Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,298 Bytes
4c35d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import xformers.ops
from einops import rearrange
from timm.models.vision_transformer import Mlp, Attention as Attention_
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def batch_cosine_sim(x, y):
if type(x) is list:
x = torch.cat(x, dim=0)
if type(y) is list:
y = torch.cat(y, dim=0)
x = x / x.norm(dim=-1, keepdim=True)
y = y / y.norm(dim=-1, keepdim=True)
y = rearrange(y, "b n c -> b c n")
similarity = x @ y
return similarity
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., **block_kwargs):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model*2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class AttentionKVCompress(Attention_):
"""Multi-head Attention block with KV token compression and qk norm."""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
sampling='conv',
sr_ratio=1,
qk_norm=False,
return_qkv=False,
use_crossview_module=False,
**block_kwargs,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
"""
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs)
self.sampling = sampling # ['conv', 'ave', 'uniform', 'uniform_every']
self.sr_ratio = sr_ratio
self.return_qkv = return_qkv
self.use_crossview_module = use_crossview_module
if sr_ratio > 1 and sampling == 'conv':
# Avg Conv Init.
self.sr = nn.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio)
self.sr.weight.data.fill_(1/sr_ratio**2)
self.sr.bias.data.zero_()
self.norm = nn.LayerNorm(dim)
if qk_norm:
self.q_norm = nn.LayerNorm(dim)
self.k_norm = nn.LayerNorm(dim)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
self.key_frames_dict = dict()
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None):
if sampling is None or scale_factor == 1:
return tensor
B, N, C = tensor.shape
if sampling == 'uniform_every':
return tensor[:, ::scale_factor], int(N // scale_factor)
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2)
new_H, new_W = int(H / scale_factor), int(W / scale_factor)
new_N = new_H * new_W
if sampling == 'ave':
tensor = F.interpolate(
tensor, scale_factor=1 / scale_factor, mode='nearest'
).permute(0, 2, 3, 1)
elif sampling == 'uniform':
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1)
elif sampling == 'conv':
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1)
tensor = self.norm(tensor)
else:
raise ValueError
return tensor.reshape(B, new_N, C).contiguous(), new_N
def forward(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, n_views=None):
if self.use_crossview_module:
# for multi-view row attention
h = int((x.shape[1])**0.5)
x = rearrange(x, "(b v) (h w) c -> (b h) (v w) c", v=n_views, h=h)
B, N, C = x.shape
if HW is None:
H = W = int(N ** 0.5)
else:
H, W = HW
qkv = self.qkv(x).reshape(B, N, 3, C)
q, k, v = qkv.unbind(2)
dtype = q.dtype
q = self.q_norm(q)
k = self.k_norm(k)
new_N = N
# KV compression
if self.sr_ratio > 1:
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling)
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling)
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype)
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype)
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads).to(dtype)
use_fp32_attention = getattr(self, 'fp32_attention', False) # necessary for NAN loss
if qkv_cond is not None:
assert mask is None
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
qkv_cond = [item.float() for item in qkv_cond]
v = v + qkv_cond[2]
attn_bias = None
x_temp = xformers.ops.memory_efficient_attention(qkv_cond[1], k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = xformers.ops.memory_efficient_attention(q, qkv_cond[0], x_temp, p=self.attn_drop.p, attn_bias=attn_bias)
else:
if use_fp32_attention:
q, k, v = q.float(), k.float(), v.float()
attn_bias = None
if mask is not None:
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device)
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float('-inf'))
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, N, C)
if self.use_crossview_module:
x = rearrange(x, "(b h) (v w) c -> (b v) (h w) c", v=n_views, h=h)
x = self.proj(x)
x = self.proj_drop(x)
if self.return_qkv:
return x, [v, k, q]
else:
return x
def forward_with_cross_view(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, epipolar_constrains=None, cam_distances=None, n_views=None):
B, N, C = x.shape # (b v) (h w) c
h = int(N**0.5)
# get multi-view row attention results
if self.return_qkv:
x, [v, k, q] = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
else:
x = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
x = rearrange(x, "(b v) (h w) c -> b v (h w) c", v=n_views, h=h)
epipolar_constrains = rearrange(epipolar_constrains, "(b v) kv ... -> b v kv ...", v=n_views, kv=2)
cam_distances = rearrange(cam_distances, "(b v) kv -> b v kv", v=n_views, kv=2)
# get near-view aggragation results
x_agg = x.clone()
for i in range(n_views):
# near two views are the key views
kv_idx = [(i-1)%n_views, (i+1)%n_views]
nv = x_agg[:, [i]] # b 1 (h w) c
kv = x_agg[:, kv_idx] # b 2 (h w) c
# sim: b (1 h w) (2 h w)
with torch.no_grad():
sim = batch_cosine_sim(
rearrange(nv, "b k (h w) c -> b (k h w) c", h=h, k=1),
rearrange(kv, "b k (h w) c -> b (k h w) c", h=h, k=2)
)
sims = sim.chunk(2, dim=2) # [b 1hw 1hw, b 1hw 1hw]
idxs = []
sim_l = []
for j, sim in enumerate(sims):
idx_epipolar = epipolar_constrains[:, i, j] # b hw hw
sim[idx_epipolar] = 0
sim, sim_idx = sim.max(dim=-1) # b 1hw
sim = (sim + 1.) / 2.
