File size: 10,241 Bytes
ca19ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import warnings
warnings.filterwarnings("ignore")

from models.vit import VisionTransformer, interpolate_pos_embed
from models.med import BertConfig, BertLMHeadModel
from transformers import BertTokenizer


import torch
from torch import nn
import torch.nn.functional as F

import os
from urllib.parse import urlparse
from timm.models.hub import download_cached_file

import pdb

class CapModel(nn.Module):
    def __init__(self,                 
                 med_config = 'SMILE/BLIP/configs/med_config.json',  
                 image_size = 224,
                 vit = 'base',
                 vit_grad_ckpt = False,
                 vit_ckpt_layer = 0,
                 prompt = 'a picture of ',
                 ):

        super().__init__()
        
        self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer)
        self.tokenizer = init_tokenizer()   
        med_config = BertConfig.from_json_file(med_config)
        med_config.encoder_width = vision_width
        self.text_decoder = BertLMHeadModel(config=med_config)

        self.prompt = prompt
        self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1

        self.vocab_emb = None

    def forward(self, image, caption):
        
        image_embeds = self.visual_encoder(image) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
        
        text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) 
        
        text.input_ids[:,0] = self.tokenizer.bos_token_id

        # # First-token Shifting: Change the first token 'word' to '##word'
        # for i in range(text.input_ids.size(0)):
        #     text.input_ids[i, self.prompt_length] = self.tokenizer.convert_tokens_to_ids('##' + self.tokenizer.convert_ids_to_tokens(text.input_ids[i,self.prompt_length].item()))

        decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)         
        decoder_targets[:,:self.prompt_length] = -100

        decoder_output = self.text_decoder(text.input_ids, 
                                           attention_mask = text.attention_mask, 
                                           encoder_hidden_states = image_embeds,
                                           encoder_attention_mask = image_atts,                  
                                           labels = decoder_targets,
                                           return_dict = True,   
                                          )
        
        # # mle
        # mle_loss = decoder_output.loss
        
        label = text.input_ids[:, self.prompt_length:].contiguous()
        bs = text.input_ids.size(0)
        N = label.size(1)
        vs = self.text_decoder.config.vocab_size
        logits = decoder_output.logits[:, self.prompt_length-1:-1]
        
        # smile
        mask = torch.zeros(bs, vs).to(logits.device).scatter_(1, label, True)
        mask[:, 0] = 0
        mask = mask.unsqueeze(1).expand(-1, N, -1).clone()
        mask[:, 0, :] = 1 # mle on first token
        selected_logits = logits.masked_fill(mask == 0, -1e9)
        smile_loss = F.cross_entropy(selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean')

        # # reverse smile
        # reverse_mask = torch.ones(bs, vs).to(logits.device).scatter_(1, label, False)
        # reverse_mask = reverse_mask.unsqueeze(1).expand(-1, N, -1).clone()
        # reverse_mask.scatter_(2, label.unsqueeze(-1), 1)
        # reverse_mask[:, 0, :] = 1 # mle on first token
        # reverse_selected_logits = logits.masked_fill(reverse_mask == 0, -1e9)
        # reverse_smile_loss = F.cross_entropy(reverse_selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean')

        # # random sample (efficient implementation)
        # sample_num = 10
        # rand_indices = torch.randint(vs, (bs, N, sample_num)).to(label.device)
        # rand_indices_with_label = torch.cat((rand_indices, label.unsqueeze(2)), dim=2) # (bs, N, sample_num + 1)
        # batch_indices = torch.arange(bs)[:, None, None].expand(bs, N, sample_num + 1)
        # seq_indices = torch.arange(N)[None, :, None].expand(bs, N, sample_num + 1)
        # random_mask = torch.zeros(bs, N, vs).to(label.device)
        # random_mask[batch_indices, seq_indices, rand_indices_with_label] = 1
        # random_mask[:, :, 0] = 0
        # random_selected_logits = logits.masked_fill(mask == 0, -1e9)
        # random_smile_loss = F.cross_entropy(random_selected_logits.view(-1, vs), label.view(-1), ignore_index=0, reduction='mean')

        loss = smile_loss
        # loss = 0.5 * reverse_smile_loss + 0.5 * mle_loss

        return loss
        
    def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
        image_embeds = self.visual_encoder(image)

        if not sample:
            image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
        
        prompt = [self.prompt] * image.size(0)
        input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) 
        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
        model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
        
        input_ids[:,0] = self.tokenizer.bos_token_id
        input_ids = input_ids[:, :-1] 

        if sample:
            #nucleus sampling
            outputs = self.text_decoder.generate(input_ids=input_ids,
                                                  max_length=max_length,
                                                  min_length=min_length,
                                                  do_sample=True,
                                                  top_p=top_p,
                                                  num_return_sequences=1,
                                                  eos_token_id=self.tokenizer.sep_token_id,
                                                  pad_token_id=self.tokenizer.pad_token_id, 
                                                  repetition_penalty=1.1,                                            
                                                  **model_kwargs)
        else:
            #beam search
            outputs = self.text_decoder.generate(input_ids=input_ids,
                                                  max_length=max_length,
                                                  min_length=min_length,
                                                  num_beams=num_beams,
                                                  eos_token_id=self.tokenizer.sep_token_id,
                                                  pad_token_id=self.tokenizer.pad_token_id,     
                                                  repetition_penalty=repetition_penalty,
                                                  **model_kwargs)
            
        captions = []    
        for output in outputs:
            caption = self.tokenizer.decode(output, skip_special_tokens=True)    
            captions.append(caption[len(self.prompt):])
            # caption = self.tokenizer.decode(output[4:], skip_special_tokens=True)
            # captions.append(caption)
        return captions
    

def caption_model(pretrained='',**kwargs):
    model = CapModel(**kwargs)
    if pretrained:
        model,msg = load_checkpoint(model,pretrained)
    return model

def init_tokenizer():
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    tokenizer.add_special_tokens({'bos_token':'[DEC]'})
    tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})       
    tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]  
    return tokenizer

def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
        
    assert vit in ['base', 'large'], "vit parameter must be base or large"
    if vit=='base':
        vision_width = 768
        visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, 
                                           num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
                                           drop_path_rate=0 or drop_path_rate
                                          )   
    elif vit=='large':
        vision_width = 1024
        visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, 
                                           num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
                                           drop_path_rate=0.1 or drop_path_rate
                                          )   
    return visual_encoder, vision_width

def is_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")

def load_checkpoint(model,url_or_filename):
    if is_url(url_or_filename):
        cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
        checkpoint = torch.load(cached_file, map_location='cpu') 
    elif os.path.isfile(url_or_filename):        
        checkpoint = torch.load(url_or_filename, map_location='cpu') 
    else:
        raise RuntimeError('checkpoint url or path is invalid')
        
    state_dict = checkpoint['model']
    
    state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
    if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
        state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
                                                                         model.visual_encoder_m)    

    for key in model.state_dict().keys():
        if key in state_dict.keys():
            if state_dict[key].shape!=model.state_dict()[key].shape:
                del state_dict[key]
    
    msg = model.load_state_dict(state_dict, strict=False)
    print('load checkpoint from %s'%url_or_filename)  
    return model,msg