yrosenbloom commited on
Commit
f48bfcf
·
verified ·
1 Parent(s): c650ea2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -24
app.py CHANGED
@@ -23,49 +23,49 @@ depth_model.to(device)
23
 
24
  def process_image(image_pil):
25
  image = ImageOps.exif_transpose(image_pil).resize((512, 512)).convert("RGB")
26
-
27
- # ---------- Part 1: Segmentation ----------
28
- seg_inputs = seg_extractor(images=image, return_tensors="pt").to(device)
29
  with torch.no_grad():
30
- seg_output = seg_model(**seg_inputs).logits
31
  seg_mask = torch.argmax(seg_output, dim=1)[0].cpu().numpy()
32
  binary_mask = np.where(seg_mask > 0, 255, 0).astype(np.uint8)
33
  foreground_mask = Image.fromarray(binary_mask).convert("L")
34
 
35
- # ---------- Part 2: Gaussian blur to background ----------
36
- blurred_background = image.filter(ImageFilter.GaussianBlur(15))
37
- blurred_background = blurred_background.convert("RGBA")
38
  image_rgba = image.convert("RGBA")
39
- output_blur = Image.composite(image_rgba, blurred_background, foreground_mask)
 
40
 
41
- # ---------- Part 3: Depth Estimation ----------
42
  image_np = np.array(image)
43
- depth_inputs = depth_extractor(images=image_np, return_tensors="pt").to(device)
44
  with torch.no_grad():
45
- depth_output = depth_model(**depth_inputs)
46
  predicted_depth = depth_output.predicted_depth.squeeze().cpu().numpy()
47
  normalized_depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
48
 
49
- # ---------- Part 4: Depth-Based Variable Gaussian Blur ----------
50
- image_np_float = image_np.astype(np.float32)
51
  resized_depth = cv2.resize(normalized_depth, (image_np.shape[1], image_np.shape[0]))
52
  inverted_depth = 1.0 - resized_depth
53
- total_blur_levels = 4
54
- blurred_versions = []
55
- for i in range(total_blur_levels):
56
  sigma = i * 3
57
- blurred = cv2.GaussianBlur(image_np_float, (15, 15), sigmaX=sigma, sigmaY=sigma) if sigma > 0 else image_np_float.copy()
58
- blurred_versions.append(blurred)
59
 
60
- blur_indices = (inverted_depth * (total_blur_levels - 1)).astype(np.uint8)
61
- final_blurred_np = np.zeros_like(image_np_float)
62
- for i in range(total_blur_levels):
63
  mask = (blur_indices == i)
64
  for c in range(3):
65
- final_blurred_np[:, :, c][mask] = blurred_versions[i][:, :, c][mask]
66
- depth_blur_img = Image.fromarray(np.clip(final_blurred_np, 0, 255).astype(np.uint8))
 
 
67
 
68
- return image, output_blur.convert("RGB"), depth_blur_img
69
 
70
  # Gradio Interface
71
  gr.Interface(
 
23
 
24
  def process_image(image_pil):
25
  image = ImageOps.exif_transpose(image_pil).resize((512, 512)).convert("RGB")
26
+
27
+ # ---- Segmentation ----
28
+ seg_inputs = seg_extractor(images=image, return_tensors="pt", do_resize=True, do_normalize=True)
29
  with torch.no_grad():
30
+ seg_output = seg_model(**seg_inputs.to(device)).logits
31
  seg_mask = torch.argmax(seg_output, dim=1)[0].cpu().numpy()
32
  binary_mask = np.where(seg_mask > 0, 255, 0).astype(np.uint8)
33
  foreground_mask = Image.fromarray(binary_mask).convert("L")
34
 
35
+ # ---- Blur Background ----
 
 
36
  image_rgba = image.convert("RGBA")
37
+ blurred = image.filter(ImageFilter.GaussianBlur(15)).convert("RGBA")
38
+ composite_blur = Image.composite(image_rgba, blurred, foreground_mask)
39
 
40
+ # ---- Depth ----
41
  image_np = np.array(image)
42
+ depth_inputs = depth_extractor(images=image_np, return_tensors="pt")
43
  with torch.no_grad():
44
+ depth_output = depth_model(**depth_inputs.to(device))
45
  predicted_depth = depth_output.predicted_depth.squeeze().cpu().numpy()
46
  normalized_depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
47
 
48
+ # ---- Depth-Based Blur ----
49
+ image_np = np.array(image).astype(np.float32)
50
  resized_depth = cv2.resize(normalized_depth, (image_np.shape[1], image_np.shape[0]))
51
  inverted_depth = 1.0 - resized_depth
52
+ blur_levels = 4
53
+ blurred_variants = []
54
+ for i in range(blur_levels):
55
  sigma = i * 3
56
+ blurred = cv2.GaussianBlur(image_np, (15, 15), sigmaX=sigma, sigmaY=sigma) if sigma > 0 else image_np.copy()
57
+ blurred_variants.append(blurred)
58
 
59
+ blur_indices = (inverted_depth * (blur_levels - 1)).astype(np.uint8)
60
+ final_blur = np.zeros_like(image_np)
61
+ for i in range(blur_levels):
62
  mask = (blur_indices == i)
63
  for c in range(3):
64
+ final_blur[:, :, c][mask] = blurred_variants[i][:, :, c][mask]
65
+ lens_blur_pil = Image.fromarray(np.clip(final_blur, 0, 255).astype(np.uint8))
66
+
67
+ return image, composite_blur.convert("RGB"), lens_blur_pil
68
 
 
69
 
70
  # Gradio Interface
71
  gr.Interface(