import re import torch import torch.nn as nn from copy import deepcopy from torch import Tensor from torch.nn import Module, Linear, init from typing import Any, Mapping from diffusion.model.nets import PixArtMSBlock, PixArtMS, PixArt, MVEncoder from diffusion.model.nets.PixArt import get_2d_sincos_pos_embed from diffusion.model.utils import auto_grad_checkpoint # The implementation of ControlNet-Half architrecture # https://github.com/lllyasviel/ControlNet/discussions/188 class ControlT2IDitBlockHalf(Module): def __init__(self, base_block: PixArtMSBlock, block_index: 0, zero_init=True, base_size=None) -> None: super().__init__() self.copied_block = deepcopy(base_block) self.block_index = block_index for p in self.copied_block.parameters(): p.requires_grad_(True) self.copied_block.load_state_dict(base_block.state_dict()) self.copied_block.train() self.hidden_size = hidden_size = base_block.hidden_size if self.block_index == 0: self.before_proj = Linear(hidden_size, hidden_size) # we still keep the before_proj as zero initialed init.zeros_(self.before_proj.weight) init.zeros_(self.before_proj.bias) self.after_proj = Linear(hidden_size, hidden_size) if zero_init: init.zeros_(self.after_proj.weight) init.zeros_(self.after_proj.bias) def forward(self, x, y, t, mask=None, c=None, epipolar_constrains=None, cam_distances=None, n_views=None): if self.block_index == 0: # the first block c = self.before_proj(c) c = self.copied_block(x + c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views) c_skip = self.after_proj(c) else: # load from previous c and produce the c for skip connection c = self.copied_block(c, y, t, mask, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views) c_skip = self.after_proj(c) return c, c_skip # The implementation of ControlPixArtHalf net class ControlPixArtHalf(Module): # only support single res model def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None: super().__init__() self.base_model = base_model.eval() self.controlnet = [] self.copy_blocks_num = copy_blocks_num self.total_blocks_num = len(base_model.blocks) for p in self.base_model.parameters(): p.requires_grad_(False) # Copy first copy_blocks_num block for i in range(copy_blocks_num): self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i)) self.controlnet = nn.ModuleList(self.controlnet) def __getattr__(self, name: str) -> Tensor or Module: if name in [ 'base_model', 'controlnet', 'encoder', 'controlnet_t_block', 'noise_embedding', ]: return super().__getattr__(name) else: return getattr(self.base_model, name) def forward_c(self, c): self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype) return self.x_embedder(c) + pos_embed if c is not None else c # def forward(self, x, t, c, **kwargs): # return self.base_model(x, t, c=self.forward_c(c), **kwargs) def forward(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs): # modify the original PixArtMS forward function if c is not None: c = c.to(self.dtype) c = self.forward_c(c) """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) pos_embed = self.pos_embed.to(self.dtype) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep.to(x.dtype)) # (N, D) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, 1, L, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # define the first layer x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint if c is not None: # update c for index in range(1, self.copy_blocks_num + 1): c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs) x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs) # update x for index in range(self.copy_blocks_num + 1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) else: for index in range(1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs): model_out = self.forward(x, t, y, data_info=data_info, c=c, **kwargs) return model_out.chunk(2, dim=1)[0] def forward_with_cfg(self, x, timestep, y, cfg_scale, data_info, c, **kwargs): """ Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, timestep, y, data_info=data_info, c=c) eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): if all((k.startswith(('base_model', 'controlnet', 'encoder', 'controlnet_t_block', 'noise_embedding'))) for k in state_dict.keys()): return super().load_state_dict(state_dict, strict) else: new_key = {} for k in state_dict.keys(): new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k) for k, v in new_key.items(): if k != v: print(f"replace {k} to {v}") state_dict[v] = state_dict.pop(k) return self.base_model.load_state_dict(state_dict, strict) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] assert self.h * self.w == x.shape[1] x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p)) return imgs @property def dtype(self): return next(self.parameters()).dtype # The implementation for PixArtMS_Half + 1024 resolution class ControlPixArtMSHalf(ControlPixArtHalf): # support