3DEnhancer / src /diffusion /model /nets /pixart_controlnet.py
Luo-Yihang's picture
initial code
4c35d22
raw
history blame
17 kB
import re
import torch
import torch.nn as nn
from copy import deepcopy
from torch import Tensor
from torch.nn import Module, Linear, init
from typing import Any, Mapping
from diffusion.model.nets import PixArtMSBlock, PixArtMS, PixArt, MVEncoder
from diffusion.model.nets.PixArt import get_2d_sincos_pos_embed
from diffusion.model.utils import auto_grad_checkpoint
# The implementation of ControlNet-Half architrecture
# https://github.com/lllyasviel/ControlNet/discussions/188
class ControlT2IDitBlockHalf(Module):
def __init__(self, base_block: PixArtMSBlock, block_index: 0, zero_init=True, base_size=None) -> None:
super().__init__()
self.copied_block = deepcopy(base_block)
self.block_index = block_index
for p in self.copied_block.parameters():
p.requires_grad_(True)
self.copied_block.load_state_dict(base_block.state_dict())
self.copied_block.train()
self.hidden_size = hidden_size = base_block.hidden_size
if self.block_index == 0:
self.before_proj = Linear(hidden_size, hidden_size)
# we still keep the before_proj as zero initialed
init.zeros_(self.before_proj.weight)
init.zeros_(self.before_proj.bias)
self.after_proj = Linear(hidden_size, hidden_size)
if zero_init:
init.zeros_(self.after_proj.weight)
init.zeros_(self.after_proj.bias)
def forward(self, x, y, t, mask=None, c=None, epipolar_constrains=None, cam_distances=None, n_views=None):
if self.block_index == 0:
# the first block
c = self.before_proj(c)
c = self.copied_block(x + c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
c_skip = self.after_proj(c)
else:
# load from previous c and produce the c for skip connection
c = self.copied_block(c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views)
c_skip = self.after_proj(c)
return c, c_skip
# The implementation of ControlPixArtHalf net
class ControlPixArtHalf(Module):
# only support single res model
def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None:
super().__init__()
self.base_model = base_model.eval()
self.controlnet = []
self.copy_blocks_num = copy_blocks_num
self.total_blocks_num = len(base_model.blocks)
for p in self.base_model.parameters():
p.requires_grad_(False)
# Copy first copy_blocks_num block
for i in range(copy_blocks_num):
self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i))
self.controlnet = nn.ModuleList(self.controlnet)
def __getattr__(self, name: str) -> Tensor or Module:
if name in [
'base_model',
'controlnet',
'encoder',
'controlnet_t_block',
'noise_embedding',
]:
return super().__getattr__(name)
else:
return getattr(self.base_model, name)
def forward_c(self, c):
self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype)
return self.x_embedder(c) + pos_embed if c is not None else c
# def forward(self, x, t, c, **kwargs):
# return self.base_model(x, t, c=self.forward_c(c), **kwargs)
def forward(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs):
# modify the original PixArtMS forward function
if c is not None:
c = c.to(self.dtype)
c = self.forward_c(c)
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs):
model_out = self.forward(x, t, y, data_info=data_info, c=c, **kwargs)
return model_out.chunk(2, dim=1)[0]
def forward_with_cfg(self, x, timestep, y, cfg_scale, data_info, c, **kwargs):
"""
Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, timestep, y, data_info=data_info, c=c)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
if all((k.startswith(('base_model', 'controlnet', 'encoder', 'controlnet_t_block', 'noise_embedding'))) for k in state_dict.keys()):
return super().load_state_dict(state_dict, strict)
else:
new_key = {}
for k in state_dict.keys():
new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k)
for k, v in new_key.items():
if k != v:
print(f"replace {k} to {v}")
state_dict[v] = state_dict.pop(k)
return self.base_model.load_state_dict(state_dict, strict)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
assert self.h * self.w == x.shape[1]
x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p))
return imgs
@property
def dtype(self):
return next(self.parameters()).dtype
# The implementation for PixArtMS_Half + 1024 resolution
class ControlPixArtMSHalf(ControlPixArtHalf):
