3DEnhancer / src /diffusion /model /nets /PixArt_blocks.py
Luo-Yihang's picture
initial code
4c35d22
raw
history blame
24.3 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import xformers.ops
from einops import rearrange
from timm.models.vision_transformer import Mlp, Attention as Attention_
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def batch_cosine_sim(x, y):
if type(x) is list:
x = torch.cat(x, dim=0)
if type(y) is list:
y = torch.cat(y, dim=0)
x = x / x.norm(dim=-1, keepdim=True)
y = y / y.norm(dim=-1, keepdim=True)
y = rearrange(y, "b n c -> b c n")
similarity = x @ y
return similarity
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., **block_kwargs):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model*2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentionKVCompress(Attention_):
"""Multi-head Attention block with KV token compression and qk norm."""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
sampling='conv',
sr_ratio=1,
qk_norm=False,
return_qkv=False,
use_crossview_module=False,
**block_kwargs,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
"""
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs)
self.sampling = sampling # ['conv', 'ave', 'uniform', 'uniform_every']
self.sr_ratio = sr_ratio
self.return_qkv = return_qkv
self.use_crossview_module = use_crossview_module
if sr_ratio > 1 and sampling == 'conv':
# Avg Conv Init.
self.sr = nn.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio)
self.sr.weight.data.fill_(1/sr_ratio**2)
self.sr.bias.data.zero_()
self.norm = nn.LayerNorm(dim)
if qk_norm:
self.q_norm = nn.LayerNorm(dim)
self.k_norm = nn.LayerNorm(dim)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
self.key_frames_dict = dict()
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None):
if sampling is None or scale_factor == 1:
return tensor
B, N, C = tensor.shape
if sampling == 'uniform_every':
return tensor[:, ::scale_factor], int(N // scale_factor)
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2)
new_H, new_W = int(H / scale_factor), int(W / scale_factor)
new_N = new_H * new_W
if sampling == 'ave':
tensor = F.interpolate(
tensor, scale_factor=1 / scale_factor, mode='nearest'
).permute(0, 2, 3, 1)
elif sampling == 'uniform':
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1)
elif sampling == 'conv':
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1)
tensor = self.norm(tensor)
else:
raise ValueError
return tensor.reshape(B, new_N, C).contiguous(), new_N
def forward(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, n_views=None):
if self.use_crossview_module:
# for multi-view row attention
h = int((x.shape[1])**0.5)
x = rearrange(x, "(b v) (h w) c -> (b h) (v w) c", v=n_views, h=h)
B, N, C = x.shape
if HW is None:
H = W = int(N ** 0.5)
else:
H, W = HW
qkv = self.qkv(x).reshape(B, N, 3, C)
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.q_norm(q)
k = self.k_norm(k)
new_N = N
# KV compression
if self.sr_ratio > 1:
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling)
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling)
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype)
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype)
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype)
use_fp32_attention = getattr(self, 'fp32_attention', False) # necessary for NAN loss
if qkv_cond is not None:
assert mask is None
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
qkv_cond = [item.float() for item in qkv_cond]
v = v + qkv_cond[2]
attn_bias = None
x_temp = xformers.ops.memory_efficient_attention(qkv_cond[1], k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = xformers.ops.memory_efficient_attention(q, qkv_cond[0], x_temp, p=self.attn_drop.p, attn_bias=attn_bias)
else:
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
attn_bias = None
if mask is not None:
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf'))
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, N, C)
if self.use_crossview_module:
x = rearrange(x, "(b h) (v w) c -> (b v) (h w) c", v=n_views, h=h)
x = self.proj(x)
x = self.proj_drop(x)
if self.return_qkv:
return x, [v, k, q]
else:
return x
def forward_with_cross_view(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, epipolar_constrains=None, cam_distances=None, n_views=None):
B, N, C = x.shape # (b v) (h w) c
h = int(N**0.5)
# get multi-view row attention results
if self.return_qkv:
x, [v, k, q] = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
else:
x = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
x = rearrange(x, "(b v) (h w) c -> b v (h w) c", v=n_views, h=h)
epipolar_constrains = rearrange(epipolar_constrains, "(b v) kv ... -> b v kv ...", v=n_views, kv=2)
cam_distances = rearrange(cam_distances, "(b v) kv -> b v kv", v=n_views, kv=2)
# get near-view aggragation results
x_agg = x.clone()
for i in range(n_views):
# near two views are the key views
kv_idx = [(i-1)%n_views, (i+1)%n_views]
nv = x_agg[:, [i]] # b 1 (h w) c
kv = x_agg[:, kv_idx] # b 2 (h w) c
# sim: b (1 h w) (2 h w)
with torch.no_grad():
sim = batch_cosine_sim(
rearrange(nv, "b k (h w) c -> b (k h w) c", h=h, k=1),
rearrange(kv, "b k (h w) c -> b (k h w) c", h=h, k=2)
)
sims = sim.chunk(2, dim=2) # [b 1hw 1hw, b 1hw 1hw]
idxs = []
sim_l = []
for j, sim in enumerate(sims):
idx_epipolar = epipolar_constrains[:, i, j] # b hw hw
sim[idx_epipolar] = 0
sim, sim_idx = sim.max(dim=-1) # b 1hw
sim = (sim + 1.) / 2.