multi-scale res model (multi-scale model can also be applied to single reso training & inference) def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None: super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num) def forward(self, x, timestep, y, mask=None, data_info=None, c=None, need_forward_c=True, **kwargs): # modify the original PixArtMS forward function """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ if c is not None and need_forward_c: c = c.to(self.dtype) c = self.forward_c(c) bs = x.shape[0] x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size pos_embed = torch.from_numpy( get_2d_sincos_pos_embed( self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size ) ).unsqueeze(0).to(x.device).to(self.dtype) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep) # (N, D) if self.micro_conditioning: c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) csize = self.csize_embedder(c_size, bs) # (N, D) ar = self.ar_embedder(ar, bs) # (N, D) t = t + torch.cat([csize, ar], dim=1) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() y_lens = [int(item) for item in y_lens] else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # define the first layer x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint if c is not None: # update c for index in range(1, self.copy_blocks_num + 1): c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs) x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs) # update x for index in range(self.copy_blocks_num + 1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) else: for index in range(1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x # 3DEnhancer Backbone class ControlPixArtMSMVHalfWithEncoder(ControlPixArtMSHalf): def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None: super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num) self.encoder = MVEncoder( double_z=False, resolution=512, in_channels=9, ch=64, ch_mult=[1, 2, 4, 4], num_res_blocks=1, dropout=0.0, attn_resolutions=[], out_ch=3, # unused z_channels=self.hidden_size, attn_kwargs = { 'n_heads': 8, 'd_head': 64, }, z_downsample_size=2, ) self.noise_embedding = nn.Embedding(500, self.hidden_size) self.noise_embedding.weight.data.fill_(0) self.controlnet_t_block = nn.Sequential( nn.SiLU(), nn.Linear(self.hidden_size, 6 * self.hidden_size, bias=True) ) self.attetion_token_num = self.base_size**2 def encode(self, input_img, camera_pose, n_views): # fuse this two on 2nd dim # input_img: b3hw, camera_pose: b6hw (b%4==0) z_lq = torch.cat((input_img, camera_pose), dim=1) z_lq = self.encoder(z_lq, n_views) z_lq = z_lq.permute(0, 2, 3, 1).reshape(-1, self.attetion_token_num, self.hidden_size) return z_lq def forward(self, x, timestep, y, mask=None, data_info=None, input_img=None, camera_pose=None, c=None, noise_level=None, epipolar_constrains=None, cam_distances=None, n_views=None, **kwargs): """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ c = self.encode(input_img, camera_pose, n_views).to(x.dtype) if c is None else c bs = x.shape[0] x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size pos_embed = torch.from_numpy( get_2d_sincos_pos_embed( self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=self.pe_interpolation, base_size=self.base_size ) ).unsqueeze(0).to(x.device).to(self.dtype) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep) # (N, D) noise_level = self.noise_embedding(noise_level) controlnet_t = t + noise_level if self.micro_conditioning: c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) csize = self.csize_embedder(c_size, bs) # (N, D) ar = self.ar_embedder(ar, bs) # (N, D) t = t + torch.cat([csize, ar], dim=1) t0 = self.t_block(t) controlnet_t0 = self.controlnet_t_block(controlnet_t) y = self.y_embedder(y, self.training) # (N, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() y_lens = [int(item) for item in y_lens] else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) # (N, T, D) #support grad checkpoint if c is not None: # update c for index in range(1, self.copy_blocks_num + 1): c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, controlnet_t0, y_lens, c, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs) x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) # update x for index in range(self.copy_blocks_num + 1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) else: for index in range(1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, None, None, epipolar_constrains, cam_distances, n_views, **kwargs) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward_with_dpmsolver(self, x, t, y, data_info, c, noise_level, epipolar_constrains, cam_distances, n_views, **kwargs): model_out = self.forward(x, t, y, data_info=data_info, c=c, noise_level=noise_level, epipolar_constrains=epipolar_constrains, cam_distances=cam_distances, n_views=n_views, **kwargs) return model_out.chunk(2, dim=1)[0]