Spaces:
Runtime error
Runtime error
import warnings | |
warnings.filterwarnings("ignore") | |
from models.vit import VisionTransformer, interpolate_pos_embed | |
from models.med import BertConfig, BertLMHeadModel | |
from transformers import BertTokenizer | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import os | |
from urllib.parse import urlparse | |
from timm.models.hub import download_cached_file | |
import pdb | |
class CapModel(nn.Module): | |
def __init__(self, | |
med_config = 'SMILE/BLIP/configs/med_config.json', | |
image_size = 224, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
prompt = 'a picture of ', | |
): | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_decoder = BertLMHeadModel(config=med_config) | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 | |
self.vocab_emb = None | |
def forward(self, image, caption): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) | |
text.input_ids[:,0] = self.tokenizer.bos_token_id | |
# # First-token Shifting: Change the first token 'word' to '##word' | |
# for i in range(text.input_ids.size(0)): | |
# text.input_ids[i, self.prompt_length] = self.tokenizer.convert_tokens_to_ids('##' + self.tokenizer.convert_ids_to_tokens(text.input_ids[i,self.prompt_length].item())) | |
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100) | |
decoder_targets[:,:self.prompt_length] = -100 | |
decoder_output = self.text_decoder(text.input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
labels = decoder_targets, | |
return_dict = True, | |
) | |
# # mle | |
# mle_loss = decoder_output.loss | |
label = text.input_ids[:, self.prompt_length:].contiguous() | |
bs = text.input_ids.size(0) | |
N = label.size(1) | |
vs = self.text_decoder.config.vocab_size | |
logits = decoder_output.logits[:, self.prompt_length-1:-1] | |
# smile | |
mask = torch.zeros(bs, vs).to(logits.device).scatter_(1, label, True) | |
mask[:, 0] = 0 | |
mask = mask.unsqueeze(1).expand(-1, N, -1).clone() | |
mask[:, 0, :] = 1 # mle on first token | |
selected_logits = logits.masked_fill(mask == 0, -1e9) | |
smile_loss = F.cross_entropy(selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean') | |
# # reverse smile | |
# reverse_mask = torch.ones(bs, vs).to(logits.device).scatter_(1, label, False) | |
# reverse_mask = reverse_mask.unsqueeze(1).expand(-1, N, -1).clone() | |
# reverse_mask.scatter_(2, label.unsqueeze(-1), 1) | |
# reverse_mask[:, 0, :] = 1 # mle on first token | |
# reverse_selected_logits = logits.masked_fill(reverse_mask == 0, -1e9) | |
# reverse_smile_loss = F.cross_entropy(reverse_selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean') | |
# # random sample (efficient implementation) | |
# sample_num = 10 | |
# rand_indices = torch.randint(vs, (bs, N, sample_num)).to(label.device) | |
# rand_indices_with_label = torch.cat((rand_indices, label.unsqueeze(2)), dim=2) # (bs, N, sample_num + 1) | |
# batch_indices = torch.arange(bs)[:, None, None].expand(bs, N, sample_num + 1) | |
# seq_indices = torch.arange(N)[None, :, None].expand(bs, N, sample_num + 1) | |
# random_mask = torch.zeros(bs, N, vs).to(label.device) | |
# random_mask[batch_indices, seq_indices, rand_indices_with_label] = 1 | |
# random_mask[:, :, 0] = 0 | |
# random_selected_logits = logits.masked_fill(mask == 0, -1e9) | |
# random_smile_loss = F.cross_entropy(random_selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean') | |
loss = smile_loss | |
# loss = 0.5 * reverse_smile_loss + 0.5 * mle_loss | |
return loss | |
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0): | |
image_embeds = self.visual_encoder(image) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts} | |
input_ids[:,0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
#nucleus sampling | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs) | |
else: | |
#beam search | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt):]) | |
# caption = self.tokenizer.decode(output[4:], skip_special_tokens=True) | |
# captions.append(caption) | |
return captions | |
def caption_model(pretrained='',**kwargs): | |
model = CapModel(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
return model | |
def init_tokenizer(): | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) | |
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) | |
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
return tokenizer | |
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): | |
assert vit in ['base', 'large'], "vit parameter must be base or large" | |
if vit=='base': | |
vision_width = 768 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, | |
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0 or drop_path_rate | |
) | |
elif vit=='large': | |
vision_width = 1024 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, | |
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0.1 or drop_path_rate | |
) | |
return visual_encoder, vision_width | |
def is_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def load_checkpoint(model,url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location='cpu') | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location='cpu') | |
else: | |
raise RuntimeError('checkpoint url or path is invalid') | |
state_dict = checkpoint['model'] | |
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) | |
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): | |
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], | |
model.visual_encoder_m) | |
for key in model.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape!=model.state_dict()[key].shape: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict, strict=False) | |
print('load checkpoint from %s'%url_or_filename) | |
return model,msg |