sim_l.append(((sim)).view(-1, 1 * N, 1).repeat(1, 1, C)) # b 1hw c
idxs.append(sim_idx.view(-1, 1 * N, 1).repeat(1, 1, C)) # b 1hw c
attn_1, attn_2 = kv[:, 0], kv[:, 1]
attn_output1 = attn_1.gather(dim=1, index=idxs[0]) # b 1hw c
attn_output2 = attn_2.gather(dim=1, index=idxs[1]) # b 1hw c
d1 = cam_distances[:, i, 0] # b
d2 = cam_distances[:, i, 1] # b
w1 = d2 / (d1 + d2)
w1 = (w1.unsqueeze(-1).unsqueeze(-1)).to(attn_output1.dtype)
w1 = (w1 * sim_l[0]) / (w1 * sim_l[0] + (1-w1) * sim_l[1])
nv_output = w1 * attn_output1 + (1-w1) * attn_output2
nv_output = rearrange(nv_output, "b (k h w) c -> b k (h w) c", k=1, h=h) # b 1 hw c
x_agg[:, [i]] = nv + (nv_output - nv).detach()
x = (x_agg + x) / 2.
x = rearrange(x, "b v (h w) c -> (b v) (h w) c", v=n_views, h=h)
if self.return_qkv:
return x, [v, k, q]
else:
return x
def forward_with_cross_view_optimized(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, epipolar_constrains=None, cam_distances=None, n_views=None):
B, N, C = x.shape # (b v) (h w) c
h = int(N**0.5)
# get multi-view row attention results
if self.return_qkv:
x, [v, k, q] = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
else:
x = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
x = rearrange(x, "(b v) (h w) c -> b v (h w) c", v=n_views, h=h)
epipolar_constrains = rearrange(epipolar_constrains, "(b v) kv ... -> b v kv ...", v=n_views, kv=2)
cam_distances = rearrange(cam_distances, "(b v) kv -> b v kv", v=n_views, kv=2)
# get near-view aggragation results
x_agg = x.clone()
for i in range(n_views):
# near two views are the key views
kv_idx = [(i-1)%n_views, (i+1)%n_views]
nv = x_agg[:, [i]] # b 1 (h w) c
kv = x_agg[:, kv_idx] # b 2 (h w) c
# sim: b (1 h w) (2 h w)
with torch.no_grad():
sim = batch_cosine_sim(
rearrange(nv, "b k (h w) c -> b (k h w) c", h=h, k=1),
rearrange(kv, "b k (h w) c -> b (k h w) c", h=h, k=2)
)
sim = sim.chunk(2, dim=2) # [b 1hw 1hw, b 1hw 1hw]
sim = torch.stack(sim, dim=1) # b 2 hw hw
idx_epipolar = epipolar_constrains[:, i, :] # b 2 hw hw
sim[idx_epipolar] = 0
sim, sim_idx = sim.max(dim=-1) # b 2 hw
sim = (sim + 1.) / 2.
sim = sim.unsqueeze(-1).repeat(1, 1, 1, C) # b 2 1hw c
idx = sim_idx.unsqueeze(-1).repeat(1, 1, 1, C) # b 2 1hw c
attn_output1 = kv[:, 0].gather(dim=1, index=idx[:, 0]) # b 1hw c
attn_output2 = kv[:, 1].gather(dim=1, index=idx[:, 1]) # b 1hw c
d1 = cam_distances[:, i, 0] # b
d2 = cam_distances[:, i, 1] # b
w1 = d2 / (d1 + d2)
w1 = w1.unsqueeze(-1).unsqueeze(-1).to(attn_output1.dtype)
w1 = (w1 * sim[:, 0]) / (w1 * sim[:, 0] + (1-w1) * sim[:, 1])
nv_output = w1 * attn_output1 + (1-w1) * attn_output2
nv_output = rearrange(nv_output, "b (k h w) c -> b k (h w) c", k=1, h=h) # b 1 hw c
x_agg[:, [i]] = nv + (nv_output - nv).detach()
x = (x_agg + x) / 2.
x = rearrange(x, "b v (h w) c -> (b v) (h w) c", v=n_views, h=h)
if self.return_qkv:
return x, [v, k, q]
else:
return x
#################################################################################
# AMP attention with fp32 softmax to fix loss NaN problem during training #
#################################################################################
class Attention(Attention_):
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
use_fp32_attention = getattr(self, 'fp32_attention', False)
if use_fp32_attention:
q, k = q.float(), k.float()
with torch.cuda.amp.autocast(enabled=not use_fp32_attention):
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MaskFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DecoderLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, decoder_hidden_size):
super().__init__()
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_decoder(x), shift, scale)
x = self.linear(x)
return x
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype)
t_emb = self.mlp(t_freq)
return t_emb
@property
def dtype(self):
# 返回模型参数的数据类型
return next(self.parameters()).dtype
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs//s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
# 返回模型参数的数据类型
return next(self.parameters()).dtype
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120):
super().__init__()
self.y_proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0)
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class CaptionEmbedderDoubleBr(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120):
super().__init__()
self.proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0)
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5)
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5)
self.uncond_prob = uncond_prob
def token_drop(self, global_caption, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return global_caption, caption
def forward(self, caption, train, force_drop_ids=None):
assert caption.shape[2: ] == self.y_embedding.shape
global_caption = caption.mean(dim=2).squeeze()
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
y_embed = self.proj(global_caption)
return y_embed, caption