Spaces:
Running
Running
import math | |
import cv2 | |
import munkres | |
import numpy as np | |
import torch | |
# solution proposed in https://github.com/pytorch/pytorch/issues/229#issuecomment-299424875 | |
def flip_tensor(tensor, dim=0): | |
""" | |
flip the tensor on the dimension dim | |
""" | |
inv_idx = torch.arange(tensor.shape[dim] - 1, -1, -1).to(tensor.device) | |
return tensor.index_select(dim, inv_idx) | |
# | |
# derived from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch | |
def flip_back(output_flipped, matched_parts): | |
assert len(output_flipped.shape) == 4, 'output_flipped has to be [batch_size, num_joints, height, width]' | |
output_flipped = flip_tensor(output_flipped, dim=-1) | |
for pair in matched_parts: | |
tmp = output_flipped[:, pair[0]].clone() | |
output_flipped[:, pair[0]] = output_flipped[:, pair[1]] | |
output_flipped[:, pair[1]] = tmp | |
return output_flipped | |
def fliplr_joints(joints, joints_vis, width, matched_parts): | |
# Flip horizontal | |
joints[:, 0] = width - joints[:, 0] - 1 | |
# Change left-right parts | |
for pair in matched_parts: | |
joints[pair[0], :], joints[pair[1], :] = \ | |
joints[pair[1], :], joints[pair[0], :].copy() | |
joints_vis[pair[0], :], joints_vis[pair[1], :] = \ | |
joints_vis[pair[1], :], joints_vis[pair[0], :].copy() | |
return joints * joints_vis, joints_vis | |
def get_affine_transform(center, scale, pixel_std, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): | |
if not isinstance(scale, np.ndarray) and not isinstance(scale, list): | |
print(scale) | |
scale = np.array([scale, scale]) | |
scale_tmp = scale * 1.0 * pixel_std # It was scale_tmp = scale * 200.0 | |
src_w = scale_tmp[0] | |
dst_w = output_size[0] | |
dst_h = output_size[1] | |
rot_rad = np.pi * rot / 180 | |
src_dir = get_dir([0, src_w * -0.5], rot_rad) | |
dst_dir = np.array([0, dst_w * -0.5], np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
dst = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = center + scale_tmp * shift | |
src[1, :] = center + src_dir + scale_tmp * shift | |
dst[0, :] = [dst_w * 0.5, dst_h * 0.5] | |
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir | |
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
if inv: | |
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
else: | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
return trans | |
def affine_transform(pt, t): | |
new_pt = np.array([pt[0], pt[1], 1.]).T | |
new_pt = np.dot(t, new_pt) | |
return new_pt[:2] | |
def get_3rd_point(a, b): | |
direct = a - b | |
return b + np.array([-direct[1], direct[0]], dtype=np.float32) | |
def get_dir(src_point, rot_rad): | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
src_result = [0, 0] | |
src_result[0] = src_point[0] * cs - src_point[1] * sn | |
src_result[1] = src_point[0] * sn + src_point[1] * cs | |
return src_result | |