sim_l.append(((sim)).view(-1, 1 * N, 1).repeat(1, 1, C)) # b 1hw c
idxs.append(sim_idx.view(-1, 1 * N, 1).repeat(1, 1, C)) # b 1hw c
attn_1, attn_2 = kv[:, 0], kv[:, 1]
attn_output1 = attn_1.gather(dim=1, index=idxs[0]) # b 1hw c
attn_output2 = attn_2.gather(dim=1, index=idxs[1]) # b 1hw c
d1 = cam_distances[:, i, 0] # b
d2 = cam_distances[:, i, 1] # b
w1 = d2 / (d1 + d2)
w1 = (w1.unsqueeze(-1).unsqueeze(-1)).to(attn_output1.dtype)
w1 = (w1 * sim_l[0]) / (w1 * sim_l[0] + (1-w1) * sim_l[1])
nv_output = w1 * attn_output1 + (1-w1) * attn_output2
nv_output = rearrange(nv_output, "b (k h w) c -> b k (h w) c", k=1, h=h) # b 1 hw c
x_agg[:, [i]] = nv + (nv_output - nv).detach()
x = (x_agg + x) / 2.
x = rearrange(x, "b v (h w) c -> (b v) (h w) c", v=n_views, h=h)
if self.return_qkv:
return x, [v, k, q]
else:
return x
def forward_with_cross_view_optimized(self, x, mask=None, HW=None, block_id=None, qkv_cond=None, epipolar_constrains=None, cam_distances=None, n_views=None):
B, N, C = x.shape # (b v) (h w) c
h = int(N**0.5)
# get multi-view row attention results
if self.return_qkv:
x, [v, k, q] = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
else:
x = self.forward(x, mask, HW, block_id, qkv_cond, n_views=n_views) # (b v) (h w) c
x = rearrange(x, "(b v) (h w) c -> b v (h w) c", v=n_views, h=h)
epipolar_constrains = rearrange(epipolar_constrains, "(b v) kv ... -> b v kv ...", v=n_views, kv=2)
cam_distances = rearrange(cam_distances, "(b v) kv -> b v kv", v=n_views, kv=2)
# get near-view aggragation results
x_agg = x.clone()
for i in range(n_views):
# near two views are the key views
kv_idx = [(i-1)%n_views, (i+1)%n_views]
nv = x_agg[:, [i]] # b 1 (h w) c
kv = x_agg[:, kv_idx] # b 2 (h w) c
# sim: b (1 h w) (2 h w)
with torch.no_grad():
sim = batch_cosine_sim(
rearrange(nv, "b k (h w) c -> b (k h w) c", h=h, k=1),
rearrange(kv, "b k (h w) c -> b (k h w) c", h=h, k=2)
)
sim = sim.chunk(2, dim=2) # [b 1hw 1hw, b 1hw 1hw]
sim = torch.stack(sim, dim=1) # b 2 hw hw
idx_epipolar = epipolar_constrains[:, i, :] # b 2 hw hw
sim[idx_epipolar] = 0
sim, sim_idx = sim.max(dim=-1) # b 2 hw
sim = (sim + 1.) / 2.
sim = sim.unsqueeze(-1).repeat(1, 1, 1, C) # b 2 1hw c
idx = sim_idx.unsqueeze(-1).repeat(1, 1, 1, C) # b 2 1hw c
attn_output1 = kv[:, 0].gather(dim=1, index=idx[:, 0]) # b 1hw c
attn_output2 = kv[:, 1].gather(dim=1, index=idx[:, 1]) # b 1hw c
d1 = cam_distances[:, i, 0] # b
d2 = cam_distances[:, i, 1] # b
w1 = d2 / (d1 + d2)
w1 = w1.unsqueeze(-1).unsqueeze(-1).to(attn_output1.dtype)
w1 = (w1 * sim[:, 0]) / (w1 * sim[:, 0] + (1-w1) * sim[:, 1])
nv_output = w1 * attn_output1 + (1-w1) * attn_output2
nv_output = rearrange(nv_output, "b (k h w) c -> b k (h w) c", k=1, h=h) # b 1 hw c
x_agg[:, [i]] = nv + (nv_output - nv).detach()
x = (x_agg + x) / 2.
x = rearrange(x, "b v (h w) c -> (b v) (h w) c", v=n_views, h=h)
if self.return_qkv:
return x, [v, k, q]
else:
return x
#################################################################################
# AMP attention with fp32 softmax to fix loss NaN problem during training #
#################################################################################
class Attention(Attention_):
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
use_fp32_attention = getattr(self, 'fp32_attention', False)
if use_fp32_attention:
q, k = q.float(), k.float()
with torch.cuda.amp.autocast(enabled=not use_fp32_attention):
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class MaskFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DecoderLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, decoder_hidden_size):
super().__init__()
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, t):
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1)
x = modulate(self.norm_decoder(x), shift, scale)
x = self.linear(x)
return x
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype)
t_emb = self.mlp(t_freq)
return t_emb
@property
def dtype(self):
# 返回模型参数的数据类型
return next(self.parameters()).dtype
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs//s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
# 返回模型参数的数据类型
return next(self.parameters()).dtype
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120):
super().__init__()
self.y_proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0)
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5))
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class CaptionEmbedderDoubleBr(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120):
super().__init__()
self.proj = Mlp(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0)
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5)
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5)
self.uncond_prob = uncond_prob
def token_drop(self, global_caption, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption)
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return global_caption, caption
def forward(self, caption, train, force_drop_ids=None):
assert caption.shape[2: ] == self.y_embedding.shape
global_caption = caption.mean(dim=2).squeeze()
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids)
y_embed = self.proj(global_caption)
return y_embed, caption |