File size: 2,929 Bytes
8f8907e ac60056 c752dca ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e c752dca ac60056 c752dca ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 e4444ee ac60056 a2fd20a ac60056 f48bfcf ac60056 8f8907e c752dca 8f8907e ac60056 8f8907e ac60056 8f8907e ac60056 c752dca ac60056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
from PIL import Image, ImageFilter
import numpy as np
import torch
from transformers import (
SegformerFeatureExtractor, SegformerForSemanticSegmentation,
DPTFeatureExtractor, DPTForDepthEstimation
)
import cv2
import os, json
# ββββββββββββββββ
# load segmentation model
seg_model_name = "nvidia/segformer-b1-finetuned-ade-512-512"
seg_fe = SegformerFeatureExtractor.from_pretrained(seg_model_name)
seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_name)
# load depth model
depth_model_name = "Intel/dpt-hybrid-midas"
depth_fe = DPTFeatureExtractor.from_pretrained(depth_model_name)
depth_model = DPTForDepthEstimation.from_pretrained(depth_model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(device)
depth_model.to(device)
def process_image(image: Image.Image):
# 1) prep
image = image.convert("RGB").resize((512,512))
# 2) segmentation β binary mask
seg_inputs = seg_fe(images=image, return_tensors="pt").to(device)
with torch.no_grad():
seg_logits = seg_model(**seg_inputs).logits
seg_map = torch.argmax(seg_logits, dim=1)[0].cpu().numpy()
mask = (seg_map > 0).astype(np.uint8) * 255
mask = Image.fromarray(mask).resize((512,512))
# 3) gaussian-blur background
bg_blur = image.filter(ImageFilter.GaussianBlur(15))
output_blur = Image.composite(image, bg_blur, mask)
# 4) depth estimation
depth_inputs = depth_fe(images=image, return_tensors="pt").to(device)
with torch.no_grad():
depth_pred = depth_model(**depth_inputs).predicted_depth.squeeze().cpu().numpy()
# normalize & resize
dmin, dmax = depth_pred.min(), depth_pred.max()
depth_norm = (depth_pred - dmin) / (dmax - dmin + 1e-8)
depth_norm = cv2.resize(depth_norm, (512,512))
# 5) vectorized depth-based blur
img_np = np.array(image).astype(np.float32)
# two extremes: no blur for near, heavy blur for far
near_blur = img_np
far_blur = cv2.GaussianBlur(img_np, (81,81), 20)
# invert so 0βnear, 1βfar
inv_d = 1.0 - depth_norm
alpha = inv_d[...,None]
# now near (inv_dβ1) stays sharp, far (inv_dβ0) becomes far_blur
combined = img_np * alpha + far_blur * (1.0 - alpha)
lens_blur = Image.fromarray(np.clip(combined,0,255).astype(np.uint8))
return image, output_blur, lens_blur
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil", label="Upload Image"),
outputs=[
gr.Image(type="pil", label="Original"),
gr.Image(type="pil", label="Gaussian Blur"),
gr.Image(type="pil", label="Depth-Based Lens Blur"),
],
title="Image Blurring with CLAHE + Depth-Based Blur",
description="Upload a selfie to see background blur and depth-based lens blur."
)
if __name__ == "__main__":
iface.launch(share=True)
|