Maksym-Lysyi's picture
initial commit
e3641b1
raw
history blame contribute delete
2.98 kB
import math
import cv2
import munkres
import numpy as np
import torch
# solution proposed in https://github.com/pytorch/pytorch/issues/229#issuecomment-299424875
def flip_tensor(tensor, dim=0):
"""
flip the tensor on the dimension dim
"""
inv_idx = torch.arange(tensor.shape[dim] - 1, -1, -1).to(tensor.device)
return tensor.index_select(dim, inv_idx)
#
# derived from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
def flip_back(output_flipped, matched_parts):
assert len(output_flipped.shape) == 4, 'output_flipped has to be [batch_size, num_joints, height, width]'
output_flipped = flip_tensor(output_flipped, dim=-1)
for pair in matched_parts:
tmp = output_flipped[:, pair[0]].clone()
output_flipped[:, pair[0]] = output_flipped[:, pair[1]]
output_flipped[:, pair[1]] = tmp
return output_flipped
def fliplr_joints(joints, joints_vis, width, matched_parts):
# Flip horizontal
joints[:, 0] = width - joints[:, 0] - 1
# Change left-right parts
for pair in matched_parts:
joints[pair[0], :], joints[pair[1], :] = \
joints[pair[1], :], joints[pair[0], :].copy()
joints_vis[pair[0], :], joints_vis[pair[1], :] = \
joints_vis[pair[1], :], joints_vis[pair[0], :].copy()
return joints * joints_vis, joints_vis
def get_affine_transform(center, scale, pixel_std, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 1.0 * pixel_std # It was scale_tmp = scale * 200.0
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result