83 |
+
src_image = src_image.convert("RGB")
|
84 |
+
model_parse, _ = self.parsing(src_image.resize((384, 512)))
|
85 |
+
keypoints = self.openpose(src_image.resize((384, 512)))
|
86 |
+
if vt_model_type == "viton_hd":
|
87 |
+
mask = get_agnostic_mask_hd(
|
88 |
+
model_parse, keypoints, vt_garment_type)
|
89 |
+
elif vt_model_type == "dress_code":
|
90 |
+
mask = get_agnostic_mask_dc(
|
91 |
+
model_parse, keypoints, vt_garment_type)
|
92 |
+
mask = mask.resize((768, 1024))
|
93 |
+
elif control_type == "pose_transfer":
|
94 |
+
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
95 |
+
|
96 |
+
# DensePose
|
97 |
+
if control_type == "virtual_tryon":
|
98 |
+
if vt_model_type == "viton_hd":
|
99 |
+
src_image_seg_array = self.densepose_predictor.predict_seg(
|
100 |
+
src_image_array)[:, :, ::-1]
|
101 |
+
src_image_seg = Image.fromarray(src_image_seg_array)
|
102 |
+
densepose = src_image_seg
|
103 |
+
elif vt_model_type == "dress_code":
|
104 |
+
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
105 |
+
src_image_array)
|
106 |
+
src_image_seg_array = src_image_iuv_array[:, :, 0:1]
|
107 |
+
src_image_seg_array = np.concatenate(
|
108 |
+
[src_image_seg_array] * 3, axis=-1)
|
109 |
+
src_image_seg = Image.fromarray(src_image_seg_array)
|
110 |
+
densepose = src_image_seg
|
111 |
+
elif control_type == "pose_transfer":
|
112 |
+
src_image_iuv_array = self.densepose_predictor.predict_iuv(
|
113 |
+
src_image_array)[:, :, ::-1]
|
114 |
+
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
115 |
+
densepose = src_image_iuv
|
116 |
+
|
117 |
+
# Leffa
|
118 |
+
transform = LeffaTransform()
|
119 |
+
|
120 |
+
data = {
|
121 |
+
"src_image": [src_image],
|
122 |
+
"ref_image": [ref_image],
|
123 |
+
"mask": [mask],
|
124 |
+
"densepose": [densepose],
|
125 |
+
}
|
126 |
+
data = transform(data)
|
127 |
+
if control_type == "virtual_tryon":
|
128 |
+
if vt_model_type == "viton_hd":
|
129 |
+
inference = self.vt_inference_hd
|
130 |
+
elif vt_model_type == "dress_code":
|
131 |
+
inference = self.vt_inference_dc
|
132 |
+
elif control_type == "pose_transfer":
|
133 |
+
inference = self.pt_inference
|
134 |
+
output = inference(
|
135 |
+
data,
|
136 |
+
ref_acceleration=ref_acceleration,
|
137 |
+
num_inference_steps=step,
|
138 |
+
guidance_scale=scale,
|
139 |
+
seed=seed,
|
140 |
+
repaint=vt_repaint,)
|
141 |
+
gen_image = output["generated_image"][0]
|
142 |
+
return np.array(gen_image), np.array(mask), np.array(densepose)
|
143 |
+
|
144 |
+
def dehasoft(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint):
|
145 |
+
return self.leffa_predict(src_image_path, ref_image_path, "virtual_tryon", ref_acceleration, step, scale, seed, vt_model_type, vt_garment_type, vt_repaint)
|
146 |
+
|
147 |
+
def leffa_predict_pt(self, src_image_path, ref_image_path, ref_acceleration, step, scale, seed):
|
148 |
+
return self.leffa_predict(src_image_path, ref_image_path, "pose_transfer", ref_acceleration, step, scale, seed)
|
149 |
+
|
150 |
if __name__ == "__main__":
|
151 |
leffa_predictor = LeffaPredictor()
|
152 |
example_dir = "./ckpts/examples"
|
|
|
182 |
"""
|
183 |
|
184 |
with gr.Blocks(theme=theme, title="Dehasoft AI Studio") as demo:
|
|
|
185 |
gr.Markdown(title, elem_classes=["title"])
|
186 |
gr.Markdown(description, elem_classes=["description"])
|
187 |
|
|
|
188 |
with gr.Tabs(elem_classes=["tabs"]):
|
|
|
189 |
with gr.TabItem("Virtual Try-On", elem_id="vt_tab"):
|
190 |
with gr.Row(equal_height=True):
|
191 |
with gr.Column(scale=1):
|
|
|
295 |
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
296 |
)
|
297 |
|
|
|
298 |
with gr.TabItem("Pose Transfer", elem_id="pt_tab"):
|
299 |
with gr.Row(equal_height=True):
|
300 |
with gr.Column(scale=1):
|
|
|
387 |
_js="() => { document.querySelector('.generate-btn').classList.add('loading'); setTimeout(() => document.querySelector('.generate-btn').classList.remove('loading'), 5000); }"
|
388 |
)
|
389 |
|
|
|
390 |
gr.Markdown(footer_note, elem_classes=["footer"])
|
391 |
|
|
|
392 |
demo.css = """
|
393 |
.title { text-align: center; font-size: 2.5em; margin-bottom: 10px; color: #4f46e5; }
|
394 |
.description { text-align: center; font-size: 1.2em; margin-bottom: 20px; color: #374151; }
|