# support multi-scale res model (multi-scale model can also be applied to single reso training & inference)
def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)
def forward(self, x, timestep, y, mask=None, data_info=None, c=None, need_forward_c=True, **kwargs):
# modify the original PixArtMS forward function
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
if c is not None and need_forward_c:
c = c.to(self.dtype)
c = self.forward_c(c)
bs = x.shape[0]
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(
get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
base_size=self.base_size
)
).unsqueeze(0).to(x.device).to(self.dtype)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep) # (N, D)
if self.micro_conditioning:
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
csize = self.csize_embedder(c_size, bs) # (N, D)
ar = self.ar_embedder(ar, bs) # (N, D)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
y_lens = [int(item) for item in y_lens]
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# define the first layer
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
# 3DEnhancer Backbone
class ControlPixArtMSMVHalfWithEncoder(ControlPixArtMSHalf):
def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None:
super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num)
self.encoder = MVEncoder(
double_z=False,
resolution=512,
in_channels=9,
ch=64,
ch_mult=[1, 2, 4, 4],
num_res_blocks=1,
dropout=0.0,
attn_resolutions=[],
out_ch=3, # unused
z_channels=self.hidden_size,
attn_kwargs = {
'n_heads': 8,
'd_head': 64,
},
z_downsample_size=2,
)
self.noise_embedding = nn.Embedding(500, self.hidden_size)
self.noise_embedding.weight.data.fill_(0)
self.controlnet_t_block = nn.Sequential(
nn.SiLU(),
nn.Linear(self.hidden_size, 6 * self.hidden_size, bias=True)
)
self.attetion_token_num = self.base_size**2
def encode(self, input_img, camera_pose, n_views):
# fuse this two on 2nd dim
# input_img: b3hw, camera_pose: b6hw (b%4==0)
z_lq = torch.cat((input_img, camera_pose), dim=1)
z_lq = self.encoder(z_lq, n_views)
z_lq = z_lq.permute(0, 2, 3, 1).reshape(-1, self.attetion_token_num, self.hidden_size)
return z_lq
def forward(self, x, timestep, y, mask=None, data_info=None, input_img=None, camera_pose=None, c=None, noise_level=None, epipolar_constrains=None, cam_distances=None, n_views=None, **kwargs):
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
c = self.encode(input_img, camera_pose, n_views).to(x.dtype) if c is None else c
bs = x.shape[0]
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
pos_embed = torch.from_numpy(
get_2d_sincos_pos_embed(
self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation,
base_size=self.base_size
)
).unsqueeze(0).to(x.device).to(self.dtype)
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep) # (N, D)
noise_level = self.noise_embedding(noise_level)
controlnet_t = t + noise_level
if self.micro_conditioning:
c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype)
csize = self.csize_embedder(c_size, bs) # (N, D)
ar = self.ar_embedder(ar, bs) # (N, D)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
controlnet_t0 = self.controlnet_t_block(controlnet_t)
y = self.y_embedder(y, self.training) # (N, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
y_lens = [int(item) for item in y_lens]
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) # (N, T, D) #support grad checkpoint
if c is not None:
# update c
for index in range(1, self.copy_blocks_num + 1):
c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, controlnet_t0, y_lens, c, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
# update x
for index in range(self.copy_blocks_num + 1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
else:
for index in range(1, self.total_blocks_num):
x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs)
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def forward_with_dpmsolver(self, x, t, y, data_info, c, noise_level, epipolar_constrains, cam_distances, n_views, **kwargs):
model_out = self.forward(x, t, y, data_info=data_info, c=c, noise_level=noise_level, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs)
return model_out.chunk(2, dim=1)[0]