import math import cv2 import munkres import numpy as np import torch # solution proposed in https://github.com/pytorch/pytorch/issues/229#issuecomment-299424875 def flip_tensor(tensor, dim=0): """ flip the tensor on the dimension dim """ inv_idx = torch.arange(tensor.shape[dim] - 1, -1, -1).to(tensor.device) return tensor.index_select(dim, inv_idx) # # derived from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch def flip_back(output_flipped, matched_parts): assert len(output_flipped.shape) == 4, 'output_flipped has to be [batch_size, num_joints, height, width]' output_flipped = flip_tensor(output_flipped, dim=-1) for pair in matched_parts: tmp = output_flipped[:, pair[0]].clone() output_flipped[:, pair[0]] = output_flipped[:, pair[1]] output_flipped[:, pair[1]] = tmp return output_flipped def fliplr_joints(joints, joints_vis, width, matched_parts): # Flip horizontal joints[:, 0] = width - joints[:, 0] - 1 # Change left-right parts for pair in matched_parts: joints[pair[0], :], joints[pair[1], :] = \ joints[pair[1], :], joints[pair[0], :].copy() joints_vis[pair[0], :], joints_vis[pair[1], :] = \ joints_vis[pair[1], :], joints_vis[pair[0], :].copy() return joints * joints_vis, joints_vis def get_affine_transform(center, scale, pixel_std, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 1.0 * pixel_std # It was scale_tmp = scale * 200.0 src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result